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Abstract

Easy Encryption for Email, Photo, and Other Cloud Services

John Seunghyun Koh

Modern users carry mobile devices with them at nearly all times, and this likely has contribut-

ed to the rapid growth of private user data—such as emails, photos, and more—stored online in

the cloud. Unfortunately, the security of many cloud services for user data is lacking, and the vast

amount of user data stored in the cloud is an attractive target for adversaries. Even a single compro-

mise of a user’s account yields all its data to attackers. A breach of an unencrypted email account

gives the attacker full access to years, even decades, of emails. Ideally, users would encrypt their

data to prevent this. However, encrypting data at rest has long been considered too difficult for

users, even technical ones, mainly due to the confusing nature of managing cryptographic keys.

My thesis is that strong security can be made easy to use through client-side encryption using

self-generated per-device cryptographic keys, such that user data in cloud services is well pro-

tected, encryption is transparent and largely unnoticeable to users even on multiple devices, and

encryption can be used with existing services without any server-side modifications. This dis-

sertation introduces a new paradigm for usable cryptographic key management, Per-Device Keys

(PDK), and explores how self-generated keys unique to every device can enable new client-side

encryption schemes that are compatible with existing online services yet are transparent to users.

PDK’s design based on self-generated keys allows them to stay on each device and never leave

them. Management of these self-generated keys can be shown to users as a device management

abstraction which looks like pairing devices with each other, and not any form of cryptographic key

management. I design, implement, and evaluate three client-side encryption schemes supported by

PDK, with a focus on designing around usability to bring transparent encryption to users.

First, I introduce Easy Email Encryption (E3), a secure email solution that is easy to use. Users

struggle with using end-to-end encrypted email, such as PGP and S/MIME, because it requires

users to understand cryptographic key exchanges to send encrypted emails. E3 eliminates this

key exchange by focusing on storing encrypting emails instead of sending them. E3 transparently



encrypts emails on receipt, ensuring that all emails received before a compromise are protected

from attack, and relies on widely-used TLS connections to protect in-flight emails. Emails are

encrypted using self-generated keys, which are completely hidden from the user and do not need

to be exchanged with other users, alleviating the burden of users having to know how to use and

manage them. E3 encrypts on the client, making it easy to deploy because it requires no server

or protocol changes and is compatible with any existing email service. Experimental results show

that E3 is compatible with existing IMAP email services, including Gmail and Yahoo!, and has

good performance for common email operations. Results of a user study show that E3 provides

much stronger security guarantees than current practice yet is much easier to use than end-to-end

encrypted email such as PGP.

Second, I introduce Easy Secure Photos (ESP), an easy-to-use system that enables photos to

be encrypted and stored using existing cloud photo services. Users cannot store encrypted photos

in services like Google Photos because these services only allow users to upload valid images

such as JPEG images, but typical encryption methods do not retain image file formats for the

encrypted versions and are not compatible with image processing such as image compression.

ESP introduces a new image encryption technique that outputs valid encrypted JPEG files which

are accepted by cloud photo services, and are robust against compression. The photos are encrypted

using self-generated keys before being uploaded to cloud photo services, and are decrypted when

downloaded to users’ devices. Similar to E3, ESP hides all the details of encryption/decryption

and key management from the user. Since all crypto operations happen in the user’s photo app,

ESP requires no changes to existing cloud photo services, making it easy to deploy. Experimental

results and user studies show that ESP encryption is robust against attack techniques, exhibits

acceptable performance overheads, and is simple for users to set up and use.

Third, I introduce Easy Device-based Passwords (EDP), a password manager with improved

security guarantees over existing ones while maintaining their familiar usage models. To encrypt

and decrypt user passwords, existing password managers rely on weak, human-generated mas-

ter passwords which are easy to use but easily broken. EDP introduces a new approach using



self-generated keys to encrypt passwords, and an easy-to-use pairing mechanism to allow users to

access passwords across multiple devices. Keys are not exposed to users and users do not need to

know anything about key management. EDP is the first password manager that secures passwords

even with untrusted servers, protecting against server break-ins and password database leaks. Ex-

perimental results and a user study show that EDP ensures password security with untrusted servers

and infrastructure, has comparable performance to existing password managers, and is considered

usable by users.
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Chapter 1: Introduction

The rapid proliferation of always on and always connected mobile devices has driven an ex-

plosive growth in the amount of information that users produce, store, and communicate or share

online. This has been further accelerated by the growing number of capabilities and features sup-

ported by modern smartphones and tablets that allow users to produce daily streams of personalized

content. In response, online services have risen to the task of providing affordable yet highly avail-

able, reliable, and persistent online infrastructure—often referred to as the cloud—to support the

communication and storage of user data. Users increasingly trust these reliable cloud-based online

services to safeguard, and in many cases, permanently store their private and sensitive data, such

as emails, photos, videos, documents, and much more. This is problematic for users because they

store years and sometimes even decades worth of personal data in the cloud, and all it takes is a

single successful compromise of their accounts to reveal all of their data.

The issue is that the security of online services is poor due to the lack of encryption. They often

only rely on easily compromised user account credentials—usernames and passwords—to authen-

ticate users, and it is a simple matter to find massive databases containing working mappings of

usernames and passwords, often procured via password database leaks and hacks. Worse yet, users

often reuse these credentials for multiple services, thus amplifying the impacts of such leaks [1, 2].

Even without these lists, most passwords are easy to guess despite key-strengthening techniques

since after all, they are generated by humans [3, 4, 5]. Some services augment the user credentials

check with two-factor authentication (2FA) which most often requires the user to provide proof of

ownership of a trusted secret (“something you own”), but this only defends against account-based

compromises. The reality is that adversaries can entirely bypass any account-based authentication

checks, such as by compromising the servers of an online service or by simply being the service

itself. Some examples of server-side compromises include but are not limited to:
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• an external hacker exploiting a bug in a server to gain access to the data stored on it,

• another external attacker using phishing or social engineering to obtain an employee’s cre-

dentials at the service provider,

• a law enforcement agency seizing servers as evidence for a case,

• an internal adversary such as a rogue employee abusing privileged access to user data [6, 7,

8, 9],

• or even the service itself by design, such as “honest-but-curious” providers who have legit-

imate access to private user data and take the opportunity to aggressively mine and analyze

it [10, 11].

In all these cases, user account credentials are irrelevant, the privacy of user data is compromised,

and users are powerless to defend themselves.

A way which users could protect themselves is through the use of cryptography [12]. If users

encrypt their private data with a secret key known to only them, this would greatly reduce the possi-

ble attack surface area, addressing all of the attack vectors listed prior. The problem is that the vast

majority of popular online services do not offer such an option. Although there are various reasons

for this, one of the primary factors is that the average user has no idea how to use cryptography.

It has been traditionally difficult and confusing to use, as shown time and time again for over two

decades in a variety of contexts and applications [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24],

including email, instant messaging, social networking services, and even tactical radio traffic used

by trained US federal law enforcement officers. In recent years, Apple’s FileVault [25] for macOS

and Microsoft’s BitLocker [26] have set the bar for providing disk encryption to average end users,

and have made significant progress in easing the difficulty of using it. The way they achieved

this was by greatly simplifying the usage model: users only need to perform a simple step of en-

abling the disk encryption and perhaps writing down a recovery key or linking the configuration to

their cloud service account with Apple for FileVault, or with Microsoft for BitLocker. Thereafter,
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all encryption and decryption happens transparently to the user with no further interaction. This

simple setup and usage model is possible primarily due to one important design decision: each

FileVault or BitLocker encryption key is tied to a single local device, without any encryption of

remote data. In other words, when it comes to the average end user, FileVault and BitLocker do

not use their keys for multiple device encryption and decryption because it is unnecessary, so their

keys never need to be moved to other devices. This makes their usage models simple to use and

easy to understand.

However, in most cases of applied cryptography beyond local disk encryption, support for

multiple device encryption and decryption of both locally or remotely stored data is an important

requirement. In turn, supporting users with multiple devices requires a solution for cryptographic

key management because in the traditional cryptography model, each device needs access to the

same encryption key or set of keys; this allows each device to independently encrypt and decrypt

the user’s data. Cryptographic key management is also what users struggle with the most. Users

do not understand it, and encounter severe usability issues related to selecting the correct keys and

actually encrypting data; users essentially lack the requisite knowledge for understanding how to

store, transfer, and use cryptographic keys [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Consider

traditional encrypted email such as PGP. A PGP email sender encrypts an email using the PGP

public key of an intended recipient, and the recipient may check their email on any one of their

multiple devices which needs to decrypt the email with the PGP private key. This already places

two highly technical burdens on the involved users. First, the sender must somehow obtain the

correct public key of the recipient which is necessary to encrypt the sent email, and the recipient

must have copied their private key to all their devices to be able to decrypt the email on any of

them. This cryptographic exchange significantly differs from the much simpler case of FileVault

and BitLocker because users must understand managing crytographic keys not only locally on their

devices, but also when securely exchanging public keys with other users.

Any service that supports encryption for users also needs to support cryptographic key man-

agement features, but few, if any, do. The issues are a lack of usable yet platform-independent
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cryptographic key management solutions, and expecting users to know how to utilize encryption

at all; if these problems are addressed, then encryption should be much more accessible to users.

But providing usable cryptographic key management with comprehensible encryption models has

proven to be a difficult problem to solve, so most services have settled for only requiring username

and passwords for security despite a long history of proposals to replace them [27]. This stubborn

reliance on only passwords and 2FA is insufficient since the threat is no longer just account-based

compromises, but server-side ones and even the services themselves. The current account-based

security paradigm for data security for users may have been suitable many years ago, but is no

longer so as evidenced by the billions of breached and leaked passwords on public databases [28].

My thesis is that strong security can be made easy to use through client-side encryption using

self-generated per-device cryptographic keys, such that user data in cloud services is well pro-

tected, encryption is transparent and largely unnoticeable to users even on multiple devices, and

encryption can be used with existing services without any server-side modifications. This is con-

trary to the widely held belief that strong encryption is unusable by average users due to requiring

an in-depth understanding of how encryption and its keys operate. I designed, implemented, and

evaluated a novel cryptographic key management approach based on self-generated keys call Per-

Device Keys (PDK) for improved data security that sacrifices little to no usability. Self-generated

PDK keys stay on each device and users never need to know about them. For a given user, any

device can be used to encrypt the user’s data such that any other device belonging to the user

can also decrypt the data. The PDK design using self-generated keys achieves the simple usage

model of systems like FileVault and BitLocker, but unlike these systems, supports encryption and

decryption on multiple devices for even remote data, not just local data. My use of self-generated

keys also shows that encrypting data does not necessarily require trust provided by a third party, in

contrast to competing solutions which rely on public key infrastructure and services as seen in Ap-

ple’s approach based on having Apple devices trust the iCloud secure architecture. These aspects

of PDK are made possible in recent years by leveraging developments in mobile computing usage

patterns by the average user; in essence, users carry mobile devices with them at all times which
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are trusted and always connected to the Internet, and which are now powerful enough to encrypt

data in a timely fashion. In other words, my thesis, which could not be realized two decades ago,

is now made possible due to technological advancements and cultural shifts in mobile computing.

I combine PDK with client-side encryption of user data using public key cryptography with

existing services. At a high level, this consists of having all of a user’s devices generate pri-

vate/public keypairs, locally encrypting their private data using all of the public keys belonging

to the user’s devices, and uploading the encrypted data to online services while still providing a

seamless experience to users that exhibits little difference from a regular client with no encryption.

It is this concept of generating a new private/public keypair on each of a user’s devices, and also

the associated key management system which defines PDK.

My general system design is applicable to a broad spectrum of online services where users

store their private and sensitive data. The system design guarantees the confidentiality and integri-

ty of users’ private data with minimal overhead with regards to both performance and usability,

under various threat model and trust assumptions including both trusted and untrusted servers and

infrastructure, with no reliance on custom secure hardware. A key insight and motivator for this

dissertation is addressing a long-standing and problematic assumption made by existing applica-

tions that use encryption: the assumption that if users are using an application with encryption, then

they probably are security-conscious and therefore already understand cryptography and secure in-

frastructure. A secondary problematic assumption for secure applications is that online services

cooperate with and are compatible with the encryption being used, which is not necessarily the

case in practice. In contrast, my proposed design makes no such assumptions about users or the

cooperation of services.

By addressing the usability issues with cryptographic key management, I am then able to ex-

plore the possibilities for client-side encryption of user data, namely in the context of encrypting

user data in a way that is compatible with existing cloud services. Such a solution provides numer-

ous benefits, including no reliance on and complete privacy from any third party services or devices

to perform the encryption on behalf of users, and quick deployment with a low barrier to entry as

5



users only need to install a client app and begin encrypting their data immediately. This is benefi-

cial to both developers and users because no work needs to be done to existing servers, back ends,

and protocols, and because users experience only minor changes in their typical usage patterns

when compared to a regular app with no encryption. The key issue to address is designing encryp-

tion solutions within these constraints but also the limtiations of the cloud services themselves. For

example, photo services such as Google Photos only accept files which are valid images, whereas

encrypted data often appears to be entirely random bits, necessitating an encryption algorithm that

outputs ciphertexts which are valid images. Furthermore, an important requirement is that all the

encryption and decryption is transparent to the user and happens automatically behind the scenes

so that the user is not burdened with cryptographic concepts and potential significant performance

overhead.

I introduce three systems in which I design, implement, and evaluate the PDK design when

coupled with transparent and strong client-side encryption. The three systems exhibit the effec-

tiveness of my system in varying contexts and environments which consist of three popular online

services: one for email, one for photos, and one for passwords. They are representative of different

threat and trust models for infrastructure with differing encryption requirements with respect to

their formats and keying material.

First, I present Easy Email Encryption (E3) [29], an easy-to-use encrypted email app. Users

traditionally struggle with end-to-end encrypted email solutions such as PGP and S/MIME due

to their heavy reliance on users understanding complex concepts in cryptography such as crypto-

graphic key exchanges. E3 has no such requirement for users because it uses self-generated keys

which are entirely internal to its system in a way that completely hides them from users. This de-

sign choice allows E3 to eliminate confusing cryptographic key exchanges. These self-generated

keys are then used to only encrypt stored emails when they are received instead of when they

are sent, which protects them against email account and server compromises. In-flight emails be-

ing sent over the network are protected using widely-used securely encrypted TLS connections.

E3 improves the usability of secure email because it only exposes a device pairing abstraction to
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users. This design is applicable to a threat and trust model where users initially trust the servers

and infrastructure, which may become malicious or compromised at a later time. E3 is compatible

with any standard IMAP server including all of the most popular email providers like Gmail and

Yahoo!, leverages existing encryption formats for email—PGP and S/MIME—for the client-side

encryption, and introduces the first concrete implementation of the PDK key management con-

cept. User study results for E3 show that E3 provides improved security guarantees over the norm

of unencrypted email yet is much easier to use than end-to-end encrypted email such as PGP.

Second, I present Easy Secure Photos (ESP) [30], an encrypted photo app that allows users to

encrypt their photos and store them in existing cloud photo services. Users normally cannot en-

crypt their photos for storage in widely used cloud services such as Google Photos because typical

encryption methods do not retain valid image file formats, or if they do, they are not compatible

with compression of alterations of the iamge ciphertexts. ESP uses a new image format-preserving

encryption technique to produce encrypted JPEG images that are compatible with existing photo

hosting services, with no changes to servers or protocols. ESP users only need to install a ESP

app, making it easy to deploy. Like E3, uses self-generated keys to encrypt and decrypt images

in a similar manner as E3 does for email, such that all cryptographic key management is hidden

from the user. Also like E3, ESP’s threat and trust model assume that the servers and infrastruc-

ture, such as the servers hosting users’ images, are initially trusted. However, there are some key

differences between the two: (1) The use of a new format-preserving encryption method provides

a case study for the motivations and design decisions required to support client-side encryption

for online services which restrict the file type formats of user-uploaded data. (2) Since ESP uses

its own format-preserving encryption scheme, it uses a different security model from E3 and ap-

plies the concept of using PDK keys as key-encrypting keys. (3) ESP’s design for PDK utilizes

an unconventional format for its key management protocol messages, showing that it is flexible

enough for not only online services based on textual communication, but can be used in a variety

of contexts and communications channels with a little creativity. The experimental results and user

studies show that ESP is secure, has acceptable performance overheads, and is simple for users to
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use.

Third, I present Easy Device-based Passwords (EDP), a password manager system and client

with improved security guarantees over existing ones while maintaining their familiar usage mod-

els. Existing password mangers rely on weak, human-generated master passwords to encrypt user

passwords because this usage model is easy for users to understand. The drawback is that mas-

ter passwords are by definition easy for adversaries to guess and break. EDP introduces a new

approach to password management to address the weakness of master passwords by instead us-

ing self-generated keys to encrypt passwords. This is then coupled with an easy-to-use device

pairing mechanism so that users can enroll EDP devices which gives them access to their pass-

words on their devices. Like with E3 and ESP, the self-generated keys are internal to the EDP

system and are not exposed to users, so users do not need to understand any cryptographic key

management concepts. EDP is the first password manager that secures passwords even when using

untrusted servers for storing passwords, making EDP also the first password manager that protects

against server compromises and password database leaks as an inherent part of its design. This

is in contrast to existing password managers which take extra precautions to protect users’ weak-

ly encrypted passwords which are vulnerable to break-ins and leaks. EDP also operates securely

with the use of untrusted connections, and is able to manage users’ PDK keys even when their

devices communicate over malicious communications channels. The experimental results and us-

er study for EDP show that it ensures password security under these conditions, has comparable

performance to existing password managers, and is considered usable by users.

The contributions of this dissertation include:

1. The design, implementation, and evaluation of a novel cryptographic key management scheme,

Per-Device Keys (PDK), which puts a new spin on how to approach the long outstanding is-

sue of usable key management by leveraging self-generated keys and modern advancements

in mobile computing.

2. A blueprint for using PDK to support new and usable client-side encryption models with

existing widely used cloud services even with varying constraints and restrictions imposed
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by the services and users’ devices.

3. The design, implementation, and evaluation of Easy Email Encryption (E3) which introduces

the encrypt-on-receipt approach to secure email for IMAP-based mail services which focuses

on encrypting emails when they are stored instead of when they are sent, unlike in end-to-

end encrypted email like PGP and S/MIME. This requires no changes to the IMAP protocol

or email servers, and adds acceptable performance overhead.

4. How to implement and use PDK in the context of E3, with a device enrollment approach

based on a two-way verification step, together with an evaluation of its usability via user

studies.

5. The design, implementation, and evaluation of Easy Secure Photos (ESP) which introduces

an image encryption algorithm based on using grayscale JPEG images to output valid JPEG

images that are robust against ciphertext image compression with imperceptible changes in

quality.

6. How to implement and use PDK in the context of ESP, with its cryptographic key man-

agement solution which has no reliance on any third party service and uses only the photo

service itself.

7. The design, implementation, and evaluation of Easy Device-based Passwords (EDP) which

introduces a password manager that improves the security guarantees of typical password

managers by encrypting user passwords with PDK keys instead of weak, human-generated

master passwords. EDP achieves this while still maintaining the familiar password-based

usage model of existing password managers.

8. A significant improvement to the security guarantees of PDK as designed and implemented

in EDP which utilizes a Password Authenticated Key Exchange (PAKE) and an untrusted

relay server for PDK device verification.
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Chapter 2: System Design - Client-side Encryption and Key Management

We present a general system design to address the weak security of online services by giving

users agency to control the security of their data. We do this with a new usable key manage-

ment design that appears only as a device management scheme to users, which then provides the

foundation to enable them to use strong client-side encryption. We show that this system is flexible

enough to meet the needs of nearly any online service that stores users’ private data without adding

significant overhead to performance and usability metrics.

We define private data as any piece of data for which a user wishes to preserve confidentiality

and integrity. Some examples of private data include user emails, photos, and passwords. Tra-

ditionally, online services have stored private data on their servers with limited security; most

services only protect user data through basic password-based authentication and authorization re-

quirements, i.e. requiring users to provide an authorized username and password to authenticate

themselves and gain access to their data. Some services apply server-side encryption of data at

rest on their disks, but this is opaque to users and attackers in the sense that the simple username

and password combination is enough to bypass server-side encryption. Moreover, server-side en-

crypted data is fully accessible to the online service itself which may be or become malicious.

These issues motivate the use of strong, client-side encryption which addresses the use of weak

passwords by users, and also protects user private data against the prying eyes of adversaries.

2.1 Key Management via Per-Device Keys

One of the goals of this dissertation is to enable the use of strong encryption, such as public

key cryptography, for users. Public key cryptography consists of private/public keys which are

used to encrypt/decrypt data. Using public keys to encrypt data sounds straightforward, but has
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famously posed a difficult problem in terms of usability for non-technical, average users who

struggle with understanding public key cryptography and how to use it [13]. Typically, users are

tasked with managing their keypairs which entails numerous activities such as storing, retrieving,

authenticating, and correctly using them. These management requirements are often far beyond

the capabilities of the average user; normally, some of the requirements such as authentication

are addressed using public key infrastructure (PKI), but PKI is even more confusing to users as

it introduces many complicated concepts and jargon that often mystify even technically literate

users.

Another difficulty of using public key cryptography (and cryptography in general) is the ques-

tion of how private keys (or secret keys) are transferred and synchronized across a user’s multiple

devices. The usual usage model for private/public keypairs is that a user generates a single one

which is then copied to all of their devices which need the private key for decryption purposes.

However, there are many pitfalls associated with moving or copying private keys around due to

the risk of a user accidentally revealing the keys during the process, and these dangers are even

more prominent for the average user who lacks a conceptual understanding of the security issues.

Essentially, key management is difficult for not only average users but even technical ones as well.

The PDK concept and design, which addresses these issues, is one of the main contributions of this

dissertation, and the implementations and evaluations of it in real applications show that it greatly

simplifies public key cryptography’s key management for even average users. Furthermore, PDK

gives users agency in their security, as all the cryptographic operations are in the hands of the user,

and not service providers or custom hardware.

The design for PDK consists of generating a keypair on each of a user’s multiple devices, so

that each device has its own unique one. PDK’s primary features are as follows:

(1) Private keys never move or leave a device.

(2) A private key is “revoked” by re-encrypting data to all public keys except for the revoked

one.
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(3) Private key recovery, normally mitigated with private key backups, is reduced to device

data backup which is easier. As long as one device is available, encrypted user data can be

decrypted without a recovery process.

(4) Public keys are automatically distributed using an authenticated communications channel.

(5) Keys are self-generated (and self-signed in the case of certificates) so users can freely add

new devices.

(6) Private keys use local secure storage when available without relying on a user password so

there is no password to target in phishing attacks.

These features allow us to avoid one of the biggest issues usually associated with public key

cryptography which is the question of how to manage and synchronize the private key across a

user’s multiple devices. Since each device has its own private/public keypair, users never need

to transfer or copy the private key to other devices. This approach reduces the key management

problem from having to deal with private keys, to having to synchronize public keys, which has

fewer possible security pitfalls since public keys are safe to be revealed. This is in effect a return to

traditional security best practices which advise users to never transport private keys because doing

so is insecure. This advice is almost never followed in practice because users often access their

encrypted data from multiple devices, all of which need the same private key when using common

encryption usage models. But in PDK, when a user’s client encrypts their data, it does so using

all of the public keys from each of the user’s devices. Therefore, the first and foremost design

requirement for PDK is having a method for users to synchronize their devices’ public keys.

Although synchronizing public keys requires fewer security measures compared to private

keys, the synchronization process still needs to satisfy an important security property which is

that the public keys are authenticated. Any public keys that are used to encrypt user data must be

verified to belong to the user so that they can be considered trusted. Otherwise, an attacker could

provide a malicious public key and trick users into encrypting their data with it, which would give

the attacker the capability to decrypt the users’ data. We thus wish to create a fully connected
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Key Management Device Management Description

Generate keypair Configure new device When a user installs an app that uses PDK, it
informs the user that it is configuring the device.
This entails generating a new PDK keypair.

Authenticate public key Add/enroll new device When a user adds a new PDK device, the ex-
isting device authenticates the public key of the
new device being added.

Exchange public keys Add/enroll new device Also a part of adding a new device. After a new
device’s public key is authenticated, the devices
can exchange their known trusted public keys.

Revoke keypair Delete device When a user deletes a device, the device’s pub-
lic key is no longer trusted and this update is
propagated to all trusted devices.

Re-key device Re-configure device A device may need a new keypair if a cryp-
to algorithm has become insecure or the key
was somehow compromised. This may also be
shown to users as an “update device security”
concept or variations of it.

Table 2.1: Common key management functions converted to a device management abstraction.

graph of trust among all of a user’s devices such that each device trusts every other device’s public

key belonging to the user, but no others. To do this, users authenticate individual PDK public keys

when they add or enroll a new device with their PDK ecosystem.

The exact design for a user to authenticate PDK public keys depends on the context of a given

solution; the approach will change depending on cloud service and data being encrypted. However,

the general design should satisfy the following criteria:

(1) All key management functions should be presented to users in the context of device man-

agement, as summarized in Table 2.1. For example, the act of authenticating a PDK public

key should appear to the user as enrolling a new device, i.e. users should not be exposed

to the concept of keys. Users enroll a new device using an existing device; if there is no

existing device because the new device is the user’s first one, then this first device becomes

automatically trusted.

(2) There should be a secure communication channel among a user’s devices, which ideally does

not require providing log in credentials to a third party service. PDK devices use this channel
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to authenticate and exchange newly and previously authenticated public keys.

(3) There should be a recovery mechanism for when users’ devices are lost or compromised and

need to be revoked.

The solutions for selecting and constructing a secure communication channel, and the process for

authenticating new device PDK public keys are the primary differentiators of PDK designs, while

the requirement of mapping key management concepts to device management ones is a more gener-

alizable decision concerning user experience and interface. Users naturally understand the device

management abstraction of synchronizing their devices, and using them to encrypt and decrypt

their data. It is simple and intuitive, and perhaps most importantly, a commonly used abstrac-

tion among consumer devices. For example, Apple has its users synchronize their new devices

via iCloud, which involves many high security systems and complicated architectures behind the

scenes, but users are only exposed to the device management view. In contrast, traditional cryp-

tographic key management requires users to understand the technical security jargon and concepts

underlying the keys, but the issue is average users do not comprehend the differences between

private and public keys, how to keep the private keys secure while copying them to their multiple

devices, and how to securely exchange public keys with other users. For users to use a secure

system that uses cryptographic keys, it is imperative for the experience to be as easy to understand

and use as possible, and my system designs which use PDK achieve this via exposing a device

management abstraction focused on a smooth user experience.

2.2 Client-side Encryption

The challenge of client-side encryption is designing it in such a way that any encrypted data is

compatible with services that are not designed for it, and so that it is transparent to users in that they

do not need to know the finer details of cryptographic operations. Addressing the first challenge of

compatability with existing services overcomes a common drawback of many proposed encryption

systems which is their reliance on server-side changes and support for encryption. This drawback
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may also manifest as a system which relies on a third party service to which to offload encryption

and decryption. The second challenge of making encryption transparent to users is closely tied to

the use of PDK for cryptographic key management. If the keys can be seamlessly managed, then

it is possible to automatically encrypt and decrypt user data on multiple devices without manual

configuration beyond simple device management.

The requirement for strong encryption is satisfied by using public key or asymmetric cryptog-

raphy with the PDK private/public keypairs belonging to and maintained by users. Since PDK

keys are wholly managed by users, their clients manage all encryption and decryption operations.

Some online services may be compatible with existing public key-based ciphertext formats, such as

email which has standardized encrypted email formats, but others may have file format restrictions

which necessitate the use of unique format-preserving encryption strategies such as for encrypted

images stored on photo hosting services. Regardless of the exact ciphertext format, the public keys

are used by users’ clients to encrypt their data either in a standard hybrid cryptosystem scheme, or

in a key-encrypting key scheme to encrypt any secret keys or values necessary to encrypt data that

have special format requirements.

The standard hybrid cryptosystem scheme consists of using public keys to encrypt crypto-

graphically secure, randomly generated AES keys which in turn are used to encrypt data using

symmetric encryption. The motivation for the hybrid design is mainly performance, as public key

cryptographic operations are inefficient in comparison to ones based on symmetric key cryptog-

raphy such as AES. Technically, the hybrid cryptosystem is a key-encrypting key scheme, but is

most commonly associated with encrypting specifically AES keys. Instead, the public keys may

be used to encrypt other kinds of secret values or keys, not just AES keys. Thus, the client-side

encryption may also opt to use the public keys as key-encrypting keys in a more general sense.
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Chapter 3: Easy Email Encryption (E3)

3.1 Introduction

Email accounts and servers are an attractive target for adversaries. They contain troves of valu-

able private information dating to years back, yet are easy to compromise. Some prominent exam-

ples include: the phishing attack on Hillary Clinton’s top campaign advisor John Podesta [31], the

2016 email hack of one of Vladimir Putin’s top aides [32], the email leaks of former Vice Presi-

dent candidate Sarah Palin and CIA Director John Brennan [33, 34], and other similar cases [35].

These attacks targeted high profile individuals and organizations to leak their emails and damage

their reputations. In the Podesta leaks, attackers perpetrated a spear-phishing attack to obtain John

Podesta’s Gmail login credentials, access his emails, and leak them to WikiLeaks. Sarah Palin was

subjected to a simple password recovery and reset attack which granted the attacker full access to

her personal email account on the Yahoo! Mail website. John Brennan’s AOL web email account

was compromised via social engineering. Adversaries also sometimes seize entire email servers

such as in the cases of cock.li and TorMail [36, 37], or compromise them, such as in the Sony

Pictures email leaks [38].

The common thread is that a compromise exposes the entire history of affected users’ emails

after a single breach. With the explosive growth in cloud storage, it is easy to keep gigabytes of

old emails at no cost. Gmail’s massive storage capacity—up to 15 GB for free, or 30 TB for paid

options [39]—opens up the possibility of keeping email forever. Consequently, users often email

themselves to use their inbox as backup storage for important information, thereby exacerbating

the cost of a compromise.

Existing secure email models based on end-to-end encryption are thought to be effective against

attackers but are rarely used. Examples include Pretty Good Privacy (PGP) [40], and Secure/Mul-

16



tipurpose Internet Mail Extensions (S/MIME). Both are too complicated for most users because

all email correspondents must comprehend public key cryptography. The current paradigm places

too much of a burden on senders who must correctly encrypt emails and manage keys [18, 13].

The result is even technical users rarely encrypt their email. End-to-end encryption for email seeks

absolute security1 at the expense of usability, creating a chasm between absolute security via en-

crypting all emails via PGP or S/MIME, and protecting no emails at all.

We introduce an approach to encrypted email that addresses the gaping void between unusable

but absolute security, and usable but no security. We change the problem from sending encrypted

emails to storing them since it is a user’s history of emails that is most tantalizing to attackers.

Our goal is to mitigate the attacks often publicized in the news where email account credentials or

servers are compromised. The attackers have access to emails stored on servers but not individual

devices. Most of the attacks are either simplistic phishing attacks for email account credentials

or server breaches that include innocent users in the collateral damage. All the affected emails

would be protected had they been encrypted prior to any breach using a key inaccessible to the

email service provider. We therefore seek a client-side encrypted email solution that safeguards

any emails received prior to a compromise. Furthermore, such a defense must be usable for non-

technical users, and compatible with correspondents who do not use encrypted email.

We present Easy Email Encryption (E3) as the first step to filling this void. E3 provides a

client-side encrypt-on-receipt mechanism that makes it easy for users as they do not need to rely on

public key infrastructure (PKI) or coordinate with recipients. The onus is no longer on the sender

to figure out how to use PGP or S/MIME. Instead, email clients automatically encrypt received

email without user intervention. E3 protects all emails received prior to any email account or

server compromise for the emails’ lifetime, with threat models similar to those of more complex

schemes such as PGP and S/MIME; for ease of discussion we hereafter refer to PGP and S/MIME

email as end-to-end encrypted email.

E3 is designed to be compatible with existing IMAP servers and IMAP clients to ease the

1Absolute security refers to the strength of the cryptographic primitives, but not mail client implementations which
contain vulnerabilities and bugs that can compromise end-to-end encrypted email [41].
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adoption process. An E3 client downloads messages from an IMAP server, encrypts them in a

standard format, and uploads the encrypted versions. The original cleartext emails are then deleted

from the server. No changes to any IMAP servers are necessary. Users require only a single E3

client program to perform the encryption. Existing mail clients do not need to be modified and can

be used as-is alongside a separate E3 background app or add-on. If desired, existing mail clients

can be retrofitted with E3 instead of relying on a separate app or on an add-on.

Users are free to use their existing, unmodified mail clients to read E3-encrypted email if they

support standard encrypted email formats. The vast majority of email clients support encrypted

emails either natively or via add-ons. Other than the added security benefits of encryption, all

functionality looks and feels the same as a typical email client, including spam filtering and having

robust client-side search capability.

Key management, including key recovery, is simplified by Per-Device Keys (PDK) manage-

ment which provides significant benefits for the common email use case of having two or more

devices for accessing email, e.g. desktop and mobile device mail clients. Users with multiple

devices leverage PDK with no reliance on external services. Users who truly only use a single

device still benefit from PDK’s key configuration and management capabilities, but rely on free

and reliable cloud storage for recovery. E3 as a whole is a usable solution for encrypted email

that protects a user’s history of emails while also providing a simple platform-independent key

management scheme.

E3 is easy to implement and use. We have implemented it for multiple environments, including

retrofitting existing Android mail clients with E3 for use with mobile devices, implementing an ex-

tension for the Google Chrome web browser to use E3 as a Gmail web client, and implementing a

daemon-like Python client that allows users to use existing unmodified mail clients. We tested that

the Android and Python prototypes work with popular email services, including Gmail, Yahoo!

Mail, and AOL Mail. We also quantified the performance of E3 on Android. Our measurements

show that while E3 imposes a one-time cost for email encryption, the total overhead is quite rea-

sonable from a user perspective. Finally, we present the results of a user study for E3 that show
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that users consider it simple, intuitive, and flexible.

3.2 Threat Model

The purpose of E3 is to protect all emails stored prior to any email account or server compro-

mise, with no software or protocol changes except for installing E3 itself on a recipient’s devices.

The primary risk we defend against is to stored mail on the IMAP server. If the account or server

is compromised, all unencrypted mail is available to the attacker.

We thus guard against future compromise of the user’s IMAP account or server. We assume

that the IMAP account and server are initially secure, and that at some later time, one or both are

compromised. We therefore assume that email services are honest; the threat is external entities

trying to access email account data. If email service providers are not honest, e.g. keeping separate

copies of received emails, then the platform is fundamentally insecure which is out of scope.

However, a server attack may occur after the server is discarded by physically compromising the

server’s disks [42]; few organizations erase old disks before disposal. We assume the enemy is

sophisticated but not at the level of an intelligence agency, i.e., the enemy cannot break TLS.

We do not attempt to protect against compromise of the user’s devices or mail clients. If those

are compromised, the private keys used by E3 are available to the attacker no matter when the

encryption takes place. Standard end-to-end encrypted email makes the same assumption.

3.3 Usage Model

E3 works with any IMAP email service. To get started, a user installs an E3 client that is either

a separate app or a full mail client. The latter may support E3 natively or via an add-on. E3’s setup

is similar to a normal mail client which asks for the user’s email service and its credentials. If we

assume a user uses only one device to access email, then once that device’s E3 mail client is setup,

the client will begin encrypting all email on receipt. The user then continues using whatever email

client he wants exactly as before, including sending and receiving email, except that the E3 client

transparently encrypts emails on receipt. Mail clients that support encrypted emails identify them
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Figure 3.1: E3’s two-way verification process.

with visual indicators to avoid being too transparent [18] as it should be obvious whether an email

was encrypted or not.

Modern email users often use multiple devices to access email, and E3 is specifically designed

for and encourages users to configure multiple devices with E3. To do so, users participate in

a simple, brief, and platform-independent two-way verification process for each new device as

summarized in Figure 3.1. Suppose that a user’s initial E3 client is on his smartphone, and now he

wants to configure E3 on his laptop computer. The user wants the smartphone and laptop clients to

trust each other with email access, so they participate in a two-way verification. The user performs

the E3 client setup process on the laptop, except it will show the user a verification phrase at

the end. The smartphone client detects the laptop’s client and prompts the user with a choice of

several phrases on the smartphone and asks the user to select the one that was displayed on the

laptop. After selecting the correct one, the user repeats to process with the laptop and smartphone

swapped; the smartphone displays a verification phrase which the user must select correctly on the

laptop. This completes the two-way verification, and the smartphone and laptop now trust updates

from one another. If the user wishes to add a third device, say a tablet, he performs the two-way

verification process with any of the previously configured devices. If he verifies the tablet on his

smartphone, then his laptop can transitively trust the tablet via the phone.

If the user does not select the correct verification phrase within a time limit, the verification

process is canceled and the user will need to restart the E3 verification process on the new device.
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When the user succeeds in verifying a new device, the user is informed that it will take some time

for any previously encrypted emails to become readable on the new device. The reason is because

these emails need to be re-encrypted so that the new device can read them.

Importantly, users rarely set up new devices or mail clients, so re-encrypting emails is an un-

common cost. Adding a new device generally happens in the following situations: (1) a user

replaces an existing device, or (2) a user obtains an entirely new device. If a replacement, then

in many cases the old device’s data is cloned to the new device so that neither verification nor

re-encryption is necessary. Case (2) is an uncommon occurrence, but a new device means the us-

er will need to verify it and re-encrypt emails; however, any future replacements will fall under

case (1).

When a new device is added, the clients on all previously added devices display a notice to

the user that his emails are being re-encrypted. The user has the option to cancel this process and

return the emails to their original state. Upon cancellation, the client rolls back the work it thus far

completed. Similar logic is applied if the user wishes to revoke a device from his E3 ecosystem. A

user removes a device by deleting it by name from any device configured with E3. The remaining

clients then re-encrypt all email to exclude the deleted device.

A user may occasionally no longer be able to use a device, because it has been damaged or

is no longer operational. If the user has multiple E3 clients as would commonly be the case for

users that have multiple devices to access email, he can still access his E3 encrypted email on his

remaining device(s). If the user only had one device with E3, a backup of the old device’s data

can be simply cloned to a replacement device to regain access to email on the replacement device.

With mobile devices which are more easily damaged, backups are increasingly common. If it is

desired to support users who use only one E3 mail client device that is never backed up, E3 can

provide the user with a recovery password which the user must save by printing it out or recording

it somewhere safe. Users use the recovery password on a new E3 client to access to their emails.

No recovery password is needed for users who use multiple devices unless they fear they may lose

all of them simultaneously.
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While most mail clients support encrypted email, one exception is web browser clients such

as the Gmail website and other webmail services. Browser add-ons for encrypted mail exist (and

we have also written one), and it is reasonable to expect native browser support if the demand is

great enough. For now, web browser extensions can integrate with webmail services to decrypt

E3-encrypted email.

E3 assumes that email should only be accessible from trusted devices. Given the ubiquity of

mobile devices and that most users use them for accessing email [43], this assumption is quite

reasonable for modern users. E3 is not compatible with using untrusted computers such as those at

an Internet cafe, nor should it be if users care about their email privacy given that such computers

may be compromised. Attempts to use such untrusted computers to read email will not work; they

will only provide access to encrypted emails.

3.4 Architecture

The E3 architecture consists of two main components, an encrypt on receipt mechanism and

a Per-Device Keys (PDK) architecture. For simplicity, we first describe the encrypt on receipt

mechanism using one E3-enabled device, then describe how multiple devices are supported using

the PDK architecture.

Figure 3.2 presents a high-level view of E3’s encrypt on receipt mechanism. An E3 mail

client downloads an email, encrypts it in either PGP or S/MIME format using a self-generated

keypair or X.509 certificate, and uploads the encrypted version while deleting the original. For

ease of discussion we refer to PGP keys and X.509 certificates as keypairs consisting of public

and private keys. E3 builds on existing protocols and encrypted email formats, simplifying its

implementation and deployment. E3 leverages Internet Message Access Protocol (IMAP) [44].

S/MIME implementations rely on X.509 certificates and the S/MIME standard as documented in

RFC 5280 [45] and RFC 5751 [46]. PGP implementations follow the OpenPGP standard in RFC

4880 [40].

22



Figure 3.2: Communications between an E3 mail client and an IMAP server to encrypt email.

3.4.1 Keypairs without PKI

Normally, public keys need to be signed by a trustworthy entity or nobody will trust it. This

forms the basis of PGP webs of trust and PKI. PDK public keys are never shared with other people.

They are self-generated and self-signed, and require no PKI for the user to understand. Previous

work [13] has shown that users find it confusing to correctly obtain and use public keys. In contrast,

an E3 user needs only self-generated keys, and any public key exchanges among his devices are

automated.

3.4.2 IMAP Support and Compatibility

Consider common email operations. A mail client downloads a message using the IMAP

FETCH command. To delete it, the client uses the IMAP STORE command to mark it with

the \Deleted flag. IMAP EXPUNGE then purges email marked for deletion. The user may

compose and upload an email using IMAP APPEND. These four IMAP commands, FETCH, AP-

PEND, STORE with \Deleted flag, and EXPUNGE, play a key role in E3. We henceforth use
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DELETE as shorthand for the STORE with \Deleted flag command.

Figure 3.2 shows how these four IMAP commands encrypt email on receipt with existing IMAP

servers. E3 is summarized as downloading a message (FETCH), encrypting it, uploading the

ciphertext (APPEND), and deleting the cleartext (DELETE and EXPUNGE). Finally, the client

ensures correctness by synchronizing with the server.

This series of commands works on any IMAP message. It does not matter what mailbox or

folder the message is in. The same process is even applied to a user’s copies of his sent emails

which are appended to the IMAP server (these appear as “Sent” emails to users). All these IMAP

commands execute in the background, decoupling them from the critical path of reading email.

E3 requires multiple round-trip times (RTTs) with the server because IMAP does not support

message replacement. Optimizations may be possible in the future. The proposed REPLACE

command [47] substitutes for the APPEND, DELETE, and EXPUNGE commands. Although this

RFC extension has been elevated to an IETF Proposed Standard in 2019, it is not yet adopted by

major IMAP mail services. The REPLACE command would eliminate the multiple RTTs associ-

ated with DELETE and EXPUNGE thereby significantly improving performance when replacing

many small emails. This is because RTTs have a constant cost that dominates the brief time it takes

to encrypt and replace small emails. In contrast, the RTTs account for a small percentage of the

total time for processing large emails and are unnoticeable. Another optimization would be to use

IMAP pipelining, but not all IMAP servers support it, and REPLACE would obviate the need for

it.

E3 is compatible with TLS [48] (or STARTTLS) which encrypts all communications with the

IMAP server. Although eavesdropping is not E3’s primary security focus, E3 with TLS protects

against attackers who could otherwise capture cleartext emails when they are first downloaded by

the client.

E3 uses approaches similar to existing IMAP clients in dealing with race conditions since

multiple clients may try to encrypt the same message which could result in duplicated encrypted

emails. Currently, the preferred way of achieving pseudo-atomicity when modifying IMAP mes-
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sages is to use the IMAP CONDSTORE extension [49]. CONDSTORE is supported by major

IMAP email services and open source servers, including Gmail and Dovecot. This extension re-

quires servers to maintain a last-modified sequence (mod-sequence) number on messages which

is returned to the client. An E3 client which wishes to encrypt a message adds a flag (either

\Flagged or \E3Encrypting depending on custom flag support) to a message using the UN-

CHANGEDSINCE modifier with the IMAP STORE command so that it will only succeed if the

message has been unchanged; this also updates the mod-sequence value of the message, so any

other clients who try to issue the same command will fail since the message was already modified.

The flag and mod-sequence value act like a lock, thereby alerting other clients that this message

is being encrypted. Then, the client with the lock can issue IMAP commands without racing

others. One issue is the client may crash before it completes its work and leave a dangling lock. A

basic solution is to use a heuristic based on a message’s received timestamp. A client periodically

scans the mailbox for messages with the \E3Encrypting flag, and based on the timestamp

heuristic, determines if too much time has passed since each message was received. For example,

if a message is unencrypted for three hours since it was received but has the \E3Encrypting

flag, the client may obtain the lock on the message and encrypt it.

If CONDSTORE is not available, an alternative is to make a best-effort using IMAP custom

flags and custom IMAP folders. The strategy, like with CONDSTORE, is to mark a message with

a custom flag (keyword) entitled \E3Encrypting, and to move it into an IMAP folder named

E3-Temp. Then, any E3 client that sees the E3 flag on a message in the special temporary folder

should not encrypt it. This does not rule out race conditions entirely, but will certainly shrink the

window that it could occur within.

3.4.3 Ciphertext Format

E3 uses the widely supported OpenPGP message or S/MIME Enveloped-Data formats depend-

ing on client preference. While E3 can be implemented as a full standalone mail client, it can also

be implemented as a program that provides just the encrypt on receipt mechanism. Users can then

25



use existing unmodified mail clients that support S/MIME, including Apple Mail, Mozilla Thun-

derbird, and Microsoft Outlook, to access E3 mail in S/MIME format, assuming the E3 private key

is available on the device to both the encryption program and the existing mail client. The same

holds for PGP.

These formats only encrypt the body text, so all of the original headers are maintained except

for the Content-* headers which are updated to ones appropriate for encrypted emails. Since the

Received timestamp header is unchanged, mail clients can display messages in their original order.

E3 also adds a custom header, X-E3-ENCRYPTED, to distinguish E3 emails from other encrypted

emails. This is useful for IMAP servers which do not support custom flags or keywords.

E3 normally does not re-encrypt emails that are already encrypted when received, i.e., when

receiving email from a sender using end-to-end encryption. However, there are situations where

re-encrypting emails is useful such as when a crypto algorithm or key size is no longer secure. In

this case, E3 supports re-encrypting existing encrypted email to a newer crypto standard.

E3’s encryption does not interfere with spam filters. Spam filters often exist either on servers or

clients. When they are on the server, such as with Gmail, the mail service filters spam emails before

they are encrypted. For client-side spam filters, the user’s mail client will detect spam messages

and move or delete them. However, since the client performs the filtering, it can apply the filter

before encryption, or decrypt E3-encrypted messages to scan them for spam.

3.4.4 Search Capability

Searching is straightforward: index and store the decrypted content of messages locally. This

is compatible with existing mail client local search, and provides full, fast local searching. Storing

messages locally is a common practice among modern mail clients, and examples can be seen in

Gmail on Android, Mail on iOS, and Mozilla Thunderbird and Apple Mail on desktops. While

message content is stored locally in the clear, many mail clients that support encryption already

do this. An option for the more security-conscious is to apply full disk encryption in conjunction

with device-wide security features. An alternative is to store ciphertexts locally, but this provides
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Figure 3.3: The PDK architecture for E3.

no real benefits since the key is also stored locally, and would also interfere with local searching.

A limitation of encrypted email schemes is that unmodified email servers cannot search the

body content of encrypted emails. (Headers, including the Subject: and other metadata fields,

are searchable.) If the server can be modified, SSARES [50] is a scheme for searchable encrypted

email without access to private keys, making it compatible with E3’s threat model. For unmodified

servers, the IMAP SEARCH command cannot be used, so clients that search both locally and

on IMAP servers will only return results for local search and remote metadata matches. On the

other hand, IMAP search is significantly slower than local search and is often based on naive

string matching which yields low quality results. Thus, users often will not wait for IMAP server

search results in practice since local search queries are nearly instant. Furthermore, many email

clients such as K-9 Mail only perform local search unless remote search is specifically enabled or

requested, which would provide the exact same search capability with or without E3.

3.4.5 Key Management, Migration, and Recovery

E3 eliminates manual public key exchanges through its use of PDK. This simplifies the key
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management by removing half of it. What remains is the problem of private keys when using

multiple devices. As mentioned in Chapter 2, PDK returns to the traditional security advice of

never transporting private keys. In contrast to most secure email schemes which assume a user has

a single private key to be moved or copied to multiple devices, E3 users have a unique private key

for every device; Figure 3.3 depicts E3’s instantiation of the general PDK design. A user does not

need to move any private keys among his devices. Instead, each of his clients automatically makes

available its public key to his other devices. The result is that any E3 client can then encrypt the

user’s emails using the public keys from all of his devices. Consequently, any of a user’s multiple

E3 clients can encrypt emails while making them readable on any other client. The principle is

similar to when a traditional PGP or S/MIME user encrypts an email to multiple people. The email

is not encrypted multiple times for each public key, but is encrypted only once using a symmetric

key which in turn is encrypted to each public key. E3 takes this paradigm and applies it in a

new way in the PDK framework by encrypting emails on receipt using every verified public key

belonging to the user. When a new key is added, clients re-encrypt already-encrypted emails to the

new keys.

The primary features of PDK are listed in Chapter 2, but E3’s take on PDK includes the fol-

lowing distinctions:

(2) A private key is “revoked” by re-encrypting emails to all public keys except for the revoked

one.

(4) Public keys are automatically distributed using the user’s email account as the communica-

tion channel.

E3 clients upload their public keys to the mailbox as ordinary emails with the keys as attach-

ments. Other E3 clients detect these key emails and store the public keys locally. Table 3.1 shows

custom MIME headers used in E3 key emails to support PDK. Invalid or missing headers (when

they are required) cause a key email to be rejected immediately. The concert of these headers is

used to support key verification.

28



Header Description

X-E3-NAME A custom name for this E3 public key.
X-E3-VERIFICATION The verification phrase as a space-separated string.
X-E3-TIMESTAMP The signed timestamp of when this key was uploaded.
X-E3-DIGEST The digest (fingerprint) of this E3 key.
X-E3-RESPONSE The digest of the key that this key is in response to.
X-E3-KEYS The public keys known to the uploader.
X-E3-DELETE The public key deleted from the uploader.
X-E3-SIGNATURE Signature of all fields using the uploader’s private key.

Table 3.1: Custom headers in uploaded E3 key emails.

Public keys in the user’s mailbox cannot be blindly trusted. Clients must securely confirm

whether a new PDK public key really belongs to the user, and ideally, the method to do so should

be compatible with any kind of device whether a desktop or mobile one. The following solution

satisfies these requirements. A given client periodically scans for new keys, and as a first heuristic,

ensures that the sender (i.e., the “From:” field) of any detected key email matches the address of

the account owner; any emails containing keys from other senders are not accepted. However, this

heuristic alone is not enough to verify the key as an attacker may spoof this field or gain access

to the email account and upload a malicious key with the correct sender address. We therefore

augment this check by requiring temporal proximity and a two-way verification step. Temporal

proximity means the user has a limited window of time to accept and verify a newly detected

public key. Any keys which are not accepted within the time window will expire.

Temporal proximity relies on verified and signed timestamps. A newly configured client up-

loads its public key along with a signed timestamp obtained from services such as Roughtime [51],

and existing clients verify if the timestamp is within the allowed time window and trustworthy.

For example, a client configured to only allow public keys uploaded within the last 60 seconds

will reject any uploaded public keys with a verified timestamp that is older than 60 seconds. The

timestamp is verifiable since it is signed using the Roughtime service’s certificate. As an addi-

tional measure, clients rate limit the number of requests to add a new key. For example, the client

will only consider at most three key requests in a period of five minutes. Any more than that are

suppressed, and a warning is shown to the user that unusual behavior has been detected.
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E3’s PDK also uses a two-way verification process with a verification phrase that is easy for

humans to recognize and match. When a new client uploads its key, it adds a randomly generated

verification phrase to the key email which is prominently displayed. The user then needs to confirm

this verification phrase on one of his existing E3 clients. Once he completes the verification on any

existing client, it will display a second verification phrase. The user then needs to confirm this

second phrase on his new client to complete the two-way verification.

The catch is that when the user confirms a verification phrase, it must be selected from among

two randomly generated incorrect phrases. The user must select the correct verification phrase in

order to verify the key. This multiple choice confirmation reduces the chances of a user accidentally

accepting a key that isn’t his. The words in the phrases are selected from a curated pool such as

the PGP Word List [52]. As shown in [53], this technique is effective and usable for quickly

authenticating identities even with only three words. Users who speak other languages use word

lists in their language. Another option is to use a recognizable but randomly selected or generated

image. Further research is needed to better understand what kinds of strings or images real users

can correctly recall and verify while making minimal errors.

To concretely visualize how adding and deleting E3 clients works, we will describe the one

device, two device, three device, and = device cases for E3’s PDK design. To represent uploaded

key emails, we use the notation  4H�<08;3 ( 4H3 , {ℎ}) where 3 is the device which uploaded

the key email,  4H3 is the public key of the uploader, and {ℎ} can be any of the values shown in

Table 3.1 with X-E3- removed for spacing reasons; we also elide the required VERIFICATION

and TIMESTAMP headers but note that they are necessary in each  4H�<08; we describe. To

denote what public keys a given device 3 knows about, we use 3 [ 4H30,  4H31, ...,  4H3=].

One Device. Since there are no devices to synchronize keys with, a user simply sets up an E3

client on his single device and begins encrypting emails on receipt.

Two Devices. Let us consider two devices, � and �, where � is a device with E3 already con-

figured on it, and a user wants to add � to his E3 ecosystem. Thus, the initial state of knowledge is

�[ 4H�] and �[ 4H�]. The user sets up an E3 client on � and it uploads  4H�<08;� ( 4H�, {}),
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then shows the user a verification phrase. Now device � detects  4H�<08;� and requests the user

to verify it with the phrase shown on device �. If the user succeeds, device � now knows device

�’s public key, but since  4H�<08;� did not contain X-E3-RESPONSE, device � knows it needs

to upload its own set of keys so that device � can learn about existing public keys. Device �

therefore uploads

 4H�<08;� ( 4H�, {RESPONSE[ 4H�],KEYS[ 4H�,  4H�], SIGNATURE�}).

� then displays its own verification phrase to the user, which he must verify on device � after it

detects  4H�<08;�. If this second verification succeeds, now both devices � and � know about

their public keys and can trust future updates from each other. The final state is �[ 4H�,  4H�]

and �[ 4H�,  4H�].

Three Devices. The same process for two devices holds for adding a new third device �

because � and � trust each other, so if � is verified and added to �, � will upload

 4H�<08;� ( 4H�, {RESPONSE[ 4H�],KEYS[ 4H�,  4H�,  4H�], SIGNATURE�})

which � trusts because of the signature, so � can automatically add  4H� to itself. Then once the

user does the response verification of � on �, � will trust � as well and can add  4H�. So the

final state is �[ 4H�,  4H�,  4H�], �[ 4H�,  4H�,  4H�] and � [ 4H� ,  4H�,  4H�].

# Devices. Now consider a user who has built up his E3 ecosystem over time and has # − 1

devices already synchronized with each other, and now he wishes to add device # . The user

completes the two-way verification process with device # and any device  in 0, ..., # − 1. Then

 automatically distributes #’s public key to every other device by leveraging transitive trust

because the other devices already trust  . Since  is manually verified on device # by the user, #

can trust the keys that  provides.

Clients must re-encrypt all emails for new public keys, but a user may wish to undo adding

a new device. If the user stops and reverses the re-encryption process, the client re-processes
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the emails it re-encrypted, and re-encrypts them again to the original set of keys. However, the

now-defunct key must be revoked first.

The general case of revocation is done via an advertised deletion. When a user revokes a client,

he deletes the key by name from any client’s list of keys. The client which performs the deletion

announces this by uploading a signed key email with the X-E3-DELETE header so that other

clients can also exclude the revoked one.

E3’s approach to PDK achieves a streamlined key verification process where, for every newly

added key, the user only ensures that the verification phrase matches the one he recognizes two

times. This is in contrast to key verification for end-to-end encrypted email which often relies

on confusing public key fingerprint matching, QR code scanning which is unavailable without

a camera, and understanding of PKI. Although E3 keys can be verified with these techniques,

the higher guarantee (and difficulty) they provide is unnecessary given the unique environment

in which E3 operates. Another issue with end-to-end encrypted email is verifying the public key

of every new email correspondent. In E3, adding a new PDK key is a rare occurrence and only

happens when configuring a new mail client such as when getting a new device. As a side note,

advanced users may prefer key fingerprint matching or QR code scanning. These are only available

as an advanced option that is not enabled by default.

E3’s recovery mechanism inherent to the PDK multi-device design is available to the majority

of users who access email using two or more devices. However, there may be users who truly only

ever access email with a single device. As discussed in Section 3.3, for these users, a backup of

the old device’s data can be simply cloned to a replacement device to regain access to email on it.

For users with only one E3 mail client device that is never backed up, PDK key recovery uses the

traditional method of encrypting the user’s private key with a password, presented as a “recovery

key” to users, and then storing the encrypted private key on a backup device or in cloud storage.

If stored in cloud storage, the provider should be different from the email service provider. For

example, E3 clients configured for Google’s Gmail service might store the private key on Dropbox

but not Google Drive.
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E3 is also compatible with re-encrypting emails to future-proof them against changes in crypto

standards. Algorithms age, so ciphers and key sizes that are secure today may not be in the future.

PDK supports this use case since a user can generate and add new keys while deleting old keys at

will.

One avenue for future work is the problem of reading email on public computers. In this case,

users access their confidential data on a fundamentally untrusted device which cannot be trusted

with private keys. This is a concern for all encrypted email schemes, not just E3. Even though

solutions are technically possible, they are insecure due to the high risk of unwrapping private

keys in an untrusted environment.

3.4.6 E3 Configurations

While we have assumed that all E3 clients encrypt on receipt and perform PDK, it is possible

to configure E3 clients to only generate a PDK keypair and perform no encryption of its own. Note

that at least one E3 client needs to encrypt on receipt to protect a user’s email. Clients which only

generate a PDK keypair configure a user’s device to decrypt emails and do not encrypt emails. An

example is a one-time use app or add-on which configures a user’s existing, unmodified mail client

with an E3 private key. These clients only perform the key management functionality described in

Section 3.4.5 and none of the encryption, and are a strict subset of E3 clients which do encrypt.

3.5 Security Analysis

E3 does not intend to be an end-to-end, maximum security solution, but a strict improvement

over the norm that is easy to use and deploy. We sacrifice a small amount of security to gain

tremendous usability over existing secure email models. We henceforth show that E3 provides tan-

gible security benefits compared to no email encryption, and compare its security with traditional

end-to-end secure email.

E3 protects all emails for all of their lifetime as long as they are encrypted before any email

account or server compromise. Standard end-to-end encryption does the same, but E3 does so
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without the complexity of public key exchanges and PKI.

Like end-to-end encrypted email, E3 protects sent and received mail assuming all correspon-

dents use E3. Senders can encrypt their sent email copies as stored on their IMAP server. Unlike

end-to-end encryption, which requires that both the sender and receiver use it, E3 provides useful

protection even if only one side uses it. If the sender uses it, his emails that are encrypted before

an attack are protected from compromise of his email account or server. The same holds for the

receiver without loss of generality. In other words, E3 provides better protection than end-to-end

encrypted email for communications in which one party does not use email encryption because

end-to-end encryption cannot be used and would therefore provide no protection at all.

If not all email correspondents use E3, it is possible for an attacker to compromise the emails

of any correspondent not using E3 to expose email communications with one that uses E3. Re-

gardless, this property actually confers a benefit to E3. E3 can be incrementally deployed since not

all correspondents require it. E3 also exhibits network effects: it provides better security as more

users use it.

Unlike end-to-end encrypted email, E3 requires additional measures to protect against eaves-

dropping. Fortunately, these measures are completely transparent to users. E3 uses TLS or START-

TLS so there is no threat of eavesdropping if TLS is secure. Furthermore, TLS and STARTTLS

are supported and encouraged by practically all major mail services.

Email may or may not be protected in transit between SMTP (not IMAP) servers. SMTP

server links are increasingly protected by TLS; if not, the problem is out of scope. Services such as

Gmail flag emails that arrive via unprotected SMTP connections. That said, attackers tapping such

backbone links is out of scope for E3 and in general is difficult for any party but an intelligence

agency.

After an email account or server is compromised, E3 cannot protect newly arriving emails. This

is a limitation compared to end-to-end encryption which protects new emails assuming all email

correspondents use it. Nevertheless, end-to-end encryption rarely sees actual use among users and

therefore provides no practical security for the majority of the population. In contrast, E3’s ease of
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use makes it much more likely to be adopted while providing a strict security benefit. In a mailbox

with just a few thousand messages, compromise of new emails is a minuscule percentage of total

emails. New emails are important, but it is clear that encrypting the majority of emails is better

than none.

Email account compromise happens in many ways but it is primarily through credential or key

compromise. That, in turn, often happens because of user error, especially in cases of (spear-)phishing.

While devices do have OS-level security features to help combat phishing, E3 by design also pro-

vides a strong defense even though it does not password-protect private keys since the device is

assumed to be secure (it is better to rely on OS level protections such as seen in Apple Mail and

Autocrypt [54], and also there is now no password for an attacker to phish). The critical aspect

is that E3 makes informed decisions about private key storage and management based on the us-

er’s platform and device, so users are never requested to manage their private keys in contrast to

PGP and S/MIME which require a user to actively manage and move around a private key. Thus,

(non-technical) users have no knowledge of where the E3 private key is stored. This latter intrinsic

property of E3 also raises the bar for an attacker to trick a user into providing his private key since

the user does not know where it is. Attackers would therefore need to provide detailed instructions

unique to platform and device for users to find the private key.

One major obstacle in other secure email schemes is ensuring availability of the private key on

all devices. There is no standard for secure, usable key transport and the market is fragmented.

In general, most solutions assume that a user has a single keypair which is either copied to all his

devices, or carried on his person such as on a security token or USB device. We have designed

PDK as a departure from these approaches. It provides a secure and usable scheme that leverages

users’ tendency to access email on multiple devices, and also the inherent support for multiple

recipients in encrypted email formats.

An attacker may try to trick a user into accepting and authenticating a malicious public key

by sending a fake E3 key email to the user. If the user were to accept it, all emails would be

encrypted using the malicious key, allowing the attacker to decrypt the user’s email if the account
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is ever compromised. Therefore, PDK is only as strong as the key authentication system used in

conjunction with it. The first line of defense is to ensure that uploaded keys came from the user’s

own email address. Keys attached to email from other addresses are rejected. However, an attacker

may spoof the sender address or have access to the email account allowing him to craft legitimate

emails with the correct sender. We therefore rely on temporal proximity such that an attacker would

need to strike literally minutes or even seconds before the user generates a new key. Otherwise,

the uploaded key would be rejected for being too old if encountered by the target at a later time.

This is similar to time-based one-time password schemes as seen in two-factor authentication, e.g.,

RSA security tokens and Google Authenticator.

An attacker without access to the mailbox needs to also guess the correct verification phrase.

An attacker with access to the mailbox could wait for the user to upload a new key, duplicate the

key email but attach his malicious key instead, and delete the real key email. This would allow the

attacker to construct a key email with the correct verification phrase, and this may go unnoticed

by the user and his other E3 clients. However, this attack requires immediate temporal proximity,

i.e., as soon as the user uploads a new key, and moreover, the client that performed the key upload

can detect this attack even if other clients cannot. To do this, the uploading client polls the server

to see if the key email it uploaded was deleted or moved, or if another key email with the same

phrase was uploaded. The client can distinguish the real email from a fake one in any case simply

by referencing the real key email’s IMAP UID which is generated by the IMAP server, not the

client. As soon as the client detects an issue, it warns the user that an attack may be occurring.

Another possible attack is to try to exploit E3’s automatic public key distribution approach by

either trying to propagate a malicious key to valid clients, or trying to delete valid clients. To

propagate a malicious key addition or deletion, an adversary could upload a fake key email for

either case. A fake key addition email would not be verified by a user, and thus the attack would

fail. A fake key deletion email would not be accepted by any valid clients because the signature

(X-E3-SIGNATURE) would be incorrect.

An adversary may resort to a denial-of-service attack and send many fake keys to a user in
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hopes the user will make a mistake and accidentally verify a malicious key. To address this, clients

rate limit requests to add new keys and show a warning to the user. As a final measure, clients

also immediately discard keys and any on-going confirmation prompts from any key emails with

duplicated verification phrases.

These checks alone suffice to exclude most attacks. On top of these key verification checks

unique to E3, we optionally support traditional methods for verifying public keys including fin-

gerprint string matching and QR code-based fingerprint verification. However, these methods are

only be available to advanced users and are not enabled by default.

E3 considers servers and devices that are malicious from the beginning as out of scope. E3

cannot protect against an IMAP server that is run by a dishonest service provider. This then begs

the question of whether popular email services can be trusted. As a case study, Google’s retention

policy [55] states that when a user requests a deletion, Google immediately begins deleting that data

from all its systems, but it may take some time for the data to be completely removed from every

internal Google server. At the least, the data is no longer accessible from user-facing interfaces

such as Gmail thus preventing any external adversaries from gaining access to deleted emails.

Google clearly states that it does delete data completely, so if it were to do otherwise, it would

be subject to US law [56, 57] which prohibits “deceptive practices” by any entity engaging in

commerce. Similar laws apply in other regions as well.

E3 also does not protect against compromise of the user’s devices or mail clients, but neither

does end-to-end encrypted email. Similarly, if a user’s device is stolen, E3 cannot protect his

email. However, many devices are password-protected with data encrypted in local storage, and

have remote wipe functionality. In all cases, E3 provides a strict security benefit, and makes

security no worse than the current common practice of no email encryption.

3.6 Implementation

To demonstrate that E3 is easy to implement, we built four different E3 prototypes for various

platforms: a K-9 S/MIME client, a K-9 PGP client, a Python encryption client, and a Google
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Chrome extension.

We implemented E3 in K-9 Mail, a popular open-source Android mail client, using S/MIME.

K-9 Mail’s developers by design include no crypto libraries and offload crypto to separate crypto

provider applications. However, K-9 has no S/MIME support since no such provider for S/MIME

currently exists. Our K-9 S/MIME implementation therefore includes the Spongy Castle [58] cryp-

to library and performs all key generation and management on its own. K-9 S/MIME represents

a worst case scenario where nearly email crypto functionality is implemented from scratch. Ex-

cluding third party libraries such as Spongy Castle, which adds 8.6K lines of code (LOC), our

K-9 S/MIME implementation only added roughly 2.5K LOC. The entire K-9 codebase is around

210K LOC, excluding XML code which adds another 200K LOC, thus suggesting that E3 com-

paratively represents a modest amount of complexity. We also implemented a more optimized E3

K-9 S/MIME version by replacing Spongy Castle with precompiled OpenSSL libraries to lever-

age hardware encryption support on Android devices. While there was no change to the E3 code

needed, the OpenSSL libraries are substantially larger than Spongy Castle, roughly 390K LOC.

Although Android includes its own OpenSSL as a system library, the version included is heavily

modified and strips many features including the S/MIME functions required for our implementa-

tion.

We also implemented E3 in K-9 Mail using PGP by relying on the OpenKeychain Android

app, which is both a keychain and crypto provider. K-9 offloads all PGP and key operations to

OpenKeychain which exposes an external cross-application API, so it was not necessary to add a

crypto library to K-9. We modified K-9 Mail and OpenKeychain to support E3. We added an API

call to OpenKeychain (OpenPGP-API) for storing E3 keys, and changes to make OpenKeychain

verify and recognize emails which have been self-signed by the email recipient as opposed to the

standard PGP use case where it verifies signatures based on the email sender. Our E3 K-9 PGP

client had nicer UI features compared to the K-9 S/MIME client, adding 3.3K LOC, with much

of the additions being UI boilerplate code. Our changes to OpenKeychain were about 250 LOC,

while the entire OpenKeychain codebase is 590K LOC, excluding 124K LOC of XML. Without
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the need for additional crypto libraries, the total amount of additional code to support E3 was only

3.6K LOC out of the over a million LOC required for K-9 and OpenKeychain.

We developed a Python E3 daemon for Windows, Linux, and macOS that generates an E3

keypair and encrypts on receipt, but does not currently automatically add the private key for use

with existing mail clients; users must manually perform this step, so the daemon is currently in-

tended for use by more technical users. The implementation is only 1K LOC. We sketch out what

automatically adding the key to mail clients would look like on different platforms. On macOS

and iOS, we can leverage the system Keychain which the Apple Mail and iOS Mail clients already

integrate with. The Python app can add its E3 keypair to the Keychain with an ACL tailored for the

targeted mail clients [59]. On Android, the KeyChain API [60] stores system-wide keypairs and

can be used in a manner similar to Apple’s Keychain. However, Android clients that do not rely

on the KeyChain API will require modifications; for example, OpenKeychain must be modified to

allow an app to add an E3 private key to it, then existing PGP clients can seamlessly use the key.

On Windows, the E3 client can generate a PKCS12 key file to import into Windows’ certificate

store which is used by the Outlook mail client. For clients such as Mozilla Thunderbird that do not

rely on the certificate store, users can install an E3 add-on.

We prototyped a Google Chrome extension to interface with the Gmail website and support

reading E3 encrypted emails and key management. This extension was a proof of concept to show

that reading E3 email on web mail clients is possible and practical, but does not perform encrypt

on receipt. It is about 750 LOC plus 7.5K LOC for external Javascript libraries for crypto and

other important functionality. The extension requests access to the user’s Gmail API to process

raw emails instead of scraping Gmail’s DOM. When a user loads an encrypted email in Gmail,

the extension checks if it can be decrypted, fetches the email, decrypts it, and injects its contents

into the page. The extension uses the Gmail API to also perform the necessary key management

functionality for E3. However, Google Chrome by design provides no secure storage whether for

extension data or browser cookie data. It instead relies on its own and OS security features to

protect sensitive data. Thus, we store the E3 keypair in Chrome’s local storage.
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E3 ◦ ◦ ◦ ◦ ◦ ◦
CONDSTORE ◦ ◦

REPLACE

Table 3.2: Tested servers and their compatibility with E3.

3.7 Experimental Results

We verify that E3 works with existing IMAP services, measure its performance overhead, and

evaluate its usability with real users. We used K-9 S/MIME for performance testing, and K-9 PGP

for usability testing.

3.7.1 Compatibility and Interoperability

To verify that E3 is compatible with existing IMAP and S/MIME systems, we tested our proto-

types on several of the most popular commercial and open-source email servers. Table 3.2 shows

the results of our compatibility testing. E3 worked seamlessly with all IMAP email services tested.

We also checked for IMAP CONDSTORE and REPLACE support with the former enabling bet-

ter IMAP atomicity, and the latter enabling better performance. We also verified that unmodified

S/MIME mail clients, including Apple Mail, and Thunderbird, could be used to read E3-encrypted

email.

3.7.2 Performance

We measured E3’s performance on mobile devices because of the popularity of mobile email

and to provide a conservative measure as they are resource constrained. We used a Huawei Honor

5X (8-core Cortex-A53 with 2 GB RAM) smartphone running Android 6.0.1. We compare the

performance of our E3 K-9 S/MIME client against the standard K-9 Mail client. Both versions

were instrumented to obtain measurements. The E3 K-9 client used OpenSSL 1.1.0b, and the

S/MIME emails used Cryptographic Message Syntax (CMS) with 128-bit AES CBC for compat-
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Figure 3.4: Time spent for the one-time “encrypt/synchronize” compared to the cleartext down-
load. Points right of the line are emails with a JPEG.

ibility reasons. All experiments were conducted using Gmail accounts populated with the same

email content, and a WiFi connection to a small business fiber optic network. We chose to use

a real email service with a typical Internet connection to better understand performance with real

limitations, such as asymmetrical download/upload speeds to the Gmail service. To account for

variability, each measurement was repeated 30 times, the three lowest and highest outliers were

discarded, and an average was taken over the remaining measurements.

We considered email operations where E3 imposes additional work over a standard email client.

We did not measure searching as it has no overhead compared to a standard mail client. We

measured receiving a new cleartext email in which E3 downloads, encrypts, and replaces it at the

server with the encrypted version, followed by a quick synchronize.

We used a range of email content sizes from 100 B to 12.5 MB. 12.5 MB is the maximum

because when encrypted, it increases in size to about 24.7 MB due to limitations of the MIME

format. Popular services such as Gmail enforce a 25 MB size limit. Emails of size 100 B to 1 MB

were two-part MIME messages with a plain/text and html/text part. Larger emails were

two-part MIME messages with a one byte plain/text part, and an attached JPEG file.
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Figure 3.5: Normalized time spent for the one-time “encrypt/synchronize” relative to the cleartext
download (not pictured). Points right of the line are JPEG emails.

Encrypt and Synchronize

Figure 3.4 shows the time it takes to encrypt email and replace it on the server, and synchronize

the client and server. The plot labeled “Total Encrypt-Sync” includes: Encryption, APPEND,

DELETE and EXPUNGE, and Synchronize. Figure 3.4 also shows the time to initially synchronize

and download the original cleartext email. This is strictly not part of E3, but provides a basis to

show the relative cost of E3 compared to a standard client. The time to download the cleartext

email was the same for both E3 and unmodified K-9.

Before discussing the results, we highlight two important points. First, the overhead of encryp-

t/synchronize is a one-time cost. Once a message is encrypted and uploaded, it does not need to be

processed again. Second, operations run in the background so the user is unaffected.

Figure 3.4 depicts the encrypt/synchronize time in seconds for each email size. Although the

encrypt/sync time is 6× to 11× the time to synchronize cleartext emails, the overhead is not visible

to users as it is processed in background threads.

Figure 3.5 shows the same encrypt/sync measurements as Figure 3.4, but normalized to the
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Figure 3.6: Expected time for the one-time “encrypt/synchronize” with REPLACE compared to
the cleartext download. Points right of the line are JPEG emails.

cost of downloading the original cleartext email. This shows a breakdown of the relative cost of

each part labeled: Encrypt, which encrypts the message; APPEND, which uploads the encrypted

message; DELETE/EXPUNGE, which deletes and expunges the cleartext message from the server;

and Synchronize, which verifies client-server consistency. The components are stacked so that each

line is cumulative and the area between lines is the overhead for the component. For example, the

total normalized overhead for 1600 B emails is 8× the initial cleartext email download, comprising

of Synchronize (25%), DELETE/EXPUNGE (40%), APPEND (30%), and Encrypt (5%).

Encrypting is brief and generally takes no more time than downloading cleartext email. The

cost is constant for emails smaller than 102,400 B, then grows linearly in proportion to size. This

suggests that for small emails, encryption is dominated by initialization which includes generating

the IV and encrypting the AES key. Once size grows beyond a critical mass, encryption time

increases as well.

For small emails, the primary overhead is DELETE/EXPUNGE’s multiple RTTs which are

significant relative to a short APPEND time. To mitigate this overhead, clients can issue a single

DELETE and EXPUNGE for batches of emails. For larger emails, APPEND (upload) dominates

43



Figure 3.7: Normalized expected time for “encrypt/synchronize” with REPLACE relative to the
cleartext download (not pictured). Points right of the line are JPEG emails.

for two reasons. First, uploading to Gmail was slower than downloading which magnifies the AP-

PEND overhead. Second, the Gmail server supports Deflate/Gzip compression, and the cleartext

compresses well. In contrast, ciphertexts are indistinguishable from random bits so they cannot be

compressed. Thus, E3 APPENDs the full message size. However, the effects are lost for content

that is incompressible. This is the case for the emails larger than 1 MB since they contained a

single JPEG (incompressible) image; they consequently exhibit less overhead compared to the text

emails.

The remaining overhead is due to Synchronize, which appears substantial for small messages.

This involves verifying client-server consistency, updating the UI to show progress, and processing

any pending commands. This constant overhead—less than a quarter of a second—is magnified

for smaller emails, but becomes negligible for larger ones.

IMAP currently does not support replacing a message in a single operation. The proposed

IMAP REPLACE extension [47] would eliminate the DELETE/EXPUNGE, so REPLACE’s over-

head will resemble APPEND alone. We approximate this by taking Figure 3.4 and removing

DELETE/EXPUNGE. This leaves Encrypt and APPEND as visible in Figure 3.6. Normalized
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Figure 3.8: The cleartext download and a breakdown of data TX during the ciphertext upload. The
y-scale is logarithmic. Points right of the line are JPEG emails.

performance can be seen in Figure 3.7. Like Figure 3.5, Figure 3.7 is stacked so that each line

is cumulative and the area between lines is the overhead for the component. The reduction in the

time for the worst case—small emails—is almost half.

Figure 3.8 shows the data transmitted and received to both download the original cleartext

emails, and to upload and synchronize the ciphertexts. Figure 3.9 shows the same data normal-

ized to Cleartext Size (Uncompressed), which underscores Deflate/Gzip compression’s effects on

the original cleartext emails. Unlike the previous normalized graphs, this figure is not stacked

and therefore the plots are not cumulative. It shows both the actual data transferred when com-

pressed as well as the true uncompressed size. Compression greatly reduces the plaintext emails,

but has less benefit for the JPEG emails. Also, S/MIME incurs about a 33% overhead due to

extra base64 encoding. Putting together the encoding and lack of compression, the overhead is

about 10× for smaller emails. For the larger emails with incompressible JPEGs, the overhead is

smaller, ranging from 64.6% to 54.1%. Unfortunately, mail clients cannot separately and lazily

download attachments in encrypted email. While the extra data is high, it is an unavoidable aspect

of using encryption; existing encrypted email already makes this sacrifice. Furthermore, the data
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Figure 3.9: Normalized ciphertext and actual on-the-wire ciphertext transmitted relative to the
uncompressed cleartext. Points right of the line are JPEG emails.

requirements of email are quite modest compared to other uses of data on mobile devices, so the

difference does not significantly impact overall mobile data usage.

Decrypt and Read

Figure 3.10 shows the time-to-display (TTD) from when the user selects an email to read until

the CPU completes the instructions to render the email. The TTD measures the worst-case where

a client stores ciphertexts locally and must decrypt before reading. Figure 3.10 compares reading

encrypted emails versus the baseline of reading cleartext emails. 100 B to 1 MB emails were two-

part MIME messages with a plain/text and html/text part. Larger emails were two-part

MIME messages with a one byte plain/text part and an attached JPEG file. Figure 3.11 shows

the normalized TTD relative to the Cleartext Message TTD; the plots are not stacked and are not

cumulative, like Figure 3.9.

Both Figures 3.10 and 3.11 show that the overheads are small, at 2% or less for small emails

and 10% or less for larger text-based emails. The absolute overheads are generally under 20 ms,

making it barely perceptible. There is a sudden drop in TTD for 1 MB or greater cleartext emails,
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resulting in larger overhead values ranging from 44.1% to 352.5% (4.52 in Figure 3.11). This is

because the K-9 client lazily loads the JPEG image attachment only when it is actually selected.

When a user reads the cleartext email, only a 1 B plaintext portion is loaded, not the attachment. In

contrast, E3 decrypts the entire encrypted email, including the large attachment, resulting in higher

overhead when loading the message. But when a user selects the attachment, E3 will not impose

any overhead on TTD because the entire message has already been decrypted.

The overhead of decrypting is an up-front cost due to S/MIME’s encryption format. S/MIME’s

Enveloped-Data format requires encrypting the entire body of a MIME message in a single blob,

and thus no part can be read unless the entire blob is decrypted. Therefore, it is not possible to

defer decryption of attachments—the entire message must be decrypted. While this is unfortunate

for performance, this is not a characteristic specific to E3. This up-front cost also exists in other

S/MIME mail clients, such as Apple’s Mail client. A performance optimization to reduce user-

perceived latency would be to proactively decrypt visible listed emails.

3.7.3 Usability

After its initial configuration, E3 by default works transparently to the user. The user thus

does nothing different from using a regular mail client. As a result, E3’s usability is the same as

a regular mail client for everyday email usage. The main difference with E3 versus a regular mail

client involves the initial setup of E3—the configuration of PDK—before a user can start sending

and receiving emails. We therefore focus on the usability of the mail client setup.

We administered an IRB-approved2 user study (protocol number AAAQ6201) with nine par-

ticipants who used and compared our E3 K-9 PGP client versus an unmodified K-9 client with

and without PGP. Participants used three devices we provided to them in each session: a Nexus 7

Android tablet, a Huawei Honor 5X, and a Samsung Galaxy S7. Each user was also supplied with

an empty Gmail account. All participants had some experience with mobile device mail clients.

They consisted of six non-technical users aged 31 to 60, and two technical users aged 21 to 30.

2The Institutional Review Board (IRB) is the United States’ approach to an ethics committee that oversees human
subjects testing.
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The non-technical users all worked in blue-collar occupations or were self-employed. The tech-

nical users worked or had worked in technology, and one was a Ph.D student who specializes in

computer security and mobile computing. Both had never used PGP but were familiar with its

design.

The participants volunteered in 60 minute sessions in which they role-played as a tax accoun-

tant using email to request a client’s tax forms. The 60 minute session comprised three 20 minute

sessions, each devoted to using vanilla K-9, E3 K-9 PGP, or K-9 with PGP. During each 20 minute

session, we instructed the user to configure the selected mail client with a Gmail account then

send and receive emails to obtain tax forms from three separate people. More specifically, the user

first set up the respective email client with an empty Gmail account on one of the three mobile

devices, requested a tax form from the first person, and verified the response was encrypted (for

E3 and PGP) by checking for the visual encryption flag indicator on the K-9 client. Upon suc-

cessfully completing the first email exchange, users then configured a second device with the same

Gmail account, which essentially tested E3 and PGP’s key management. E3 required completing

the two-way verification to distribute E3’s public keys, and PGP required transferring their single

private key. If successful, users then requested the tax form from the second person. This was then

repeated for the third device and person.

We provided users with a visual setup guide for both E3 and PGP, and they could ask the study

coordinator for help with specific errors (for example, if they unknowingly made a typo or didn’t

know how to go to the home screen), but we provided no in-depth help. Our reasoning was to strike

a balance between providing consistent help to all users for both solutions while also preventing

cases where users would get stuck on a simple mistake unrelated to the study goals. To mitigate the

effects of short-term memory on survey results, we randomized the order of the email clients. To

avoid priming participants for favorable responses, we explained our research purpose only after

the surveys had been completed.

After participants completed their tasks or reached the 20 minute limit per client, they complet-

ed the System Usability Scale (SUS) [61], an industry-standard questionnaire also used in many
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K-9 8 81 15 63 70 76 96 100
E3 8 74 19 48 60 76 91 98

PGP 8 41 12 28 28 45 50 58

Table 3.3: System Usability Scale summarized scores.

similar studies [18, 62, 23, 22], for the system they had just used. At the end of the study, par-

ticipants completed 14 additional survey questions specific to our research, and a final free-form

question requesting any comments. To ensure that participants actually understood each email so-

lution they used, the study coordinator explained each system prior to completing the 14 additional

survey questions.

The summarized SUS scores are presented in Table 3.3. A higher score means better usability.

The results for K-9 and E3 were quite close while K-9 PGP received remarkably low ratings. This

suggests that users felt that E3 was almost as easy to use as K-9, while PGP was significantly

worse. All users except the one technical user who specializes in computer security and mobile

computing failed to complete K-9 PGP’s tasks in the time limit even with copious help. The pain

point in PGP where users struggled was the private key management when they had to transfer

their PGP keypair to their other devices. On the other hand, all users succeeded in every instructed

step for E3 K-9 PGP in 10 to 15 minutes. The average completion time for K-9 was 8 minutes.

We also asked users to compare the email solutions which we summarize in Table 3.4. Re-

sponses are on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree). Subjects in general agreed

that E3 was easier to use than PGP, but E3 still introduced noticeable extra setup time compared

to K-9. For many of these questions, users choose a score of 3 despite giving similar usability

scores for K-9 and E3 as seen in Table 3.3. This suggests that another factor unrelated to usability

influenced their responses to our custom questions. The most likely culprit is that most of the non-

technical users did not consider themselves important enough to use encryption. They thus tended

to be indifferent and responded with the middle-ground score of 3 for any question concerning the

encrypted email solutions.
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Free responses included saying “PGP sucks” and “I had no idea what I was doing with [PGP].”

Several subjects commented on how much easier E3’s two-way verification was compared to PGP’s

key exchange and private key import/export. Most users felt that they were not important enough,

i.e.not public figures or celebrities, to be targeted by attackers and therefore did not need to use

encryption, but could still see the value in having an easier to use email encryption solution for

people who do handle sensitive data.

It is important to note that our user study places a large emphasis on configuring email clients,

which is a relatively infrequent occurrence. Furthermore, it is not uncommon for non-technical

users to ask others, technical support in the context of an enterprise organization or customer

support when purchasing a device, for assistance in setting up a device. The fact that the main

usability difference between E3 and vanilla email is in the client configuration and that there is no

difference for sending and receiving email suggests that E3 usability is likely to be even better in

practice.

We draw these conclusions: (1) E3 is easy to use even for non-technical users. (2) E3 is much

more usable and intuitive than PGP. (3) PGP is too unwieldy to actually be used. Overall, our user

study results were very positive in favor of E3, but further studies with more users and a wider

range of activities would be illuminating.

3.8 Related Work

The seminal “Why Johnny Can’t Encrypt” paper illuminated the confusing process of encrypt-

ing email and showed how inaccessible PGP is to average users [13]. They found that correctly

sending encrypted email in an end-to-end encrypted email setting is outstandingly difficult.

Many works following “Johnny” have tried to tackle the problem of end-to-end encrypted email

by attempting to make the process easier or more transparent. STREAM [63] uses SMTP/POP

proxies which opportunistically encrypt email by finding keys or generating them on the fly, but key

management is problematic. Verifying keys involves out-of-band communication such as phone

calls, and delivering keys requires users to know how to extract keys from email, install them, and
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use them. STEED [64] extends the IMAP standard to support transparent end-to-end encryption,

but requires modified clients and servers, and does not address key management at all. Pwm [18]

and Pwm 2.0 [62] attempt to make end-to-end encryption transparent by integrating with popular

mail providers and relying on a third-party identity-based encryption (IBE) server to manage keys,

but users authenticate to the IBE server via their email account which does not protect against

compromised accounts. Confidante [65] leverages users’ ubiquitous use of social media accounts

to ease public key management and verification via a third-party service. It however relies on users

being able to correctly identify social media accounts.

Various commercial services that provide end-to-end encryption try to address the key man-

agement directly by taking a walled garden approach. Lavabit [66], Posteo [67], and Tutanota [68]

create closed platforms where the service handles all key management on its servers, but users

are restricted to encrypting messages only to other users of the same platform or to redirecting

recipients to the service’s website to gain access to an encrypted file. Services such as Lavabit

maintain master keys which could decrypt all emails, making them vulnerable to compromises and

subpoenas.

Autocrypt [54] is a decentralized and incrementally deployable system for distributing public

keys to support end-to-end encryption by making public key management more usable. Only

clients need to be modified to support Autocrypt. Autocrypt includes the sender’s public key in

an email and an indicator whether the sender prefers encryption. The receiver replies in the same

manner, including his public key in the email and an indicator whether encryption is preferred.

Autocrypt thereafter will send encrypted email between the two parties if any of three criteria are

satisfied: the sender requests encryption, the received email was encrypted, or all parties explicitly

prefer encryption. Autocrypt does not encrypt all of a user’s email, for example an email from

someone who does not prefer encryption. Given that Autocrypt use remains limited, it may not

protect a substantial portion of a user’s emails if a compromise occurs. This is in contrast to E3,

which will protect all of user’s email before a compromise occurs. E3 could be used to complement

Autocrypt, most obviously by encrypting plaintext emails with non-Autocrypt correspondents.

52



Another critical difference is that Autocrypt eases PGP public key distribution but does not address

private key management and has no solution for making it easy to read encrypted email on multiple

devices.

E3’s encrypt on receipt approach has been proposed using other mechanisms. Most examples

modify one’s Mail Transfer Agent or Mail Delivery Agent to encrypt emails before delivering them

to the client [69, 70], but this is too complicated for non-technical users. Posteo [71] provides

support for encrypting emails on receipt, but their approach is server-side and only works on their

servers. Unlike E3, none of these approaches work with existing unmodified IMAP servers and

clients, and none of them address the issue of client-side key management.

3.9 Summary

Easy Email Encryption (E3) introduces a new client-side encrypt-on-receipt mechanism cou-

pled with a concrete design and implementation of our Per-Device Keys (PDK) key management

system, both of which are compatible with the existing IMAP standard and servers. E3 email

clients automatically encrypt received email without user intervention, making it easy for users to

protect the confidentiality of all emails received prior to any email account or server compromise.

E3 uses keys that are self-generated (and self-signed for certificates), and PDK makes it easy to use

them to access encrypted email across multiple devices. Users no longer need to understand or rely

on public key infrastructure, coordinate with recipients, or figure out how to use PGP or S/MIME.

We show that E3 is easy to implement on a variety of platforms including Android, Windows,

Linux, and even Google Chrome, and show that it works with popular IMAP-based email services

including Gmail, Yahoo! Mail, AOL, and Yandex Mail. Our user study results show that real users,

even non-technical ones, consider E3 easy to use even when compared to using regular unecrypted

email clients and vastly easier to use over the state of the art for PGP. Our measurements using E3

with Gmail services show that performance overheads are modest and acceptable in practice.

Almost exactly 20 years ago, Johnny was unable to encrypt. In the current modern era, the

explosive growth of ubiquitous and always-on, always-connected mobile devices has provided the
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necessary foundation for putting a new and usable spin on the idea of receiver-controlled encryp-

tion. Johnny could not encrypt in his time, but Joanie in the modern age certainly can.
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# Question (1 = Strongly Disagree, 5 = Strongly Agree) Mean Std. Min. Med. Max

31 I found it easy to use K-9. 4.50 0.55 4 4.5 5

32 I found it easy to use K-9 with PGP. 2.17 0.75 1 2 3

33 I found it easy to use K-9 with E3. 3.83 0.98 3 3.5 5

34 I could see myself using K-9 on a regular
basis.

4.00 0.89 3 4 5

35 I could see myself using E3 on a regular
basis.

3.83 0.75 3 4 5

36 I could see myself using PGP on a regular
basis.

2.00 0.89 1 2 3

37 I thought E3 takes too long to set up each
time on a new device.

2.00 0.89 1 2 3

38 I thought PGP takes too long to set up
each time on a new device.

3.67 1.21 2 3.5 5

39 I thought that E3 was easier to use than
PGP.

4.17 0.98 3 4.5 5

40 I thought that using the QR code scan-
ner was harder than verifying a three word
phrase.

3.50 1.22 2 4 5

41 I thought that transferring my key in PGP
was harder than verifying a three word
phrase in E3

4.17 0.98 3 4.5 5

42 The extra security with E3 is worth the
extra steps compared to regular email.

4.17 0.98 3 4.5 5

43 The extra security with PGP is worth the
extra steps compared to regular email.

2.50 0.84 1 3 3

44 The extra security with PGP is worth the
extra steps compared to E3.

2.00 0.63 1 2 3

Table 3.4: Summarized scores for added survey questions. (Questions are abbreviated for spacing
reasons.)
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Chapter 4: Easy Secure Photos (ESP)

4.1 Introduction

The rapid proliferation of smartphones with increasingly high-quality built-in cameras is driv-

ing enormous growth in the number of photos being taken, with well over a trillion photos captured

each year [72]. Since smartphones often have low storage capacity and are prone to accidental dam-

age and loss, many users use the cloud to permanently store their photos online via cloud photo

services such as those offered by Google, Apple, Flickr, and others. Google Photos is particularly

popular, given its promise of unlimited storage capacity at no charge until June 2021, with over

a billion users [73]. However, users’ photo collections often represent a gold mine of personal

information which is valuable not only to the services, but to attackers as well. Even if users trust

cloud photo services with their data, the threat of attackers compromising user accounts and data is

tangible. External attackers often target one of the weakest points of account security, passwords,

to gain access to personal photos such as in the case of the 2014 celebrity nude photo hacks [74].

Because passwords are such a weak defense that is often compromised through social engineering,

phishing, or password leaks, many services augment account security with two-factor authentica-

tion (2FA), but this is still not enough. One important reason is because adversaries may also be

internal, such as rogue employees at cloud services abusing their access privileges to snoop on user

data [6, 7, 8, 9], and bugs or errors may reveal user data to unintended recipients, such as the recent

case of Google Photos accidentally sharing users’ private videos with other completely unrelated

users [75]. Regardless of attackers’ origins, it takes only a single compromise of a user’s account

to expose their entire photo collection.

Encryption offers a well-known solution to this problem: users can simply encrypt all of their

photos before uploading them. Then even if an attacker compromises user accounts, such as by
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phishing account passwords, their photos are indecipherable. The problem is that existing encryp-

tion schemes are incompatible with cloud photo services. Google Photos expects uploaded files to

be valid images, and compresses them to reduce file sizes. Image compression is incompatible with

general and photo-specific encryption techniques, causing corruption of encrypted images. Even

if image compression were compatible, mobile users expect to be able to quickly browse through

thumbnails of their online photo collections, which are typically generated by cloud photo services

who need access to photo data to generate meaningful thumbnails; this is not possible with any

existing photo encryption schemes. Finally, encrypting data and managing keys is too complicated

for most users especially if public key cryptography is involved [13]. This is made more difficult

for modern users who commonly access their photos from multiple mobile devices which each

must decrypt their photos. While some third-party photo services promise image encryption and

user privacy, and others propose new external secure photo hosting services [76, 77, 78, 79, 80,

81, 82], they require users to abandon existing widely-used cloud photo services such as Google

Photos and their desirable features, including free and unlimited photo storage.

To address this problem, we have created Easy Secure Photos (ESP), a system that enables mo-

bile users to use popular cloud photo services such as Google Photos while protecting their photos

against account compromises. ESP encrypts uploaded photos so that any attackers that compro-

mise user accounts only have access to encrypted photo content, yet the encryption is transparent to

authorized users who can visually browse and display images in largely the same manner as when

using the cloud photo services with unencrypted images. ESP achieves this functionality by intro-

ducing a new client-side encryption architecture that is compatible with and requires no changes to

cloud photo services such as Google Photos, and has no reliance on any external third-party system

or service provider. The architecture includes three key components: a format-preserving image

encryption algorithm, an encrypted thumbnail display mechanism, and a PDK-based easy-to-use

key management system.

ESP provides an image encryption algorithm which is compatible with lossy and lossless image

formats such as JPEG and PNG, and with image compression techniques used by many cloud
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photo services; and is also efficient enough for mobile devices. Our algorithm converts an image

to RGB, encrypts it in the RGB color space using a block-based Fisher-Yates shuffle [83], splits

the RGB channels into three separate grayscale ciphertext images, then converts them back into

the original image format, including compression as needed for image formats such as JPEG.

The novel encrypted grayscale approach maintains the original image dimensions and ensures

compatibility with standard JPEG compression, newer widely used compression techniques such

as Guetzli [84, 85] JPEG encoding, and JPEG chroma subsampling. The encryption also uses a

per-image encryption key.

ESP also implements an encrypted thumbnail display mechanism that is simple and easily

compatible with cloud photo services. ESP simply uploads its own encrypted thumbnail to the

cloud and redirects the client-side image browser to view the uploaded client-generated thumbnails

rather than any server-generated thumbnails. This approach makes it easy for users to interactively

browse and view thumbnails on any device authorized to access the encrypted images.

ESP also includes an instantiation of PDK, modified to support the case of photo hosting ser-

vices in contrast to E3 as described in Chapter 3, to provide an easy-to-use key management scheme

that allows users to access encrypted photos from multiple devices while eliminating the need for

users to know about and move private keys from one device to another. Like E3, ESP’s version of

PDK uses self-generated keypairs and a verification process that builds up a chain of trust from one

device to another, and benefits from using multiple devices such as smartphones and computers.

However, since the context of photos differs from that of email, ESP instead uses the cloud photo

service itself as a communication channel for a QR code-based message protocol.

We have implemented ESP on Android in the Simple Gallery app, a popular photo gallery app

with millions of users, adding the ability to use Google Photos for unlimited encrypted photo stor-

age. ESP satisfies the system design presented in this dissertation, consisting of only client-side

modifications that use the Google Photos API and requiring no changes to the Google Photos cloud

service, while providing key management with an instantiation of the PDK concept. We have eval-

uated ESP using images from Google’s Open Images Dataset V5 [86]. Our experimental results
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show that ESP (1) works seamlessly with Google Photos even with their image compression tech-

niques, (2) produces encrypted images with quality comparable to the original images when both

are stored in and processed by Google Photos, (3) provides strong security against practical threats

including account compromises and analysis by machine learning image classifiers, (4) provides

fast encrypted image upload, download, and browsing times with modest overhead when using

Google Photos, and (5) has a usable key management scheme. ESP is easily adaptable to any other

photo site that has the concept of albums, though it would be necessary to verify compatibility with

its compression algorithms.

The contributions of this work are the design, implementation, and evaluation of a new system

for encrypting images stored on existing photo hosting services, with no server-side modifications,

requiring no trust in the photo services or their servers. The system includes a novel format-

preserving image encryption scheme coupled with a key management solution for users. To the

best of our knowledge, we are the first to address practical issues such as key management, usabil-

ity, image sharing, and compatibility with existing photo hosting services without needing to trust

them, all in a single system.

4.2 Threat Model

ESP’s purpose is to protect the privacy of images stored remotely in cloud services with no

changes to software or protocols other than client-side installation of a ESP app. The cloud service

provider may be malicious or an attacker may compromise user accounts by obtaining passwords,

or by bypassing password checks entirely through abusing privileged access. They may be sophis-

ticated but not at the level of a nation-state intelligence agency.

We assume that the devices with ESP clients that encrypt and upload images to cloud photo

services are secure and trustworthy. We do not attempt to protect users’ devices because this is an

orthogonal concern that should be managed by device hardware or at the operating system level.

A compromise of a user’s device would mean the attacker has access to the private keys that can

be used to decrypt any encrypted images belonging to the user.
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4.3 Usage Model

ESP is easy to use. A user simply installs an ESP photos app, then authenticates it with a cloud

photo service such as Google Photos. We have built an Android ESP app for use with Google

Photos, and the only setup step is a user selecting his device’s Google account. The app appears

no different from a regular photos app, except that it encrypts images before uploading them to

Google Photos and decrypts them on download. The encryption and decryption are transparent

to the user. Users are free to perform common operations: viewing thumbnail galleries, moving

photos to albums, assigning labels, modifying metadata, editing pictures, and sharing them with

others.

ESP assumes that users only access encrypted images on trusted devices which is reasonable

as it is uncommon (and inadvisable) to view photos on untrusted devices such as public computers.

In other words, ESP is not compatible with using untrusted computers such as those at an Internet

cafe, nor should it be if users care about their privacy.

Any device that a user trusts can decrypt and view image content from the cloud photo ser-

vice. Users are free to use ESP on as many devices as desired. When a user configures multiple

devices, each app installation on a new device after the first requires a short and simple setup step

to synchronize it with any previously configured devices via a platform-independent verification

process. This process appears conceptually similar to device pairing: a user verifies his new ESP

device using one of his existing ESP devices. However, in contrast to normal pairing, the user only

needs to complete this synchronization step once per new device with only one other existing ESP

device for all his other ones to recognize it.

The verification consists of these steps: (1) the user configures a new device with ESP, (2) it

displays a random phrase, and (3) the user copies the random phrase to one other existing ESP

device. Successfully completing these steps ends the new device’s setup, allowing the user to use

it to upload and download encrypted images from his chosen cloud photo service.

Users can remove devices from their ESP ecosystem if they wish to revoke access to their
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photos. Revocation can be completed on any configured ESP device to remove any other device.

The user may also choose the reason for removal which will affect his devices’ next steps. If the

user indicates that he is removing the device because it was lost, ESP informs that user that his

photos will be re-encrypted for security reasons.

ESP’s design intrinsically helps protect users from losing access to their encrypted photos

assuming they have more than one ESP device. A user may lose one of his devices, but can still

access his encrypted photos on the remaining ones. However, if a user loses all of his devices,

then the user may provide a recovery password to regain access to his encrypted photos; this is a

standard practice on popular operating systems for disk encryption schemes [87, 26].

Since ESP apps encrypt the images stored in the cloud photo provider, apps which do not

support ESP will be unable to decrypt them. The encrypted images, however, retain their original

file formats and therefore can be opened in image apps and editors for viewing the ciphertext, and

are accepted as valid JPEG files when uploading to hosting services. Users of services with web

browser interfaces may install ESP web browser extensions to decrypt and view their photos.

4.4 Architecture

In addition to the general system design described in Chapter 2, ESP is designed for com-

patibility with existing cloud photo services, preservation of image formats when encrypted, and

end-user usability with respect to browsing images and managing keys. While ESP works with

multiple cloud photo services, we focus on Google Photos given its popularity. Google has no

stipulations in its terms of service that prohibit users from encrypting their data [10].

4.4.1 Format-Preserving Encrypted Images

ESP’s image encryption algorithm is compatible with cloud photo services which support stan-

dard image formats including JPEG, PNG, WebP, and RAW. Compatibility means uploading en-

crypted images without them being rejected, and decrypting them with minimal loss of quality

beyond any compression by the service. We focus on JPEG since it is the most commonly used
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Figure 4.1: The ESP encryption architecture for JPEGs.

Figure 4.2: An image and its encrypted RGB components.

image format, though ESP’s encryption method works with others. We also focus on Google Pho-

tos’ free tier of service which compresses and processes uploaded images. Google Photos does

not publicly specify its processing pipeline, but we observe it to downsample the JPEG chroma

format to 4:2:0, and to apply compression with possibly a noise filter. The compression is likely

a standard JPEG quantization plus Google’s own Guetzli JPEG encoder [84, 85]. ESP encryption

must account for these techniques or images will be corrupted. It must also be fast and efficient, as

many users use resource-constrained mobile devices.

To understand how ESP’s encryption works and the problems it addresses, it is necessary to

understand JPEG compression. Images rendered on a user’s screen generally consist of pixels,
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each of which has red (R), green (G), and blue (B) components, and each component is an 8 bit

value in the range 0 to 255. Converting RGB data into JPEG format takes four steps. (1) The

RGB components are converted into luminance, chroma-blue, and chroma-red (YCbCr) compo-

nents. Sometimes the chroma is subsampled to reduce the sizes of the Cb and Cr components

which are less important for image quality. For example, an image with full size, half size, and

quarter size CbCr components are in 4:4:4, 4:2:2, and 4:2:0 format, respectively. (2) YCbCr com-

ponents are transformed using a discrete cosine transform (DCT) which outputs DCT coefficients.

(3) The DCT coefficients are quantized, thereby reducing the number of bits needed per coefficient;

quantization is the main lossy compression step of JPEG and is controlled via the JPEG quality

parameter. Quantization is performed on 8 × 8 blocks of pixels. (4) Finally, lossless compression

techniques are used to further reduce the image file size. Cloud photo services’ compression prac-

tices are problematic for encrypted images due to the data loss caused by quantization and chroma

subsampling. We have confirmed images encrypted using common DCT coefficient diffusion and

confusion techniques experience significant visual corruption when compressed and are unusable.

ESP is an encrypt-then-compress design that shuffles 8×8 pixel blocks as shown in Figure 4.1.

Figure 4.2 shows a sample image encryption produced by ESP. ESP’s encryption is robust against

JPEG compression because it does not modify the values or positions of pixels within the 8 × 8

blocks, so any pixel-based lossy operations are orthogonal to ESP’s decryption. Consider a sim-

ple image with only one grayscale component divided into 8 × 8 blocks which is encrypted by

shuffling the blocks. Decryption therefore means moving each block back to its original posi-

tion, so any lossy compression of the pixel data in each block is unrelated to the decryption. In

contrast, standard image encryption methods modify pixel values and also shuffle pixels within

each block. Lossy compression also modifies these encrypted pixel values, but in a non-uniform

manner, making it impossible to reconstruct the original values upon decryption. This resulting

corruption appears visually, and is even worse for color images.

As shown in Figure 4.1, encryption and decryption are performed on the RGB color data, so

encryption occurs after the image has been decoded and decompressed to the RGB color space.
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Encryption outputs three separate grayscale ciphertext JPEG images created from encoding and

compressing the encrypted RGB channels, each representing one of the RGB color channels. Like-

wise, ESP decrypts JPEGs after the three ciphertext JPEGs are passed to the JPEG decoder and

converted to RGB values. Each grayscale ciphertext is decompressed and converted to RGB, then

the resulting plaintext decrypted RGB data is rendered for viewing or compressed again to be

stored on disk. Since ESP JPEGs are legitimate JPEGs, they can be decoded and displayed like

regular JPEGs, but the decoded results do not reveal the original images. The use of grayscale

ciphertext images makes ESP also immune to chroma subsampling because the images have no

chroma components, only a luminance (Y) component. One beneficial side effect of this is that

ESP images can retain higher resolution chroma channels in the decrypted JPEGs compared to

unencrypted images, which may have their chroma subsampled by Google Photos.

A popular approach to format-preserving encryption is to encrypt the data via a pseudo-random

number generator (PRNG) with known secret seed values. ESP applies this approach in two main

components: block-based pixel permuting, and inter-channel shuffling of these permuted blocks.

The identifier for the actual algorithm used to encrypt an image is stored together with the image in

its EXIF data, similar to how widely used cryptosystems such as TLS support multiple algorithms.

Like these systems, ESP allows the addition of new crypto standards. Here we define an example

of such an encryption method which we name ESP-FY. To begin encrypting an image using ESP-

FY, ESP computes three initial secret seed values, (B', B� , B�), one for each RGB component,

to derive (B′
'
, B′
�
, B′
�
) values with the appropriate seed length to use as the actual inputs to the

PRNGs. Note that (B', B� , B�) are unique per image, making them adaptive secret seeds generated

from a user’s stored secret key and properties of the image. Generating them is discussed further

in Section 4.4.2.

ESP first decodes a JPEG and converts it to RGB. It then pads the image’s dimensions to the

nearest multiple of 8—the same strategy as the JPEG format. Then, ESP-FY’s first encryption

process permutes the image in 8 × 8 pixel blocks. Figure 4.3 depicts an example of this applied

to a 4 × 2 block, or 32 × 16 pixel, image. It consists of applying a Fisher-Yates shuffle to all
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Figure 4.3: Example of 8 × 8 block permutation.

the 8 × 8 blocks in each RGB color channel. The shuffle is driven by three PRNGs, one for

each RGB channel, seeded by the previously described (B′
'
, B′
�
, B′
�
) 256 byte secret seeds. They

may be truncated if they are too large for the PRNG. Once shuffled, the RGB channels are each

compressed to three separate grayscale JPEG images. The user may choose a JPEG quality setting

that represents a trade off between preserving the image’s visual quality, and larger ciphertext file

sizes.

The second part of encryption is an inter-channel shuffle of blocks across the RGB components.

ESP pseudo-randomly swaps the 8th block in each iteration of the Fisher-Yates shuffle with the 8th

block of the other channels. In other words if we are in the 8th iteration of the Fisher-Yates shuffle,

then blocks (8', 8� , 8�) in each of the RGB channels are shuffled. Which swaps occur is determined

by B′
'��

= B′
'
⊕ B′

�
⊕ B′

�
as the input to a PRNG. Then on each block iteration, generate a uniformly

distributed random integer :8 ∈ [0, 5]. Each :8 represents a unique ordering of (8', 8� , 8�) of which

there are 3! = 6 permutations. Assume that :8 = 0 is mapped to the ordering (8', 8� , 8�) with no

swaps. Now consider :8 = 1 mapped to (8', 8�, 8�) which means that the block 8� is swapped with

block 8�, i.e. the 8th green block is swapped with the 8th blue block. Therefore, each :8 ∈ [0, 5]
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generated by each round of shuffling is mapped to a unique ordering of (8', 8� , 8�).

The encryption algorithm is therefore a Fisher-Yates block shuffle in each RGB channel, which

on each iteration pseudo-randomly swaps blocks (8', 8� , 8�) across channels. Decryption is the

inverse in reverse order: reversing the inter-channel shuffle on each iteration over the images’

blocks while reversing the Fisher-Yates shuffle of the 8 × 8 blocks of pixels.

The security of shuffle-based encryption scales with the image dimensions. Smaller images

have fewer permutations, and larger images have more. Block-based shuffling is not ideal for very

simple images, such as ones where the visual data is aligned to the blocks, e.g., solid colors or

simple patterns. However from a privacy perspective, simple images are less likely to contain

sensitive information. Finally, like all encryption schemes, an encrypted image which has been

resized cannot be decrypted. ESP therefore resizes images larger than the maximum allowed sizes

for photo hosting services prior to encryption. Google Photos’ maximum size is 16 MP, so ESP

scales images to at most 16 MP before encrypting them. This is no worse than a user uploading an

unencrypted image larger than 16 MP normally since it will be resized in any case.

4.4.2 Adaptive Secret Seed Generation

A crucial component of encryption is the selection of the secret seed values for the PRNGs.

An easily guessed seed is a security risk. Accordingly, ESP adaptively generates the seed values

(B', B� , B�) to be unique per encrypted image.

A user’s initial secret key ( is a sufficiently long, say 256-bit, string of cryptographically secure

random bits. ( serves as the key to encrypt the adaptive seed values (B', B� , B�) unique to each

image. Each of these adaptive seed values is 384 bits and they are generated separately for each

image, then encrypted using ( as �( (B', B� , B�). This is stored in the encrypted grayscale images’

metadata either as EXIF format or via another method such as Google Photo’s metadata fields.
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4.4.3 Encrypted Thumbnails

A difficulty in supporting image encryption with existing cloud services is constructing a seam-

less experience with fast response times so that users can quickly browse through thumbnail gal-

leries of their images. Without any special attention to this matter, a user would only be shown

thumbnails created from the ciphertexts, making them unusable for identifying images, or would

have a sluggish experience due to the delay caused by downloading and decrypting the full resolu-

tion image to generate decrypted thumbnails. A simple solution would be for ESP clients to create

and generate thumbnails from newly encountered encrypted images, but this is a laborious process

involving all of a user’s ESP clients downloading all the images at full resolution, decrypting them,

resizing them, and generating thumbnails. The essential problem here is that this approach adds

too much overhead, in the forms of processing time and network bandwidth, to the critical path of

a user trying to browse his images for the first time on a device.

It is much more palatable for users if the overhead is primarily incurred when uploading a

new image or batch of images, as a user is free to continue using the app while ESP processes

the images in the background for uploading. ESP therefore prepares two encrypted images (six

grayscale ciphertext images) when a user uploads an image to Google Photos. The first is the

original image in encrypted form, and the second is a resized thumbnail of the original image

which is separately encrypted. The encrypted original is stored in the user’s chosen location on

Google Photos while the encrypted thumbnail is uploaded to an album specifically for encrypted

thumbnails; the ESP client hides this album from the user under normal operation.

When the uploads complete, the user’s ESP client creates a mapping of the encrypted images’

Google Photos media IDs with the encrypted thumbnails’ media IDs. Thus, when the user is brows-

ing an encrypted album, his client requests the smaller size encrypted thumbnail rather than the full

size originals. The client requests and downloads full size encrypted images at a lower priority than

the thumbnails when in gallery mode. However, it may prioritize requesting full size images that

the user is likely to view next, for example if the user is swiping through individual images. The

user’s other ESP clients that do not have the mappings of encrypted originals to encrypted thumb-
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nails are able to recreate them independently by periodically scanning the special album for new

encrypted thumbnails. Google Photos provides free unlimited storage for images smaller than 16

MP—more than enough for even larger size thumbnails—so remotely stored encrypted thumbnails

do not waste a user’s storage quota.

4.4.4 Image Sharing

ESP users have two options for sharing their images and albums with others: normally or

securely. Normally sharing images with others appears the same as sharing a regular unencrypted

image. If the source unencrypted image is available locally on the user’s device, it is uploaded

unencrypted as a separate copy to the service and shared with the recipient via the service’s normal

mechanism. If the image is not available locally, the image in Google Photos is downloaded,

decrypted, and re-uploaded in plaintext format to be shared with the recipient. The user is notified

that normal sharing is insecure and may compromise the privacy of the image. However, the

willingness to share a photo with another user already represents a security risk as no guarantee

can be made that the recipient is trustworthy. For example, the recipient may make a copy of the

image; the sender has no control over this.

ESP users may securely share their images and albums with other ESP users. Suppose Alice

wishes to share an encrypted photo album with Bob. If this is their first time sharing albums with

each other, they perform a one-time handshake which is a public key exchange. Alice may ask Bob

to shares his handshake link (URL) which is generated by his ESP app. Bob’s ESP public key and

other metadata are encoded into this URL; this is then shortened, for example, via Google Firebase

Dynamic Links, so that if Alice opens it on Android or iOS, it will be routed to the ESP app and

add Bob’s public key to its key chain. Alice may also share her handshake URL with Bob whose

ESP app performs the same process. This completes the public key exchange between Alice and

Bob without either of them needing to know what a public key is.

Now Alice begins sharing � (�;1D<�)(� which is the encryption of the images in �;1D<�

using her secret key ((�). Alice selects �;1D<� to share and chooses Bob from her list of
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known ESP users. Alice’s client creates a new album �;1D<��, invisible to Alice, to share

with Bob; the original album �;1D<� is not shared. Alice’s client then generates (��, a new

secret key shared by Alice and Bob. Alice decrypts � (�;1D<�)(�, and re-encrypts and stores

the result in �;1D<��, resulting in � (�;1D<��)(�� . Alice then encrypts (�� using both her

own and Bob’s public keys, resulting in � ((��)(�;824,�>1) . Next, if Alice’s cloud photo ser-

vice supports its own native limited sharing mechanism, Alice’s client ensures that �;1D<�� is

viewable by Bob’s account and retrieves the service’s URL for *'!(�;1D<��). Finally, Al-

ice’s client presents her with a shortened share URL *�;824,�>1 to provide to Bob. When ex-

panded, *�;824,�>1 = {*'!(�;1D<��), � ((��)(�;824,�>1)}. Alice copies *�;824,�>1 and sends it

to Bob whose device automatically opens it in ESP. Bob’s client uses his private key to decrypt

� ((��)(�;824,�>1) and retrieve (�� to decrypt the images in Alice’s album.

Alice and Bob’s clients also support viewing �;1D<�� on multiple devices. When Alice’s

client constructs *�;824,�>1, it is also synchronized among all of Alice’s devices in the form of a

PDK broadcast message, the protocol for which is discussed in Section 4.4.6. Any of Alice’s de-

vices which trust the broadcasting device will accept the message, decrypt the contained encrypted

shared seeds, and record the seeds’ association with *'! (�;1D<��). Bob’s client performs the

same steps to synchronize the shared seeds among his devices. If Alice chooses multiple individu-

als including Bob with whom to share �;1D<�, ESP adds their public keys to the list of keys used

to encrypt the shared seeds � ((��...) (�;824, �>1, ...).

Alice revokes Bob’s access to �;1D<�� by removing him from �;1D<�. Alice’s client first re-

vokes any granted access controls via the cloud service itself for Bob if applicable, and then deletes

�;1D<�� from the service. ESP cannot prevent Bob from accessing any copies of �;1D<�� that

he may have saved. Alice’s revoking Bob’s access only prevents Bob from viewing the album

via the cloud service. If Alice has shared the album with multiple individuals, then she may only

revoke access to all of the individuals at once. If Alice desires granular access revocation, she must

share her album with each user separately and provide them with individual share URLs.
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4.4.5 Other Features and Limitations

ESP is incompatible with cloud photo services’ features that rely on server-side access to pho-

to image data. This includes facial recognition and detection, machine learning-based labeling

and classification, image searching, and other similar functionality. For example, Google Photo

uses server-side machine learning to classify images ostensibly for supporting search. However,

this feature is incompatible with encrypted images, as it is run on Google’s servers which cannot

decrypt ESP images. Moreover, server-side classification of images compromises their privacy.

Consequently, ESP utilizes client-side image classification, similar to what Apple does on their

Photos app on mobile devices, to protect their users’ privacy [88]. In fact, both Google and Apple

provide on-device classification models, Google via ML Kit [89] and Apple via Core ML [90].

Although ML Kit provides fewer labels for on-device classification compared to Google’s cloud-

based one, Apple’s Core ML has no such limitations. Once labeled, images can be searched.

Users may wish to edit images such as by adding filters or cropping them. Images are edited

locally by first decrypting the image, applying the modifications, then re-encrypting the image.

ESP can be supported on web browsers via browser extensions. Such an extension implements all

the features of a normal ESP client. Depending on local storage constraints, decrypted images may

be cached locally. If storage is constrained, then the extension fetches ESP encrypted thumbnails

to ensure a smooth user experience.

Existing cloud photo services could change their systems or format requirements in ways that

impact ESP users. ESP assumes that services adhere to existing image standards and will not

deviate from them, i.e. services will not arbitrarily convert users’ photos to different formats.

This is unlikely to happen, but if it does, ESP clients would not overwrite their local encrypted

ESP images with the copies that the cloud photo service has converted. Since ESP clients keep

mappings of photo identifiers, these records can also be used to detect arbitrary modifications by

services and retain the copies of the images prior to their modifications, allowing ESP to re-encrypt

the images to the new format. Another possibility is that services may release support for encrypted

images themselves which would compete with ESP. This is actually a desirable outcome. The
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motivation of ESP is to satisfy users’ desires for privacy via a client-side solution with no reliance

on any third-party services, since cloud photo services do not provide this feature themselves. If

services begin to provide features similar to ESP, this would be an overall win for users as the user

experience, integration, and feature support can be further improved with support from the services

themselves.

4.4.6 Key Management for Multiple Devices

Users do not directly interact with the secret key and seed values used to encrypt images.

Instead, they manage self-generated PDK keypairs which are pairs of public/private keys. Unlike

E3, which uses PDK keys to directly encrypt user data—emails—as described in Chapter 3, ESP

uses PDK keys to encrypt and decrypt a copy of secret key ( in the key-encrypting key scheme

discussed in Chapter 2. The encrypted (, denoted as � ((), is stored both on users’ devices and

also remotely in the image hosting service in the form of a QR code image. Then any of the user’s

devices with ESP can fetch and decrypt � (() to recover (. The difficulty lies in how ESP should

manage keypairs for users, including granting and revoking access to � (() for a user’s multiple

devices. As commonly known and shown [13], the concept of pairs of private and public keys is

extraordinarily confusing for average users.

PDK, as already shown in E3, addresses these problems by exposing a key management system

with a simple usage model from the perspective of users, exposing them only to the concept of

device management which they can readily understand. PDK’s primary principle is that users do

not need to move a private key to and from all their devices, but instead synchronize all their

devices’ individual public keys. When a user installs ESP on a new device, it generates a new

self-generated keypair and uses the PDK verification process to first gain the trust of one of the

user’s other devices. This already-trusted device then broadcasts the new public key and its other

trusted public keys in a signed message encoded in a QR code image uploaded to the photo hosting

service. The user’s other previously configured ESP clients accept the broadcast since they already

trust the announcing device and can verify it via the signature. In this way, adding a new device
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builds up a chain of trust in which devices trust each other device and the ones that it trusts as well.

Device revocation is handled in a similar way, as a user uses one of his trusted devices to broadcast

the removal of another device.

In contrast to E3 which uses the user’s email account for its communications channel, PDK

uses the image hosting service itself as the channel for its message protocol, with QR codes as

the messages. For example in the case of Google Photos, ESP creates a special album named

#PDK-QR-CODES which is hidden from the view of the user in the app, and uploads PDK QR

code messages to it. We chose QR codes as they can be represented as images which are robust

against image compression and resizing. PDK messages are not encrypted by ESP but are signed

and verified by every ESP client.

Similarly to E3, users must verify new ESP devices which they perform via a platform-independent

verification step that works with any device that has a display screen in which communication

messages are conveyed using the image service itself, or via near-field communication (NFC) for

devices which support it. The process of adding, and therefore verifying, a new device begins when

the user sets up ESP on a new device, and the user then participates in the verification process used

in E3 as described in Chapter 3. The existing ESP device, who now has the new device’s public

key, then uses the PDK protocol as normal to broadcast the new public key.

When a user adds a new ESP device, the existing device that verified the new one decrypts

� (() and re-encrypts ( using the new device’s public key and all other public keys. The resulting

�′(() is stored as normal which completes the new device setup. Deleting a device is similar: the

user deletes it by selecting it from one of his existing devices, then the remotely stored � (() is

re-encrypted using the public keys of all devices except for the deleted one. This simple deletion

mode is suitable when the user is still in control of the device being deleted. However, if a user is

deleting a device because it was lost, this requires more work since the goal of deleting a device is

to ensure that it cannot decrypt newly uploaded encrypted images (a lost device will have access

to any locally stored images from before the user deletes the device). We make a distinction

between a lost device and a compromised device. ESP does not defend against device compromise
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where the attacker has bypassed the hardware or OS-level security because in these situations, the

attacker will have access to the user’s secret key regardless of the security or encryption scheme.

The purpose of device deletion is for a user to revoke a device’s access to his uploaded images.

Deleting a lost device consists of replacing � (() with a new secret key (′, and re-encrypting all

of the user’s images. (′ is encrypted using all public keys except for the key of the lost device. The

user’s other devices will detect this change and update their local caches. The device then begins

re-encrypting all of the user’s existing images, and continues using (′ for any new images so that

the lost device will be unable to decrypt them. The existing device which began the deletion re-

quest may choose to parallelize the re-encryption effort among other devices by broadcasting how

the work should be distributed via PDK’s communication protocol. For example, it can partition

images by album, time ranges, and more.

In extreme cases, a user may lose all of his ESP devices thus necessitating the recovery of

access to his encrypted images. What the user has lost is all of his devices’ private keys which can

decrypt � ((). Therefore, when a ESP client creates a new � (() that does not already exist in the

image hosting service, it also provides the user with a recovery key that they must write down. The

recovery key can be to decrypt � ((), thereby regaining access to the user’s images. This means

that � (() is also encrypted using a symmetric crypto key: the recovery key.

4.5 Security Analysis

ESP acts as a significant security barrier to compromises of privacy when users use ESP to

encrypt their photos. As the following security analysis shows, it is difficult to break encryption

for even one photo. If a user encrypts many photos, the difficulty of breaking the encryption

for all those photos becomes almost impossible. This is because adversaries need to expend im-

mense computing resources to break the encryption of even one photo, and more so with many

photos since each photo has a unique random seed for its encryption. Even then, the output of

attack attempts would need additional resources, either computing or manual human verification,

to determine whether the attempts at decrypting photos are correct or not. It therefore becomes
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intractable for an attacker to successfuly decrypt many encrypted photos uploaded by a user.

Given significant resources, an attacker might break the encryption of a photo, but it may be

more likely that the adversary would attempt to break the encryption via other means, such as

stealing a user’s trusted device or exploiting vulnerabilities on a user’s device. As we discuss in

Section 4.2, defenses against attacks like these are orthogonal to the core of ESP design, and would

be better handled at the hardware, OS, or even application platform level, i.e. Android and iOS

providing mechanisms for secure key management resilient against attackers. Even though ESP

considers device security to be out of scope, ESP still represents a significant improvement to cloud

photo service security that attackers must overcome as it is much more difficult to obtain users’

ESP secret keys compared to the current norm of needing only user account names and passwords

to access their photos.

Our security analysis focuses on ESP’s two main security guarantees: (1) ESP’s device man-

agement ensures that photos are encrypted using only authenticated public keys. (2) ESP’s encryp-

tion protects the confidentiality of photos. We describe ESP’s properties to use as building blocks

for these claims.

Property 1. The first configured ESP device is trusted.

ESP relies on a trust on first use approach since all keypairs are self-generated. This first

device’s keypair is used as the starting point for adding further devices.

Property 2. Spurious, unsolicited new device requests constructed by attackers do not result in

their malicious devices becoming trusted.

To compromise a user’s trusted device mesh, an attacker could try to force one of the victim’s

trusted ESP devices to authenticate a malicious one. To carry out this attack, the attacker would

need full access to the user’s photo hosting service account and initiate the protocol to add a

new device. Next, the attacker needs the targeted user to participate in the verification process to

authenticate the attacker’s malicious device. However, since the user did not initiate the protocol,

the user will not recognize the request or know the correct verification phrase, so the malicious

device will not be authenticated. Therefore, spurious requests to authenticate malicious devices
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will not succeed.

Another approach is for the attacker to wait for the user to legitimately add a new device and

then perform a man-in-the-middle (MitM) attack involving the verification phrase, so that the user,

who is adding a legitimate new device, is deceived into authenticating the attacker’s malicious one.

However, this is unlikely, as generally obtaining a new device is a very rare occurrence for users.

The attacker may then need to wait an exceedingly long time for the user to add a device; but if the

attacker is indeed patient enough, then the attack may succeed.

It is possible to defend against this MitM attack, and therefore require no reliance on the trust-

worthiness of the photo service’s servers, with a modification to the verification process by lever-

aging a password authenticated key exchange (PAKE) [91]. This approach is implemented and

evaluated in Chapter 5 for our third case study, EDP, but we provide a brief sketch of the PAKE-

based solution for ESP. Instead of transmitting verification phrases through the photo hosting ser-

vice, ESP would display the phrase to the user on new device which the user must copy and input

onto the trusted device. The verification phrase therefore acts as the password in the PAKE which

then allows the two devices to securely authenticate each other. Since the password is transmitted

via the user manually, an attacker with access to the user’s photo hosting service account cannot

intercept the exchange and perform the MitM attack. Therefore, this modification allows ESP and

its key management solution, PDK, to be used with even untrusted photo services.

Property 3. Any device which is trusted by the first ESP device is also a trusted device.

This follows from Properties 1 and 2. If the first device authenticates a new device’s public

key, then it is trusted by definition.

Property 4. Any device trusted by a given trusted device is also trusted by every other device.

This is the generalized version of Property 3, and holds true due to trust by transitivity. If a

device trusts another device, then the first device will also trust every device trusted by the second

one.

Property 5. ESP incrementally builds up trust among all of a user’s devices using only a single

completed verification process per device.
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In other words, when a user adds a new ESP device, that device does not need to complete the

new device verification step with each of the user’s existing devices. Instead, it only completes the

verification with one existing device. We prove this property via induction. Suppose a user has a

single device, then by Property 1 it is trusted. If the user obtains a second device, then the first is

trusted, and the second device is verified by the first and becomes trusted. The result is that both

devices trust each other and have exchanged their public keys.

Now the user adds a third device and has devices �, �, and �. � and � have already completed

the verification process and trust each other. Then, the user runs the verification process with � and

�, after which point they trust each other. Since � trusts �, � knows �’s public key and provides

it to �, so � can also trust � despite having never interacted with it. The question is then how �

learns about �’s public key. This is achieved by having � publish its set of trusted public keys,

signed by itself and containing �’s public key, by uploading it to the photo service. � will detect

the signed set of trusted public keys, and since � trusts �, it will accept �’s signature and therefore

accept �’s public key. �, �, and � now know every trusted public key and trust each other.

This same logic applies even if the user has # devices and adds a new device / , resulting in #+

1 devices. The user adds new device / by using trusted device  ∈ {#} to verify / . Afterwards,

 and / trust each other, and / has received the public keys of all # devices.  publishes an

updated set of trusted public keys containing /’s public key, signed by  . The remaining {# − }

devices observe /’s new public key in the set, and seeing that it was signed by  , accept it, thereby

also accepting /’s public key. In summary, the user has performed only a single verification step

for new device / in order for it to join their ecosystem of trusted ESP devices.

Property 6. ESP devices that do not participate directly in the verification step add only the new

device’s authenticated public key to their local key store.

This follows from Property 4. Trusted devices only accept public key lists from known, trusted

devices, so they reject any messages or public keys signed by an untrusted public key.

Property 7. ESP’s device management ensures that a user’s photos are encrypted using only the

public keys of authenticated devices.
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This follows from Properties 1–6.

Property 8. ESP’s encryption is robust and secure against attacks.

In this analysis, we examine our ESP-FY design. We first consider brute force attacks both

on the secret seed values and images themselves. As described in Section 4.4.2, the seed val-

ues (B', B� , B�) are each 384 bits in length. This means there are (2384)3 possible values for

(B', B� , B�), representing a sufficiently large key space. Even if an attacker only wishes to brute

force the seed value for a single channel, the complexity is still 2384, and this alone is not enough

to reverse the inter-channel shuffle.

It follows that a brute force attack could also be performed on the images. Such an attack

must find both the correct permutation of 8×8 blocks and ordering of inter-channel swapped RGB

blocks to reconstruct the image. There are consequently$ (�'!×��!×��!) possible permutations

of blocks to reconstruct the entire original image. In either case, brute force attacks are impractical

for all but the smallest of images. For example even a small (by modern standards) 1280 × 720

pixel image contains 14400 blocks, for a search space of 14400!3.

An extension of the brute force attack is to treat shuffle-based encrypted images as if they were

unsolved jigsaw puzzles. A jigsaw puzzle solver attack leverages perceivable outlines within an

image’s shuffled blocks to try to re-assemble them into recognizable features. The running time of

puzzle solving techniques increases exponentially with the number of blocks, and shuffling blocks

across color components significantly reduces the output quality of these solvers [92]. Using a

small enough block size such as 8×8 pixels blocks also acts as an important defense against puzzle

solvers [93]. Even when the solvers run to completion, there is often a low or zero reconstruction

rate of the source image’s recognizable features.

Attackers may not need the correct position of every block to gain useful information about

an image. For example, an image may contain sensitive information in only a small portion of it

which a puzzle solver or outline counting attack may reconstruct, or a “close enough” guess can

reveal the context of the original image. Since more than 1 billion images were uploaded to Google

Photos in 2019 [73], ESP represents a significant barrier to adversaries like the cloud service itself
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Figure 4.4: The image and its two ciphertexts that do not pass the NPCR randomness test by a slim
margin.

analyzing all of these user images. It is less clear what happens if the adversary is targeting a very

few images, e.g. in the context of a specific investigation; this is the subject of ongoing research.

ESP’s design is resistant to known plaintext attacks due to its adaptive key scheme: the encryp-

tion keys (seed values) used to encrypt every image is different. It is also robust against differential

cryptanalysis [94]. We evaluate this claim using a commonly used measurement, the number of

pixel change rate (NPCR) [95, 94]. This metric compares two ciphertext images �1 and �2 for a

source image which has been modified by 1 pixel. The formula for NPCR is:

#%�'(�1, �2) =
∑
8, 9

� (8, 9)
, × � (4.1)

if �: (8, 9) represents the pixel in the 8th column and 9 th row in image �: . , is the width of the

images in pixels and � is the height in pixels, and both are assumed to be equal in images �1 and

�2. The output value for NPCR is in the range [0, 1].

If #%�'(�1, �2) = 1, this suggests that images �1 and �2 are completely different. This is

however an unlikely outcome. Therefore values of #%�'(�1, �2) < 1 can be evaluated via a

randomness test with significance level U. If #%�'(�1, �2) < #%�'∗U where #%�'∗U is the

critical value of the NPCR test, then #%�'(�1, �2) fails the randomness test. This critical value

represents an ideally encrypted image indiscernible from a completely random image [94]. The
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critical value #%�'∗U is defined as:

#%�'∗U =
PixelMaxValue − q−1(U)

√
PixelMaxValue

,×�

(PixelMaxValue + 1)

where q−1 is the inverse cumulative density function (CDF) of the standard Normal distribution.

We computed the NPCR for 100 images we selected from the Open Images Dataset V5 [86]

and encrypting the original and modified versions. Since ESP splits RGB images into three en-

crypted grayscale images, the inputs �1 and �2 were constructed by combining each of their three

grayscale ciphertext images into a single RGB ciphertext image. In our tests, 99 of 100 images

passed the NPCR randomness test such that NPCR(�1, �2) > NPCR∗U=0.05 for each pair of im-

ages �1 and �2, suggesting that ESP’s encryption scheme is substantially resistant to differential

cryptanalysis. The last image was very close to passing this test, as shown in Figure 4.4; we believe

that further minor improvements to our algorithm will bring it to a passing score.

Property 9. ESP guarantees the confidentiality of its secret key and secret seed values.

ESP uses standard and widely used public key encryption for protecting the secret keys which

encrypt the secret seed values per image that drive the ESP-FY encryption scheme. The asymmet-

ric public keys from each of a user’s devices encrypt the ESP secret key, which is a high entropy,

randomly generated symmetric AES key, and this key encrypts the secret seed values for each

encrypted image.

Property 10. ESP’s encryption protects the confidentiality of user photos.

This follows from Properties 8–9.

4.6 Implementation

We implemented ESP on Android by modifying Simple-Gallery, a popular open-source image

gallery app used by millions of users [96], and the Android Fresco image loading library [97],

which uses the libjpeg-turbo [98] library written in C. Simple-Gallery was originally an offline

image gallery app, so we modified it to support Google Photos. We implemented PDK by adapting
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a separate Android key management app, OpenKeychain. We implemented the JPEG encryption

algorithm in C/C++. We modified Fresco’s image pipeline to invoke the encryption and decryption

routines when requested.

Since Simple-Gallery had no support for online services, nearly all the added code, about

4.5K lines of code (LOC), was for interfacing with Google Photos. The Java code added to the

Fresco library mainly consisted of abstraction layers orthogonal to encryption to accommodate the

software design patterns for their image pipeline. The encryption algorithm written in C/C++ only

required about 1K LOC, not including the GNU Multiple Precision Arithmetic (GMP) Library [99]

for arbitrary precision floating point values.

4.7 Experimental Results

We verified that ESP is compatible with popular photo services, is robust against ML labelers,

and measure its overhead. We ran our tests with 2500 JPEG images selected from the Open Images

Dataset V5 [86]. The selection process consisted of randomly choosing # = 2500 rows from the

dataset CSV file, discarding the �# number with dead links, then selecting # − �# new images

and repeating this process until the number of unique images totaled # . To avoid Google Photos

resizing images, ESP resized any greater than 16 MP (4920 × 3264) using bilinear downsampling,

and saved the result as an 85 quality JPEG. All performance tests were executed on a Samsung

Galaxy S7 smartphone with a Snapdragon 820 processor and 4 GB RAM on Android 8.0 using

our modified Simple-Gallery app retrofitted with the Fresco and libjpeg-turbo libraries. Internet

access was via the smartphone’s WiFi connected to a Verizon Quantum Gateway G1100 5 GHz

WiFi router with a Verizon FiOS 300/300 Mbps residential fiber optic connection.

4.7.1 Compatibility and Interoperability

We ensured that ESP is compatible with popular cloud photo services, namely Google Photos,

Flickr, and Imgur. We randomly selected 100 of the 2500 images randomly selected from Open

Images Dataset and encrypted them using ESP. For each service, we we uploaded the encrypted
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images, waited a period of time to ensure the images were processed by the service, such as ap-

plying compression, then downloaded, decrypted and manually imspected each image. In general,

ESP images are compatible with any photo hosting service if they are not resized or if the full

resolution versions are available. Flickr displays small resized images but also provides links to

the originals. Links to full size versions can be used by ESP to correctly decrypt images. Most ser-

vices have an arbitrary maximum limit on file size or image dimensions but this has little bearing

on ESP which can simply resize images to each service’s limits. All services apply compression of

varying strengths, but images remain compatible with ESP in the sense that they do not suffer from

visual artifacts or corruption beyond what is normally caused by JPEG compression. We manually

inspected the images on a high resolution display and found that the differences in quality for most

images compared to the source images were imperceptible unless we greatly magnified them, and

even then it was difficult to say which looked definitively better from a psychovisual perspective; it

was more a matter of individual preference. For the remaining experiments, we focused on Google

Photos.

For Google Photos, we also confirmed that ESP has acceptable image quality across all 2500

images in our sample set. To provide a quantitative measure of image quality, we measured the

peak signal-to-noise ratio (PSNR) to compare the following against the source images: source im-

ages processed by Google Photos (Google Photos), decrypted ESP images (ESP), and ESP images

processed by Google Photos before decryption (ESP Google Photos). For ESP, we obtained mea-

surements for encrypting images using three levels of JPEG quality, 50, 85, and 100. Figure 4.5

shows the PSNR for each; a higher PSNR suggests that the level of noise in the image is more

similar to the original and is therefore of better image quality. Google Photos’s average PSNR was

40 dB. ESP’s average PSNR were 38 dB for 50 quality, 39 dB for 85 quality, and 40 dB for 100

quality. ESP Google Photos’s average values were 36 dB for 50 quality, 37 dB for 85 quality, and

38 dB for 100 quality.

Although ESP necessarily has some effect on image quality due to compressing the grayscale

ciphertext images, the PSNRs for both ESP and ESP Google Photos were not that different from
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Figure 4.5: Image quality measured using PSNR relative to source images.
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using Google Photos directly, but provide an added security benefit. Industry recommendations

indicate that a PSNR between 30 to 50 dB is considered good, with higher being better [100].

On average, both ESP and ESP Google Photos provide PSNRs within that range. As the results

indicate, ESP users may choose higher JPEG quality settings for better image quality as measured

by the higher PSNRs for higher levels of JPEG quality.

For ESP Google Photos, some images had a PSNR below 30 dB, with the worst case PSNR

for any image being 25 dB. This was more common on lower resolution images. We manually in-

spected the images with PSNRs lower than 30 dB and observed two things. First, the visual quality

of these images compared to the source images was not noticeably different from the other images

we manually inspected as part of our compability testing. Second, the lower PSNRs occurred for

images that could be described as being low quality images in the first place, in the sense that the

source images were generally low resolution and blurry. This suggests that the lower PSNRs are

unlikely to occur for real photos of interest that are encrypted using ESP and stored using Google

Photos.

For some images, ESP has a lower PSNR compared to ESP Google Photos. In these cases, the

noise introduced by ESP’s intermediate compression was specifically reduced by Google Photos’

processing pipeline, which suggests that they apply a noise filter to uploaded images. ESP clients

may therefore use noise filters or similar algorithms to improve the visual appearance of images if

an unusually noisy one is detected.

Since one of ESP’s threats is the ML classifiers used by cloud services, we ensured that they

fail to correctly label ESP images. We ran Google’s ML Kit image labeler on our test images

and their ESP-encrypted versions. We then compared the labels to verify if any matched. ML Kit

labeled the encrypted images with “Pattern” which none of the images contained. Some encrypted

images also experienced other false positives and had labels unrelated to the original images.
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Figure 4.6: Image file size overhead normalized against source images.
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4.7.2 Performance Overhead

We compared the performance of using Google Photos directly versus using Google Photos

with ESP. First, we compared performance in terms of the image file sizes uploaded and down-

loaded from Google Photos. For ESP, we used the same encrypted images at the three levels of

JPEG quality, 50, 85, and 100, discussed in Section 4.7.1. ESP also creates an encrypted thumbnail

for each image, which was done by first scaling source images to the 1/8 factor nearest to a target

dimension of 400 × 400 pixels; resizing JPEGs this way is significantly faster than downsampling

them to precisely fit within a 400× 400 pixel box. Thumbnails were encrypted at JPEG quality 50.

We only created thumbnails for source images larger than 800 × 800 pixels.

Figure 4.6 shows the measurements for the 2500 images, with file sizes normalized to the re-

spective source image file sizes; smaller is better. When using Google Photos directly, the uploaded

image file is that of the source image (Source), and the download image file is after Google Photos

compresses the image (Google Photos). When using Google Photos with ESP, the uploaded im-

age files consist of the encrypted ESP image files (ESP) and the encrypted ESP thumbnails (ESP

Thumbnails), and the downloaded image files consist of the encrypted ESP images after they are

compressed by Google Photos (ESP Google Photos), and encrypted ESP thumbnails after they

are processed by Google Photos (ESP Thumbnails Google Photos). Although ESP generates three

separate grayscale JPEG images during encryption, we treat them as one and measure the sum total

of all the image file sizes.

Using ESP, file size overhead increases with ESP’s JPEG quality setting. The average file

size for ESP was 1.2, 2.5, and 6.5 times the source image file size for 50, 85, and 100 quality,

respectively, quantifying the file size overhead for the encrypted image that is uploaded to Google

Photos. File size overhead for ESP Thumbnails was negligible except for the lowest resolution im-

ages since in those cases, thumbnail resolution and file size were no longer insignificant compared

to the source images. The file size for ESP Thumbnails was on average less than a tenth of the

source image size, but in the worst case, it was .6 times the source image file size for the lowest

resolution image.
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For ESP, other than the JPEG quality setting for encryption, the primary determining factors

of the encrypted image file sizes were the permutation of pixel blocks for a given encrypted image

and the properties of the source image itself. A shuffled image is unlikely to have sizable regions

of consistent color and generally appears close to random noise, thus preventing efficient com-

pression, so encrypted image file sizes are larger. Other factors include properties of the source

image, including its original JPEG quality and chroma subsampling format. If the source image

itself was saved with a high JPEG quality, i.e. higher than 85, then converting its RGB data to three

grayscale images with 85 quality results in greater file size compression. However if the source

image is already saved with low JPEG quality, there is little gain from compressing it further,

resulting in a larger file size overhead. Similarly, if the source image uses chroma subsampling

such as 4:2:0, the CbCr components are a quarter of the size of the Y component but the output

encrypted RGB grayscale images are all full size and not downsampled. In contrast, if the source

image has full size CbCr components (4:4:4 format), then the output encrypted grayscale images

are effectively the same resolution as all of the YCbCr components in the original image, resulting

in less inefficiency.

Figure 4.6 also shows the file size overhead for the encrypted image that is downloaded from

Google Photos, which is different from the uploaded image because Google Photos compresses

images. The average file size for ESP Google Photos was .9, 1.7, and 1.4 times the source image

file size for 50, 85, and 100 quality, respectively, quantifying the file size overhead for the encrypted

image that is downloaded from Google Photos. File size overhead for ESP Thumbnails Google

Photos was negligible except for the lowest resolution images. In comparison, the average file size

for Google Photos was half of the source image file size.

The ESP-encrypted images processed by Google Photos are sometimes larger than the ESP

images before they are processed by Google Photos. One explanation for this phenomenon is an

apparent oversight by Google Photos’ image processing and compression pipeline at the time of

writing. The original unprocessed encrypted grayscale images output by ESP are true grayscale

JPEGs with only one color component, the luminance (Y) channel. However, Google Photos
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seemingly processes all images as if they are color JPEGs with the YCbCr colorspace. In other

words, Google Photos converts true grayscale JPEGs (Y) to color JPEGs (YCbCr), and needlessly

populates the Cb and Cr components with the luminance data. Although Google Photos also

forces its output images to use 4:2:0 chroma subsampling meaning that the CbCr components are

downsampled, they still represent extraneous overhead. An optimization for ESP’s encryption

would be to output each encrypted grayscale JPEG as a color JPEG while only keeping the useful

data in the Y channel, and populating the Cb and Cr channels with zeros.

Although source images are typically not saved with JPEG quality 100, the measurements

suggest that this quality setting may be useful for ESP because Google Photos appears to more

aggressively compress the large JPEG images with 100 quality compared to the lower JPEG quality

settings. For ESP Google Photos the average file size overhead for 100 quality was surprisingly

less than that for 85 quality. The main downside to using the 100 quality setting would be that

it could take much longer to upload the photos to Google, since the average file size to upload

is much larger for 100 quality than for 85 quality. However, using 100 quality would not need

to consume much more local storage space if only the original unencrypted images are retained

locally. Note that the file size overhead can greatly vary depending on the properties of the source

image. For example, one ESP photo in the graph showing JPEG quality 100 size overhead has a

distinctly lower file size of about 2.4 times the source image file size, compared to the average of

6.5 times, because it is a high resolution photo of the night sky with nearly no stars visible, making

it an almost solid black JPEG photo.

Next, we compared performance in terms of the time to upload to and download from Google

Photos. For these measurements, we used the 100 images randomly selected from the 2500 im-

age sample set which we originally used for manually testing compability. When uploading an

image, ESP first concurrently encrypts the source image and a thumbnail, which results in three

separate grayscale JPEG images for the image and three more for the thumbnail, which are then

concurrently uploaded to Google Photos by invoking a Google Photos API to register the uploaded

images to Google Photos as Google media items. We measure the entirety of ESP’s encryption
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and uploading time for all six images together (ESP (Upload)). When downloading an image,

ESP separately downloads and decrypts the encrypted images and thumbnails, so we can measure

their respective download and decrypt times (ESP (Download) and ESP Thumbnails (Download))

separately. For comparison, we also measure the time to upload the unmodified source image to

Google Photos (Google Photos (Upload)) and download the respective image from Google Photos

after it has been compressed and processed (Google Photos (Download)).

Figure 4.7 shows the upload and download times for ESP for 50, 85, and 100 quality, respec-

tively. Although ESP’s upload and download times are slightly higher with higher quality, the

difference is small, suggesting that, at least for a fast residential Internet connection, the choice of

JPEG quality setting for ESP should be based on factors other than upload and download times.

ESP upload and download times are larger than directly using Google Photos, which is not

surprising given the added encryption and decryption costs and the fact that the image files being

transferred between client and server are also larger. Nevertheless, the difference in both upload

and download times between directly using Google Photos and using ESP is at most a few seconds

in all cases, though the difference is larger for uploading than downloading. Although the encrypt

and upload times are larger than the download and decrypt times, encrypting and uploading occurs

in the background and is not in the critical path of the user, who is free to continue using the app

and perform other actions. This usage model is no different from the official Google Photos app,

which also does background uploads. ESP’s higher upload and download times, especially given

that uploading can be done in the background, is arguably worth the additional security benefit it

provides.

Figure 4.7 also shows the upload and download times (ESP (Upload w/o Encrypt) and ESP

(Download w/o Decrypt)) without including the time to encrypt and decrypt the grayscale JPEG

images, respectively. Comparing ESP (Upload) and versus (ESP (Upload w/o Encrypt), we can

see that most of the time is spent on uploading rather than encrypting, though encryption costs as

a percentage of the total time increases at larger image resolutions. On the other hand, comparing

ESP (Download) and versus ESP (Download w/o Decrypt), we can see that most of the time is
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Figure 4.7: Image upload and download times using Google Photos.
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Mean Stdev. Min. Q1 Median Q3 Max

79 18 43 67 83 92 100

Table 4.1: System Usability Scale summarized scores.

spent on decrypting rather than downloading. While downloading the encrypted images is not

much different from downloading the processed source image from Google Photos, it is so fast

that decrypting the full size images adds significant overhead.

Downloading and decrypting ESP thumbnails (ESP Thumbnails (Download)) is faster than

downloading unencrypted images from Google Photos on average. This highlights the importance

of leveraging encrypted thumbnails; they exhibit far lower overheads, generally less than 250 ms,

to download and decrypt. ESP stores images locally in plaintext after decrypting them so down-

loading ESP images and thumbnails are a one-time cost per device, but the usage of encrypted

thumbnails is still a critical point for providing a smooth user experience when browsing newly

synchronized images. A cleverly implemented app can aggressively fetch and decrypt thumbnails,

and lazily fetch full size images as the user selects them. Then adjacent images can also be fetched

and decrypted in the background. The user will then only notice loading times if swiping quickly

through full size images that have not yet been cached locally on the device. The overhead can

also be eliminated from the user’s perspective if images are preloaded and decrypted locally ahead

of time in the background while the user is looking at an image or the app is idle.

4.8 Usability

ESP’s daily operation is transparent to users: they have the same experience as with a regular

image or photo app. The primary difference in ESP is new device configuration, which includes

setting up the first ESP device and adding any others. Either setup case requires the only sig-

nificant new interaction from the user compared to a normal app. We consequently performed a

small pilot user study of ESP with a focus on the configuration steps which are necessary for key

management.

We administered a user study approved by our institutions’ IRB (protocol number AAAS8276)
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with 18 study participants who used the PDK system for ESP. Due to the government and IRB

enforced prohibition of human interaction in response to the on-going COVID-19 pandemic, we

were unable to recruit more users. Participants were allotted 60 minutes but none used the entire

time. Twelve were 20 to 29 years old, four were 30 to 39, one was 40 to 49, and the last was 50

to 59. We asked them to setup the app on two of their personal Android devices when possible,

otherwise we provided them with either a Samsung Galaxy S7 and a Huawei Honor 5X, or an LG

K9 and Google Pixel 2 XL. Having subjects use their own devices when possible was to help avoid

biases caused by users becoming frustrated with an unfamiliar device; this is an issue unrelated

to our study aim. We supplied Google accounts which we helped users set up on their devices so

that they could select these accounts to use for Google Photos. Users set up the app on one device

and completed any required configuration steps. Next, they were asked to repeat this identical

process on their second device and then perform the verification step. In our study, users used the

verification phrase method. All users finished in 5 to 10 minutes.

Finally, users completed the System Usability Scale (SUS) [61], an industry-standard survey

used to evaluate the overall usability of a system. The SUS scores are summarized in Table 4.1; a

higher score correlates with better usability. For example, a score of 85 to 100 suggests Excellent

usability, 71 to 85 means Good, and 51 to 70 means OK [101]. Although ESP’s median SUS score

is 83, in fact 9, or half, of the users gave SUS scores of 85 or higher and therefore rated the system

as having Excellent usability, while the remainder felt it had between OK and Good usability. Only

one user gave a score lower than 51; however this user expressed disinterest in the concept of photo

security and encryption which may have biased their survey choices. Other user comments such

as “That was easy” during the sessions suggests that the primary usability overhead of ESP, new

device configuration, is simple and intuitive.

4.9 Related Work

Researchers have tried many different approaches to encrypting images, especially JPEGs.

Much of this research in the fields of computer vision, and signal and image processing is inspired
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by [102] who first introduced the idea of using chaotic maps such as the logistic map to drive

image encryption. Many have tried using different kinds of chaotic maps such as Arnold’s cat

map [95, 103, 104, 105, 106], or combining several maps to generate improved distributions [107].

However, all of these suffer from the limitation of either assuming a raw bitmap without accounting

for inefficient JPEG compression, or they modify and permute DC and AC coefficients in ways that

break JPEG compression algorithms.

Early work describes the concept of format-preserving encryption (FPE), where an encryption

outputs a ciphertext which retains the formatting and length of the original plaintext [108]. This

was extended to full files, such as applying FPE to the problem of encrypting images [109, 110].

A common approach is to scramble JPEGs within the constraints of its format by modifying DCT

coefficients with different approaches such as directly obscuring [111, 112, 113] or scrambling

them [114]. Some designs have the express intent of specifically preserving JPEG image file

sizes [115, 116, 117]. There are countless methods for secure JPEG scrambling schemes [112, 116,

113, 117, 107], but they make no claims about compatibility with existing cloud photo services.

Our independent implementations and tests of these classes of encryption show that they are in fact

incompatible with services such as Google Photos.

Works designed for cloud storage often break the JPEG format and therefore rely on a third-

party service exclusively tailored for their ciphertext format [78, 79, 80, 81, 82]. Others introduce

unreasonably large performance overheads [103, 118, 119, 106] or sacrifice significant image qual-

ity [118]. Some build on format-preserving encryption by not only encrypting the original image

but also outputting recognizable encrypted thumbnails [118, 119], but suffer from performance

issues, while others encrypt only specific regions of interest (ROI) within images to obfuscate

identities or sensitive material [78, 79, 80, 81, 82]. These works tend to encrypt the ROIs of

an image, extract them from the remaining unencrypted parts, and store them separately in either

generic cloud storage offerings or their own servers. These approaches therefore are not compatible

with existing cloud photo services such as Google Photos.

The security of ROI encryption is not well understood [119]. In lay terms, the privacy guaran-
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tees are unclear because there are no well-defined models for judging whether an encrypted ROI

protects users. An ROI approach could define ROIs as human faces and obscure them, but the

remaining visible portions of the image may yield sensitive information such as location, time,

relationships, et cetera. Furthermore, some solutions ask users to themselves select the ROIs in

an image, which not only is tedious but also unreliable as users do not understand the privacy

and security implications of ROIs. Although not strictly an ROI-based approach, a recently de-

veloped system called Fawkes [120] allows users to “cloak” their uploaded photos to shield them

against facial recognition software, which ostensibly is also effective against ML labelers in gen-

eral. Fawkes’ strategy resembles ROI approaches in some ways, as it focuses on obscuring human

subjects’ faces rather then encrypting entire images. Fawkes therefore suffers from potential pri-

vacy issues from other threats beyond facial recognition software since environmental and contex-

tual information is left uncloaked. One of Fawkes’ important claims is that the cloak consists of

changes at the pixel level which are imperceptible to the human eye, but independent evaluations

observe significant unwanted visual modifications to photos [121]. In contrast to Fawkes, ESP en-

crypts entire photos, thereby shielding users against any kind of adversary, with negligible effects

on visual quality.

ESP’s encryption algorithm is inspired in part by a previous encrypt-then-compress strate-

gy [93], but that approach suffers from two significant problems that make it unworkable for use

with cloud photo services. First, it is not compatible with services such as Google Photos because

it modifies pixel values in a way that results in corruption after compression. Second, it results in a

massive increase in file size and a 3× increase in image dimensions. The increase in image dimen-

sions of their ciphertext images reduces users’ effective maximum upload dimensions for Google

Photos from 16 MP to 5.3 MP. ESP introduces a new encryption algorithm which is compatible

with Google Photos’ compression and does not have file and image size problems, avoiding pre-

maturely bumping into the 16 MP Google Photos limit. ESP also introduces other key features to

support cloud photo services, including supporting encrypted thumbnails and sharing and end-user

key management.
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Most approaches do little, if anything, for key management. The few works which do [78, 119,

110] only briefly suggest that the secret (private key or password) used to decrypt images on other

devices—the user’s own or another person’s—for viewing should be distributed via a secondary

out-of-band channel which is never specified or evaluated.

4.10 Summary

Easy Secure Photos (ESP) makes it possible for users to encrypt their images and use them

with existing cloud photo services such as Google Photos, thereby providing privacy against cloud

providers and other adversaries. ESP achieves this with purely client-side modifications by intro-

ducing a format-preserving encryption method for JPEG images and a unique key management

solution which leverages the cloud photo service itself rather than any third parties. Moreover,

the encryption method is compatible with compression algorithms used by real services such as

Google Photos. We have implemented ESP by integrating it in an existing Android photos app and

evaluated its security, performance, and usability with existing cloud photo services such as Google

Photos. Our results show that ESP (1) is compatible with popular cloud photo services, including

Google Photos and Flickr, (2) is resistant to various attacks including differential cryptanalysis,

(3) maintains good image quality for encrypted images even after being processed through Google

Photos’ image processing and compression pipeline, (4) incurs only modest overhead on upload

and download times when used with Google Photos, and (5) is easy to use as encryption and de-

cryption is transparent to users, setting up a device to use ESP is simple, and everyday usage of

ESP is no different from a regular photos app.
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Chapter 5: Easy Device-based Passwords (EDP)

5.1 Introduction

Popular media [122, 123, 124] and government institutions [125, 126] often recommend that

people use password managers for greater security and convenience in managing passwords to

access online services. Managers provide greater security by generating strong, unique, complex,

and easily changed passwords for online accounts, avoiding the problems caused by common,

duplicate, and short passwords used across multiple user accounts. Managers provide greater

convenience by only requiring users to remember one master password for the manager, instead of

needing to remember many different passwords for many different online accounts. Commercial

password managers are increasingly popular; three well-known options, 1Password, Dashlane, and

LastPass, serve over 40 million private users and hundreds of thousands of business entities [127].

While password managers protect user accounts with strong computer-generated passwords,

these passwords are protected by weak human-created master passwords. These master passwords

are more easily guessed, and since they protect many other passwords, they are a prime target for

attackers to harvest user credentials for many online accounts. Two-factor authentication (2FA) is

increasingly used to provide additional protection beyond weak master passwords, but this only

mitigates the problem of attackers compromising a password manager account. More problematic

is that managers encrypt the file used to store a user’s passwords with a key derived from the weak

master password. Despite services using key-strengthening schemes such as PBKDF2, the result-

ing derived keys are usually not difficult to brute force [3, 4, 5], and even if they are hard to guess,

they often protect information that is valuable enough to be worth the effort and resources needed

for brute forcing [128]. Any attack on the password manager servers that exposes the encrypted

password file makes it easy for attackers to then decrypt that file and harvest user credentials on
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a large scale. Unfortunately, it is hard to evaluate the security operations of these services since

most commercial offerings’ infrastructure and password databases are black boxes and security

via obscurity is prevalent [129]. The result is that users must blindly trust password managers and

the commercial services providing them, hoping that server security operations are good enough

to sufficiently safeguard users’ encrypted password files at rest. In fact, such blind trust is un-

warranted as commercial services have detected potential leaks and hacks involving their users’

encrypted password files [130, 131, 132]. To exacerbate the problem, there are also potential pri-

vacy concerns as information sent to password manager servers may be used to track and analyze

what websites users are accessing.

To address this problem, we have created Easy Device-based Passwords (EDP), an easy-to-use

password management system that protects password files using public key cryptography. EDP

retains the concept of master passwords to authenticate users, but further requires that an authenti-

cated user must be using a trusted device to gain access to the user’s passwords. The device used

to initially setup the user’s password manager account is designated as trusted. Any additional de-

vices can only be designated as trusted with the approval of an existing trusted device. An attacker

who obtains the user’s master password but is not using a trusted device cannot access the user’s

encrypted passwords.

EDP enforces the use of trusted devices using public key cryptography, in a new way that avoids

usability problems associated with it by applying the PDK design. Each trusted device generates

its own private/public keypair, then EDP encrypts a user’s password file using the public keys of all

trusted devices such that it can be decrypted using the private key of any trusted device. Because

public keys are used for encryption, this greatly increases the security of encrypted passwords

at rest as the entropy of public keys is many orders greater than that of human-usable master

passwords. EDP thereby eliminates the risk of brute force attacks on password files at rest. Because

password files are encrypted by a trusted device with the device’s own public key before they are

sent to password manager servers, users do not need to make any assumptions about the quality

of the security operations of password manager services. Instead, users can treat these services
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as simple untrusted data stores that provide network infrastructure and redundancy guarantees.

Furthermore, EDP preserves users’ privacy since all encryption of password files occurs client-

side, so that no information about users’ browsing habits is revealed to service providers.

A key aspect of EDP is its support for multiple trusted devices. EDP has a new secure bilateral

authentication scheme that differs from and is an improvement to the security of the verification

process described in Chapters 3 and 4, allowing devices to securely exchange public keys, and

communicate updates for purposes such as adding and revoking devices. Adding a device is done

via a device pairing mechanism that simply requires the user to view a random word phrase on a

trusted device and enter it on the device being added. Since keypairs are self-generated, there is no

need to expose any key exchange or PKI concepts to users.

While EDP supports the use of multiple trusted devices, it does not require users to use multiple

devices to access their passwords; a single trusted device is sufficient. EDP takes an approach that

is fundamentally different from and more secure than just 2FA. 2FA often requires obtaining a code

from a trusted smartphone device separate from the device on which the user may be accessing the

password file, thereby requiring multiple devices to access passwords. In contrast, EDP provides

strong public key encryption of password files while only requiring users to use a single trusted

device to access password files.

Because EDP does not require any security guarantees for the servers, many different types

can be used. For example, a conventional web server or a shared, cloud-resident file system could

be used. We present a decentralized EDP backend architecture that enables its use with existing

peer-to-peer (P2P) and distributed database (DDB) infrastructure. We introduce a P2P discovery

mechanism to enable a user’s devices to discover each other without requiring any form of user

login account. We also describe how to use a DDB for storage of encrypted password files.

We have implemented a prototype of EDP by modifying the open source Bitwarden password

manager [133], used by millions of users. Our modifications disable the use of Bitwarden’s servers

and consist only of client-side changes. In lieu of Bitwarden’s servers, our prototype stores users’

encrypted password files in a decentralized and distributed database, and uses P2P connections to

97



securely perform automatic and transparent PDK key management among users’ devices, includ-

ing exchanging public keys, adding and verifying new devices, and removing devices. Our security

analysis shows that EDP guarantees the confidentiality of password files and detects any compro-

mise of the integrity of password files. Our user study and performance results demonstrate that

EDP is easy-to-use and performs comparably to stock Bitwarden while providing much stronger

password security.

EDP is the first password manager that does not rely on server-side security. It does require

secure clients—but in fact, all password managers do. EDP ends reliance on secure servers by

using high-entropy encryption keys and a strong peer-to-peer authentication system for adding

new devices, facilitated by a novel easy-to-use public key cryptography system.

5.2 Threat Model

We assume that any services or servers that EDP uses are untrusted and the administrators

and infrastructure supporting them may be malicious. We assume that EDP clients and users’

devices on which they run are secure and trustworthy. We do not protect users’ devices because

that is the responsibility of the hardware or operating system (OS). A compromise of a device

implies that the attacker has access to any private keys on the device, rendering most user mode

defenses fruitless. Even if such private keys are encrypted using an unlock password, hardware or

OS support is necessary to deter offline attacks since generally unlock passwords memorized by

humans are easy to guess. If a lost or stolen device is a concern, then remote device wiping features

are a reliable defense. We assume that any encryption algorithms we use do not contain backdoors

to break the encryption. Attackers may attempt offline attacks on the encrypted data used in EDP,

but we assume that the security of any standard public key encryption systems that we leverage are

vetted and robust against such attacks. This is an orthogonal concern to EDP.
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5.3 Usage Model

EDP is designed to be easy to use and provide a familiar usage model similar to existing

password managers. A first-time user simply needs to install an EDP app on one of the user’s

devices and set up an account by providing a username and master password. The EDP app then

provides the user with a recovery key which should be printed or written down somewhere safe in

case the user ever forgets the master password. Once the user confirms that this has been done,

EDP’s setup is complete. The EDP password manager app may be used in exactly the same manner

as any other password manager, such as remembering user-inputted passwords, filling in password

fields, synchronizing passwords across the user’s devices, and adding and removing synchronized

devices.

Users should only install and configure EDP on devices they trust, such as their own personal

smartphones, tablets, and computers. Installing a password manager on only trusted devices is a

generally accepted usage model for any password manager, not just EDP. This is because using a

password manager on an untrusted device such as a public computer represents a severe security

risk despite any defensive measures that try to protect users’ secrets. EDP does not support usage

on untrusted devices such as those at an Internet cafe or public locations.

Users may install and configure EDP on multiple devices and then use any of them to manage

their passwords. There is no limit on the number of devices that users may configure for use with

EDP. Each new device only requires a one-time brief, platform-independent verification step with

one other previously configured device. The verification step is presented to users as a device

pairing process where a user verifies the new device with any of the user’s already configured EDP

devices. This is done by simply having an existing EDP device display a random phrase, which

the user then enters on the new device, thereby designating the new device as a trusted EDP device

for the user. All of a user’s trusted devices are known to each trusted device. A user may use any

trusted device to remove any other device from the set of trusted devices. This does not necessarily

prevent the device from using old stored passwords since it may have stored them locally, but does
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prevent the removed device from learning any new or updated passwords after it has been removed.

EDP leverages the fact that many users own multiple devices and is designed as a password

management solution for multiple devices. However, EDP does not require a user to have access

to more than a single trusted device to perform any of its operations. EDP can continue to operate

even if a user loses all but one of his devices with no special recovery steps; he may still access

and manage his passwords on that one remaining device as long as he also remembers the master

password. If the user loses all his devices and remembers his username, master password, and

recovery key, he may recover his passwords by configuring a new EDP device and providing those

three pieces of information. In the worst case, a user may lose all his devices, forget his username

and master password, and lose his recovery key, in which case, like nearly all secure password

management solutions, the user will be unable to recover his passwords. However, most online

services offer their own password recovery or reset mechanisms. In this situation, the user can

perform the password recovery or reset steps for each online service for which the user wants

to recover or reset the respective password. In other words, the password manager serves as a

password cache for online services to make it easier for users to access them, but if the cache

becomes unavailable, it is generally inconvenient but possible to recover access from the online

services themselves.

5.4 Architecture

To understand how EDP works, we first briefly describe a typical password manager service

architecture, as shown in Figure 5.1. A user selects a username and master password on the client.

The client derives a key by applying a PBKDF to the master password, uses the derived key to

encrypt the user’s password file, and uploads the file to the server such that the username can be

used to locate the file. Any device can be used to access the password file by providing the respec-

tive username and master password. The user trusts the password manager server to safeguard the

weakly encrypted password file.

In contrast, the EDP architecture, depicted in Figure 5.2, requires no such trust in the password
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Figure 5.1: The architecture for a typical password manager service.

manager server, but instead only requires a user’s devices to trust each other. A user selects a

username and master password on the client. The client generates a keypair, uses the public key

to encrypt the user’s password file, and uploads the file to the server such that the username and

master password can be used to locate and retrieve the file. The username and master password are

never used for encryption, only to generate (1) an index key to locate the password file for that user,

and (2) a communication channel key to create a private communication channel among the user’s

devices. Only a user’s trusted devices can be used to access the password file by providing the

respective username and master password. Any updates or modifications which do not originate

from the user’s configured EDP devices are immediately detectable. The user does not trust the

password manager server and relies on public key cryptography to safeguard the strongly encrypted

password file, guaranteeing its confidentiality and integrity. EDP cannot ensure the availability of

users’ encrypted passwords stored on an untrusted server—an adversary could simply delete users’

passwords on the server—but the availability guarantee is no different from any existing password

manager service.

While using public keys to encrypt password files greatly improves their security compared to

existing password managers, public keys have historically been fraught with usability issues [13]

as discussed in Chapters 2, 3, and 4. EDP avoids these usability problems by using PDK, or in
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Figure 5.2: The EDP architecture for users and providers.

other words, self-generated keypairs that are entirely internal to the system so that users never

need to know about public/private keypairs. Just as in E3 and ESP, each of the user’s devices

generates its own keypair. But in EDP, the public keys from all of the user’s devices are used to

encrypt the user’s password file. As discussed in Chapter 3, PDK eliminates the troublesome issue

of needing to educate users on how to securely transfer private keys because the private keys never

leave the device on which they were generated. The remaining problem is how the user’s devices

can securely exchange public keys among themselves with minimal intervention by the user, so

that any single device can encrypt and decrypt his passwords. This must be done such that only

trusted, or authenticated, public keys that are verified to belong to the user are exchanged so that

an adversary cannot trick EDP into encrypting a user’s password file with a malicious public key.

This issue of identifying trusted keys is normally handled via PKI by having trusted authoritative

servers sign certificates, but this is a tedious and confusing process so EDP specifically avoids any

reliance on PKI.

As in both E3 and ESP, EDP’s PDK instantiation also uses self-generated keypairs that must

be authenticated in some manner to be considered trusted. Since there is no external root of trust,

EDP ensures that all of the user’s devices trust each other, and this chain of trust is constructed in

the same manner as E3 and ESP: the user unknowingly participates in an authentication step when
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Figure 5.3: Adding a new device in EDP.

adding a new device, which is added to the set of trusted devices. However, EDP introduces a sig-

nificant improvement to the authentication process used in E3 and ESP which allows the use of an

untrusted communication channel, in contrast to E3 and ESP which used secure, trusted connec-

tions. The user can also provide the correct username and master password on any authenticated

device to remove other devices. Every time the user adds or removes a trusted device, the resulting

membership set is uploaded to the password manager server as a signed message, so that the user’s

other devices can learn about the changes.

Encrypted password files are also signed by the device that did the last password change. This

signature can be validated by any device that downloads the file.

5.4.1 Trusted Device Authentication

EDP’s device authentication protocol, summarized in Figure 5.3, allows a user to add a new

device to their set of trusted EDP devices by communicating with one of their existing EDP devices.
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The purpose of this design is to ensure that a user with an existing EDP device can authenticate and

add a new device’s public key to its list of trusted public keys with cryptographic certainty that it

has accepted the correct public key, and not one belonging to an attacker. The device authentication

protocol’s usability hinges on the ability of EDP to construct a secure communication channel

between a user’s existing EDP device and the new one that he is adding with minimal input from

the user. This involves two steps, having the devices agree on a communication channel and

then securely encrypting that communication channel. A variety of communication channels are

possible, but, for simplicity, we will describe these two parts assuming the devices communicate

over the Internet.

To have the devices agree on a communication channel, EDP makes use of some well-known

server as a relay server to connect devices across different network topologies, including across

NATs and firewalls, for example. The basic requirement is that both devices must independently

agree on some shared identifier for the communication channel; if they can agree on an identifier,

they can use this as a rendezvous mechanism. We refer to this identifier, a communication channel

key, as a topic name )* for user *. For example, if a user’s devices both present topic )* to some

sort of relay server, the server knows that these devices are all interested in the same topic, and

therefore are looking for each other and should be connected together.

An EDP client computes )* when the user initiates the process of adding a new device on one

of his existing EDP devices. To make the topic name unique and easy for a user’s devices to agree

upon but harder for an outside attacker to identify, we define the topic name )* as

)* = � ( �� �� (DB4A=0<4* | |?0BBF>A3* ) (DB4A=0<4*) | |“�4E824�ℎ0==4;′′)

where  �� is a key derivation function,  �� is a keyed cryptographic hash function, and � is a

hash function that provides a standardized output format, following a standard approach for gener-

ating a cryptographic hash.  �� generates a secret key  � using the user’s username and master

password as inputs into a standard key derivation function such as bcrypt, scrypt, or PBKDF2.
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Figure 5.4: Users copy a random phrase from their existing trusted device to their new one.

 �� � is a standard keyed cryptographic hash function that takes the secret key  � and some

data and has been vetted for making it difficult for an attacker to guess the secret key and data

inputs [134]. The string “Device Channel” is a label which acts to expand the keying material

and identify the use for the key. EDP uses the popular keyed cryptographic hash function HMAC-

SHA256 with the username as the data; many other options are possible. � is a SHA-256 hash

function to standardize the output format and length regardless of the chosen hash algorithm for

the keyed cryptographic hash function  �� � . By using )* , EDP devices can discover each other

independently through a relay server without the need to establish any kind of login in advance,

thereby establishing a communication channel for the device authentication protocol between a

new device and an existing EDP device.

To secure the established communication channel between the new device and an existing

EDP device, the devices perform a password authenticated key exchange (PAKE) [91]. A PAKE

protocol uses a shared secret, often a simple password, to authenticate a cryptographic exchange.

The result is a shared session key and proof that each party knows that secret. Furthermore, the

messages contain no verifiable plaintext [135] that would allow an attacker to validate a guess at
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the secret. In other words, guessing attacks on intercepted messages are not possible. Recall as

discussed in Section 5.3, when the user initiates the process of adding a new device on one of his

existing EDP devices, the existing EDP device displays '0=3><%ℎA0B4# , an #-word random

phrase, to the user, which the user then enters on the new device. This is depicted in Figure 5.4.

EDP uses '0=3><%ℎA0B4# as the password to generate the secret key  . In other words, we

leverage the user as a secondary, out-of-band channel. The user, who has physical access to the two

separate devices, manually but unknowingly provides enough information for the devices to use

PAKE to authenticate each other by means of having copied '0=3><%ℎA0B4# from the existing

EDP device to the new device. Both devices therefore know '0=3><%ℎA0B4# without ever having

communicated it over the communication channel, but can prove to each other their knowledge of it

without disclosing it. For '0=3><%ℎA0B4# , EDP uses an #-word phrase that is easy for humans

to identify, copy, or select from a list. It is selected at random when the device authentication

protocol is initiated. For usability purposes, EDP uses a # of 3 to 5 random words chosen from

a curated list such as the PGP Word List [52]. It is also possible to substitute numbers instead of

words, for example 3 to 5 randomly generated sets of 4-digit numbers. EDP clients select a new

'0=3><%ℎA0B4# every time a user initiates the device authentication protocol.

The details of the PAKE are depicted in Figure 5.5. After the trusted and new devices connect

to topic )* and discover each other, they a PAKE based on the Diffie-Hellman key exchange

(DH) [136] to secure their communication channel by encrypting it with a secret key  and to

exchange public keys. The usage of a PAKE is important given that EDP operates using untrusted

servers; DH key exchanges are normally unauthenticated, but EDP uses PAKE so that both devices

independently generate a secret key  . Both devices therefore know '0=3><%ℎA0B4# without

ever having communicated it over the communication channel, but can prove to each other their

knowledge of it via a zero-knowledge password proof, so they know any communications between

them are authentic. As shown in Figure 5.6, knowledge of both )* and '0=3><%ℎA0B4# by a

given device is needed to become a trusted EDP device within the user’s EDP ecosystem so an

attacker cannot masquerade as a new device that a user is adding. By confirming knowledge of
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Figure 5.5: EDP’s PAKE-based device authentication protocol to compute secret key  to encrypt
communications.

these two pieces of information, EDP can ensure that the existing device and the new device belong

to the user.

After having authenticated each other, the devices exchange their public keys over the secure

communication channel encrypted by  , including any public keys that they already trust. This is

notably done without the user needing to know about public key cryptography. The final result is

that the existing and new devices have exchanged public keys and trust each other. And since the

existing device sent its list of trusted public keys, the new device also trusts those devices’ public

keys via transitive trust.

The user may have other trusted EDP devices which were previously configured, but did not

take part in the device authentication protocol with the newest device. These other devices may
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Figure 5.6: EDP’s device authentication protocol requires )* and '0=3><%ℎA0B4# to compute
secret key  .

also be offline for an indefinite period, and possibly may never be online at the same time as the

two devices the user used in the device authentication protocol. EDP therefore requires a method

for devices which have not participated in the device authentication protocol to learn about newly

added or revoked devices. This is done by having the existing EDP device, which did participate

in the protocol, publish a signed and timestamped list of its trusted public keys together with the

user’s encrypted password file; the latter is described in Section 5.4.2. The user’s other devices can

then observe updates to the list; since these are signed by a device they trust, they accept the update

that contains the new device’s public key. Each EDP device checks for the list and accepts updates

before performing any operations that involve updating the set of trusted devices or encrypting the

user’s password file. If the signature for the trusted public key list does not belong to one of the

user’s trusted devices, the list cannot be trusted and is ignored. The trusted device which detected

the untrusted list replaces it with its own list of trusted public keys, signed by itself.

Users may lose one, some, or all of their devices. If a user loses any number of devices but not

all of them, the user can use one of the remaining EDP devices to remove all of the lost devices

from the set of trusted devices. The device used for revoking the lost devices publishes a signed

and timestamped list of its updated trusted public keys along with a re-encrypted password file; the
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update can then be obtained by the user’s other EDP devices. By removing the lost devices, the

user is ensured that the encrypted password file is re-encrypted using the public keys of only the

remaining trusted devices so that the lost ones cannot access and decrypt the password file. As an

extra precaution, the user may also choose to select a new master password and change all of his

passwords. If the user loses all of his devices, he can configure EDP on a completely new device

and provides his username, master password, and the EDP recovery key which he recorded on his

first setup. Providing this information to EDP allows it to locate the user’s encrypted password file

and decrypt it with the recovery key.

5.4.2 Password File Operations

A password file contains a user’s saved passwords mapped to their services or domains. The

exact format of the file is implementation specific; it is common for password managers to use their

own formats for their encrypted passwords and to support importing the password file formats of

competing services. However, the format should satisfy two requirements: (1) each password is

timestamped at the time the user updates it and saves it locally, and (2) deleted passwords are

marked with a tombstone marker at the same time. The timestamps and tombstone markers enable

EDP devices to determine whether their local copy contains stale password data in the presence

of updates on multiple devices and network failures. For example, consider a user with devices

A and B, where A has lost network connectivity. The user may update a password entry on A

which is saved locally but cannot be updated at the server. The user may later change his mind and

update the same entry on B, making A’s entry stale. The timestamps allow the devices to identify

which password is the most recent one to use. Devices sign all password files, and thus passwords,

timestamps, and tombstone markers can be verified. Although we refer to the concept of a singular

password file, a user’s encrypted passwords may in fact be encrypted and stored separately. The

decision of whether to store all passwords in a single ciphertext or multiple is implementation

dependent. If they are separately stored, then each individual password entry with any metadata

including its timestamp and tombstone marker are signed.
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To protect the password file, a given EDP device generates a random 256-bit AES key and

encrypts it with the public key of each authorized device. This password file is cached by the

device and stored on an EDP server, where it can be accessed by any of the user’s EDP devices. If

a user uses an EDP device to update the password file, such as adding or removing passwords, the

EDP device checks the server to see if it has a more recently updated password file, in which case it

downloads the password file from the server. The device runs a simple timestamp-based resolution

algorithm to merge the local cached copy and the one from the server; passwords with a newer

timestamp, including the tombstone marker, take precedence. Because updates to passwords are

initiated by human users who operate at the granularity of tens of seconds or even minutes, standard

automatic time synchronization used by devices is more than sufficient and any remaining clock

skew is unlikely to be an issue. After completing the merge, the client then sends the updated

password file to the server so that the user’s other EDP devices can detect the updated password

file and update their local caches. Polling is done to detect updates and reduce the likelihood of

updates being in the user’s critical path. Any password file update is signed by the respective EDP

device. If the signature for the password file does not belong to one of the user’s trusted devices,

the password file has been tampered with and cannot be trusted. The trusted device which detected

the untrusted password file replaces it with its own cached password file, signed by itself.

To locate the password file, and the list of trusted public keys, in a privacy-preserving manner

which decouples usernames from users’ password files, EDP uses an index key �* for user *.

The key is the hexadecimal-encoded, SHA-256 hash of the result of a keyed cryptographic hash

function  �� � ,  � being the secret key derived from the username and master password:

�* = � ( �� �� (DB4A=0<4* | |?0BBF>A3* ) (DB4A=0<4*) | |“%0BBF>A3(C>A4′′)

which is similar to but distinct from the hash used for the topic name )* . Because �* and )* are

distinct, even if an attacker knows one of them, it remains difficult to correlate it with the other.

�* is used for locating user *’s password file and is not used for any cryptographic operations
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such as encrypting passwords. Due to the use of a keyed cryptographic hash function, commonly

used for message authentication codes (MAC), an adversary cannot determine a given user’s index

key without also knowing the user’s master password. Even with knowledge of the master pass-

word, an adversary cannot decrypt a user’s password file but also must have compromised one of

the user’s devices to obtain a private key which can decrypt the password file. If an EDP client

stores passwords separately instead of in a single file, it addresses an individual password �*+� for

domain � with:

�*+� = ( �� �� (DB4A=0<4* | |?0BBF>A3* ) (DB4A=0<4* | |�) | |“%0BBF>A3(C>A4′′).

A user may wish or need to change his master password. Changing the master password also

changes the user’s index key �* . This is invisible to the user but initiates several steps behind

the scenes: (1) the user’s EDP device downloads the existing password file if it is more recently

updated than its local cached copy, (2) computes the new index key �′
*

based on the new master

password, and (3) stores the password file and its list of trusted public keys at �′
*

on the server. If a

master password is changed due to a device compromise, the EDP client should also generate new

passwords for all of a user’s credentials, so that there is little risk even if the old password file is

compromised by attackers.

5.4.3 Back End Services

EDP only has basic availability requirements for its communication channel for device authen-

tication and its database for password storage. There are no requirements for confidentiality and

although it is good if they can maintain integrity, integrity failures are detectable by users’ devices.

Communication channels and password stores may be implemented in many different ways. For

example, a traditional centralized server, such as a web server, can orchestrate a communication

channel among a user’s devices by acting as a relay server, and also receive and transmit encrypted

password files to store in a typical web server database. Alternatively, a cloud-resident shared file
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system could also be used. Ordinary network links, e.g., via Bluetooth or on-LAN connections,

are an obvious way to implement a communications channel if the environment permits. However,

direct Internet links between two devices probably do not work, given the prevalence of dynamic

IP addresses, firewalls and NATs, etc. This is thus not suitable for users who may wish to trust

a work and a home desktop. In contrast, we opted for a more decentralized and distributed solu-

tion using P2P networking for device-to-device communication channels, and a DDB for storing

passwords.

EDP runs its device authentication protocol over device-to-device connections constructed us-

ing P2P networking. This is done in a manner reminiscent of BitTorrent’s P2P file-sharing pro-

tocol’s concept of magnet URIs, also known as magnet links [137]. The idea of magnet links is

that a piece of data can be identified and addressed by its hash value by leveraging a distributed

hash table (DHT). In BitTorrent, a client can use a magnet link—a hash unique to the files the

users wish to share—rather than a Torrent file to discover other peers sharing the files. Magnet

links can be used together with BitTorrent trackers, servers that help peers discover each other, or

by purely relying on the DHT for peer discovery. EDP repurposes this idea not for sharing files,

but for creating P2P connections for communication purposes among EDP devices. EDP devices

independently generate the topic name )* for a given user *, a hash that can be used as a magnet

link, to find other interested peers, namely a user’s devices configured with EDP. EDP can then

leverage existing BitTorrent-based P2P systems for setting up communication channels between

devices, even in the presence of dynamic IPs, firewalls, and NATs. Although a P2P system may

use relay servers that are not securely controlled by a password manager, this is not an issue for

EDP because it can be used with untrusted relay servers.

EDP uses a DDB to store users’ encrypted password files and encrypted trusted keys. The DDB

stores password files and keys in leaf nodes of prefix trees keyed by the index key �* for a given

user *. Instead of storing a single password file at �* , our EDP implementation stores passwords

separately per domain such that the password file for each domain � is addressed by �*+� which

are direct children of the �* node. The root node is globally addressable via a well-defined default
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key so that any EDP client can locate it. Interior nodes encapsulate each possible prefix value in the

hex-encoded �* . Since each interior node represents a prefix ? ∈ [0−9, �−�], each node, starting

with the root node, has 16 child nodes, one for each hex value. Thus, a EDP client with a given �*

traverses the prefix tree according to the hex values in the index key to locate the associated leaf

node with the encrypted password file for user *. The DDB can also provide replication of leaf

nodes for reliability and performance. Although a DDB can potentially store data on nodes that

may not even be securely controlled by a password manager, this is not an issue for EDP because

of how the password file is protected. Many DDBs [138, 139, 140, 141, 142, 143] can be used to

support EDP’s prefix tree.

5.5 Security Analysis

We distance ourselves from a common attitude towards password manager security focused on

defending against local [144] or web-based attacks that leverage vulnerabilities in client implemen-

tations [129]. We consider these concerns orthogonal to the focus of EDP, which is to provide a

system with strong encryption for storing passwords and easy key management that can be adopted

by any password manager, independent of whether the client implementation has exploitable bugs.

We make a two-part claim concerning EDP’s security: (1) EDP’s method for device manage-

ment, mainly through its device authentication protocol, is a secure way to authenticate users’

devices and public keys that is robust against attacks even when using untrusted servers and un-

encrypted communications channels. (2) EDP protects passwords at rest with greater security

guarantees than typical password managers even with a more difficult threat model allowing for

storing passwords on untrusted servers. We describe EDP’s properties which we use as building

blocks for these claims.

Property 1. The first device a user configures with EDP is a trusted device.

This is similar to a trust on first contact security model since EDP uses self-generated keypairs.

This first keypair is what becomes associated with a user’s password manager service account, and

is used as the starting point for adding further EDP devices via the device authentication protocol.

113



Property 2. It is infeasible for an attacker to guess the correct length-# random phrase in the

device authentication protocol without being detected.

Since EDP authenticates new devices via an interactive process initiated by the user, the only

time an attacker can exploit it, even with knowledge of the master password and length-# random

phrase, is the exact moment when a user is adding a new EDP device, which is likely a rare

occurrence. If the attacker catches a user performing the protocol, the attacker could try to guess

the length-# random phrase. Using a 512 word list [52] and # varying between 3 and 5, the phrase

has an entropy of 27–45 bits, well within the capabilities of even a modest attacker. However, the

EDP client detects failed attempts to complete the PAKE, generating a new phrase for each new

attempt. Furthermore, the guessing rate is limited by the user’s retry rate, several seconds at least.

Guessing the phrase is thus sufficiently unlikely that it does not pose a realistic threat; the attack is

not feasible.

We can quantify this. Assume that a user is trying to add a new device, while the attacker

wishes to add a fraudulent device. Suppose that we want the probability of a successful attack

to be 1
1,000,000 ≈

1
220 , and that we are using a length-3 phrase, i.e., with an entropy of 27 bits. It

will take on average 227 tries (since we are sampling with replacement, given that a new phrase

is generated for each attempt) to guess the proper phrase. The attacker can achieve the successful

attack probability with only 27 tries. This may seem too easy until you realize that the user will be

notified of each failed attempt and will have to restart the authentication process, something that

will likely take a few seconds at least, even without any realization that something might be wrong

when failures occur.

There are two further defenses that can be employed. First, the trusted device can impose

additional delays after the first few failed attempts: “More than 10 failed device-add requests;

please try again in 10 minutes.” Second, a longer phrase can be used; with 5 words, an attacker

would need 225 tries to guess the phrase with a probability of 1
220 .

Property 3. EDP is robust against spurious, unsolicited new device requests constructed by at-

tackers.
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The general attack would be for an adversary to try to force a user’s EDP device to participate

in the device authentication protocol with a malicious device, without the user knowing it. This

is not possible unless the attacker manages to initiate the process on the user’s own device, and

somehow either observes the length-# random phrase on the device to input into the fraudulent

device, or tricks the user into providing it. While deceiving the user is not impossible, it represents

a targeted attack against a specific user in which either the user’s device is already compromised

or the user is susceptible to spear-phishing attacks and social engineering. In the latter case, such

a user would be even more vulnerable using other password managers as an attacker could more

easily trick the user to give away his master password.

Property 4. EDP’s device authentication protocol guarantees the integrity and confidentiality of

the messages used to add a new device, even on unencrypted communications channels mediated

by even untrusted relay servers.

The basic design of the device authentication protocol is to construct a device-to-device con-

nection between the user’s existing trusted and new device, perform a PAKE to agree on a secret

key, then using the secret key to create an encrypted communication tunnel. The construction of the

device-to-device connection can be mediated by an untrusted relay server, because all the messages

exchanged by the two devices in cleartext only contain data which is safe to reveal to the public.

For example, the only data which the PAKE protocol transmits over the channel in cleartext are

public primes and large exponentials. The only sensitive data transferred between the two devices

is their public keys, but these are only conveyed after the encrypted tunnel has been created from

the independently computed secret key via the PAKE, which guarantees the confidentiality and

integrity of any data transferred over the tunnel. Therefore, the device authentication protocol can

operate on untrusted channels even if they are mediated by untrusted relay servers. Availability is

a separate concern; a malicious relay server could simply refuse to connect the user’s two devices,

but this does not compromise the user’s trust model.

Property 5. EDP’s device authentication protocol ensures with cryptographic certainty that the

public key provided by a newly added device is the correct one.
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This follows from Properties 2 to 4 by using the user as a secondary out-of-band channel to

convey the length-# random phrase from the user’s trusted device to the new one, and applying

a PAKE to ensure that the trusted device is exchanging messages with the correct new device

belonging to the user. The public key can only have been provided by the correct new device, and

is therefore the correct one.

Property 6. Any device which is trusted by the first EDP device is also a trusted device.

This follows from Property 5. If the first EDP device authenticates a new device’s public key

with cryptographic certainty that it is the correct one belonging to the user, then the first device can

trust the new device, creating a single-link trust chain.

Property 7. Any device trusted by a given trusted device is also trusted by every other device.

This is the generalized version of Property 6, and holds true due to trust by transitivity. If a

device trusts another device, then the first device will also trust every device trusted by the second

one.

Property 8. EDP incrementally builds up trust among all of a user’s devices with only a single

completed device authentication protocol per new device.

We prove this property via induction. Suppose a user has a single device, then by Property 1 the

device is trusted. Now consider a user with two devices: the first device is trusted, and the second

device completes the device authentication protocol with the first device and becomes trusted. Both

devices now trust each other having directly exchanged public keys with each other. Now consider

a user with three devices, �, �, and �. � and � complete the device authentication protocol and

trust each other. � and � then complete the protocol, so they trust each other. Since � trusts �,

� provides �’s public key to �, so � can also trust � despite having never interacted with it. The

question is then how � learns about �’s public key. This is achieved by having � publish a list of

trusted public keys, signed by itself, containing �’s public key. Since � trusts �, it will accept �’s

signature on the list of trusted public keys and therefore accept �’s public key. �, �, and � now

know every trusted public key and trust each other.

This reasoning holds for a user with # devices adding a new device, resulting in # + 1 devices.
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The user adds a new device / by completing the device authentication protocol with trusted device

 ∈ {#}. After the protocol,  and / trust each other, and / has received the public keys of all

# devices.  publishes an updated public key list containing /’s public key, signed by  . The

remaining {# −  } devices observe the updated public key list, and seeing that it was signed by

 , accept it, thereby also accepting /’s public key.

Property 9. EDP devices that do not participate directly in the device authentication protocol to

add a new device add only the new device’s authenticated public key to their local key store.

This follows from Property 8. Since trusted devices only accept public key list updates from

other trusted devices, they will never accept an update signed by an untrusted public key, because

only trusted devices can add a public key to the list.

Property 10. The effects of an attack on the availability of the infrastructure used by EDP are no

worse than those for a typical password manager service.

An attacker may perform a DoS attack on the infrastructure used by EDP which will render

some functions, such as adding and revoking devices and updating passwords, unusable. Howev-

er, the primary feature of auto-filling password forms remains unaffected, as EDP caches users’

encrypted password files locally, like other password managers. Existing devices cannot retrieve

changed passwords, nor can devices being added obtain the encrypted password file, if the neces-

sary infrastructure is being DoSed. The same is true for other password managers.

A potential issue arises in the particular case where an attacker compromises a user’s device

while performing a DoS attack on the EDP infrastructure, thus preventing the user from revoking

the compromised device. If the compromised device cannot be revoked, then the user’s devices will

continue encrypting password files using the compromised public key. This situation is actually a

non-issue. The user will update his master password and encrypted passwords to new ones, and

also revoke the compromised device locally, but this revocation will not be synchronized to the

other devices since the infrastructure is unavailable. However, since the user has changed all the

passwords, the attacker’s copy of the user’s encrypted password file becomes outdated. As soon

the attacker ceases the DoS attack, the user’s device then synchronizes the revocation request and
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new encrypted password file that excludes the compromised device, so the attacker cannot decrypt

it. This assumes that the user changes all the passwords quickly enough, before the attacker can

use them. This is no worse than the situation for a typical password manager.

Another attack on availability that a user may perform is based on forcing a user’s devices

to delete its passwords. An attacker may gain access to a user’s device, perform a DoS attack

on the infrastructure to gain enough time to guess the user’s master password, decrypt the user’s

passwords using the device’s private key, then cease the DoS attack and upload an empty password

file. The user’s other devices will then synchronize the empty password file, effectively locking the

user out. However, this attack fares no better in a typical password manager as they are vulnerable

to the same attack. With a typical password manager, an attacker who has access to a user’s

synchronized passwords can delete them, causing the deletes to cascade to the user’s devices. One

simple defense is for devices to remember deleted passwords for a limited period of time, say 15

days, allowing a user to recall them if necessary.

Property 11. EDP’s method for device management, mainly through its device authentication pro-

tocol, is a secure way to authenticate users’ devices and public keys that is robust against attacks

even when using untrusted servers and unencrypted communications channels.

This follows from Properties 1–10.

Property 12. Encrypting passwords with public keys is much more secure than doing so with sym-

metric keys derived from human-generated passwords using password-based key derivation func-

tions such as PBKDF2.

EDP uses public key cryptography in the standard way: the asymmetric public keys encrypt

high entropy, randomly generated symmetric AES keys, and these AES keys encrypt users’ pass-

words. This by definition represents an encryption system with much higher entropy and security

guarantees compared to keys derived from weak, human-generated passwords run through even

100,000 rounds or more of PBKDF2 or bcrypt, as is commonly done by the majority of password

manager services.

Property 13. EDP guarantees the confidentiality and integrity of users’ encrypted password files.
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The claim of confidentiality follows from Property 12 due to the use of public/private keypairs

with much higher entropy than PBKDF keys. EDP guarantees integrity in the sense that EDP

clients can detect any unrecognized modifications to encrypted password files since they are not

only encrypted but also signed using trusted public keys. If such modifications are detected, any

of a user’s trusted devices can restore the file with the last-known good version.

Property 14. EDP can store users’ encrypted password files in even untrusted servers.

Properties 12 and 13 show that EDP ensures the confidentiality of encrypted password files.

The question is then whether the security is sufficient enough that the encrypted password files can

be safely stored in an untrusted server that is potentially publicly accessible. The general consensus

of the security community is that time-tested and battle-hardened public key cryptosystems such

as RSA and ECDSA are trustworthy. Furthermore, public key cryptosystems are used ubiquitously

in public contexts; the vast majority of the Internet now uses TLS/SSL and SSH for banking and

other sensitive data uses. If public key cryptosystems were too insecure to be used to encrypt even

publicly available information, then the entire Internet, not just EDP, would be at high risk.

If quantum computers are developed and deployed, today’s public key algorithms will become

insecure. Although we have not implemented it, EDP could easily be enhanced to support a public

key re-key operation, where a device’s old (and now insecure) key is deleted and a new key for a

post-quantum algorithm is used instead. Since each user’s EDP environment is specific to that user,

there is no need to coordinate the conversion with other users. Similarly, there are no problems

with expiring root CA [145].

Property 15. A compromise of a user’s EDP master password does not risk the confidentiality of

any encrypted passwords.

EDP passwords are encrypted using the public keys generated on each of a user’s devices, and

not using keys derived from the user’s master password. Therefore, a compromise of a master

password does not risk the confidentiality of any of the user’s passwords. It however does give

the adversary access to the user’s account on the password manager service provider. The con-

sequences of this will vary depending on the service, but should never yield access to the user’s
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passwords.

Property 16. It is infeasible to derive a user’s master password from index key �* .

Due to use of a keyed cryptographic hash function in the computation of �* , it is intractable

for an attacker to derive the secret key used as input to the function. Even if an adversary were

to determine the master password, e.g., by a guessing attack, this provides no aid in decrypting a

user’s encrypted password files.

Property 17. EDP protects passwords at rest with greater security guarantees than typical pass-

word managers even with a more difficult threat model allowing for storing passwords on untrusted

servers.

This follows from Properties 12–16.

5.6 Implementation

We implemented a EDP prototype by modifying the open source Bitwarden password manag-

er [133]. We modified the Bitwarden web browser extension, which is used with all popular web

browsers, including Google Chrome, Mozilla Firefox, Opera, Apple’s Safari, and Microsoft Edge.

Our modifications amounted to roughly 2K lines of code (LOC) including HTML templates for UI

elements, but excluding the libraries we added; the entire Bitwarden browser extension is roughly

140K LOC.

For the device-to-device communication channel, we used Hyperswarm [146], a peer connection-

based distributed networking stack that implements the BitTorrent P2P protocol. Hyperswarm re-

lies on bootstrap servers, similar to BitTorrent trackers, to help peers discover each other; we used

bootstrap servers provided by the Hyperswarm developers.

In lieu of using Bitwarden servers for storing password files, our prototype uses GunDB [138,

139, 140], a widely-used decentralized graph database with millions of users; for example, the

Internet Archive uses GunDB. GunDB relies on super peers operated by volunteers to assist with

replication and availability guarantees; we used super peers provided by the GunDB developers.

We use GunDB to create a decentralized and distributed prefix tree for users’ encrypted password
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files and lists of trusted public keys.

For public key cryptography, we used RSA because it is already used in Bitwarden with key

lengths of 2048 bits as the default setting. We encrypted passwords using 256-bit AES keys using

the CBC mode of operation with HMAC-SHA256 authentication. We used PBKDF2 with SHA-

256 for our KDF with a minimum of 10,000 iterations, although the number of iterations for

our applications of PBKDFs is not vitally important. We implemented encrypted password files as

JSON objects encrypted using a random AES key; it in turn is encrypted with all of the trusted EDP

public keys known to the device. For the EDP device authentication protocol, we implemented a

PAKE aptly named Simple Password Exponential Key Exchange (SPEKE) [147], which is widely

used and has been vetted and improved over the years by security experts [148, 149].

5.7 Experimental Results

We present some experimental results measuring the performance and usability of EDP based

on our prototype Bitwarden implementation. We quantify the performance of our prototype versus

vanilla Bitwarden for various password manager operations, including inserting passwords into

forms, updating a password file, and adding a new device. We also conducted a modest Institutional

Review Board (IRB) approved user study to measure the usability of EDP with respect to adding

a new device, since this is the primary difference between EDP and any other typical password

manager in terms of usability.

5.7.1 Performance

We measured performance using the latest available version of the Google Chrome web brows-

er, version 83, running on Windows 10 machines, one with an Intel Core i7-8700K 3.7 GHz CPU

with 32 GB RAM and another with an Intel i7-6700HQ 3.5 GHz CPU with 16 GB RAM, both

connected to a 1 Gbps residential fiber connection. Measurements involving one client were done

using the first machine only.

We first quantified the performance of the primary password management functionality, in-
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Figure 5.7: Breakdown of the time spent when adding a new password to EDP.

serting passwords into forms. We measured the time to auto-fill password forms with both EDP

and unmodified Bitwarden. The average time was the same for both systems, 2 ms, reflecting the

fact that EDP makes no changes to any of the Bitwarden code related to this functionality and the

time to fill password forms is fast enough to not be noticeable to users. We focus the rest of our

discussion on aspects of EDP which did require modifications to the Bitwarden client.

We next quantified the time for a user to add a new password and update the encrypted pass-

word file in the password store. We measured the time for both EDP and unmodified Bitwarden,

which are shown in Figures 5.7 and 5.8, respectively, for encrypted password files with 1 to 1000

passwords, the latter representing an upper bound on the number of passwords users have in prac-

tice. EDP has a constant update time per password while the Bitwarden client’s time to add a

password scales linearly in the number of passwords. For EDP, we measure the latency of adding

a new password and updating the password file to include: (1) locally saving the new password to

add, (2) downloading the encrypted AES key and existing password entry, (3) using the device’s

private key to decrypt the AES encryption key and existing password entry, and check the times-

tamp and tombstone markers, (4) encrypting the new password, and (5) uploading the encrypted
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Figure 5.8: Breakdown of the time spent when adding a new password to Bitwarden.

password to the password store. Figure 5.7 shows that most of the time is due to encrypting the

password, about 104 ms on average. In contrast, the total time on average is approximately 112

ms. The time to download data is fast due to the benefits of using a DDB, which offers low la-

tency network requests when data is available on nearby peers. While we conservatively included

the time to download the AES key and existing password entry being updated, both are typically

cached locally, which would further reduce the latency. Because our EDP prototype stores pass-

words individually as opposed to all together in one password file, updates can be done in constant

time. We confirmed that an alternative implementation storing all passwords in one file such that

the entire file needs to be downloaded and decrypted for any password update would cause the

costs to scale linearly with the number of passwords.

Figure 5.8 provides a less granular breakdown of the time for Bitwarden to add a new password

and update the password file. The upload time is relatively constant with the number of passwords

because Bitwarden also only sends the additional password on the update, not the entire set of

passwords. However, Bitwarden locally maintains a single complex JSON file of all encrypted

passwords, and operations on that file are more expensive with more passwords, accounting for the
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linear increase in cost with the number of passwords.

We finally quantified the time for a user to add a new device using EDP. Unlike Bitwarden

or other password managers which simply allow a user to log on to the password manager on

any device, EDP requires the execution of its device authentication protocol. Figure 5.9 shows

the execution time for 1000 instantiations of the device authentication protocol. The total time to

complete the protocol ranged from 2 to 30 s, with an average of 10 s. Despite PAKEs being thought

of as slow, the cryptographic operations take a negligible amount of time with all client-side steps

of the PAKE protocol taking only 200 ms in total. The vast majority of the time is due to network

latency from constructing the P2P connection, including device discovery through the topic and

initializing the direct connection. Since we used real relay servers provided by the Hyperswarm

developers, we experienced inconsistent delays, thus explaining the wide range of completion

times; these delays can greatly improved with better infrastructure. The device authentication

protocol represents a one-time cost per device, so even with an average wait time of 10 s, it is

still a reasonable duration. While EDP imposes additional latency for this relatively rare setup

operation, it provides the benefit of greater security for all operations.
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5.7.2 Usability

Users’ daily operation of EDP is no different from any other typical password manager. The

primary difference that users experience in EDP is adding a new device by participating in the

EDP device authentication protocol. Compared to a typical password manager, EDP additionally

requires the user to copy a random phrase from an existing EDP device to the new one to setup

the new device. Once setup is complete, the user can use the EDP client in the same manner as

any other password manager client for regular functions like adding, requesting, and automatically

inserting passwords. Since the key difference is in the setup process, we focused on evaluating the

usability of EDP’s new device setup with a small pilot user study.

Our IRB-approved user study (protocol number AAAT2330) included 20 users who installed

and configured our EDP implementation on two devices. We allotted 60 minutes to the user study

participants. Sixteen were 21 to 30 years old, three were 31 to 40 years old, and the last was 51

to 60 years old. Of these users, Six 21 to 30 year olds, one 31 to 40 year old, and the 51 to 60

year old subjects considered themselves to be non-technical users. All sessions were performed

remotely due to the IRB prohibitions, so we asked users to install our EDP browser extension on

two devices when possible; most participants installed EDP on a desktop computer and on a laptop

computer. Users began the study by installing our extension, and then following a simple guide for

getting started with EDP. The guide instructed them on choosing a username, master password,

and providing these credentials to the EDP clients on their devices. Next, they initiated the process

of adding a new device, copied the random phrase from one device to the other, and waited for the

device authentication protocol to complete. All users finished the study within 5 to 10 minutes.

After completing the EDP device authentication protocol, all users completed the System Us-

ability Scale (SUS) [61], an industry-standard survey for evaluating system usability. The SUS

scores are summarized in Table 5.1, with a higher score indicating greater usability. Given the

high results above 85 for nearly all participants, we can conclude that EDP’s device authentication

protocol is easy to understand and use [101]. We also expect that improvements to the UI such as

graphical aids can clarify the process even further.
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Mean Stdev. Min. Q1 Median Q3 Max

89 8 73 86 93 95 100

Table 5.1: System Usability Scale summarized scores.

5.8 Related Work

Password Managers. Commercial password managers encrypt individual passwords with a

key derived from the user-provided master password [150, 151, 152, 144, 153]. This approach

suffers from encryption keys with low entropy. The encrypted passwords stored on these password

manager servers are susceptible to offline attacks if they are leaked; potential leaks of encrypted

passwords stored on commercial services have previously occurred [130, 131]. Another concern is

the possibility of fooling password managers into revealing passwords to adversaries via phishing

or injection attacks [129]. Various approaches have tried to solve these problems. One defense

against offline attacks is to avoid storing encrypted passwords [154, 144], for example by deter-

ministically deriving high entropy passwords at runtime when they are needed. The basic crypto-

graphic primitives for these works are key derivation functions (KDFs) such as PBKDF2 [155] and

scrypt [156] among others. Other defenses against offline attacks include the use of decoy encrypt-

ed password files with plausible incorrect passwords to convert an attacker’s work into impractical

online attacks [157], and graphical password cues to remind users of their passwords rather than

storing them [158]. KeePass [159] is an open source password manager that uses a master pass-

word, or a key file which is not necessarily a cryptographic key but any file the user wishes. These

solutions however do not sufficiently address users with multiple devices. [157] has no mention

of multiple devices, and [158] briefly mentions using a centralized server to synchronize user data

but with no details on authenticating new devices. KeePass’ key file abstraction does not support

multiple keys, so it lacks a solution for multiple devices and granular revocation of them. Also,

key files are arbitrary files chosen by users, and thus can be weak with low entropy and suffer from

the same issue as weak master passwords.

Another approach is to use dual-possession authentication [160]. The basic design is to require
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that a user with # trusted devices possess some subset of  ≤ # devices to be able to either retrieve

or recreate their passwords. For example, password secret sharing schemes [161, 162, 163] split

a given password into # parts across a user’s devices and some share  of the parts are required

to construct the correct password. Others store passwords on separate devices based on assigned

security levels [164], or store encrypted passwords on one device which can only be decrypted by

another device [160, 165]. A problem with dual-possession architectures is the assumption that

users always have simultaneous access to at least two devices, e.g. a computer and smartphone,

and that the password is only required on the computer, not the smartphone. In reality, users

are increasingly authenticating to web services from their mobile devices while on the go with

no access to a second device. Furthermore, such dual- or multi-possession designs are likely to

be cumbersome to users, especially if they are authenticating to services which already use 2FA.

For example, a user authenticating to Gmail with a dual-possession solution needs to confirm the

password manager’s password request with a secondary device, and then also complete Gmail’s

own 2FA step.

Apple’s iCloud Keychain shares some attributes with EDP. Adding a device requires an ex-

isting device to allow the addition and a random number displayed on the existing device to be

entered on the newly added device. While this usage model provides further evidence to sup-

port the usability of EDP’s device authentication approach, the underlying mechanisms for iCloud

Keychain are significantly different from EDP. iCloud Keychain requires users to trust Apple’s

servers and infrastructure [166], unlike EDP which does not require trusted infrastructure. iCloud

Keychain allows users to decrypt their passwords with their low-entropy iCloud passwords and an

iCloud Security Code (iCSC), which is a short 4 digit PIN. Although Apple claims that their back

end infrastructure ensures that it is infeasible to brute force the iCSC, this again requires trusting

Apple’s word. iCloud’s architecture and infrastructure are incredibly complex, requiring custom

secure hardware and secured supply chains, all of which is claimed to be audited and inspected.

For example, the Cloud Key Vault couples Apple’s custom hardware security modules (HSMs)

on users’ devices with custom fleets of HSMs in iCloud. This amounts to a level of investment
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and complexity that is inaccessible to the majority of password manager services that do not have

access to capital like Apple. To add to the complexity, the iCloud and device HSMs utilize PKI

maintained by Apple, such that the iCloud HSMs’ CA certificate needs to be hardcoded into every

Apple device. Finally, iCloud Keychain only runs on Apple hardware and operating systems. In

contrast, EDP requires no trust in servers or the infrastructure, does not rely on weak master pass-

words for encryption, uses a simple architecture that can be used on any system, and is platform

independent.

Key Directories and Management. EDP utilizes some concepts which have seen applica-

tions with similar motivations in previous work. CONIKS [167] describes a public key directory

infrastructure to give users, rather than third-party monitors, agency in detecting and reporting ma-

licious activity, including equivocation, by public key directory servers. Like CONIKS, EDP uses

a prefix tree structure with privacy-preserving index keys, but the purpose and motivations differ.

CONIKS instead uses a Merkle prefix tree to provide the necessary structure for key directories

to publish signed tree roots, which are used by clients and auditors to detect equivocation; this is

not necessary for EDP. CONIKS in general concerns itself with public keys which are exchanged

among users for end-to-end encryption communications such as email. In contrast, EDP is de-

signed for password management and never exchanges public keys with other users, only among

an individual user’s own devices.

5.9 Summary

We have designed Easy Device-based Passwords (EDP), a password manager system for im-

proving the security of users’ encrypted passwords at rest by using public key cryptography, with-

out any changes to industry standard password manager app usage models. EDP encrypts users’

passwords using self-generated keypairs on each of a user’s devices, so we provide a PDK-based

easy to use key management solution which uses a PAKE-based device authentication protocol

to ensure mutual trust among a user’s devices, without the user needing to know anything about

public key cryptography and key management. Users perceive any key exchanges and authenti-
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cation as a device synchronization and pairing step. Since EDP encrypts users’ passwords with

strong keys, the encrypted passwords can be stored on untrusted servers. We implemented EDP by

retrofitting an existing password manager, showing that it requires only simple code changes for

clients. Our experimental results show that EDP’s password updates have reasonable overheads,

and that the device authentication protocol is a quick and seamless experience for users.
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Chapter 6: Conclusions and Future Work

Vectors for compromising private user data are not only limited to attacks using account creden-

tials, but also include server-side and internal attacks that altogether bypass account authentication

checks. Yet, the vast majority of online services act as if account credentials with 2FA are enough.

In reality, user data is highly vulnerable. This situation can be greatly improved through the use

of strong encryption, but encryption has traditionally been considered unusable for average users

especially when multiple devices are involved, mainly due to the hurdles introduced by crypto-

graphic key management [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. The majority of users,

even technical ones, first of all lack an understanding of the confusing and complex concepts and

terminology used for cryptographic keys especially in the context of multiple device usage models,

and this has been worsened by being coupled with crypto applications that have poor usability. To

address these issues, I have designed, implemented, and evaluated a new key management philos-

ophy which I call Per-Device Keys, or PDK for short, and also blueprints for applying PDK to

enable encryption models which are transparent to users.

Although PDK is a key management solution, its unique design allows for an easy mapping

of key management functions to equivalent device management ones. This then paves the path

towards enabling strong, client-side encryption that is transparent to users. Transparent encryption

processes are important because the actual steps of encrypting and decrypting data are confusing

for users as well [13, 18]. Not only is there a need for usable key management, but also usable

encryption. The exact properties of a usable encryption system are dependent on the context of the

system and data being secured. Despite context-specific solutions, the general rule of thumb is to

place encryption in the hands of user in a transparent fashion such that encryption and decryption

occur automatically.

I have applied the PDK design in three different, representative contexts—email, photos, and
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password managers—to solve their key management issues, while also developing new paradigms

for strong, client-side encryption. E3 is a usable secure email solution which uses self-generated

PDK keys with existing email encryption formats in a new way to achieve client-side encryption

of emails on receipt. This approach protects all of a user’s emails that are received prior to any

attack, but is much easier to use than end-to-end encrypted email like PGP and S/MIME. Another

important benefit of E3 is that it requires no server or protocol changes, so it can be easily deployed

since users just need to install an E3 app to start using it. The experimental results for E3 show

that it is compatible with existing IMAP services, has good performance, and is easy to understand

and use.

ESP is a usable encrypted photos app which is compatible with existing services and has a

transparent usage model that is not much different from normal photo apps that lack encryption.

ESP introduces an image encryption technique which relies on encrypting JPEG images in a way

that outputs valid JPEGs that are accepted by cloud photo services and are resilient to JPEG image

compression. PDK addresses managing the self-generated keys used by ESP in a manner that is

similar to E3, but with different restrictions such as needing to exchange public keys using the

photo service itself. ESP requires no changes to existing cloud photo services, so users only need

to install an ESP app to start using it. The experimental results show that ESP is robust against

attacks, has acceptable performance overheads, and is simple to use.

EDP is a password manager that improves on the security of existing password managers with-

out significant changes to their familiar and easy to understand usage models based on master

passwords. EDP’s new approach uses self-generated PDK keys to encrypt user passwords instead

of weak, human-generated master passwords. The security of the device verification and enroll-

ment portion of PDK is also improved in EDP so that it may be used with untrusted servers, the

first password manager to allow this. The experimental results for EDP show that it is secure under

these conditions with performance similar to existing password managers, and is usable.

131



6.1 Future Work

6.1.1 Integrating PDK with Services for Secure Key Storage

A feature not evaluated in this dissertation is the use of cloud key vaults (CKVs) such as Google

Cloud Key Vault Service [168] and Apple’s iCloud Keychain [166] to augment, but not replace,

PDK’s security and recovery guarantees. CKVs store users’ secret keys which are protected by

both the cloud service provider and user-memorized secrets such as passwords, PINs, and device

lock screen patterns. Due to these multiple layers of protection, as well as special secure hardware

such as HSMs on the CKV servers, the service provider themselves cannot access users’ stored

secret keys and recovery keys. Only users with knowledge or possession of multiple secrets may

unlock access to their cryptographic keys stored in the cloud.

The drawback of these CKVs and the reason to not include them as part of PDK’s design is the

fact that using them would suggest an inherent reliance on a specific third party provider, which

in turn introduces undesirable restrictions and constraints. For example, Google Cloud Key Vault

Service only works on Android 9 Pie or newer, and Apple’s iCloud Keychain is only compatible

with Apple devices. In addition to this, they require special hardware and OS support. Both Google

and Apple use custom secure hardware and servers to provide their security guarantees, as well as

complex PKI schemes which also require support from server and user device OSes, so widespread

support among consumer devices for CKVs is lacking. One of the goals which motivated PDK was

a key management system which would be platform independent and work with any service, so

the addition of CKVs would interfere with this.

But suppose that such secure hardware and PKI, both on servers and user devices, becomes the

industry standard such that the vast majority of users’ devices have the capability to leverage them.

Then, PDK’s security and recovery guarantees may be improved with the use of CKVs without

detracting from the intended purpose of its design. The CKV architecture can improve the security

of PDK by protecting PDK private keys using multiple layers of security provided by the hardware

and HSMs. As noted in E3, ESP, and EDP, providing such hardware support is orthogonal to the
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goals of these systems, but would indeed improve the security of PDK private keys stored on user

devices as they effectively deter offline brute force attacks on encrypted private keys. For example,

incorrecting guessing the lock screen PIN on Apple iPhones too many times will automatically

wipe the device, thus rendering guessing attacks ineffective.

CKVs can also be used to securely store recovery keys to which the service providers do not

have access. However, as discussed in Chapter 5 with respect to Apple iCloud Keychain, this as-

sumes that these service providers are trustworthy, that their CKV architectures actually operate in

the way which they are designed, and that their services do not become deprecated or discontinued

in the future. If all of these conditions are satisfied, then the CKV service providers can improve

the security of PDK since they would be unable to access user recovery keys while users would on-

ly need to provide a human-memorizable secret to gain access to them. The CKV service prevents

compromises by enforcing a rate limit on attempts to access recovery keys through the use of its

custom HSMs, meaning both the service and attackers cannot perform guessing attacks. This is a

boon to PDK as it currently stands since its main recovery options are assuming users do not lose

all their devices simultaneously, or that users have written down and safely stored their recovery

keys where attackers cannot obtain them.

Future work could entail evaluating whether the steps involved with using a CKV together with

PDK would provide a transparent and seamless experience to users. This has been shown to some

degree with the widespread deployment and use of Apple iCloud Keychain, but only within the

closed Apple ecosystem. It therefore remains to be seen whether other CKVs can be trusted and

used independent of platform, for any service regardless of their lack of affiliation with Google

and Apple.

6.1.2 Implications of Client-side Encryption for Services

Many cloud-based services provide their offerings at no cost to users. These free online services

earn a profit not by charging users, but by collecting, using, and sometimes selling user data.

One of the most notable examples in the industry is Google. Google provides a vast array of
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useful, free services apart from Gmail and Google Photos which have already been discussed in

this dissertation. Although many of Google’s services do offer paid options, it is well known

that Google’s main income comes from its advertising and search platform which is driven by

user data. Google services openly state that they collect information about their users and create

astonishingly accurate profiles for them [169, 170], which helps Google to display advertisements

relevant to users’ interests. Since analyzing users and their data is so important to its business

operations, Google is willing to provide its other services for free to build as large a userbase as

possible. The work of this dissertation, namely strong client-side encryption with no reliance on

servers, is therefore at odds with the business models of companies like Google, since they cannot

analyze user data if it is encrypted by users.

This poses some potential issues for adopters of systems such as the ones described in this dis-

sertation. In the worst case, companies with similar business models as Google may aggressively

identify and ban users who are encrypting their data to discourage such practices. However, this

kind of scorched-earth policy seems unlikely, at least for now. We can look at existing cases to

approximate how Google may respond; for example, the case of ad blockers. Ad blockers, which

often come in the form of web browser extensions such as AdBlock [171], Adblock Plus [172],

and uBlock Origin [173], are installed by users to hide advertisements from being shown to them

on the web, and thus are completely at odds with Google’s advertising business model. Despite

this, Google has not banned these ad blockers; these extensions are in fact prominently displayed

as among the most popular extensions on the Google Chrome web browser’s extension store.

Google may have a lenient attitude towards web browser ad blockers for at least a few reasons,

some of which can be extrapolated to the case of client-side encryption. The first is that the

number of ad blockers users, despite each of the three mentioned ad blockers having at least over

10 million downloads, likely represent only a small fraction of the total number of users on the

web. Furthermore, ad blocker users are unlikely to pay attention to advertisements at all even

when shown them. Google may therefore feel that the loss of potential revenue from ad blocker

users is unavoidable, and that punishing them by banning ad blocker extensions would yield no
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benefit regardless. Systems for client-side encryption such as E3 and ESP may fall under the same

treatment as users of ad blockers unless adoption of client-side encryption drastically eclipses the

number of ad blocker users.

However, another possible explanation for Google’s lax policy towards web browser ad block-

ers is the increasing importance of mobile device users on the web, and Google may have decid-

ed to focus its efforts on this market. Android users generally cannot use ad blockers because

Google specifically bans them from the Android platform and the Google Play Store; Android web

browsers consequently lack any ad blocking features. Thus, if user adoption rates of client-side

encryption outstrips that of users who do not use encryption, there is precedent for Google possibly

opting to ban the use of client-side encryption with its services, which would mark a death knell

for the systems described in this dissertation.

On the bright side, it may be possible through either system design or cooperation with services

to avoid this outcome. For example, as discussed in Chapter 3, E3 is compatible with spam filters

because it only encrypts email after it has been received, giving the email service time to scan and

filter emails; similarly, this gives time for services such as Google to analyze and anonymize user

data gleaned from emails. Thus, E3’s encrypt on receipt design is unlikely to move Google to

punitive measures even if it becomes widely used.

Unlike E3, ESP poses more of a challenge due to its design in which users encrypt their photos

before uploading them to services such as Google Photos. Assuming that the threat is a future

compromise of users’ photo hosting service accounts, a naive solution, similar to E3’s model, is to

have ESP clients upload user photos unencrypted, giving the photo hosting service the opportunity

to scan the image, before replacing it with an encrypted copy. This would however severely impact

performance, as then users would need to upload even more data per image. Other schemes may

be possible, such as using homomorphic encryption—which Google is exploring for exchanging

data on the business side with other companies [174]—to allow Google to compute results from

user data without necessarily having access to the raw data itself. More generally, a system design

for client-side encryption that allows services such as Google to learn anonymized results about
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user data may satisfy their requirements; but exploration of these kinds of approaches are left as

future work.

As with all secure systems, the key question is, “What is the threat model?” As a simple

example, if we relax the threat model for ESP, then it may be acceptable to users if only their most

sensitive of photos are encrypted, while the less important ones are left in the clear; this may be

enough to satisfy Google. And the proposed solution of uploading an unencrypted photo to give

the service the opportunity to analyze it, then replacing it with an encrypted version assumes that

the main threat is a future attacker who compromises users’ photo hosting service accounts. It does

not assume that the service itself is the threat to protect against, whether it is honest-but-curious or

outright malicious.

The likely outcome is that, similar to how this dissertation required drastically different system

solutions for email, photo hosting, and password management, different services will require dif-

ferent relaxing of users’ threat models in order to develop client-side encryption approaches which

do not incite aggressive countermeasures by services. But at the same time, even Google has

mostly ignored web browser extension ad blockers, only taking action against them on Android,

suggesting that services such as Google will only take action at certain breaking points. For now,

client-side encryption approaches with existing services is a largely untapped idea, so these ques-

tions are left for future work if adoption rates soar, perhaps in the event that services like Google

finally do decide to take action.
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