
New Primitives for Tackling Graph Problems and Their Applications in Parallel Computing

Peilin Zhong

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Peilin Zhong

All Rights Reserved

Abstract

New Primitives for Tackling Graph Problems and Their Applications in Parallel Computing

Peilin Zhong

We study fundamental graph problems under parallel computing models. In particular, we con-

sider two parallel computing models: Parallel Random Access Machine (PRAM) and Massively

Parallel Computation (MPC). The PRAM model is a classic model of parallel computation. The

efficiency of a PRAM algorithm is measured by its parallel time and the number of processors

needed to achieve the parallel time. The MPC model is an abstraction of modern massive paral-

lel computing systems such as MapReduce, Hadoop and Spark. The MPC model captures well

coarse-grained computation on large data — data is distributed to processors, each of which has a

sublinear (in the input data) amount of local memory and we alternate between rounds of compu-

tation and rounds of communication, where each machine can communicate an amount of data as

large as the size of its memory. We usually desire fully scalable MPC algorithms, i.e., algorithms

can work for any local memory size. The efficiency of a fully scalable MPC algorithm is measured

by its parallel time and the total space usage (the local memory size times the number of machines).

Consider an n-vertex m-edge undirected graph G (either weighted or unweighted) with diam-

eter D (the largest diameter of its connected components). Let N = m + n denote the size of G.

We present a series of efficient (randomized) parallel graph algorithms with theoretical guarantees.

Several results are listed as follows:

• Fully scalable MPC algorithms for graph connectivity and spanning forest using O(N) total

space and O(log D log logN/n n) parallel time.

• Fully scalable MPC algorithms for 2-edge and 2-vertex connectivity using O(N) total space

where 2-edge connectivity algorithm has O(log D log logN/n n) parallel time, and 2-vertex

connectivity algorithm has O(log D · log2 logN/n n+ log D′ · log logN/n n) parallel time. Here

D′ denotes the bi-diameter of G.

• PRAM algorithms for graph connectivity and spanning forest using O(N) processors and

O(log D log logN/n n) parallel time.

• PRAM algorithms for (1 + ε)-approximate shortest path and (1 + ε)-approximate uncapaci-

tated minimum cost flow using O(N) processors and poly(log n) parallel time.

These algorithms are built on a series of new graph algorithmic primitives which may be of inde-

pendent interests.

Table of Contents

List of Figures . vi

Acknowledgments . x

Dedication . xii

Chapter 1: Introduction . 1

1.1 MPC vs. PRAM . 2

1.2 Problems, our results and comparison to prior results 4

1.2.1 Graph connectivity . 4

1.2.2 Spanning forest . 6

1.2.3 Minimum spanning forest . 7

1.2.4 2-Edge connectivity . 8

1.2.5 Biconnectivity . 9

1.2.6 Shortest path and uncapacitated minimum cost flow 10

1.2.7 Hardness results . 13

1.3 New primitives for tackling graph problems . 14

1.3.1 Truncated broadcasting and double-exponential speed problem size reduction 14

1.3.2 Recursive DFS sequence construction via leaf sampling 16

1.3.3 New tools for shortest path and comparison to prior approaches 17

i

1.4 Summary of techniques and algorithms . 21

1.5 Related papers . 22

Chapter 2: Preliminaries and Parallel Computing Models 24

2.1 Notation . 24

2.2 The PRAM models . 26

2.3 The MPC model . 27

2.3.1 Basic MPC operations . 28

2.3.2 Data organization . 31

2.3.3 Set operations . 33

2.3.4 Mapping operations . 36

2.3.5 Sequence operations . 38

2.3.6 Multiple tasks . 39

Chapter 3: Some General Techniques . 42

3.1 Truncated broadcasting . 42

3.1.1 Implementation in parallel computing models 44

3.2 Double-exponential speed problem size reduction 47

Chapter 4: Graph Connectivity and Spanning Forest . 48

4.1 Overview of techniques . 48

4.2 Graph connectivity . 52

4.2.1 Neighbor increment operation . 52

4.2.2 Random leader selection . 54

ii

4.2.3 Tree contraction operation . 56

4.2.4 Connectivity algorithm . 60

4.3 Spanning forest . 67

4.3.1 Multiple local shortest path trees . 67

4.3.2 Path generation and root changing . 69

4.3.3 Spanning forest expansion . 74

4.3.4 Spanning forest algorithm . 76

4.4 Implementations in MPC model . 86

4.4.1 Neighbor increment operation . 87

4.4.2 Tree contraction operation . 87

4.4.3 Graph connectivity . 88

4.4.4 Algorithms for local shortest path trees . 90

4.4.5 Path generation and root changing . 91

4.4.6 Spanning forest algorithm . 92

4.5 Minimum spanning forest . 96

4.6 Connectivity and spanning forest in PRAM . 100

4.6.1 Framework . 100

4.6.2 Building blocks . 101

4.6.3 Connectivity in ARBITRARY CRCW PRAM 102

4.6.4 Spanning forest in ARBITRARY CRCW PRAM 115

4.6.5 Connectivity in COLLISION CRCW PRAM 124

Chapter 5: 2-Edge and 2-Vertex Connectivity . 140

iii

5.1 Overview of techniques . 140

5.2 DFS sequence of a tree . 143

5.2.1 Compressed rooted tree . 145

5.2.2 Lowest common ancestor . 147

5.2.3 Multi-paths generation . 150

5.2.4 Leaf sampling . 154

5.2.5 DFS subsequence . 157

5.2.6 DFS sequence . 163

5.3 Implementation of DFS sequence in the MPC model 166

5.3.1 Compressed rooted tree . 166

5.3.2 Lowest common ancestor and multi-paths generation 167

5.3.3 Leaf sampling . 170

5.3.4 DFS sequence . 171

5.4 2-Edge connectivity and biconnectivity . 173

5.4.1 2-Edge connectivity . 173

5.4.2 Biconnectivity . 174

5.5 2-Edge connectivity and biconnectivity in MPC 179

5.5.1 Parallel range minimum query . 179

5.5.2 MPC implementation of 2-edge connectivity and biconnectivity 183

5.6 Open ear decomposition . 185

5.6.1 Open ear decomposition via a proper ordering of non-tree edges 186

5.6.2 Segment coloring over trees . 190

5.6.3 Open ear decomposition . 198

iv

5.7 Open ear decomposition in MPC . 199

5.7.1 Find a proper ordering of non-tree edges in MPC 199

5.7.2 Segment coloring in MPC . 201

Chapter 6: Shortest Path and Uncapacitated Minimum Cost Flow 205

6.1 Overview of techniques . 205

6.1.1 Low hop emulator . 205

6.1.2 Minimum cost flow and shortest path . 212

6.2 Low hop emulator . 219

6.2.1 Subemulator . 219

6.2.2 A warm-up algorithm: distance oracle via subemulator 225

6.2.3 Low hop emulator . 229

6.3 Uncapacitated minimum cost flow . 236

6.3.1 Sherman’s framework . 237

6.3.2 Preconditioner construction . 244

6.3.3 Fast operations for the preconditioner . 248

6.3.4 Uncapacitated minimum cost flow algorithm 253

6.4 Implementation in parallel setting . 254

6.4.1 Parallel subemulator construction . 254

6.4.2 Parallel construction of low hop emulator 256

6.4.3 Direct applications of parallel low hop emulator 257

6.4.4 Parallel uncapacitated minimum cost flow 262

6.4.5 Parallel s − t approximate shortest path 265

v

6.4.6 Parallel approximate single source shortest paths 276

6.4.7 Massive parallel computing (MPC) . 295

Chapter 7: Hardness Results . 297

7.1 Directed reachability vs. boolean matrix multiplication 297

7.2 Discussion on a previous conjectured fast algorithm 299

7.3 Hardness of biconnectivity in MPC . 301

7.4 The necessity of 2 types of edges in the subemulator 302

7.5 Connectivity in CREW PRAM . 302

References . 313

vi

List of Figures

1.1 A summary of new primitives and parallel graph algorithms. Blue rounded rect-

angles indicate new primitives. Black rectangles indicate results of parallel graph

algorithms. 21

4.1 Each tree with green edges on the top-left is a rooted tree of each contracted compo-

nent. For example, there are five components {1,2,3}, {4,5,6,7}, {8,9,10,11,12},

{13,14,15}, {16,17}. The dashed edges in the bottom-left figure is a root span-

ning tree of five components. The red edges in the top-right figure correspond to

the dashed edges in the bottom-left figure before contraction. In bottom-right fig-

ure, by changing (see blue edges) the root of each contracted tree, we get a rooted

spanning tree in the original graph . 75

5.1 Given a tree that has 42 vertices (top-left), we label all the vertices from 1 to 42.

Firstly, we sample some leaves (red vertices, i.e. {5,13,24,30,32,34,36,37,40,42})

in the tree (top-right tree). Then we find a DFS sequence of the tree (the tree formed

by all the blue and red vertices in the bottom-left tree) which only contains all the

sampled leaves and their ancestors. Finally, we recursively find the DFS sequences

of remaining subtrees(bottom-right). 163

6.1 A summary of techniques and main algorithms. Blue rounded rectangles indicate

new techniques. 206

vii

6.2 For u′, v′ ∈ V ′ and a shortest path between u′, v′ in G, we can find a corresponding

path between u′, v′ in the subemulator H. A single dashed line denotes a shortest

path in G between yi−1 and xi. A single solid line denotes an edge {xi, yi} in G.

A double dashed line denotes a shortest path in G between a vertex and its leader

vertex. A double solid blue line denotes an edge in the subemulator H with a weight

which is equal to the length of the path in G represented by the corresponding blue

arc. 209

6.3 Consider cells C1,C2,C3,C4 shown above with side length 4. Blue dots denote the positions

of ϕ(v) + τ · 1d for some vertex v and τ = 0,1,2,3. The entries of P in the column

corresponding to v and in the rows corresponding to (C, τ) for C = C1,C2,C3,C4 and

τ = 0,1,2,3 are shown on the right. 215

7.1 A hard example for [76]. For each i ∈ {2,3, · · · ,n/D−1} and j ∈ {1,2, · · · ,D−1},

node (i − 1) · D + j has degree 4. For node D and n, they have degree 2. Node 0

has degree D. All the other nodes have degree 3. 300

7.2 The graph is unweighted and is a tree constructed by following steps. We first create a

path with length l = Θ(n0.1). For each vertex on the path, we create a brunch starting with

a path with length r = Θ(n0.1) and ending with a star with b = Θ(n0.9) vertices. If we

sample each vertex (solid red vertex) to be in the subemulator with probability log(n)/b,

with high probability, sampled vertices can only appear in stars and each brunch must have

at least one sampled vertex. We condition on this event. It is clear that each vertex has

at least one (b + r)-closest neighbor which is a sampled vertex, and that sampled vertex

must be in the same dashed green box. If we only contain the edges constructed by line 5

of Algorithm 32, the result graph must be a length-l path (represented by blue arcs) where

each edge corresponds to an edge crossing two dashed green box above and has weight

2r + 1. Thus the diameter of the result graph is l(2r + 1) = Θ(n0.2). However, the diameter

of the original graph is 2r + l = Θ(n0.1) which implies that the result graph is not a good

subemulator. 303

viii

7.3 The graph contains two stars connecting by an edge with weight 2. Each star has n/2

vertices. One star has center u and another has center v. Except the edge between u, v, all

other edges have weights 1. For b < n/2, neither v is a b-closest neighbor of any vertex in

the star with center u nor u is a b-closest neighbor of any vertex in the star with center v.

Thus, if we only contain the edges constructed by line 6 of Algorithm 32, the result graph

is disconnected which cannot be a subemulator. 304

ix

Acknowledgements

My five years at Columbia University has been a wonderful journey in my life. During this

journey, there are so many people I need to thank. But when I started to write this paragraph, I

realized that it is impossible for me to express my full gratitude in a few pages of human languages.

First of all, I want to express my sincerest gratitude to my advisors, Alexandr Andoni, Clifford

Stein and Mihalis Yannakakis. Their support for me covers many aspects, including not only

research, but also writing/presenting skills, financial status, career planning, etc. Their ideas often

provide me with various helpful guidance on research and life problems. I remember that I had

several research projects stuck for a long time, and most of the problems are finally solved based

on the ideas sparked from our countless meetings. I also remember that I faced many important

choices in my academic career. The constructive suggestions they gave me gave me a clearer views

of each direction and helped me make choices. Of course, during my Ph.D. studies, I sometimes

feel stressed due to insufficient research progress or my poor writing/presentation. But my advisors

never put any pressure on me. Instead, I can always be encouraged by them. In these five years,

I also learned a lot from them. For research, they helped me find the research areas that I am

passionate about, and I learned how to choose research topics and the way of thinking in the

research process. For life, I learned how to plan my future better.

I also thank David P. Woodruff and Periklis A. Papakonstantinou. I was very fortunate to

have taken Periklis’s course Algorithms and Models for Big Data when I was an undergraduate

student at Tsinghua University. It was my first time to explore interesting and elegant problems in

theoretical computer science. I am even luckier that I had a chance to work on a course project

that is supervised by David. After that project, I had several other research projects with David

and I learned a lot of knowledge and techniques of math and theoretical computer science from

him. Without their inspiration, I may not further pursue my PhD in theoretical computer science

after my undergraduate study. It was also a wonderful experience when I was a visitor of David

at IBM Almaden in summer 2018. That summer is filled with research discussions and meetings

with other brilliant researchers. I had a great chance to explore diverse areas during that summer.

x

I would like to thank Omri Weinstein. I really enjoyed discussing research with him. He is

always passionate about research and his passion motivates me a lot. I remember that we had

a lot of meetings for research projects and he was always enthusiastic in sharing elegant results

and ideas with me. For the areas that I am not familiar with, he was very patient to explain the

background knowledges to me. He helped me dive into these areas deeply and made me learn a lot

of interesting research problems, results and techniques.

During my PhD study, it was my great honor to intern at Google Research for two summers and

one spring. I want to thank Alessandro Epasto, Hossein Esfandiari, Mohammad Mahdian, Vahab

Mirrokni for hosting me. I also want to thank Ilya Razenshteyn for inviting me to visit Microsoft

Research Redmond. All of my internship/visiting experiences were amazing.

Besides, I want to thank my other collaborators and friends AmirMohsen Ahanchi, Chang Xiao,

Changxi Zheng, Chengyu Lin, Da Tang, Hengjie Zhang, Hongyang Zhang, Ji Xu, Lijie Chen, Lin

F. Yang, Marina Knittel, MohammadTaghi HajiAghayi, Pengyu Chen, Robert E. Tarjan, Ruiqi

Zhong, Ruosong Wang, S. Cliff Liu, Tianxiao Shen, Wei Hu, Ying Sheng, Yuchen Mo, Yuqing

Ai, Zhao Song, Zhengyu Wang, among others, for the motivative discussions of research. I would

especially to thank Changxi and Chang for a long term discussions of research in machine learning,

Zhao, Ruosong and Lin for frequent constructive comments on my research, and my cousin Ruiqi

for his long term helps in improving my academic writing. As a member of Columbia’s theory

group, I also want to thank everyone in the theory group. The time spent with theory group is full

of pleasant memories.

I want to thank Xingming Wang, my coach when I was in the team of Olympiad in Informatics

of my middle school, for inspiring my curiosity about algorithms.

Finally, with full of gratitude, I want to thank my father Wu Zhong, my mother Yinghua Liu,

and my fiancée Minzi Mao for their love and encouraging support. Without their love and support,

I would not be able to achieve what I have achieved.

xi

To My Family

xii

Chapter 1: Introduction

This thesis studies new graph algorithms which can be efficiently implemented in parallel

computing settings and handle massive graph datasets. Many applications are modeled by large

graphs. For example, social networks, transportation networks and the Internet can have more than

a billion vertices. Therefore, it is challenging to efficiently compute results of interest (e.g., detect

communities, create user recommendations, design trip routes, etc), and one way to handle these

large graphs efficiently is to use multiple machines to process them in parallel.

Although many basic graph problems like connectivity, spanning tree and shortest path admit

simple and efficient solutions under the sequential computing setting, it is surprisingly hard to

take full advantage of large-scale parallelism and obtain a speedup proportional to the number of

machines/processors. Therefore, an important research direction is to develop algorithms which

fully utilize the power of large-scale parallelism for these fundamental graph problems.

Analyzing and developing new algorithms under parallel systems requires us to choose a the-

oretical model. Two popular models are the parallel random-access machine (PRAM) and the

massively parallel computation (MPC) model [1, 2]. The PRAM model is a classic parallel model

which has been studied for decades while the MPC model is a more accurate abstraction of today’s

parallel computing systems (such as MapReduce and Hadoop) and can capture better the comput-

ing power (e.g., the power of local computation on each machine) of these systems. It is known that

any PRAM algorithm can be simulated in the MPC model. Therefore, PRAM algorithms are usu-

ally more general in the sense that they can be implemented in a wide range of parallel computing

systems (such as a single machine with multiple processors and massively parallel computing sys-

tems), while the additional power of the MPC model allows us to design more efficient algorithms

for massively parallel computing systems.

In this thesis, we will develop a line of new parallel graph algorithms under both the MPC

1

model and the PRAM model. Several main problems discussed in this thesis include Graph

Connectivity, Spanning Forest, Depth-First-Search Sequence, Biconnectivity, 2-Edge Connectiv-

ity, Shortest Path and Uncapacitated Minimum Cost Flow.

1.1 MPC vs. PRAM

In recent years, several parallel systems, including MapReduce [3], Hadoop [4], Dryad [5],

Spark [6], and others, have become successful in practice. This success has sparked a renewed

interest in algorithmic ideas for these parallel systems.

An important theoretical direction has been to choose good models of these modern systems

and design provably efficient parallel algorithms under these models. One choice is the PRAM

model (see e.g., [7]), a classic parallel computing model which has been studied for several

decades. In the PRAM model, there are multiple processors and a shared memory. The pro-

cessors run synchronously. In each step, a processor can read a shared memory cell, do one unit of

computation, and write a shared memory cell. The efficiency is measured by the number of parallel

steps (parallel time) needed and the total number of operations made (work) over all processors.

Since work is always upper bounded by the number of processors multiplied by the parallel time,

sometimes we describe the efficiency of the PRAM algorithm by the number of processors and the

parallel time required. The PRAM model characterizes the power of global parallel computation

very well, and the PRAM algorithms are usually very general such that they can be implemented

in different parallel computing settings, e.g., either on a single machine with multi-cores or in the

massively parallel computing scenarios such as MapReduce. Although the PRAM model usually

leads to general parallel algorithms, the drawback is that it cannot capture the power of local com-

putation of a machine in massively parallel computing scenarios. To characterize the power of

local computation, the work of [8, 1, 9, 2, 10] has led to the model of Massively Parallel Compu-

tation (MPC). The MPC model is a variant of the Bulk Synchronous Parallel (BSP) model [11].

We give a detailed description of the MPC model in Section 2.3. In particular, MPC allows Nδ

space per machine (processor), where δ ∈ (0,1) and N is the input size, with alternating rounds of

2

unlimited local computation, and communication of up to Nδ data per processor. At the end of the

computation, the output is distributed on the output machines. An MPC algorithm can equivalently

be seen as a small circuit, with arbitrary, Nδ-fan-in gates; the depth of the circuit is the parallel

time. Fully scalable MPC algorithms, which work for any value δ, are usually desired because it

is very common to be in the situation that we cannot enlarge the local memory of each machine

(processor) when a larger input is given. Two important efficiency measures of a fully scalable

MPC algorithm are parallel time and total space (the number of machines multiplied by the space

of each machine).

Any PRAM algorithm can be simulated as a fully scalable algorithm on MPC in the same

parallel time, and the total space needed is linear in the work of the PRAM algorithm [1, 9].

However, MPC is in fact more powerful than the PRAM: even computing the XOR of N bits

requires near-logarithmic parallel-time on the most powerful CRCW PRAMs [12], whereas it takes

constant, O(1/δ), parallel time on the MPC model. Thus, the two main algorithmic questions of

this area are:

Question 1.1.1. For which problems can we design fully scalable MPC algorithms that are faster

than the best PRAM algorithms?

Question 1.1.2. For which problems can we design PRAM algorithms that are as fast as the best

MPC algorithms? (For which problems, the additional power of the MPC model may not neces-

sarily lead to faster algorithms?)

For Question 1.1.1, we will give fully scalable MPC algorithms for Graph Connectivity, Span-

ning Forest, DFS Sequence, Biconnectivity and 2-Edge Connectivity that are faster than all known

previous parallel algorithms (in both MPC and PRAM models).

For Question 1.1.2, we first show that our MPC graph connectivity and spanning forest algo-

rithms can be extended to PRAM algorithms with the same parallel time. The number of processors

needed is linear in the input size. This fact may tell us that the MPC model may not be strictly

more powerful than the PRAM model on the connectivity and the spanning forest problems.

3

Then, we design PRAM algorithms for Shortest Paths and Uncapacitated Minimum Cost Flow

that are faster than all known previous PRAM algorithms and fully scalable MPC algorithms, and

are almost as fast as the previous fastest MPC algorithms (which are not fully scalable).

1.2 Problems, our results and comparison to prior results

In this section, we formally introduced the graph problems studied in this thesis. We will give a

brief overview of our results and will compare our results to previous results. For all results shown

in this section, the input graph G is either unweighted (G = (V,E)) or weighted (G = (V,E,w)

where w : E → Z are weights of edges), with n = |V | vertices, m = |E | edges and size N =

|V | + |E |. If G is an unweighted graph, we use D to be an upper bound of the diameter of any

connected component of G.

We use (γ, δ)-MPC model to denote the MPC model where each machine has local spaceΘ(Nδ)

and the total space over all machines is Θ(N1+γ) (see the formal definition of (γ, δ)-MPC model in

Section 2.3).

1.2.1 Graph connectivity

In the connectivity problem, the goal is to output the connected components of an input graph

G, i.e. at the end of the computation, ∀v ∈ V, there is a unique tuple (v, y), where y is called the

color of v. Any two vertices u, v have the same color if and only if they are in the same connected

component.

The connectivity problem has been studied in the parallel literature for several decades. An

O(log n) depth Õ(N)1 work PRAM algorithm has been known since [13]. Later, there is a line of

PRAM algorithms on variants of PRAM models. The best known randomized PRAM connectivity

algorithm would be [14] which has O(log n) depth and O(N) work, and can be implemented in

the weakest EREW PRAM model (see Section 2.2 for a detailed discussion of the EREW PRAM

model). According to [1, 9], these algorithms can be simulated in the (0, δ)-MPC model for arbi-

1Õ(f (n)) denotes f (n) · poly log(f (n)).

4

trary constant δ > 0 in O(log n) rounds. A natural question is whether there is an MPC connectivity

algorithm with fewer than O(log n) rounds. In [15], they show that there is an O(1) rounds connec-

tivity algorithm in the MPC model when the total space in the system is at least n1+Ω(1). Later [16,

17] implied that there is an O(1) rounds connectivity algorithm in the MPC model when the total

space in the system is linear in the size of the graph. However, both algorithms require that the

size of the local memory of a machine must be at least the number of vertices of the graph. This

is a very restricted requirement since the number of vertices of a sparse graph is almost the size of

the graph. Thus fully scalable algorithms would be more desirable in practice, i.e., we would like

algorithms which work in the (γ, δ)-MPC model for any value of δ > 0. We show a faster, fully

scalable algorithm for the connectivity problem in the MPC model by parameterizing the parallel

time as a function of the diameter D of the graph.

Theorem 1.2.1 (Connectivity in MPC, restatement of Theorem 4.4.4). For any γ ∈ [0,2] and any

constant δ ∈ (0,1), there is a randomized (γ, δ) − MPC algorithm which outputs the connected

components of the graph G in O(min(log D · log log n
log(N1+γ/n), log n)) expected parallel time.

Notice that in the most restrictive case of γ = 0 and m = n, we obtain O(min(log D ·

log log n, log n)) time. When the total space is slightly larger, or the graph is slightly denser—

i.e. γ > c or logn m > 1+ c, where c > 0 is an arbitrarily small constant—then we obtain O(log D)

time.

Surprisingly, by combining elegant hashing techniques with the new algorithmic ideas pro-

posed by the algorithm mentioned in the above theorem, we also show a faster PRAM algorithm

for the connectivity problem. In particular, we develop a near linear work randomized parallel

algorithm in the COLLISION CRCW PRAM model in O(log(D) · log logN/n n) parallel time. In

the COLLISION CRCW PRAM model, if multiple processors write the same shared memory cell

at the same parallel step, then the value of the cell can be any corrupted value and the cell will be

marked as collision. Notice that the COLLISION CRCW PRAM model is a weaker model than

the ARBITRARY CRCW PRAM model. Therefore, our algorithm can be directly implemented

in the ARBITRARY CRCW PRAM model. For more details of the COLLISION CRCW PRAM

5

model and the ARBITRARY CRCW PRAM model, we refer readers to Section 2.2.

Theorem 1.2.2 (Connecivity in PRAM, restatement of Theorem 4.6.48). There is a randomized

COLLISION CRCW PRAM algorithm that outputs the connected components of the graph G with

probability at least 1 − 1/poly(N log(n)/n) in O(log D · log logN/n n) depth using O(N · (log D ·

log logN/n n)) work.

Remark 1.2.3. Our MPC algorithm is later improved by [18]. They show that there is a ran-

domized (γ, δ)-MPC algorithm solving connectivity problem in O
(
log D + log

(
log n

N1+γ/n

))
paral-

lel time for any constant δ > 0. By combining the algorithmic framework with hashing tech-

niques, it can also be extended to a PRAM algorithm with O(log D + log logN/n n) depth and

O(N · (log D + log logN1+γ/n n)) work (see [19]).

1.2.2 Spanning forest

A natural extension of the connectivity problem is the spanning forest (tree) problem. In the

spanning forest problem, the goal is to output a subset of edges of an input graph G such that the

output edges together with the vertices of G form a forest. For any two vertices, they are in the

same tree in the forest if and only if they are in the same connected component in G. In the rooted

spanning forest problem, in addition to the edges of the spanning forest, we are also required to

orient the edge from child to parent, so that the parent-child pairs form a rooted spanning forest of

the input graph G.

Connectivity algorithms in prior work can be naturally extended to solve the spanning forest

problem. However, it is not obvious that our connectivity algorithm can also solve the spanning

forest problem. To solve the spanning forest problem in the MPC model, additional steps are

needed. We also give the following result for the spanning forest problem.

Theorem 1.2.4 (Spanning forest in MPC, restatement of Theorem 4.4.12). For any γ ∈ [0,2] and

any constant δ ∈ (0,1), there is a randomized (γ, δ) −MPC algorithm which can output the rooted

spanning forest for any graph G = (V,E) in O(min(log D · log log n
log(N1+γ/n), log n)) expected parallel

6

time. Furthermore, the depth of the rooted spanning forest found is at most D
O

(
log

(
log n

log(N1+γ/n)

))
.

Later, we use hashing techniques to show how to implement this idea in the PRAM model. We

also give a faster PRAM algorithm for the spanning forest problem.

Theorem 1.2.5 (Spanning forest in PRAM, restatement of Theorem 4.6.30). There is a random-

ized ARBITRARY CRCW PRAM algorithm that outputs a spanning forest of the graph G with

probability at least 1 − 1/poly(N log(n)/n) in O(log(D) · log logN/n n) depth using O(N · (log(D) ·

log logN/n n)) work.

We only show how to compute a spanning forest in the PRAM model and computing a rooted

spanning forest remaining open.

1.2.3 Minimum spanning forest

In the minimum spanning forest problem, the goal is to compute a spanning forest of a weighted

graph G such that the total weight of the forest is minimized. In the PRAM model, O(log n) depth

O(N) work algorithms are known (see e.g., [20] and references therein). In [15, 16, 17], they also

give minimum spanning forest algorithms in the MPC model, which have O(1) rounds. However,

their algorithms still require that the local memory of a machine must be at least the number of

vertices and thus are not fully scalable.

We show how to extend our fully scalable MPC connectivity algorithm to the fully scalable

MPC (approximate) minimum spanning forest algorithm. The parallel time of our minimum span-

ning forest algorithms depends on DMSF which is the hop diameter of a minimum spanning forest

of G, i.e., the maximum number of edges (regardless of weights) on any simple path in the forest.

Theorem 1.2.6 (Minimum spanning forest, restatement of Theorem 4.5.3). Consider a weighted

graph G with weights w : E → Z such that ∀e ∈ E, |w(e)| ≤ poly(n). For any γ ∈ [0,2] and

any constant δ ∈ (0,1), there is a randomized (γ, δ) −MPC algorithm which outputs a minimum

spanning forest of G in O(min(log DMSF · log(log n
1+γ log n), log n) · log n

1+γ log n) expected parallel time,

7

where DMSF is the diameter (with respect to the number of edges/hops) of a minimum spanning

forest of G.

We note that we require the bounded weights condition merely to ensure that each weight is

described by one word.

Theorem 1.2.7 (Approximate minimum spanning forest, restatement of Theorem 4.5.4). Con-

sider a weighted graph G with weights w : E → Z≥0 such that ∀e ∈ E, |w(e)| ≤ poly(n). For

any ε ∈ (0,1), γ ∈ [β,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ) − MPC algo-

rithm which can output a (1+ ε) approximate minimum spanning forest for G in O(min(log DMSF ·

log(log n
log(N1+γ/(ε−1n log n))), log n)) expected parallel time, where β = Θ(log(ε−1 log n)/log n),and DMSF

is the diameter (with respect to the number of edges/hops) of a minimum spanning forest of G.

1.2.4 2-Edge connectivity

In the 2-edge connectivity problem, the goal is to output all bridges of the input graph G. A

bridge in G is an edge whose removal increases the number of connected components of G. In

the PRAM model, O(log n) depth Õ(N) work algorithms are known (see e.g., [21]). This PRAM

algorithm implies a (0, δ)-MPC algorithm with O(log n) parallel time for any constant δ ∈ (0,1) (by

simulation [9]). There is an another MPC algorithm for 2-edge connectivity in O(1) rounds [22].

However, the algorithm requires that the local memory of each machine is at least the number of

vertices. Thus, the algorithm is not fully scalable.

We show a faster and fully scalable 2-edge connectivity algorithm in the (γ, δ)-MPC model for

any constant δ > 0 using the same parallel time as our connectivity algorithm.

Theorem 1.2.8 (2-Edge connectivity in MPC, restatement of Theorem 5.5.6). For any γ ∈ [0,2]

and any constant δ ∈ (0,1), there is a randomized (γ, δ)-MPC algorithm which outputs all the

bridges of the graph G in O
(
log D · log log n

log(N1+γ/n)

)
expected parallel time.

8

1.2.5 Biconnectivity

Any two distinct edges e, e′ of G are in the same biconnected component (block) of G if and

only if there is a simple cycle which contains both e, e′. If we define a relation R such that eRe′

if and only if e = e′ or e, e′ are contained by a simple cycle, then R is a equivalence relation [23].

Thus, a biconnected component is an induced graph of an equivalence class of R. In the biconnec-

tivity problem, the goal to find all biconnected components (blocks) of the input graph G. Since the

biconnected components of G define a partition on E , we just need to color each edge, i.e., at the

end of the computation, ∀e ∈ E , there is a unique tuple (e, c) stored on an output machine, where

c is called the color of e, such that the edges e1, e2 are in the same biconnected components if and

only if they have the same color. As the same as 2-edge connectivity, O(log n) depth Õ(N) work

PRAM algorithms for biconnectivity are known (see e.g. [21]). [22] can also compute biconnected

components in O(1) MPC rounds. But as discussed previously, the algorithm requires the local

memory of each machine to be at least the number of vertices, and thus the algorithm is not fully

scalable.

We give faster, fully scalable algorithms for the the biconnectivity problem by parameterizing

the parallel running time as a function of the diameter D and the bi-diameter D′ of the graph G.

The definition of bi-diameter is a natural generalization of the definition of diameter. If vertices u, v

are in the same biconnected component, then the cycle length of (u, v) is defined as the minimum

length of a simple cycle which contains both u and v. The bi-diameter D′ of G is the largest cycle

length over all the vertex pairs (u, v) where both u and v are in the same biconnected component.

Theorem 1.2.9 (Biconnectivity in MPC, restatement of Theorem 5.5.7). For any γ ∈ [0,2] and any

constant δ ∈ (0,1), there is a randomized (γ, δ)-MPC algorithm which outputs all the biconnected

components of the graph G in O
(
log D · log2 log n

log(N1+γ/n) + log D′ · log log n
log(N1+γ/n)

)
expected parallel

time.

The worst case is when the input graph is sparse and the total space available is linear in the

input size, i.e., N = n + m = O(n) and γ = 0. In this case, the parallel running time of our

9

algorithm is O(log D · log2 log n + log D′ · log log n). If the graph is slightly denser (m = n1+c for

some constant c > 0), or the total space is slightly larger (γ > 0 is a constant), then we obtain

O(log D + log D′) time.

A cut vertex (articulation point) in the graph G is a vertex whose removal increases the num-

ber of connected components of G. Since a vertex v is a cut vertex if and only if there are two

edges e1, e2 which share the endpoint v and e1, e2 are not in the same biconnected component, our

algorithm can also find all the cut vertices of G.

Furthermore, we show that our biconnectivity algorithm can be further extended to find an

open ear decomposition. Suppose G is a biconnected graph, i.e., G has only one biconnected

component. Then an open ear decomposition is a partition E1,E2, · · · ,Es of the edge set E such

that E1 is a set of edges of a simple cycle, and each of E2,E3, · · · ,Es is a set of edges of a simple

path. Furthermore, the internal vertices on the path of Ei do not appear in E1,E2, · · · ,Ei−1, and the

two end vertices of the path of Ei are distinct.

Theorem 1.2.10 (Open ear decomposition in MPC, restatement of Theorem 5.7.6). For any γ ∈

[0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ)-MPC algorithm which outputs

an open ear decomposition of G in O
(
log D · log2 log n

log(N1+γ/n) + log D′ · log log n
log(N1+γ/n)

)
expected

parallel time.

1.2.6 Shortest path and uncapacitated minimum cost flow

Uncapacitated minimum cost flow and shortest path are two more difficult problems than con-

nectivity since any feasible s-t flow or any s-t path is a certificate that s and t are in the same

connected component. Even in the classic PRAM model, previous algorithms for these prob-

lems are far from attaining the efficiency we would like to spend. In the uncapacitated mini-

mum cost flow problem, each vertex u ∈ V has a demand b(u) ∈ R satisfying
∑

u∈V b(u) = 0,

the goal is to determine the flow f (x, y) for each edge {x, y} ∈ E such that f (x, y) = − f (y, x),

∀u ∈ V,
∑
{x,u}∈E f (x,u) = b(u), and the total flow cost

∑
{x,y}∈E | f (x, y)| · w(x, y) is minimized.

Single source shortest path (SSSP) is one of the most fundamental problems in computer science,

10

and it is also a special case of uncapacitated minimum cost flow. Given a source vertex s ∈ V , if

we set demand b(u) ≥ 0 for all u , s ∈ V and b(s) = −
∑

u,s∈V b(u), then the optimal cost of the

flow is exactly
∑

u∈V\{s} b(u) · distG(s,u). Thus, the flow routes on the shortest path tree is the opti-

mal flow. Standard sequential single source shortest path algorithms with (nearly) optimal running

time have been known for several decades [24, 25, 26]. In contrast, parallelizing these algorithms

has been a challenge. The exact shortest paths can be computed by the standard path-doubling

(Floyd-Warshall) algorithm in poly(log n) depth using O(n3) total work, for an n-node m-edge

graph. This result has been improved in a long line of work [27, 28, 29, 30, 31, 32, 33]. Neverthe-

less, the state-of-the-art algorithms have either Ω(n2.1) work or Ω(n0.1) depth. In order to achieve

algorithms with better bounds on work and depth, researchers have turned to approximation al-

gorithms. Building on the idea of hopsets [34], a series of papers, including [35, 34, 36, 37, 38]

give (1 + ε)-approximation algorithms. Yet again, every prior algorithm with m poly(log n) work

has at least Ω(nρ) depth, and the ones with poly(log n) depth do Ω(mnρ) work, where ρ > 0 is an

arbitrary small constant. In particular, none of the prior algorithms achieve poly(log n) depth and

m poly(log n) work simultaneously. In fact, there was no known parallel algorithm with poly(log n)

parallel time and m poly(log n) work that approximates the shortest path even up to a poly(log n)

factor. We develop a parallel (1 + ε)-approximate shortest path algorithm with poly(log n) depth

and m poly(log n) work.

Theorem 1.2.11 (Parallel (1 + ε)-approximate single source shortest path tree and potentials, re-

statement of Theorem 6.4.46). Given a graph G = (V,E,w), a vertex s and an error parameter

ε ∈ (0,0.5), there is a PRAM algorithm which outputs an approximate shortest path tree T and

distance labels {d(u) | u ∈ V} in ε−2 poly log(n) parallel time using expected Õ(ε−3m) work. With

probability at least 0.99, the following properties hold:

1. ∀u ∈ V,distT (s,u) ≤ (1 + ε) distG(s,u).

2. ∀u ∈ V, d(u) ≥ (1 − ε) distG(s,u).

3. ∀u, v ∈ V, |d(u) − d(v)| ≤ distG(u, v).

11

Although we present our parallel algorithms in the PRAM model, they can also be implemented

in the MPC model. By applying the simulation methods [1, 9], our PRAM algorithm can be

directly simulated in MPC. The obtained MPC algorithm has poly(log n) rounds and only needs

m · poly(log n) total space. Furthermore, it is also fully scalable, i.e., the memory size per machine

can be allowed to be mδ for any constant δ ∈ (0,1). To the best of our knowledge, this is the first

MPC algorithm which computes (1 + ε)-approximate shortest path using poly(log n) rounds and

m poly(log n) total space when the memory of each machine is upper bounded by n1−Ω(1). Previous

work on shortest path in the MPC model include [39] when the memory size per machine is o(n),

and simulations of shortest path algorithms from the Congested Clique model [40, 41, 42, 43, 44,

45] when the memory size per machine is Ω(n) [17].

As part of obtaining the parallel SSSP algorithm, we also develop a parallel for the uncapaci-

tated min-cost flow problem.

Theorem 1.2.12 (Parallel uncapacitated minimum cost flow, restatement of Theorem 6.4.13).

Given a graph G = (V,E,w), a demand vector b ∈ Rn and an error parameter ε ∈ (0,0.5),

there is a PRAM algorithm which outputs a (1 + ε)-approximate solution to the uncapacitated

minimum cost flow problem with probability at least 0.99 in ε−2 poly log(n) parallel time using

Õ(ε−2m) expected work.

The prior state-of-the-art sequential algorithm solves the uncapacitated minimum cost flow

problem in m · 2O(
√

log n) time [46]. Hence, our parallel uncapacitated min-cost flow algorithm also

improves this previously best-known running time. In the MPC model, [43] implies an algorithm

using O(log(n)) rounds and Õ(N) total space in the system. However, it requires that the local

memory size of each machine to be at least the number of vertices and thus it is not fully scalable. In

contrast, by applying the simulation methods [1, 9], our PRAM algorithm can be directly simulated

in MPC. The obtained MPC algorithm has poly(log n) rounds and only needs m · poly(log n) total

space. It is also fully scalable.

12

1.2.7 Hardness results

Although we mainly focus on the design of algorithms, we also show some hardness results.

Conditional hardness for directed reachability. We consider the reachability question in di-

rected graphs, for which we show similar to the above results are unlikely. In particular, we show

that if there is a fully scalable multi-query directed reachability (0, δ) −MPC algorithm with no(1)

parallel time and polynomial local running time, then we can compute Boolean Matrix Multi-

plication (see Section 7.1 for a formal definition of the problem) in n2+ε+o(1) time for arbitrarily

small constant ε > 0. We note that the equivalent problem for undirected graphs can be solved in

O(log D log log n) parallel time via Theorem 4.4.4.

Theorem 1.2.13 (Directed Reachability vs. Boolean Matrix Multiplication, restatement of The-

orem 7.1.1). If there is a polynomial local running time fully scalable (γ, δ) − MPC algorithm

which can answer |V | + |E | pairs of reachability queries simultaneously for any directed graph

G = (V,E) in O(|V |α) parallel time, then there is a sequential algorithm which can compute the

multiplication of two n × n Boolean matrices in O(n2 · n2γ+α+ε) time, where ε > 0 is a constant

which can be arbitrarily small.

Conditional hardness for biconnectivity. A conjectured hardness for the connectivity problem

is the one cycle vs. two cycles conjecture: for any γ ≥ 0 and any constant δ ∈ (0,1), any (γ, δ)-

MPC algorithm requires Ω(log n) parallel time to determine whether the input n-vertex graph is a

single cycle or contains two disjoint length n/2 cycles. This conjectured hardness result is widely

used in the MPC literature [1, 2, 47, 48, 49]. Under this conjecture, we show thatΩ(log D′) parallel

time is necessary for the biconnectivity problem, even when D = O(1), i.e., the diameter of the

graph is a constant.

Theorem 1.2.14 (Hardness of biconnectivity in MPC, restatement of Theorem 7.3.2). For any

γ ≥ 0 and any constant δ ∈ (0,1), unless there is a (γ, δ)-MPC algorithm which can distinguish

the following two instances: 1) a single cycle with n vertices, 2) two disjoint cycles each contains

13

n/2 vertices, in o(log n) parallel time, any (γ, δ)-MPC algorithm requires Ω(log D′) parallel time

for testing whether a graph G with a constant diameter is biconnected.

Unconditional hardness for connectivity in CREW PRAM. We consider the connectivity

problem in the Concurrent Read Exclusive Write PRAM model, i.e., the event that a shared mem-

ory cell is accessed by two processors at the same time is not allowed. By reduction from the OR

of n bits, we show following two lower bounds for connectivity in CREW PRAM model.

Theorem 1.2.15 (Restatement of Theorem 7.5.3). Any deterministic CREW PRAM algorithm

which solves connectivity for an n-vertex graph with diameter at most 2 needs Ω(log n) parallel

time even when the number of processors and the number of shared memory cells are unlimited.

Theorem 1.2.16 (Restatement of Theorem 7.5.4). Any randomized CREW PRAM algorithm which

uses O(n) processors to solve connectivity for an n-vertex graph with diameter 2 with successful

probability at least 2/3 needs Ω(log log n) parallel time.

1.3 New primitives for tackling graph problems

In this section, we briefly introduce the new techniques which are used to obtain the results

shown in the previous section.

1.3.1 Truncated broadcasting and double-exponential speed problem size reduction

Two main techniques developed for our connectivity and spanning forest are truncated broad-

casting (see Section 3.1) and double-exponential speed problem size reduction (see Section 3.2).

Later in Section 4.6, we show how to use a hashing technique to implement truncated broadcasting.

Double exponential speed problem size reduction: This is a general technique which solves a

problem in O(log log n) iterations using small space. To be more precise, for any problem char-

acterized by a size parameter n, if there is a subroutine which uses total space Θ(m) to reduce the

problem size such that the reduced problem size is n/k for k = (m/n)Ω(1), then we can solve the

problem in O(m) total space by iteratively calling the subroutine O(log log n) times. The proof is

14

sketched as follows. When the problem size is O(1), we can solve the problem easily. Let ni be the

problem size after the i-th iteration of calling the subroutine. Suppose the subroutine uses Θ(m)

space to reduce the problem size to at most ni/ki for ki = (m/ni)
c, c = Ω(1). Then, after repeating

the subroutine i times, the problem size is ni ≤ ni−1/(m/ni−1)
c ≤ n · (n/m)(1+c)i−1. Thus, after

O(log1+c logm/n n) iterations, the problem size will be reduced to O(1).

Truncated broadcasting: This technique is a rediscovery of a technique proposed by [31]. We

show a procedure to compute a set of close vertices for each vertex using small total space budget

and small number of iterations. More precisely, given a parameter b, we can use Õ(|E | + |V | · b2)

total space and i rounds to compute either all vertices within 2i hops for each vertex or all b-

closest vertices for each vertex. The high level idea is by truncated doubling (broadcasting). At

the beginning each vertex maintains a list containing its direct neighbors. If the size of the list is

already at least b, then it only stores b arbitrary vertices in the list. In each iteration, each vertex

v expends its list by adding vertices from the list of u into the list of v for each u in the list of v.

If the size of the list of v is larger than b, then it only keeps b vertices in the list and drops other

vertices. A simplified description of the algorithm is shown below:

1. For each vertex v ∈ V , initialize a list L(0)(v) containing b arbitrary neighbors (including v

itself) of v. For u ∈ L(0)(v), initialize dist(1)(v,u) ← 1. Let t be the number of iterations.

2. For i = 1→ t:

(a) For any two vertices v,u, (conceptually) initialize dist(2
i)(v,u) ← ∞.

(b) Consider each vertex v. For each vertex x ∈ L(i−1)(v) and each vertex u ∈ L(i−1)(x),

if dist(2
i−1)(v, x) + dist(2

i−1)(x,u) < dist(2
i)(v,u), update dist(2

i)(v,u) ← dist(2
i−1)(v, x) +

dist(2
i−1)(x,u).

(c) For each vertex v, add u to list L(i)(v) if dist(2
i)(v,u) is one of the b smallest values

among dist(2
i)(v, x) for x ∈ V . If there is a tie, take the vertex with a smaller label.

3. Output L(t)(v) for each vertex v and output dist(2
t)(v,u) for each u ∈ L(t)(v).

15

Hashing based truncated broadcasting: We show that truncated broadcasting procedure can

be simply implemented using random hashing techniques. For a given parameter b, we can use

Õ(|E | + |V | · bc) total space and i rounds to compute either all vertices within 2i hops for each

vertex or all b-closest vertices for each vertex, where c > 2 is a constant. Although we have a

blow-up in the exponent of b, it is sufficient to given many efficient PRAM algorithms.

1.3.2 Recursive DFS sequence construction via leaf sampling

The DFS sequence of a tree is a variant of the Euler tour representation of the tree. It is a crucial

building block in the 2-edge connectivity algorithm and the biconnectivity algorithm. For an n-

vertex tree T , [50] gives an O(log n) parallel time PRAM algorithm for the Euler tour representation

of T . However, since their construction method will destroy the tree structure, it is hard to get a

faster MPC algorithm based on this framework.

We give a new framework for constructing DFS sequence (see Section 5.3 and Section 5.2

for more details). First of all, we compute a rooted tree, reducing the problem to computing a

DFS sequence for a rooted tree. The idea is motivated by TeraSort [51]. If the size of the tree is

small enough, we can easily generate its DFS sequence. Otherwise, our algorithm can be roughly

described as follows.

1. Sample leaves l1, l2, · · · , ls uniformly at random.

2. Determine the order of sampled leaves in the DFS sequence.

3. Compute the DFS sequence Ã of the tree which only consists of sampled leaves and their ancestors.

4. Recursively compute the DFS sequence Av of every root-v subtree which does not contain any sam-

pled leaf.

5. Merge Ã and all the Av .

Notice that the number of leaves in each subtree can be at most n/s in the fourth step. The number

of levels of the recursion can be much smaller than log(n) if we set s = ω(1).

16

Theorem 1.3.1 (Restatement of Theorem 5.3.9). For any γ ∈ [0,2] and any constant δ ∈ (0,1),

there is a randomized (γ, δ) − MPC algorithm (Algorithm 19) which can output a Depth-First-

Search sequence for any tree graph G = (V,E) in O(min(log D · log(1/γ′), log n)) parallel time,

where n = |V |, D is the diameter of G, and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success probability is at

least 0.98. In addition, if the algorithm fails, then it will return FAIL.

1.3.3 New tools for shortest path and comparison to prior approaches

To obtain our shortest path and uncapacitated minimum cost flow algorithms, we develop new

tools, which we present next and which may be of independent interest. It is most natural to present

these results in the context of two related approaches to parallel shortest path algorithms — hopsets

and continuous optimization techniques.

We note that some of our results have new consequences beyond parallel algorithms, including

faster sequential algorithms and constructions where none were previously known.

Prior approach — hopsets: One iteration of Bellman-Ford can be implemented efficiently in

parallel, and therefore, for graphs in which an approximate shortest path has a small number of

hops (edges) we already have an efficient algorithm. Motivated by this insight, researchers have

proposed adding edges to a graph in order to make an approximate shortest path with a small

number of edges between every pair of vertices. Formally, for a given graph G = (V,E,w) with

weights w : E → R≥0, a hopset is an edge-set H with weights wH : H → R≥0. Let G̃ be the union

graph (V,E ∪ H,w ∪ wH). We define dist(h)
G̃
(u, v), the h-hop distance in G̃, to be the length of the

shortest path between u, v ∈ V which uses at most h hops (edges) in G̃. Then H is an (h, ε)-hopset

of G if ∀u, v ∈ V , dist(h)
G̃
(u, v) is always a (1 + ε)-approximation to the shortest distance between

u and v in the graph G. There is a three-way trade-off between h, ε , and |H |, which was studied

in [34, 52, 37, 38, 53], leading to some of the aforementioned algorithms.

Surprisingly, a hard barrier arose: [54] showed that the size of H must be Ω(n1+ρ) for any

h ≤ poly(log n), ε < 1
log n and some constant ρ > 0. Thus, it is impossible to directly apply hopsets

to compute a (1+ ε)-approximate shortest path in poly(log n
ε) parallel time using m poly(log n

ε) work

17

for sparse graphs G, when |E | = O(n).

Low Hop Emulator: To bypass this hardness, we introduce a new notion — low hop emulator

— which has a weaker approximation guarantee than hopsets, but has stronger guarantees in other

ways (see Section 6.2 for more details). A low hop emulator G′ = (V,E′,w′) of G is a sparse

graph with n poly(log n) edges satisfying two properties. First, the distance between every pair of

vertices in G′ is a poly(log n) approximation to the distance in G. The second property is that G′

has a low hop diameter, i.e., a shortest path between every pair of two vertices in G′ only contains

O(log log n) number of hops (edges).

Another notion related to low hop emulator is spanner. Although spanner can also preserve

pairwise distances approximately, there are two major differences between a spanner and a low

hop emulator. Firstly, the edge set of a spanner is a subset of edges of the original graph while the

edges of a low hop emulator may not be in the original graph. Secondly, the number of edges on

some shortest paths in a spanner may be much larger than poly(log n) while the number of edges

on any shortest path in a low hop emulator can be at most O(log log n).

We give an efficient parallel sparse low hop emulator construction algorithm. To the best of

our knowledge, it was not even clear whether sparse low hop emulators exist, and thus no previous

algorithm was known even in the sequential setting.

Theorem 1.3.2 (Low hop emulator, restatement of Theorem 6.4.3). For any k ≥ 1, any graph G

admits a low hop emulator G′, with expected size of Õ
(
n1+ 1

k

)
,satisfying:

∀u, v ∈ V,distG(u, v) ≤ distG′(u, v) ≤ poly(k) · distG(u, v),

and with the hop diameter at most O(log k). Furthermore, there is a PRAM algorithm computing

the emulator G′ in poly log(n) parallel time using Õ(m + n1+ 2
k) expected work.

Notice that, setting k = log n, we can compute a low hop emulator with expected size Õ(n) and

hop diameter O(log log n) in poly log(n) parallel time using Õ(m) expected work. The approxima-

tion ratio in this case is poly log(n).

18

We now highlight two main features that make a low hop emulator stronger than hopsets.

Firstly, the low hop emulator can be computed in poly(log n) parallel time using m poly(log n)

work while the same guarantees cannot be simultaneously achieved by hopsets. Secondly, the

O(log log n)-hop distances in low hop emulator G′ satisfy the triangle inequality while the h-hop

distances in the union graph G̃ of original graph G and the (h, ε)-hopset do not.

An immediate application of the first feature is a poly(log n)-approximate single source shortest

path (SSSP) algorithm in poly(log n) parallel time using m poly(log n) work (Corollary 6.4.5). We

remark that when we use the hop-distance to approximate the exact distance in G, we only need

to use the edges from the low hop emulator while we also need to use original edges if we use

hopsets.

The second feature is crucial for designing parallel algorithms for Bourgain’s embedding [55]

(Corollary 6.4.6), metric tree embedding [56, 57] (Corollary 6.4.8) and low diameter decomposi-

tion [58] (Corollary 6.4.7), using poly(log n) depth and m poly(log n) work. [57] introduced a no-

tion similar to low hop emulators, and it also has the second feature mentioned above. In contrast,

their emulator graph is a complete graph, and the construction is based on
(
poly(log n), 1

poly(log n)

)
-

hopsets.

Continuous optimization via compressible preconditioner: To boost the approximation ratio

of shortest paths from poly(log n) to (1 + ε), we employ continuous optimization techniques. Re-

cently, continuous optimization techniques have been successfully applied to design new efficient

algorithms for many classic combinatorial graph problems, e.g., [59, 60, 61, 62, 63, 64, 65, 46, 66,

67]. Most of them can be seen as “boosting” a coarse approximation algorithm to a more accurate

approximation algorithm. Oftentimes, to fit into a general optimization framework, the “coarse”

approximation must be for a more general problem — in our case, for the uncapacitated minimum

cost flow, also known as the transshipment problem. Following this approach, the work of [43]

develops near-optimal uncapacitated min-cost flow algorithms in the distributed and streaming set-

tings based on the gradient descent algorithm. Their algorithm can be seen as boosting a poly(log n)

approximate solver for the uncapacitated min-cost flow problem to a (1 + ε) approximate solver,

19

but with one crucial difference: it requires a poly(log n) approximate solver for the dual problem.

Hence it is not clear how to leverage their algorithm for our goal as the aforementioned techniques

do not seem applicable to the dual of uncapacitated min-cost flow.

We develop an algorithm for the uncapacitated min-cost flow problem by opening up Sher-

man’s framework [46] and combining it with new techniques. There is a fundamental challenge in

adopting Sherman’s framework, beyond implementing it in the parallel setting. Sherman’s original

algorithm solves the uncapacitated minimum cost flow problem in m · 2O(
√

log n) sequential time.

Hence, if we obtain a parallel uncapacitated min-cost flow algorithm with m poly(log n) total work,

we cannot avoid improving this best-known running time of m · 2O(
√

log n) to m poly(log n).

To handle the challenge mentioned above, we develop a novel compressible preconditioner

(see Section 6.3.2 and Section 6.3.3 for more details). By using our compressible preconditioner

inside Sherman’s framework, we improve the running time of (1 + ε)-approximate uncapacitated

min-cost flow from m · 2O(
√

log n) to m poly(log n). Furthermore, we show that such a compressible

preconditioner can be computed in poly(log n) parallel time using m poly(log n) work. This pre-

conditioner relies crucially on our low hop emulator ideas. Thus, we can solve (1+ ε)-approximate

uncapacitated minimum cost flow in poly(log n) parallel time using m poly(log n) work.

Recursive path/tree construction: While the above techniques are sufficient for estimating the

value of the shortest path, one additional challenge arises when we want to compute a (1 + ε)-

approximate shortest path. In particular, the continuous optimization framework produces an ap-

proximate shortest path flow, which is not necessary integral and, more crucially, may contain

cycles. We address this challenge by developing a novel recursive algorithm (see Section 6.4.5 and

Section 6.4.6 for more details) based on random walks, and which uses a coupling argument.

By combining our random walk based algorithm with the dual solution of the uncapacitated

minimum cost flow obtained by Sherman’s algorithm [66], we can use the framework developed

by [43] to further compute single source shortest paths.

20

1.4 Summary of techniques and algorithms

We summarize our new graph algorithmic primitives and the resulting parallel graph algo-

rithms. Figure 1.1 sketches the dependencies between our new primitives and the parallel graph

algorithms.

Truncated
Broadcasting

Double-Exponential
Speed Problem Size

Reduction

Connectivity and
Spanning Forest

Leaf Sampling

DFS Sequence
of a Tree

2-Edge/2-Vertex
Connectivity

Minimum/Bottleneck
Spanning Forest

Open Ear
Decomposition

Subemulator

Low Hop
Emulator

 -
Approximate SSSP

Metric Tree
Embedding

Low Diameter
Decomposition

Distance Oracle

Bourgain’s
Embedding

Compressible
Preconditioner

 -Approximate
Uncapacitated

Minimum Cost Flow

Recursive Path/Tree
Construction

 -Approximate
SSSP

npoly log

)1(

)1(

Figure 1.1: A summary of new primitives and parallel graph algorithms. Blue rounded rectangles
indicate new primitives. Black rectangles indicate results of parallel graph algorithms.

In the following, we give corresponding sections and theorems of algorithms shown in Fig-

ure 1.1:

• Truncated Broadcasting: Section 3.1.

• Double-Exponential Speed Problem Size Reduction: Section 3.2.

• Low Hop Emulator: Theorem 6.4.3.

• poly(log n)-Approximate Single Source Shortest Paths (SSSP): Corollary 6.4.5.

• Metric Tree Embedding: Corollary 6.4.8.

21

• Connectivity and Spanning Forest: Theorem 4.4.4, Theorem 4.4.12, Theorem 4.6.48, The-

orem 4.6.30.

• Leaf Sampling: Lemma 5.2.18, Lemma 5.3.6.

• Subemulator: Theorem 6.4.1.

• Bourgain’s Embedding: Corollary 6.4.6.

• Low Diameter Decomposition: Corollary 6.4.7.

• DFS Sequence of a Tree: Theorem 5.3.9.

• 2-Edge/2-Vertex Connectivity: Theorem 5.5.6, Theorem 5.5.7.

• Compressible Preconditioner: Section 6.3.2, Section 6.4.4.

• (1 + ε)-Approximate Uncapacitated Minimum Cost Flow: Theorem 6.4.13.

• Distance Oracle: Theorem 6.4.4.

• Open Ear Decomposition: Theorem 5.7.6.

• Minimum/Bottleneck Spanning Forest: Section 4.5.

• Recursive Path/Tree Construction: Section 6.4.5, Section 6.4.6.

• (1 + ε)-Approximate Single Source Shortest Paths (SSSP): Theorem 6.4.46.

1.5 Related papers

This thesis is related to several published papers. The connectivity and spanning forest algo-

rithms in Chapter 4 are related to [68, 19]. The DFS sequence, biconnectivity and 2-edge connec-

tivity algorithms in Chapter 5 are related to [68, 69]. The shortest path and uncapacitated minimum

cost flow algorithms in Chapter 6 are related to [70]. [68] was in FOCS 2018. [69] was in ICALP

2019. [19] was in SPAA 2020. [70] was in STOC 2020.

22

The results shown in Section 4.6.5, Section 5.6, Section 6.4.6 and Section 7.5 were not previ-

ously public.

23

Chapter 2: Preliminaries and Parallel Computing Models

2.1 Notation

We use [n] to denote the set {1,2, · · · ,n}. For a set V , 2V denotes the family of all the subsets

of V , i.e., 2V = {S | S ⊆ V}. We use log(·) to denote log2(·) and use ln(·) to denote loge(·). We use

Õ(f (n)) to denote O(f (n) · log(f (n))). We use poly(f (n)) to denote f (n)O(1). For a, b ≥ 0, α ≥ 1,

we say a is an α-approximate to b if b ≤ a ≤ α · b.

We use G = (V,E) to denote an unweighted undirected graph with vertex set V and edge set

E . We use G = (V,E,w) to denote a weighted undirected graph with vertex set V , edge set E

and weight w(e) = w(u, v) = w(v,u) = w({v,u}) for each edge e = {u, v} ∈ E . If there are

multiple edges between u and v, we take the edge with minimum edge weight w(u, v). For v ∈ V ,

let w(v, v) be 0. For two vertices u, v ∈ V , if the label of u is smaller than the label of v, then we

denote it as u < v. In some situation, we need to regard an unweighted graph G as a weighted

graph. If not otherwise specified, each edge e in G has weight w(e) = 1. Thus, all definitions

for weighted graphs also apply for unweighted graphs. We will only consider graphs with non-

negative weights. Consider a tuple p = (u0,u1,u2, · · · ,uh) ∈ V h+1. If ∀i ∈ [h], either ui = ui−1

or {ui−1,ui} ∈ E , then p is a path between u0 and uh. The number of hops of p is h, and the

length of p is defined as w(p) =
∑h

i=1 w(ui−1,ui). For an unweighted graph, the length of a path

is equal to the number of hops of the path. For u, v ∈ V, let distG(u, v) denote the length of the

shortest path between u, v, i.e., distG(u, v) = w(p∗), where the path p∗ between u, v satisfies that

∀path p between u, v, w(p∗) ≤ w(p). If there is no path between u and v, then distG(u, v) = ∞.

Similarly, dist(h)G (u, v) denotes the h-hop distance between u, v, i.e., dist(h)G (u, v) = w(p′), where

the h-hop path p′ between u, v satisfies that ∀h-hop path p between u, v, w(p′) ≤ w(p). The

diameter of G is defined as maxu,v∈V :distG(u,v)<∞ distG(u, v). The hop diameter of G is defined as

24

the minimum value of h ∈ Z≥0 such that ∀u, v ∈ V,distG(u, v) = dist(h)G (u, v). We use diam(G)

to denote the hop diameter of G. Notice that the diameter and the hop diameter are equal if G is

an unweighted graph. For S ⊆ V, v ∈ V , we define distG(v,S) = distG(S, v) = minu∈S dist(u, v).

Similarly, we define dist(h)G (v,S) = dist(h)G (S, v) = minu∈S dist(h)G (u, v). If G is clear in the context,

we use dist(·, ·) and dist(h)(·, ·) for short. If u, v are not in the same connected component in G,

then distG(u, v) = ∞. If u, v are in the same connected component in G, then distG(u, v) < ∞. For

v ∈ V, {u ∈ V | distG(u, v) < ∞} is the set of all the vertices in the same connected component as

v. (v1, v2, · · · , vk) ∈ V k is a cycle of length k − 1 if v1 = vk and ∀i ∈ [k − 1], {vi, vi+1} ∈ E . We

say a cycle (v1, v2, · · · , vk) is simple if k ≥ 4 and each vertex only appears once in the cycle except

v1 (vk). Consider two different vertices u, v ∈ V . We use cyclenG(u, v) to denote the minimum

number of edges of a simple cycle which contains both vertices u and v. If there is no simple cycle

which contains both u and v, cyclenG(u, v) = ∞. cyclenG(u,u) is defined as 0. The hop bi-diameter

of G, bi-diam(G), is defined as maxu,v∈V :cyclenG(u,v),∞ cyclenG(u, v). For undirected graph, we also

call the hop bi-diameter as bi-diameter.

Consider two weighted graphs G = (V,E,w) and G′ = (V,E′,w′). If ∀u, v ∈ V,distG(u, v) ≤

distG′(u, v) ≤ α · distG(u, v) for some α ≥ 1, then G′ is called an α-emulator of G.

For v ∈ V, ΓG(v) denotes the set of neighbors of v in G, i.e. ΓG(v) = {u ∈ V | {v,u} ∈ E}∪{v}.

Notice that we always regard v as a neighbor of v itself. For b ∈ [|V |] and vertices u, v ∈ V , if

|{x ∈ ΓG(v) | distG(x, v) < distG(u, v) ∨ (distG(x, v) = distG(u, v) ∧ x < v)}| < b, then we say u

is a b-closest neighbor (or a b-closest direct neighbor) of v in G. In particular, for any b ≥ 1, v is

always a b-closest neighbor of v itself. We define ΓG,b(v) as the set of all b-closest neighbors of v

in G.

Given r ∈ Z≥0, for v ∈ V , we define BallG(v,r) = {u ∈ V | distG(u, v) ≤ r}, and Ball◦G(v,r) =

{u ∈ V | distG(u, v) < r}. Given b ∈ [|V |], for v ∈ V , let rG,b(v) satisfy that | BallG(v,rG,b(v))| ≥ b

and | Ball◦G(v,rG,b(v))| < b. For two vertices u, v ∈ V , if u satisfies that distG(u, v) < ∞ and

|{x ∈ V | distG(x, v) < distG(u, v) ∨ (distG(x, v) = distG(u, v) ∧ x < v)}| < b, then we say u is a

b-closest vertex of v in G. Similarly, if u satisfies that dist(h)G (u, v) < ∞ and |{x ∈ V | dist(h)G (x, v) <

25

dist(h)G (u, v) ∨ (dist(h)G (x, v) = dist(h)G (u, v) ∧ x < v)}| < b, then we say u is a b-closest vertex of v

under h-hop distance in G. In particular, for any b ≥ 1, v is always a b-closest vertex of v itself.

We define BallG,b(v) as the set of all b-closest vertices to v in G. If there is no ambiguity, we

just use Ball(v,r), Ball◦(v,r), rb(v), Ballb(v), to denote BallG(v,r), Ball◦G(v,r), rG,b(v), BallG,b(v)

respectively for short.

For a vector x ∈ Rm we use ‖x‖1 to denote the `1 norm of x, i.e., ‖x‖1 =
∑m

i=1 |xi |. We use ‖x‖∞

to denote the `∞ norm of x, i.e., ‖x‖∞ = maxi∈[m] |xi |. Given a matrix A ∈ Rn×m, we use Ai, A j

and A j,i to denote the i-th column, the j-th row and the entry in the i-th column and the j-th row of

A respectively. We use ‖A‖1→1 to denote the operator `1 norm of A, i.e., ‖A‖1→1 = supx:x,0
‖Ax‖1
‖x‖1

.

A well-known fact is that ‖A‖1→1 = maxi∈[m] ‖Ai‖1. We use 1n to denote an n dimensional all-one

vector and we use 0n to denote an n dimensional all-zero vector. We use sgn(a) to denote the sign

of a, i.e., sgn(a) = 1 if a ≥ 0, and sgn(a) = −1 otherwise. We use nnz(·) to denote the number of

non-zero entries of a matrix or a vector.

2.2 The PRAM models

A parallel random-access machine (PRAM) is a shared-memory abstract machine. It consists

of a set of processors, each of which has a small private memory, and a large shared memory.

Each memory cell contains O(log n) bits where n is the size of the input. The processors run syn-

chronously. In one step, a processor can read a cell in shared memory, write to a cell in shared

memory, or do a constant amount of local computation. Based on different behaviors of con-

currently reading/writing the same shared memory cell, PRAM model has multiple variants (see

e.g. [7]): exclusive read exclusive write (EREW) PRAM, concurrent read exclusive write (CREW)

PRAM and concurrent read concurrent write (CRCW) PRAM. More precisely, a shared memory

cell can be read by only one processor at a time in the exclusive read PRAM model while it can

be read by multiple processors at a time in the concurrent read PRAM model. Similarly, a shared

memory cell can be written by only one processor at a time in the exclusive write PRAM model

while it can be written by multiple processors at a time in the concurrent write PRAM model. In

26

the CRCW PRAM model, when multiple processors write a shared memory cell at the same time,

there are different strategies to determine the final value written in the cell. Consider the case that

multiple processors write the same shared memory cell at a time. In the COMMON CRCW PRAM

model, the processors must write the same value. In the COLLISION CRCW PRAM model [71],

the cell can be an arbitrary corrupted value and will be marked as corrupted. In the ARBITRARY

CRCW PRAM model, the cell can be an arbitrary written value. In the PRIORITY CRCW PRAM

model, only the processor with the highest priority can successfully write the value. In the COM-

BINING CRCW PRAM model, the final value in the cell is a function of all written values. Some

common choices of the combing functions in the COMBINING CRCW PRAM model are MIN,

MAX, SUM and etc. It is easy to see that the later CRCW PRAM models mentioned above are

stronger than the earlier CRCW PRAM models, i.e., COMBINING CRCW PRAM model is the

strongest CRCW PRAM model while COMMON CRCW PRAM model is the weakest. Two stan-

dard measures of the efficiency of a parallel algorithm in the PRAM model are work (total time

over the processors) and depth (parallel time). According to [72, 73], if we allow poly(log n) blow-

up in the depth and work, we are able to simulate a specific PRAM algorithm in another variant of

the PRAM model. We refer readers to [74] for a survey of basic algorithms in PRAM models.

2.3 The MPC model

In this section, let us introduce the Massively Parallel Computation (MPC) model. Unlike the

PRAM model which has been studied for several decades, the MPC model was formally proposed

in the last decade [8, 1, 9, 2, 10]. Although every PRAM algorithm can be simulated in the MPC

model with the same parallel time [1, 9], many basic operations which are easy in PRAM become

non-trivial in the MPC model. We will describe the details of how to implement several basic

operations under the MPC model in this section later.

In the MPC model, we have p machines indexed from 1 to p each with memory size s words,

where n is the number of words of the input and p · s = O(n1+γ), s = Θ(nδ). Here δ ∈ (0,1) is a

constant, γ ∈ R≥0, and a word has Θ(log(s · p)) bits. Thus, the total space in the system is only

27

O(nγ) factor more than the input size n, and each machine has local memory size sublinear in n.

When 0 ≤ γ ≤ O(1/log n), the total space is just linear in the input size. The computation proceeds

in rounds. At the beginning of the computation, the input is distributed on the local memory of

Θ(n/s) input machines. Input machines and other machines are identical except that input machine

can hold a part of the input in its local memory at the beginning of the computation while each of

other machines initially holds nothing. In each round, each machine performs computation on the

data in its local memory, and sends messages to other machines (including the sender itself when

it wants to keep the data) at the end of the round. Although any two machines can communicate

directly in any round, the total size of messages (including the self-sent messages) sent or received

of a machine in a round is bounded by s, its local memory size. In the next round, each machine

only holds the received messages in its local memory. At the end of the computation, the output

is distributed on the output machines. Output machines and other machines are identical except

that output machine can hold a part of the output in its local memory at the end of the computation

while each of other machines holds nothing. We call the above model (γ, δ) −MPC model. The

model is exactly the same as the model MPC(ε) defined by [2] with ε = γ/(1 + γ − δ) and the

number of machines p = O(n1+γ−δ). Since we care more about the space used by the algorithm, we

use (γ, δ) to characterize the model, while in [2] they use parameter ε to characterize the repetition

of the data. The main time complexity measure here is the number of rounds R required to solve

the problem.

2.3.1 Basic MPC operations

Sorting. One of the most important algorithms in MPC model is sorting. The following theorem

shows that there is an efficient sorting algorithm in the MPC model.

Theorem 2.3.1 ([9, 75]). Sorting can be solved in c/δ rounds in (0, δ) − MPC model for any

constant δ ∈ (0,1), where c ≥ 0 is a universal constant. Precisely, there is an algorithm A in

(0, δ) − MPC model such that for any set S of n comparable items stored O(nδ) per machine on

input machines,A can run in c/δ rounds and leave the n items sorted on the output machines, i.e.

28

the ouput machine with smaller index holds a smaller part of O(nδ) items.

Notice that for any δ′ ≥ δ,O(1) number of machines with Θ(nδ
′

) memory can always simulate

the computation of O(nδ
′−δ) number of machines with Θ(nδ)memory. Thus, if an algorithmA can

solve a problem in (γ, δ) −MPC model in R(n) rounds, then A can be simulated in (γ′, δ′) −MPC

model still in R(n) rounds with all γ′ ≥ γ, δ′ ≥ δ.

Indexing. In the indexing problem, a set S = {x1, x2, · · · , xn} of n items are stored O(nδ) per

machine on input machines. The output is

S′ = {(x, y) | x ∈ S, y − 1 is the number of items before x}

of n pairs stored O(nδ) per machine on output machines. Here, “an item x′ ∈ S is before x ∈ S”

means that x′ is held by a input machine with a smaller index, or x′, x are stored in the same input

machine but x′ has a smaller local memory address.

Prefix sum. In the prefix sum problem, a set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} of n (item, num-

ber) pairs are stored O(nδ) per machine on input machines. The output is

S′ =
(x, y′)

���� (x, y) ∈ S, y′ − y =
∑

(x̃,̃y) is before (x,y)

ỹ

of n pairs stored O(nδ) per machine on output machines. Here, “an pair (x̃, ỹ) ∈ S is before

(x, y) ∈ S” means that (x̃, ỹ) is held by an input machine with a smaller index, or (x̃, ỹ), (x, y)

are stored in the same input machine but (x̃, ỹ) has a smaller local memory address. Notice that

indexing problem is a special case of prefix sum problem.

Theorem 2.3.2 ([9]). Indexing/prefix sum problem can be solved in c/δ rounds in (0, δ) − MPC

model for any constant δ ∈ (0,1), where c ≥ 0 is a universal constant.

Once each item has an index, it is able to reallocate them onto the machines.

29

Load balance. Sometimes, local computations of a machine may generate new data. When some

machines are not able to keep the new data generated, we need to do loading balance. Fortunately,

this operation can be done in constant number of rounds of computations.

For an arbitrary constant δ ∈ (0,1),we are able to spend constant number of rounds to reallocate

the data in (0, δ) −MPC model such that if a machine is not empty, the size of its local data is at

least nδ/k and is at most 2nδ/k where k > 1 is an arbitrary constant. The method is very simple,

we can use the algorithm mentioned in Theorem 2.3.2 to index each data item, and then send them

to the corresponding machine.

Predecessor. In the predecessor problem, a set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} of n (item,

0/1) pairs are stored O(nδ) per machine on input machines. The output machines are all input

machines. If an input (also output) machine holds a tuple (xi, yi) ∈ S at the beginning of the

computation, then at the end of the computation, that machine should still hold the tuple (xi, yi).

In addition, if an input (also output) machine holds a tuple (x,0) ∈ S at the beginning of the

computation, then at the end of the computation, that machine should hold a tuple (x, x′) such that

(x′,1) ∈ S, and (x′,1) is the last tuple occurred before (x,0). Here, “(x′,1) is before (x,0)” means

that (x′,1) is held by an input machine with a smaller index, or (x′,1), (x,0) are stored in the same

input machine but (x′,1) has a smaller local memory address.

Theorem 2.3.3 ([9]). Predecessor problem can be solved in c/δ rounds in (0, δ) −MPC model for

any constant δ ∈ (0,1), where c ≥ 0 is a universal constant.

Roughly speaking the algorithm is as the following: firstly, build a Θ(nδ) branching tree on the

machines, then follows by bottom-up stages to collect the last (xl,1) tuple in each large interval and

then follows by top-down stages to compute the predecessors of every prefix. For completeness,

we describe the algorithm for predecessor problem in the following:

Predecessor Algorithm:

• Setups:

30

– There are 2p = Θ(nδ) machines indexed from 1 to 2p each with local memory size s = Θ(nδ).

The machine with index from p + 1 to 2p are input/output machines.

– (x1, y1), · · · (xn, yn) are stored on input/output machine p + 1 to 2p, where ∀i ∈ [n], yi ∈ {0,1}.

– The goal: If an input machine holds a tuple (x, y) with y = 0, then it will create a tuple (x, x ′) at

the end of the computation, where (x ′, y′) is the last tuple with y′ = 1 stored before (x, y).

• Bottom-up stage (O(1/δ) constant rounds):

– Let d = s/10 be the branching factor.

– In the ith round, each machine j with j in the range bp/di−1c + 1 to b(2p − 1)/di−1c + 1 sends

the last (xl, yl) tuple with yl = 1 in its local memory to machine b(j − 1)/dc + 1. If machine j

does not have any tuple with yl = 1, it just sends an arbitrary tuple to machine b(j − 1)/dc + 1.

– Until the end of the computation, machine j sends itself messages to keep the data. The stage

ends when machine 1 receives messages.

• Top-down stage (O(1/δ) constant rounds):

– Let d = s/10 be the branching factor.

– In the ith round, each machine j with j in the range bdi−2c + 1 to min(di−1, p) sends to each

machine h in the range (j − 1)d + 1 to min(j · d,2p) a tuple (xl, yl) which is the last tuple with

yl = 1 appeared before machine h.

– The stage ends when machine 2p receives messages.

• The last round:

– Machine i ∈ {p + 1, · · · ,2p} scans its local memory, for each tuple (x, y) with y = 0, create a

tuple (x, x ′) where (x ′, y′) is the last tuple stored before (x, y) with y′ = 1.

2.3.2 Data organization

In this section, we introduce the method to organize the data in the system.

31

Set. Let S = {x1, x2, · · · , xm} be a set of m items, and each item xi can be described by O(1)

number of words. If x ∈ S is equivalent to that there is a unique machine which holds a pair

(“S”, x) in its local memory, then we say that S is stored in the system. Here “S” is the name of the

set S and can be described by O(1) number of words.

Let S = {S1,S2, · · · ,Sm} be a set of m sets, where ∀i ∈ [m], Si is stored in the system, and

the name “Si” of each set Si can be described by O(1) number of words. If S ∈ S is equivalent to

that there is a unique machine which holds a pair (“S”,“S”) in its local memory, then we say S is

stored in the system. Here “S” is the name of S and can be described by O(1) number of words.

Let S be a set stored in the system. If machine i has a pair (“S”, x), then we say that the

element x of S is held by the machine i. If every element of S is held by a machine with index in

{i, i + 1, · · · , j}, then we say S is stored on the machine i to the machine j.

The total space needed to store S is Θ(m).

Mapping. Let f : U → H be a mapping from a finite set U to a set H. In the following, we show

how to use a set to represent a mapping.

Definition 2.3.4 (Set representation of a mapping). Let f : U → H be a mapping from a finite

set U to a set H. Let S = {(x, y) | x ∈ U, y = f (x)}. then the set S is a set representation of the

mapping f .

Let U be a finite set where each element of U can be described by O(1) number of words. Let

S be a set representation of the mapping f : U → H. If S is stored in the system, then we say f

is stored in the system. If S is stored on the machine i to the machine j, then f is stored on the

machine i to the machine j. At any time of the system, there can be at most one set representation

S of f stored in the system. Furthermore, the name of S is “ f ” which is the same as the name of

mapping f , and can be described by O(1) number of words.

The total space needed to store f is the total space needed to store S, and thus is Θ(|U |).

32

Sequence. Let A = (a1,a2, · · · ,am) be a sequence of m elements. In the following, we show how

to use a set to represent a sequence.

Definition 2.3.5 (Set representation of a sequence). Let A = (a1,a2, · · · ,am) be a sequence of n

elements. If a set S = {(x1, y1), (x2, y2), · · · , (xm, ym)} ⊆ R × {a1,a2, · · · ,am} satisfies x1 < x2 <

· · · < xm, y1 = a1, y2 = a2, · · · , ym = am, then the set S is a set representation of the sequence A.

Furthermore, if x1 = 1, x2 = 2, · · · , xm = m, then S is a standard set representation of A.

Let A be a sequence of elements where each element can be described by O(1) number of

words. Let S be a set representation of the sequence A. If S is stored in the system, then we say

A is stored in the system. If S is stored on the machine i to the machine j, then A is stored on the

machine i to the machine j. At any time of the system, there can be at most one set representation

S of A stored in the system. Furthermore, the name of S is “A” which is the same as the name of

sequence A, and can be described by O(1) number of words.

The total space needed to store A is the total space needed to store S, and thus is Θ(m).

2.3.3 Set operations

In this section, we introduce some MPC model operations for sets.

Duplicates removing. There are n tuples stored in the machines. But there are some duplicates

of them. The goal is to remove all the duplicates. To achieve this, we can just sort all the tuples.

After sorting, if a tuple is different from its previous tuple, then we keep it. Otherwise, we remove

the tuple.

Sizes of sets. Suppose we have k sets S1,S2, · · · ,Sk stored in the system. Our goal is to get the

sizes of all the sets. We can firstly sort all the tuples such that the tuples from the same set are

consecutive. Then we can calculate the index of each tuple. Every machine can scan all the tuples

in its local memory. If x is an element of set Si and has the smallest/largest index y, then create

a pair (“boundary of ‘Si’ ”, y). Next, we sort all the created pairs. For each set Si, there are two

33

pairs (“boundary of ‘Si’ ”, y1), (“boundary of ‘Si’ ”, y2) stored on the same machine. For each pair

of tuples (“boundary of ‘Si’ ”, y1), (“boundary of ‘Si’ ”, y2) with y1 < y2, the machine can generate

a new tuple (“ f ”, (“Si”, y2− y1+1)). Finally, there will be a mapping f stored in the system, where

f (Si) = |Si |. The total number of rounds is a constant.

Copies of sets. Suppose we have k sets S1,S2, · · · ,Sk stored in the system. Let s1, s2, · · · , sk ∈

Z≥1. Suppose if a machine holds an element x ∈ Si, the machine also knows the value si. The goal

is to create sets S1,1,S1,2, · · · ,S1,s1,S2,1,S2,2, · · · ,S2,s2, · · · ,Sk,sk and make them stored in the system,

where Si,j is a copy of Si .

The idea is very simple: for an element x ∈ Si, we need to make si copies (“Si,1”, x), (“Si,2”, x),

· · · , (“Si,si”, x) of tuple (“Si”, x). But the issue is that si may be very large such that it is not able

to generate all the copies of a tuple on a single machine. For the above reason, we implement it in

three steps: firstly we compute the new “position” of each original tuple among all the copies, then

send the original tuples to their new “positions”, and finally filling the gap by generating copies

between any two adjacent original tuples. Precisely, each machine can scan its local memory, and

assign each tuple (“Si”, x) a weight si. Then we can use prefix sum algorithm (See Theorem 2.3.2)

to compute the prefix sum of each tuple (“Si”, x). The prefix sum pos(“Si”, x) of a tuple (“Si”, x)

denotes the new “position” of the last copy of this tuple when all the copies are generated. Let

n =
∑k

i=1 si · |Si |. Let machine 1 to t be t empty machines each maintains s/10 “positions”, i.e.

machine 1 has “positions” 1 to s/10, machine 2 has “positions” s/10 + 1 to 2s/10, and so on. Let

t · s/10 = Θ(n). The machine which holds tuple (“Si”, x) sends the tuple (“Si”, x) to the “position”

pos(“Si”, x)− si+1, and sends the tuple (“Si,si”, x) to the “position” pos(“Si”, x). Then each machine

i ∈ [t] scans its “positions”. If a “position” received a tuple, the machine marks that “position”

as “1”. Otherwise, the machine marks that position as “0”. Now we can apply the predecessor

algorithm (See Theorem 2.3.3) such that each empty “position” learns its predecessor tuple. If the

predecessor tuple of an empty “position” l is (“Si”, x), and the predecessor tuple is at “position”

l′, then create a tuple (“Si,l−l ′”, x) at this empty position. Thus, at the end of all the computations,

34

S1,1,S1,2, · · · ,S1,s1,S2,1,S2,2, · · · ,S2,s2, · · · ,Sk,sk are stored on the system.

Indexing elements in sets. Suppose we have k sets S1,S2, · · · ,Sk stored in the system. The goal

is to compute a mapping f such that ∀i ∈ [k], x ∈ Si, x is the f (Si, x)th element of Si.

To achieve this goal, we can sort (See Theorem 2.3.1) all the tuples such that the elements from

the same set are stored consecutively on several machines. Then we can run indexing algorithm

(See Theorem 2.3.2) to compute the global index of each tuple. Next, each machine scans its local

data. If (“Si”, x) is in the local memory, and x is the first element of Si, then the machine marks this

tuple as “1”. For other tuples in the local memory, the machine marks them as “0”. Then we can

invoke predecessor algorithm (See Theorem 2.3.3) on all the tuples. At the end of the computation,

each machine scans its all tuples. For a tuple (“Si”, x) with global index l, the machine determine

the index of x in Si based on the global index l′ of its predecessor (“Si”, x). Precisely, the machine

creates a tuple (“ f ”, ((“Si”, x), l − l′+1)) stored in the memory. Thus at the end of the computation,

the desired mapping f is stored in the system.

Set merging. Suppose we need to merge several sets S1,S2, · · · ,Sk stored on the system, i.e.

create a new set S =
⋃k

i=1 Si . To implement this operation, each machine scans its local memory.

If there is a tuple (“Si”, x) in its memory, then it creates a tuple (“S”, x). Finally, we just need to

remove all the duplicates.

Set membership. Suppose we have k sets S1,S2, · · · ,Sk stored in the system. There is an another

set Q = {(x1, y1), · · · , (xq, yq)} also stored in the system where xi is the name of a set S, and yi is

an item. The goal is to answer whether yi is in S.

To achieve this, we can firstly sort all the tuples. For tuple with form (“Si”, x), the first key is

Si, the second key is x, and the third key is −∞ which has the highest priority. For tuple with form

(“Q”, (x, y)), the first key is x, the second key is y, and the third key is ∞ which has the lowest

priority. The comparison in the sorting procedure firstly compare the first key, then the second key,

and finally the third key. After sorting, for each tuple with form (“Si”, x), we mark it as “1”. For

35

each tuple with form (“Q”, (x, y)),we mark it as “0”. Now we can apply the predecessor algorithm

(See Theorem 2.3.3). For each tuple (“Q”, (x, y)), if its predecessor is (“S”, y) where x is the

name of “S”, then we create a tuple (“ f ”, ((x, y),1)); Otherwise, we create a tuple (“ f ”, ((x, y),0)).

Thus, at the end of the computation, there is a mapping f stored on the system such that for each

(x, y) ∈ Q, if x is the name of some set Si, and y ∈ Si, then f (x, y) = 1; Otherwise f (x, y) = 0.

2.3.4 Mapping operations

In this section, we introduce some MPC model operations for mapping. The most important

operation is called Multiple queries. It can be used to simulate the simultaneous access of memory

cells in a single parallel step in PRAM.

Multiple queries. We have k sets S1,S2, · · · ,Sk stored in the system. Without loss of generality,

S1,S2, · · · ,St (t ≤ k) are sets representations of mappings (See Definition 2.3.4) f1 : U1 → H1, f2 :

U2 → H2, · · · , ft : Ut → Ht respectively. When a machine does local computation, it may need to

query some values which are in the form fi(u) for some u ∈ Ui . The following lemma shows that

we can answer all the such queries simultaneously in constant number of rounds in (0, δ) −MPC

model for all constant δ ∈ (0,1). It means that we can use constant number of rounds to simulate

concurrent read operations on a shared memory where S1, · · · ,Sk are stored in the shared memory.

Lemma 2.3.6 (Multiple queries). Let δ ∈ (0,1) be an arbitrary constant. There is a constant num-

ber of rounds algorithmA in (0, δ)−MPC model which satisfies the following properties. The input

of A contains two parts. The first part are k sets S1,S2, · · · ,Sk stored (See Section 2.3.2 for data

organization of sets) on the input machines, where S1,S2, · · · ,St (t ≤ k) are sets representations

of mappings (See Definition 2.3.4) f1 : U1 → H1, f2 : U2 → H2, · · · , ft : Ut → Ht respectively.

The second part is a set Q = {(x1, y1, z1), (x2, y2, z2), · · · , (xq, yq, zq)} stored on the input machines,

where ∀(x, y, z) ∈ Q, x is the name “ fi” of the mapping fi for some i ∈ [t], y is an element in

Ui, and z is the index of the input machine which holds the element (x, y, z) of Q. The total input

size n = |Q | +
∑k

i=1 |Si |. The output machines are all the input machines. ∀i ∈ [k], x ∈ Si, if the

36

element x of Si is held by the input (also output) machine j, then at the end of the computation,

the element x of Si should still be held by the output (also input) machine j. Let Q′ be the set

{(x, y, z,w) | ∃(x, y, z) ∈ Q,w = fi(y),where x is the name of fi}. At the end of the computation, Q′

is stored on the output (also input) machines such that ∀(x, y, z,w) ∈ Q′, the element (x, y, z,w) of

Q′ is held by the machine z.

Proof. The idea is that we can firstly use sorting (See Theorem 2.3.1) to make queries and the

corresponding values be stored consecutively in several machines. The issue remaining is that

there may be many queries queried the same position such that some queries may not be stored in

the machine which holds the corresponding value. In this case, we need to find the predecessor by

invoking the algorithm shown in Theorem 2.3.3.

The Multiple queries algorithm is shown as the following:

Multiple Queries Algorithm:

• Setups:

– There are 3p = Θ(nδ) machines indexed from 1 to 3p each with local memory size s = Θ(nδ).

– The machine with index from 2p + 1 to 3p are input/output machines.

– Sets S1,S2, · · · ,Sk,Q are stored on machine 2p + 1 to 3p. . Corresponding to Lemma 2.3.6

• The first round:

– Machine i ∈ {2p + 1, · · · ,3p} scans its local memory, and send all the tuples with form

(“ fj”, (x, y)) or (“Q”, (x, y, z)) to machine i− p,where “ fj” is the name of fj (also Sj) for j ∈ [t].

Until the end of the computation, machine i sends itself messages to keep its local data.

• Using constant number (O(1/δ)) of rounds to sort:

– Use machine 1 to 2p to sort all the tuples stored on machine p + 1 to 2p, and thus at the end

of this stage, machine p + 1 to 2p holds sorted tuples. For tuple with the form (“ fj”, (x, y)),

the first key value is “ fj”, the second key value is x and the third key value is −∞ which is the

highest priority. For tuple with form (“Q”, (x, y, z)), the first key value is x, the second key value

37

is y, and the third key value is∞ which is the lowest priority. The comparison in the sorting is:

Firstly compare the first key. If they are the same, then compare the second key. If they are still

the same, compare the third key.

• Using constant number (O(1/δ)) of rounds to find predecessors:

– Machine p + 1 to 2p scans its local memory. For a tuple in the form (“ fj”, (x, y)), the machine

marked it as “1”. For a tuple in the form (“Q”, (x, y, z)), the machine marked it as “0”.

– Machine 1 to 2p together invoke the Predecessor algorithm (Theorem 2.3.3), where the input is

on machine p + 1 to machine 2p.

• The last round:

– Machine p + 1 to 2p scans its local memory. For each tuple with form (“Q”, (x, y, z)), it sends

machine z a tuple (“Q′”, (x, y, z,w)),where x is the name of fj , and w = fj(y).

2.3.5 Sequence operations

In this section, we introduce some MPC model operations for sequence.

Sequence standardizing. Suppose there is a sequence A, and one of its set representation (see

Definition 2.3.5) S is stored in the system. The goal is to modify the set S such that S is a standard

set representation of A.

We can compute the index (see Indexing elements in sets in Section 2.3.3) of elements in S.

Then for each element (x, y) ∈ S, we can query (see Multiple queries in Section 2.3.4) the index

of (x, y) in S. Suppose the index is i, we modify the tuple (“S”, (x, y)) to (“S”, (i, y)).

Sequence duplicating. Suppose there is a sequence A = (a1,a2, · · · ,as), and one of its set

representation (see Definition 2.3.5) S is stored in the system. Furthermore, there is a mapping

f : [s] → Z≥0 which is also stored in the system. The goal is to get a set S′ stored in the system

38

such that S′ is a set representation of the sequence:

(a1,a1, · · · ,a1︸ ︷︷ ︸
f (1) times

,a2,a2, · · · ,a2︸ ︷︷ ︸
f (2) times

, · · · ,as,as, · · · ,as︸ ︷︷ ︸
f (s) times

).

Firstly, we can standardize (see the above paragraph Sequence standardizing) the set S. Then

for each tuple (“S”, (i,ai)), we create a tuple (“Si”,ai), and we can query (see Multiple queries

in Section 2.3.4) the value of f (i). Then we can copy (see Copies of sets in Section 2.3.3) set

Si f (i) times. For each tuple (“Si,j”,ai), we create a tuple (“S′”, ((i, j),ai)). Then we can compute

the index (see Indexing elements in sets in Section 2.3.3) of each element in S′. For each tuple

(“S′”, ((i, j),ai)), we can query (see Multiple queries in Section 2.3.4) the index i′ of it, and then

modify the tuple as (“S′”, (i′,ai)).

Sequence insertion. Suppose there are k + 1 sequences A = (a1,a2, · · · ,as), A1, · · · , Ak which

have sets representations (see Definition 2.3.5) S,S1, · · · ,Sk respectively and stored on the system.

There is also a mapping f : [k] → {0} ∪ [s] stored on the system where ∀i , j ∈ [k], f (i) , f (j).

The goal is to insert each sequence Ai into the sequence A, and Ai should be between the element

a f (i) and a f (i)+1.

Firstly, we can standardize (see Sequence standardizing in Section 2.3.3) S. Then we can

compute an upper bound of the total size (see Sizes of sets in Section 2.3.3) N = |S | + |S1 | +

· · · + |Sk | + 1. For each tuple (“S”, (i,ai)), we can modify it as (“S”, (i · N,ai)). For each tuple

(“Si”, (j,ai j)), we query (see Multiple queries in Section 2.3.4) the value of f (i), then create a

tuple (“S”, (f (i) · N + j,ai j)).

2.3.6 Multiple tasks

In this section, we show that if the entire computational task consists of some independent

small computational tasks, we are able to schedule the machines such that the small computational

tasks can be computed simultaneously.

39

Task and multiple tasks problem. A computational task here is running a specific algorithm on

specific input data.

There are k sets S1,S2, · · · ,Sk stored in the system. Let n =
∑k

i=1 |Si | be the total input size.

There are h independent computational tasks T1,T2, · · · ,Th. Each task Ti needs to take some sets

Si ⊆ {S1,S2, · · · ,Sk} as its input, and is running a (γi, δi) − MPC algorithm in ri rounds where

γi ∈ R≥0, constant δi ∈ (0,1). ∀i ∈ [h], let ni =
∑

S∈Si |S | be the input size of task Ti . Without

loss of generality, we can assume that the input of different tasks are disjoint. Otherwise we can

use sets copying technique (See Section 2.3.3) to generate different copies of input sets for the

tasks shared the same input set. The goal here is to use the small number of rounds to finish all

the tasks. Since we can always use sorting and indexing to extract the desired input data. The

most naive way is to compute the tasks one-by-one. This can be trivially done in r = O(
∑h

i=1 ri)

rounds in (γ, δ) −MPC model for γ = logn(h) + maxi∈[h] γi, δ = maxi∈[h] δi . Here we show how

to compute all the tasks simultaneously in r = O(maxi∈[h] ri) rounds in (γ, δ) − MPC model for

γ = logn(m) − 1, δ = maxi∈[h] δi,where m = Θ(n +
∑h

i=1 n1+γi
i).

Each machine scans its local memory. If the machine holds a tuple (“Si”, x), and Si is a part

of input of task Tj, then it creates a tuple (“W j”, (“Si”, x)). Thus, at the end of this step, there are

additional h sets W1,W2, · · · ,Wh stored in the system. Here Wi, i ∈ [h] contains all the information

of input data of task Ti . Then we can compute a mapping f such that ∀i ∈ [h], f (Wi) = |Wi | (see

Section 2.3.3). Thus, we know the input size of each task. Then each machine scans its local

memory. If the machine holds a tuple (“ f ”, (“Wi”, |Wi |)), then it creates a tuple (“Hi”, |Wi |), i.e.

a set Hi = {|Wi |}. Then for each set Hi = {|Wi |}, i ∈ [h], we can copy (see Section 2.3.3) it

si = c · |Wi |
1+γi times for a sufficiently large c to get sets Hi,1 = Hi,2 = · · · = Hi,si = {|Wi |}. Each

set Hi,j is just a placeholder of one unit working space of the task Ti . Thus, the number of copies

of the set Hi is the total space needed for the task Ti . We can sort all the tuples (“Hi,j”, |Wi |) on

machines with index in I = {2,5,8,11, · · · ,3p − 1}, where local memory s = Θ(nδ), total required

memory m = Θ(n +
∑h

i=1 n1+γi
i), and p = Θ(m/s) For each machine with index q ∈ I, the tuples on

40

that machine must be in the following form

(“Hi,j”, |Wi |), (“Hi,j+1”, |Wi |), · · · , (“Hi,si”, |Wi |), (“Hi+1,1”, |Wi+1 |), · · · , (“Hi+1,si+1”, |Wi+1 |),

(“Hi+2,1”, |Wi+2 |), · · · , (“Hi+2,si+2”, |Wi+2 |), · · · , (“Hi′,1”, |Wi′ |), · · · (“Hi′,j ′”, |Wi′ |).

Then machine q just sends all the tuples (“Hi,j”, |Wi |), (“Hi,j+1”, |Wi |), · · · , (“Hi,si”, |Wi |) to machine

q − 1, and sends all the tuples (“Hi′,1”, |Wi′ |), (“Hi′,2”, |Wi′ |), · · · (“Hi′,j ′”, |Wi′ |) to machine q + 1.

Thus, ∀i ∈ [h],

1. either all the Hi,1,Hi,2, · · · ,Hi,si are stored on consecutive machines, machine q to machine

q′, and any of machine q to machine q′ does not hold other tuples,

2. or there is a unique machine q which holds all the sets Hi,1,Hi,2, · · · ,Hi,si .

For each machine q ∈ [3p], if Hi,1 is held by machine q, then it creates a tuple (“ st ”, (“Ti”,q)).

If Hi,si is held by machine q, then it creates a tuple (“ ed ”, (“Ti”,q)). The mapping st,ed then are

stored in the system, where st(Ti) is the index of the first machine assigned to task Ti, and ed(Ti)

is the index of the last machine assigned to task Ti . Recall that Wi contains all the information of

the input data to task Ti . The remaining task is to move the input data of task Ti to the machines

with index from st(Ti) to ed(Ti). According to Section 2.3.3, we can compute a mapping f ′, such

that f ′(Wi, x) records the index of x ∈ Wi in set Wi. Now, each machine scans its local memory.

For each tuple (“W j”, (“Si”, x)), the machine needs to query the value of f ′(W j, (“Si”, x)), the value

of st(Tj) and the value of ed(Tj). By Lemma 2.3.6, these queries can be handled simultaneously

in constant number of rounds. Then the machine can send the tuple (“Si”, x) to the corresponding

machine based on the value of f ′(W j, (“Si”, x)), st(Tj), and ed(Tj). Finally, ∀i ∈ [h], since δ ≥ δi

and (ed(Ti) − st(Ti) + 1) · s = Θ(n1+γi
i), the machines with index from st(Ti) to ed(Ti) can simulate

task Ti in ri number of rounds.

41

Chapter 3: Some General Techniques

In this chapter, we will see some general techniques for designing other efficient graph algo-

rithms. In Section 3.1, the truncated broadcasting technique is introduced. In Section 3.2, we

describe the approach of double-exponential speed problem size reduction.

3.1 Truncated broadcasting

In this section, we introduce a procedure which uses a small number of iterations to explore

b-closest vertices of every vertex. This procedure was originally used in [31]. Here we re-discover

the procedure and show the relationship between the number of iterations and the hop diameter of

the graph. The detailed procedure is described in Algorithm 1.

Algorithm 1 Truncated Broadcasting
1: procedure TRUNCATEDBROADCASTING(G = (V,E,w), b)
2: For v ∈ V , initialize a list L(0)(v) containing all b-closest neighbors (including v itself) of v.
3: For v ∈ V,u ∈ L(0)(v), let dist(1)(v,u) ← w(v,u).
4: Let i ← 0.
5: for true do
6: i ← i + 1.
7: For v,u ∈ V , initialize dist(2

i)(v,u) ← ∞.
8: For each vertex v ∈ V , each vertex x ∈ L(i−1)(v) and each vertex u ∈ L(i−1)(x), if dist(2

i−1)(v, x)+
dist(2

i−1)(x,u) < dist(2
i)(v,u), update dist(2

i)(v,u) ← dist(2
i−1)(v, x) + dist(2

i−1)(x,u).
9: For v ∈ V , add u to list L(i)(v) if dist(2

i)(v,u) is one of the b smallest values among dist(2
i)(v, x)

for x ∈ V . If there is a tie, take the vertex with a smaller label.
10: If ∀v ∈ V, L(i)(v) = L(i−1)(v) and ∀u ∈ L(i)(v),dist(2

i)(u, v) = dist(2
i−1)(v,u), break the loop.

11: end for
12: t ← i.
13: Output Sv ← L(t)(v) for each v ∈ V and output dist(v,u) ← dist(2

t)(v,u) for each v ∈ V,u ∈ Sv.
14: end procedure

Lemma 3.1.1. Let G = (V,E,w) be an undirected weighted graph with weights w : E → R>0. Let

b ∈ Z≥1. Consider the procedure TRUNCATEDBROADCASTING(G, b). (Algorithm 1).

42

1. The output Sv for each vertex v ∈ V contains all b-closest vertices of v and the size |Sv | ≤ b.

2. The output dist(v,u) for each vertex v ∈ V and each u ∈ Sv satisfies dist(v,u) = distG(v,u).

3. The number of iterations t is at most min(dlog(diam(G))e, dlog(b)e) + 1.

Proof. The proof is by induction. We claim that L(i)(v) is exactly the set of all b-closest vertices

of v under 2i-hop distance. Furthermore, ∀u ∈ L(i)(v),dist(2
i)(v,u) = dist(2

i)

G (v,u).

Claim 3.1.2. ∀i ∈ {0,1, · · · , t},∀v ∈ V, L(i)(v) = {u ∈ V | |{x ∈ V | dist(2
i)

G (v, x) < dist(2
i)

G (v,u) or

dist(2
i)

G (v, x) = dist(2
i)

G (v,u) and x has a smaller label than u}| < b}, and∀u ∈ L(i)(v),dist(2
i)(v,u) =

dist(2
i)

G (v,u).

Proof. The proof is by induction. When i = 0, by the construction of L(0)(v), L(0)(v) contains all

b-closest direct neighbors of v and ∀u ∈ L(0)(v),dist(2
i)(v,u) = w(v,u) = dist(1)G (v,u). Thus, the

claim holds for i = 0. Suppose the claim holds for i − 1. Consider a vertex u which is a b-closest

vertex of v under 2i-hop distance in G. Consider a 2i-hop shortest path from v to u, by optimality,

there must exists a vertex x such that x is a b-closest vertex of v under 2i−1-hop distance in G and

u is a b-closest vertex of x under 2i−1-hop distance in G. By induction hypothesis, x ∈ L(i−1)(v),

u ∈ L(i−1)(x), dist(2
i−1)(v, x) = dist(2

i−1)
G (v, x) and dist(2

i−1)(x,u) = dist(2
i−1)

G (x,u). According to

line 8-9 of Algorithm 1, we can verify that L(i)(v) is exactly the set of all b-closest vertices of v

under 2i-hop distance and ∀u ∈ L(i)(v),dist(2
i)(v,u) = dist(2

i)

G (u, v).

Let h = min(diam(G), b). For each vertex v ∈ V and for each b-closest vertex u of v, the h-hop

distance between u and v is exact the distance between u and v. Thus, according to Claim 3.1.2,

if i > dlog he, ∀v ∈ V , we have L(i)(v) = L(i−1)(v) and ∀u ∈ L(i)(v),dist(2
i)(v,u) = dist(2

i−1)(v,u).

Therefore, the number of iterations t is at most min(dlog(diam(G))e, dlog(b)e) + 1.

Imagine that we do not break the loop at line 10 of Algorithm 1 and continue to generate

L(t+1)(v), L(t+2)(v), · · · , L(t
′)(v) for every v ∈ V where t′ = dlog(h)e + 2. According to the proof

of Claim 3.1.2, for v ∈ V, L(t
′)(v) is exactly the set of all b-closest vertices of v and for v ∈

V,u ∈ L(t
′)(v),dist(2

t ′)(v,u) = dist(2
t)

G (v,u) = distG(v,u). Since ∀v ∈ V, L(t)(v) = L(t−1)(v) and

43

∀u ∈ L(t)(v),dist(2
t)(u, v) = dist(2

t−1)(v,u), we have ∀v ∈ V, L(t)(v) = L(t+1)(v) = · · · = L(t
′)(v)

and ∀u ∈ L(t
′)(v),dist(2

t)(u, v) = dist(2
t+1)(u, v) = · · · = dist(2

t ′)(v,u). Thus, for v ∈ V,Sv = L(t)(v)

is exactly the set of all b-closest vertices of v and for v ∈ V,u ∈ Sv,dist(v,u) = dist(2
t)(v,u) =

dist(2
t)

G (v,u) = distG(v,u).

3.1.1 Implementation in parallel computing models

Now let us consider how to implement Algorithm 1 in parallel setting. Suppose that the input

graph G contains n vertices and m edges, and the parameter b ∈ [n].

PRAM. In the PRAM model, if we do not optimize the depth and work, Algorithm 1 can be

simply implemented in poly(log n) depth and Õ(m+nb2) total work. This is already shown by [31].

Lemma 3.1.3 ([31]). Given an n-vertex m-edge undirected weighted graph G = (V,E,w) and

a parameter b ∈ [n], TRUNCATEDBROADCASTING(G, b) (Algorithm 1) can be implemented in

PRAM with logO(1) n depth and Õ(nb2 + m) work.

The PRAM implementation is described as the following.

1. For v ∈ V , initialize a list L(0)(v) containing b closest neighbors (including v itself) of v. For

u ∈ L(0)(v), compute dist(1)(v,u) ← w(v,u). This step can be done using PRAM sorting in

poly(log n) depth and Õ(m + n) work. Let t ← dlog ne.

2. For i = 1→ t:

(a) For v,u ∈ V , (conceptually) initialize dist(2
i)(v,u) ← ∞.

(b) Assign b2 processors for each v ∈ V . Each processor reads a vertex x ∈ L(i−1)(v) and

then reads a vertex u ∈ L(i−1)(x). If dist(2
i−1)(v, x)+dist(2

i−1)(x,u) < dist(2
i)(v,u), update

dist(2
i)(v,u) ← dist(2

i−1)(v, x) + dist(2
i−1)(x,u).

(c) For v ∈ V , add u to list L(i)(v) if dist(2
i)(v,u) is one of the b smallest values among

dist(2
i)(v, x) for x ∈ V . If there is a tie, take the vertex with a smaller label.

3. Output L(t)(v) for each vertex v ∈ V and output dist(2
t)(v,u) for each u ∈ L(t)(v).

44

MPC. In the MPC model, we want the number of rounds to be O(min(dlog(diam(G))e, dlog(b)e)).

Thus, the detailed implementation is more involved than the PRAM implementation.

Lemma 3.1.4. Let graph G = (V,E,w),n = |V |,N = |V | + |E |, b ∈ [n] and m = Θ(Nγ) for some

arbitrary γ ∈ [0,2]. If b2 ≤ m, TRUNCATEDBROADCASTING(G, b) (Algorithm 1) can be imple-

mented in (γ, δ) −MPC model for any constant δ ∈ (0,1). Furthermore, the parallel running time

is O(t),where t ≤ min(dlog(diam(G))e, dlog(b)e)+ 1 is the number of iterations (see Lemma 3.1.1)

of TRUNCATEDBROADCASTING(G, b).

Proof. According to Section 2.3. The graph is stored in the system as the edge set E and the

weight mapping w, i.e., ∀{u, v} ∈ E , there is a unique tuple (“E′′, {u, v}) and a unique tuple

(“w′′, ({u, v},w(u, v))) stored in the machines. In the remaining of the proof, we refer readers to

Section 2.3 for all basic MPC operations. In the remaining of the proof, we will discuss how to

implement Algorithm 1 in the MPC model.

To implement line 2, we can create a tuple (“L(0)(v)”,u) for each tuple (“E”, {v,u}). We also

add (“L(0)(v)”, v) for each v ∈ V . Furthermore, we can query w(u, v) for each tuple (“L(0)(v)”,u)

(see Multiple queries). Then we can sort tuples (“L(0)(v)”,u) via w(u, v): we first compare the key

“L(0)(v)”, then compare the key w(u, v), and finally compare the key label u (see Theorem 2.3.1).

Then for each tuple (“L(0)(v)”,u) we can compute the index (see Indexing elements in sets and

Multiple queries) of u in set L(0)(v). If the index of u in set S(0)v is larger than b, then delete u from

L(0)(v), i.e. delete the tuple (“L(0)(v)”,u).

To implement line 3, for each tuple (“L(0)(v)”,u) survived, we query w(v,u) (see Multiple

queries) and create a tuple (“ dist(1) ”, ((v,u),w(v,u))).

Next, let us discuss how to implement line 8. We can compute the size of every set stored

in the system (see Sizes of sets). Then for each tuple (“L(i−1)(v)”,u), the corresponding machine

queries (see Multiple queries) the size of L(i−1)(u). For each tuple (“L(i−1)(v)”, x) we create a

tuple (“targetix”, v). Thus, v ∈ targetix means that we try to update the distance from v to vertices in

L(i−1)(x). |targetix | means that L(i−1)(x) needs to copy |targetix | times. For each tuple (“L(i−1)(x)”,u),

we query (see Multiple queries) the size (see Sizes of sets) of targetix . Then we can copy (see

45

Copies of sets) each set L(i−1)(x) |targetix | times. Then for each tuple (“targetix”, v), we can query

(see Multiple queries) the index p (see Indexing elements in sets) of v in set targetix , and then

create a tuple (“ f i”, ((“targetix”, p), v))which means that the pth element of targetix is f i(targetix, p) =

v. For each tuple (“L(i−1)(x) j”,u),we query (see Multiple queries) the value v = f i(targetix, j), and

then create a tuple (“L(i)(v)”,u). Furthermore, we also query (see Multiple queries) dist(2
i−1)(v, x)

and dist(2
i−1)(x,u), and create a tuple (“ dist(2

i) ”, ((v,u),dist(2
i−1)(v, x) + dist(2

i−1)(x,u))). We then

remove the duplicates (see Duplicates removing) of elements of for every set L(i)(v). We can use

sorting (see Theorem 2.3.1) to sort tuples (“ dist(2
i) ”, ((v,u),dist(2

i−1)(v, x) + dist(2
i−1)(x,u))) and for

each (v,u), we only keep one tuple (“ dist(2
i) ”, ((v,u),dist(2

i−1)(v, x) + dist(2
i−1)(x,u))) for x with the

minimum dist(2
i−1)(v, x) + dist(2

i−1)(x,u) and remove other tuples.

Let us consider how to implement line 9. For each tuple (“L(i)(v)”,u), we query (see Multi-

ple queries) dist(2
i)(v,u) and sort (see Theorem 2.3.1) tuples (“L(i)(v)”,u) via the queried value

dist(2
i)(v,u). For the sorting, the tuple (“L(i)(v)”,u) has smaller rank if it has smaller dist(2

i)(v,u).

When there is a tie, a tuple (“L(i)(v)”,u) with smaller label u has smaller rank. Then, we can query

(see Multiple queries) the index (see Indexing elements in sets) of u in L(i)(v). If the index is

larger than b, we remove u from L(i)(v), i.e., delete the tuple (“L(i)(v)”,u).

Finally, we discuss how to implement line 10. For each tuple (“L(i)(v)”,u), query (see Mul-

tiple queries) whether u ∈ L(i−1)(v) (see Set membership). For each tuple (“L(i−1)(v)”,u),

query (see Multiple queries) whether u ∈ L(i)(v) (see Set membership). If ∃v ∈ V such that

∃u ∈ L(i−1)(v) \ L(i)(v) or ∃u ∈ L(i)(v) \ L(i−1)(v), create a tuple (“Undone”, v). Every machine

queries (see Multiple queries) the size (see Sizes of sets) of Undone. If it is not empty, then all

machines know that they should continue the loop. Otherwise, for each tuple (“L(i)(v)”,u), query

(see Multiple queries) dist(2
i)(v,u) and dist(2

i−1)(v,u). If dist(2
i)(v,u) , dist(2

i−1)(v,u), create a tu-

ple (“Undone”, v). Every machine queries (see Multiple queries) the size (see Sizes of sets) of

Undone. If it is empty, then all machines know that they should break the loop.

In the ith iteration, we only need to maintain sets V, L(i−1)(v), L(i)(v) and mappings dist(2
i−1)

and dist(2
i). Since all the copy operation will create at most n · b2 ≤ m tuples, the total space

46

needed is Θ(m) plus the space needed to maintain sets V,E, L(i−1)(v), L(i)(v) and mappings dist(2
i−1)

and dist(2
i). According to Lemma 3.1.1, the total space needed to store all L(i−1)(v), L(i)(v) and

dist(2
i−1),dist(2

i) is at most O(n · b). Thus, the total space is at most Θ(m).

It is easy to verify that the above implementation shows that the parallel time is O(t),where t ≤

min(dlog(diam(G))e, dlog(b)e) + 1 is the number of iterations (see Lemma 3.1.1) of Algorithm 1.

3.2 Double-exponential speed problem size reduction

Double-exponential speed problem size reduction is a general technique which solves a prob-

lem in O(log log n) iterations using small computational resource. To be more precise, for any

problem characterized by a size parameter n, if there is a subroutine which uses total computa-

tional resource (e.g., space or running time) Θ(m) to reduce the problem size such that the reduced

problem size is n/k for k = (m/n)Ω(1), then we can solve the problem in O(m) total computational

resource by iteratively calling the subroutine O(log log n) times. The proof is sketched as the fol-

lowing. When the problem size is O(1), we can solve the problem easily. Let ni be the problem

size after the i-th iteration of calling the subroutine. Suppose the subroutine uses Θ(m) computa-

tional resource to reduce the problem size to at most ni/ki for ki = (m/ni)
c, c = Ω(1). Then, after

repeating calling the subroutine i times, the problem size is ni ≤ ni−1/(m/ni−1)
c ≤ n · (n/m)(1+c)i−1.

Thus, after O(log1+c logm/n n) iterations, the problem size will be reduced to O(1).

We will see concrete applications of this technique in graph connectivity, spanning forest, short-

est path algorithms in later chapters.

47

Chapter 4: Graph Connectivity and Spanning Forest

In this chapter, we will show how to use truncated broadcasting and double-exponential speed

problem size reduction techniques introduced in Chapter 3 to design graph connectivity and span-

ning forest algorithms. Our algorithms can be implemented in parallel models with small number

of rounds and small total space/work.

4.1 Overview of techniques

Graph Connectivity: A natural approach to the graph connectivity problem is via the classic

primitive of contracting to leaders: select a number of leader verteces, and contract every vertex

(or most vertices) to a leader from its connected component (this is usually implemented by label-

ing the vertex by the corresponding leader). Indeed, many previous algorithms (see e.g. [1, 76, 47])

are based on this approach. There are two general questions to address in this approach: 1) how to

choose leader vertices, and 2) how to label each vertex by its leader. For example, the algorithm

in [1] randomly chooses half of the vertices as leaders, and then contracts each non-leader vertex

to one of its neighbor leader vertex. Thus, in each round of their algorithm, the number of vertices

drops by a constant fraction. At the same time, half of the vertices are leaders, and hence their

algorithm still needs at least Ω(log n) rounds to contract all the vertices to one leader. Note that a

constant fraction of leaders is needed to ensure that there is a constant fraction of non-leader ver-

tices who are adjacent to at least one leader vertex and hence are contracted. This leader selection

method appears optimal for some graphs, e.g. path graphs.

To improve the runtime to � log n, one would have to choose a much smaller fraction of the

vertices to be leaders. Indeed, for a graph where every vertex has a large degree, say at least

d � log n, we can choose fewer leaders: namely, we can choose each vertex to be a leader with

48

probability p = Θ((log n)/d). Then the number of leaders will be about Õ(n/d), while each non-

leader vertex has at least one leader neighbor with high probability. After contracting non-leader

vertices to leader vertices, the number of remaining vertices is only a 1/d fraction of original

number of vertices.

By the above discussion, the goal would now be to modify our input graph G so that every

vertex has a uniformly large degree, without affecting the connectivity of the graph. An obvious

such modification is to add edges between pairs of vertices that are already in the same connected

component. In particular, if a vertex v learns of a large number of vertices which are in the same

connected component as v, then we can add edges between v and those vertices to increase the

degree of v. A naïve way to implement the latter is via broadcasting: each vertex v first initializes

a set Sv which contains all the neighbors of v, and then, in each round, every vertex v updates the set

Sv by adding the union of the sets Su over all neighbors u of v (old and new). This approach takes

log-diameter number of rounds, and each vertex learns all vertices which are in the same connected

component at the end of the procedure. However, in a single round, the total communication

needed may be as huge as Ω(n3) since each of n vertices may have Ω(n) neighbors, each with a set

of size Ω(n).

Since our goal of each vertex v is to learn only d vertices in the same component (not neces-

sarily the entire component), we can therefore use a “truncated” version of the above broadcasting

procedure. We can use the truncated broadcasting (Algorithm 1) technique introduced in Chap-

ter 3 to achieve this goal. At the end of truncated broadcasting procedure, each vertex v learns a

set Sv which either contains at least b vertices which are in the same connected component as v

or contains all vertices in the same connected component as v. The truncated broadcasting proce-

dure takes at most log-diameter rounds. Furthermore, the total communication needed is at most

O(n · d2).

Our full graph connectivity algorithm calls the truncated broadcasting procedure iteratively,

for values d that follow a certain “schedule”, depending on the available space. At the beginning

of the algorithm, we have an n vertex graph G with diameter D, and a total of Ω(m) space. The

49

algorithm proceeds in phases, where each phase takes O(log D) rounds of communication. In the

first phase, the starting number of vertices is n1 = n. We implement a truncated broadcasting

procedure where the target degree d is d1 = (m/n1)
1/2, using O(log D) rounds and O(m) total

space. Then we can randomly select Õ(n1/d1) leaders, and contract all the non-leader vertices to

leader vertices. At the end of the first phase, the total number of remaining vertices is at most

n2 = Õ(n1/d1) = Õ(n1.5
1 /m

0.5). In general, suppose, at the beginning of the ith phase, the number

of remaining vertices is ni . Then we use the truncated broadcasting procedure for value d set to

di = (m/ni)
1/2, thus making each vertex have degree at least di = (m/ni)

1/2 in O(log D) number

of communication rounds and O(m) total space. Then we choose Õ(ni/di) leaders, and, after

contracting non-leaders, the number ni+1 of remaining vertices is at most Õ(n1.5
i /m

0.5). Let us look

at the progress of the value di. We have that di+1 = Ω̃((m/ni+1)
1/2) = Ω̃((m1.5/n1.5

i)
1/2) = Ω̃(d1.5

i).

Thus, we are making double exponential progress on di, which implies that the total number of

phases needed is at most O(log logm/n n), and the total parallel time is thus O(log D · log logm/n n).

This is an example of application of double-exponential speed problem size reduction technique

introduced by Chapter 3.

Spanning Forest: Extending a connectivity algorithm to a spanning forest algorithm is usually

straightforward. For example, in [1], they only contract a non-leader vertex to an adjacent leader

vertex, thus their algorithm can also give a spanning forest, using the contracted edges. Here

however, extending our connectivity algorithm to a spanning forest algorithm requires several new

ideas. In our connectivity algorithm, because of the added edges, we only ensure that when a

vertex u is contracted to a vertex v, u and v must be in the same connected component; but u and

v may not be adjacent in the original graph. Thus, we need to record more information to help us

build a spanning forest.

We can represent a forest as a collection of parent pointers par(v), one for each vertex v ∈ V .

If v is a root in the forest, then we let par(v) = v. We use deppar(v) to denote the depth of v in the

forest, i.e. deppar(v) is the distance from v to its root. Let distG(u, v) denote the distance between

50

two vertices u and v in a graph G.

Recall that our connectivity algorithm uses the truncated broadcasting procedure. According

to the truncated broadcasting procedure, we know the distance from v to each vertex in Sv. Thus

we are able to compute a local shortest path tree for Sv with root v: for each vertex u ∈ Sv, find an

arbitrary vertex x ∈ Sv such that x ∈ Sv, {u, x} ∈ E and distG(v,u) = distG(v, x) + 1, and let x be

the parent of u in the local shortest path tree. Thus, we are able to find n local shortest path trees

where there is a tree with root v for each vertex v. Next, we show how to use these n local shortest

path trees to construct a forest with the roots in the forest being the leaders.

As discussed in the connectivity algorithm, if every local shortest path tree has size at least

d, we can choose each vertex as a leader with probability p = Θ((log n)/d) and then every tree

will contain at least one leader with high probability. Let L be the set of sampled leaders, and

let distG(v, L) be defined as minu∈L distG(v,u). Consider a non-leader vertex v, i.e. v ∈ V \ L.

According to the local shortest path tree for Sv, since L ∩ Sv , ∅, we can find a child u of the root

v in the local shortest path tree rooted at v such that distG(v, L) > distG(u, L); in this case we set

par(v) = u. For vertex v ∈ L, we can set par(v) = v. We can see now that pointers par denotes a

rooted forest where the roots are sampled leaders. Furthermore, since ∀v < L, (v,par(v)) is from

the local shortest path tree for Sv, we know that v and par(v) are adjacent in the original graph G.

After doing the above for all nodes v, the forest denoted by the resulting pointers par must be a

subgraph of a spanning forest of G. We then apply the standard doubling algorithm to contract

all the vertices to their leaders (roots), in O(log D) rounds. Therefore, the problem is reduced

to finding a spanning forest in the contracted graph. The number of vertices remaining in the

contracted graph is at most Õ(n/d), where d = (m/n)Θ(1). By double-exponential speed problem

size reduction technique, we can output a spanning forest in O(log D · log logm/n n) parallel time.

Although the above algorithm can output the edges of a spanning forest, it cannot output a

rooted spanning forest. To output a rooted spanning forest, we follow a top-down construction.

Suppose now we have a rooted spanning forest of the contracted graph. Since we have all the

information of how vertices were contracted, we know contracted trees in the original graph. To

51

merge these contracted trees into the rooted spanning forest of the contracted graph, we only need

to change the root of each contracted tree to a proper vertex in that tree. This changing root

operation can be implemented by the doubling algorithm via a divide-and-conquer approach.

Since the spanning forest algorithm needs O(log logm/n n) phases to contract all vertices to a

single vertex, the total parallel time to compute a rooted spanning forest is O(log D · log logm/n n).

Furthermore, the depth of the rooted spanning forest will be at most O(DO(log logm/n n)). Thus, we

can use the doubling algorithm to calculate the depth of the tree, and output this depth as an

estimator of the diameter of the input graph.

4.2 Graph connectivity

In this section, we will discuss our graph connectivity algorithm in the sequential setting. We

will see how to implement the algorithms efficiently in the parallel models in later sections.

4.2.1 Neighbor increment operation

In this section, we use truncated broadcasting procedure to increase the number of neighbors

of every vertex and preserve the connectivity at the same time. The input of the procedure is an

undirected graph G = (V,E) and a parameter m which is larger than |V |. The output is a graph

G′ = (V,E′) such that for each vertex v, either the connected component which contains v is a

clique or v has at least d(m/|V |)1/2e neighbors. Furthermore, |E′| ≤ |E | + m. We use ΓG(v) to

denote the neighbors of v in graph G, i.e. ΓG(v) = {u ∈ V | {u, v} ∈ E} ∪ {v}. Similarly, we let

ΓG′(v) be the neighbors of v in G′, i.e. ΓG′(v) = {u ∈ V | {u, v} ∈ E′} ∪ {v}. The procedure is

shown in Algorithm 2.

The following definition defines the number of iterations of Algorithm 2.

Definition 4.2.1. Given an undirected graph G = (V,E) and a parameter m ∈ Z≥0,m ≥ 4|V |, the

number of iterations of NEIGHBORINCREMENT(m,G) (Algorithm 2) is the number of iterations t

needed to run TRUNCATEDBROADCASTING(G, b) (Algorithm 1) in line 4.

In the following lemma, we characterize the properties of Algorithm 2.

52

Algorithm 2 Neighbor Increment Operation
1: procedure NEIGHBORINCREMENT(m ≥ 1,G = (V,E)) . Lemma 4.2.2.
2: Initially, n← |V |, b← d(m/n)1/2e.
3: Regard G as a weighted graph G = (V,E,w) with weights w(u, v) = 1 for every {u, v} ∈ E .
4: Run TRUNCATEDBROADCASTING(G, b), and let Sv be the output for v ∈ V . . Algorithm 1.
5: Let E ′← E ∪

⋃
v∈V {{v,u} | u ∈ Sv,u , v}.

6: Output G′ = (V,E ′).
7: end procedure

Lemma 4.2.2. Let G = (V,E) be an undirected graph, m ∈ Z≥0 which has m ≥ 4|V |. Let G′ =

(V,E′) be the output of NEIGHBORINCREMENT(m,G) (Algorithm 2). We have:

1. The number of iterations (Definition 4.2.1) of NEIGHBORINCREMENT(m,G) is at most

min(dlog(diam(G))e, dlog(m/n)e) + 1.

2. For all u, v ∈ V, distG(u, v) < ∞⇔ distG′(u, v) < ∞.

3. ∀v ∈ V, if |ΓG′(v)| < d(m/n)1/2e, then the connected component in G′ which contains v is

a clique. It also implies that ∀u, v ∈ V, if |ΓG′(v)| < d(m/n)1/2e and |ΓG′(u)| ≥ d(m/n)1/2e,

then distG′(u, v) = ∞.

4. E ⊆ E′, |E′| ≤ |E | + m.

Proof. Consider property 1. According to Lemma 3.1.1, the number of iterations of TRUNCAT-

EDBROADCASTING(G, b) (Algorithm 1) in line 4 is at most min(dlog(diam(G))e, dlog(b)e) + 1.

Since b = d(m/n)1/2e, the number of iterations of NEIGHBORINCREMENT(m,G), is at most

min(dlog(diam(G))e, dlog(m/n)e) + 1.

For property 2, if u, v are in the same connected component in G, then since E ⊆ E′, u, v are

in the same connected component in G′. If u, v are in the same connected component in G′, then

{u, v} ∈ E,u ∈ Sv or v ∈ Su. If {u, v} ∈ E , u, v are in the same connected component in G.

Otherwise, according to Lemma 3.1.1, either u is a b-closest vertex of v in G or v is a b-closest

vertex of u in G. In either case, u, v are in the same connected component in G.

Consider property 3. According to Lemma 3.1.1, Sv contains all b-closest vertices of v in G.

Thus, if the number of neighbors of v in G′ is less than b, Sv must contains all vertices which are

53

in the same connected component as v in G. Therefore, if the number of neighbors of v in G′ is

less than b, the connected component in G′ which contains v must be a clique.

Now consider two vertices u, v ∈ V . Suppose the number of neighbors of v in G′ is less than

b = d(m/n)1/2e, then we have that {p ∈ V | distG(p, v) < ∞} is a clique in G′. Thus, ∀q ∈ {p ∈ V |

distG(p, v) < ∞}, we have that the number of neighbors of q in G′ is less than b. If the number of

neighbors of u in G′ is at least b, then distG′(u, v) = ∞.

For property 4, we have E ⊆ E′ and |E′| ≤ |E | +
∑

v∈V |Sv | ≤ |E | + n · d(m/n)1/2e ≤ |E | + m

where the second inequality follows from Lemma 3.1.1 and the choice of b.

4.2.2 Random leader selection

Given an undirected graph G = (V,E), to design a connected component algorithm, a natural

way is constantly contracting the vertices in the same component. One way to do the contraction is

that we randomly choose some vertices as leaders, then contract non-leader vertices to the neighbor

leader vertices.

In this section, we show that if ∀v ∈ V, the number of neighbors of v is large enough, then we

can just sample a small number of leaders such that for each non-leader vertex v ∈ V, there is at

least one neighbor of v which is chosen as a leader. A more generalized statement is stated in the

following lemma.

Lemma 4.2.3. Let V be a vertex set with n vertices. Let 0 < γ ≤ n, δ ∈ (0,1). For each v ∈ V, let

Sv be an arbitrary subset of V satisfying that the size of Sv is at least γ. Let l : V → {0,1} be a

random hash function such that ∀v ∈ V, l(v) are i.i.d. Bernoulli random variables, i.e.

l(v) =

1 with probability p;

0 otherwise.

If p ≥ min((10 log(2n/δ))/γ,1), then, with probability at least 1 − δ,

1.
∑

v∈V l(v) ≤ 3
2 pn;

54

2. ∀v ∈ V,∃u ∈ Sv such that l(u) = 1.

Proof. For a fixed vertex v ∈ V,we have

Pr

(∑
u∈Sv

(E(l(u)) − l(u)) >
1
2

∑
u∈Sv

E(l(u))

)

≤ exp
©«−

1
2

(
1
2
∑

u∈Sv E(l(u))
)2∑

u∈Sv Var(l(u)) + 1
3 · 1 ·

1
2
∑

u∈Sv E(l(u))

ª®®¬
≤ exp

©«−
1
2

(
1
2
∑

u∈Sv E(l(u))
)2∑

u∈Sv E(l(u)) + 1
3 · 1 ·

1
2
∑

u∈Sv E(l(u))

ª®®¬
= exp

(
−

3
28
·
∑
u∈Sv

E(l(u))

)
= exp

(
−

3
28
· p · |Sv |

)
≤

δ

2n
,

where the first inequality follows from Bernstein inequality and |l(u) − E(l(u))| ≤ 1, the second

inequality follows from Var(l(u)) ≤ E(l2(u)) = E(l(u)), and the last inequality follows from

|Sv | ≥ γ, and p ≥ min((10 log(2n/δ))/γ,1). Since 1
2
∑

u∈Sv E(l(u)) ≥ 1, with probability at least

1 − δ/(2n),
∑

u∈Sv l(v) ≥ 1. By taking union bound over all Sv, with probability at least 1 − δ/2,

∀v ∈ V,∃u ∈ Sv, l(u) = 1.

Similarly, we have

Pr

(∑
u∈V

(l(u) − E(l(u))) >
1
2

∑
u∈V

E(l(u))

)

≤ exp
©«−

1
2

(
1
2
∑

u∈V E(l(u))
)2∑

u∈V Var(l(u)) + 1
3 · 1 ·

1
2
∑

u∈V E(l(u))

ª®®¬
≤ exp

©«−
1
2

(
1
2
∑

u∈V E(l(u))
)2∑

u∈V E(l(u)) + 1
3 · 1 ·

1
2
∑

u∈V E(l(u))

ª®®¬
= exp

(
−

3
28
·
∑
u∈V

E(l(u))

)
= exp

(
−

3
28
· p · |V |

)
≤

δ

2n
≤
δ

2
.

Since
∑

u∈V E(l(u)) = p · n,with probability at least 1 − δ/2,
∑

u∈V l(u) ≤ 1.5pn.

55

By taking union bound, with probability at least 1 − δ,
∑

u∈V l(u) ≤ 1.5pn and ∀v ∈ V,∃u ∈

Sv, l(u) = 1.

If the number of neighbors of each vertex is not large, then we can still have a constant fraction

of vertices which can contract to a leader.

Lemma 4.2.4. Let V be a vertex set with n vertices. For each v ∈ V , let Sv be an arbitrary subset

of V \ {v} with size at least 2. Let l : V → {0,1} be a random hash function such that ∀v ∈ V, l(v)

are i.i.d. Bernoulli random variables, i.e.

l(v) =

1 with probability 1

2 ;

0 otherwise.

Let L = {v ∈ V | l(v) = 1} ∪ {v ∈ V | ∀u ∈ Sv, l(u) = 0}. Then E(L) ≤ 0.75n.

Proof. For v ∈ V, Pr(l(v) = 1) = 1
2 . Let u ∈ Sv \ {v}. Then Pr(∀x ∈ Sv, l(x) = 0) ≤ Pr(l(v) =

0, l(u) = 0) = 0.25. E(|L |) =
∑

v∈V Pr(v ∈ L) ≤ 0.75n.

4.2.3 Tree contraction operation

In this section, we introduce the contraction operation. Firstly, let us introduce the concept of

the parent pointers which can define a rooted forest.

Definition 4.2.5 (Parent pointers). Given a set of vertices V, let par : V → V satisfy that ∀v ∈

V,∃i > 0 such that par(i)(v) = par(i+1)(v),where∀v ∈ V, j > 0,par(j)(v) is defined as par(par(j−1)(v)),

and par(0)(v) = v. Then, we call such par a set of parent pointers on V . For v ∈ V, if par(v) = v,

then we say v is a root of par . par can have more than one root. The depth of v ∈ V, deppar(v)

is the smallest i ∈ Z≥0 such that par(i)(v) = par(i+1)(v). The root of v ∈ V, par(∞)(v) is defined as

par(deppar(v))(v). The depth of par, dep(par) is defined as maxv∈V deppar(v).

It is easy to see that a set of parent pointers par on V formed a rooted forest on V . For a vertex

v ∈ V, if par(v) = v, then v is a root in the forest. Otherwise par(v) is the parent of v in the forest.

56

In the following, we define the union operation of several sets of parent pointers.

Definition 4.2.6 (Union of parent pointers). Let par1 : V1 → V1,par2 : V2 → V2, · · · ,park : Vk →

Vk be k sets of parent pointers on vertex sets V1,V2, · · · ,Vk respectively, where ∀i , j ∈ [k],Vi∩Vj =

∅. Then par = par1 ∪ par2 ∪ · · · ∪ park is a set of parent pointers on the vertex set V1 ∪V2 ∪ · · · ∪Vk

such that ∀i ∈ [k], v ∈ Vi,par(v) = pari(v).

Now we focus on the parent pointers which can preserve the connectivity of the graph.

Definition 4.2.7. Given a graph G = (V,E) and a set of parent pointers par on V, if ∀v ∈ V, we

have distG(v,par(v)) < ∞, then par is compatible with G.

It is easy to show the following fact:

Fact 4.2.8. Given a graph G = (V,E) and a set of parent pointers par which is compatible with G,

then ∀u, v ∈ V with par(∞)(u) = par(∞)(v), we have distG(u, v) < ∞.

Proof. By the definition of compatible, ∀v ∈ V,distG(v,par(v)) < ∞. By induction, ∀l ∈ Z>0, v ∈

V, we have distG(v,par(l)(v)) ≤ distG(v,par(l−1)(v)) + distG(par(l−1)(v),par(l)(v)) < ∞. Thus, for

any pair of vertices u, v ∈ V, if par(∞)(u) = par(∞)(v), then distG(u, v) ≤ distG(u,par(∞)(u)) +

distG(par(∞)(v), v) < ∞.

In this section, we describe a procedure which can be used to reduce the number of vertices.

The input of the procedure is an undirected graph G = (V,E) and a set of parent pointers par : V →

V , where par is compatible with G. The output of the procedure will be the root of each vertex in

V and an undirected graph G′ = (V ′,E′) which satisfies V ′ = {v ∈ V | par(v) = v},E′ = {{u, v} ⊆

V ′ | u , v,∃{p,q} ∈ E,par(∞)(p) = u,par(∞)(q) = v}. Notice that V ′ only contains all the roots in

the forest induced by par, and |E′| ≤ |E |.

Lemma 4.2.9. Let G = (V,E) be an undirected graph, par : V → V be a set of parent pointers

(See Definition 4.2.5). Then TREECONTRACTION(G,par) (See Algorithm 3) will output (G′,g(r))

with r ≤ dlog dep(par)e satisfies the following properties:

57

Algorithm 3 Tree Contraction Operation
1: procedure TREECONTRACTION(G = (V,E),par : V → V) . Lemma 4.2.9, Corollary 4.2.12.
2: . Output: G′ = (V ′,E ′),par(∞)(v) for all v ∈ V .
3: Initially, for each v ∈ V let g(0)(v) ← par(v). Let V ′← ∅,E ′← ∅.
4: l ← 0.
5: for ∃v ∈ V,par(g(l)(v)) , g(l)(v) do
6: l ← l + 1.
7: For each v ∈ V, compute g(l)(v) ← g(l−1)(g(l−1)(v)). . g(l) is par(2l).
8: end for
9: r ← l . . r is the number of iterations, and is used in the analysis.

10: For v ∈ V, if par(v) = v, let V ′← V ′ ∪ {v}.
11: For {u, v} ∈ E, if g(r)(u) , g(r)(v), let E ′← E ′ ∪ {{g(r)(u),g(r)(v)}}.

. ∀v ∈ V, contract v to par(∞)(v).
12: return g(r)(v) as par(∞)(v) for all v ∈ V, and G′ = (V ′,E ′).
13: end procedure

1. ∀v ∈ V, g(r)(v) = par(∞)(v).

2. V ′ = {v ∈ V | par(v) = v}.

3. E′ = {{u, v} ⊆ V ′ | u , v,∃{p,q} ∈ E,par(∞)(p) = u,par(∞)(q) = v}.

Proof. One crucial observation is the following claim.

Claim 4.2.10. ∀l ∈ {0,1, · · · ,r}, v ∈ V, we have g(l)(v) = par(2l)(v).

Proof. The proof is by induction. When l = 0, ∀v ∈ V,g(0)(v) = par(v) = par(1)(v), the claim

is true. Suppose for l − 1, we have ∀v ∈ V,g(l−1)(v) = par(2l−1)(v), then ∀v ∈ V,g(l)(v) =

g(l−1)(g(l−1)(v)) = par(2l−1)(par(2l−1)(v)) = par(2l)(v). So the claim is true.

If r > dlog dep(par)e, then r − 1 ≥ dlog dep(par)e . Due to claim 4.2.10, we have ∀v ∈

V,g(r−1)(v) = par(2r−1)(v) = par(∞)(v). Due to the condition in line 5, the loop will stop when

l ≤ r − 1 which leads to a contradiction to line 9. Thus, at the end of the algorithm, r should be at

most dlog dep(par)e .

Since we have ∀v ∈ V,par(g(r)(v)) = g(r)(v) at the end of the Algorithm 3, ∀v ∈ V,g(r)(v) must

be par(∞)(v). Then due to line 10 and line 11, we have V ′ = {v ∈ V | par(v) = v},E′ = {{u, v} ⊆

V ′ | u , v,∃{p,q} ∈ E,par(∞)(p) = u,par(∞)(q) = v}.

58

Definition 4.2.11. Let G = (V,E) be an undirected graph, par : V → V be a set of parent pointers

(See Definition 4.2.5). Then the number of iteration of TREECONTRACTION(G,par) is defined as

the value of r at the end of the procedure.

Corollary 4.2.12 (Preserved connectivity and diameter). Let G = (V,E) be an undirected graph,

par : V → V be a set of parent pointers (See Definition 4.2.5) which is compatible (See Defini-

tion 4.2.7) with G. Then at the end of the Algorithm 3, r ≤ dlog dep(par)e and the output (G′,g(r))

will satisfy the following properties:

1. diam(G′) ≤ diam(G).

2. ∀u, v ∈ V,distG(u, v) < ∞⇒ distG′(par(∞)(u),par(∞)(v)) < ∞.

3. ∀u, v ∈ V,distG(u, v) < ∞⇐ distG′(par(∞)(u),par(∞)(v)) < ∞.

Proof. By Lemma 4.2.9, we have r ≤ dlog dep(par)e, V ′ = {v ∈ V | par(v) = v} and E′ =

{{u, v} ⊆ V ′ | u , v,∃{p,q} ∈ E,par(∞)(p) = u,par(∞)(q) = v}.

For any two vertices u, v ∈ V which are in the same connected component in G, then there

should be a path u = u1 → u2 → · · · → up = v in graph G. So ∀i ∈ [p − 1], {ui,ui+1} ∈ E which

means that either par(∞)(ui) = par(∞)(ui+1) or {par(∞)(ui),par(∞)(ui+1)} ∈ E′. Thus, par(∞)(u1) →

par(∞)(u2) → · · · → par(∞)(up) is a valid path in G′, and the length of this path in G′ is at most p.

Thus, the properties 1 and 2 are true.

For any two vertices u, v ∈ V which are not in the same connected component in G, but there is

a path par(∞)(u) = u′1 → u′2 → · · · → u′p = par(∞)(v) in G′, then it means that there exists vertices

u1,1,u1,2,u2,1,u2,2, · · · ,up,1,up,2 ∈ V which satisfies

(a) ∀i ∈ [p − 1], {ui,2,ui+1,1} ∈ E,par(∞)(ui,2) = u′i,par(∞)(ui+1,1) = u′i+1.

(b) u1,1 = u,up,2 = v.

(c) ∀i ∈ [p],par(∞)(ui,1) = par(∞)(ui,2). By Fact 4.2.8, we have distG(ui,1,ui,2) < ∞.

Thus, there exists a path from u to v. This contradicts to that u, v are not in the same connected

component. Therefore, property 3 is also true.

59

4.2.4 Connectivity algorithm

In this section, we describe the algorithm for graph connectivity/connected components prob-

lem in the classic sequential computing setting. The input is an undirected graph G = (V,E), a

space/rounds trade-off parameter m, and the rounds parameter r ≤ |V |. The output is a function

col : V → V such that ∀u, v ∈ V,distG(u, v) < ∞⇔ col(u) = col(v).

The algorithm is described in Algorithm 4. The following theorem shows the correctness of

Algorithm 4.

Algorithm 4 Graph Connectivity
1: procedure CONNECTIVITY(G = (V,E),m,r) . Theorem 4.2.13, Theorem 4.2.20.
2: Output: FAIL or col : V → V .
3: n← |V |, ∀v ∈ V, h0(v) ← null.
4: G0 = (V0,E0) = G, i.e. V0 = V,E0 = E . n0 = n.
5: for i = 1→ r do
6: ∀v ∈ V, hi(v) ← null. . hi(v) is the vertex that v contracts to.
7: G′i = (V

′
i ,E

′
i) ← NEIGHBORINCREMENT(m,Gi−1). . Algorithm 2.

8: Compute V ′′i ← {v ∈ V ′i | |ΓG′i (v)| ≥ d(m/ni−1)
1/2e}.

9: Compute E ′′i ← {{u, v} ∈ Ei−1 | u, v ∈ V ′′i }.
10: G′′i = (V

′′
i ,E

′′
i). . G′′i is obtained by removing all the small components of Gi.

11: Let γi ← d(m/ni−1)
1/2e, pi ← min((30 log(n) + 100)/γi,1/2).

12: Let li : V ′′i → {0,1} be a random hash function such that ∀v ∈ V ′′i , li(v) are i.i.d. Bernoulli
random variables, and Pr(li(v) = 1) = pi.

13: Let Li ← {v ∈ V ′′i | li(v) = 1} ∪ {v ∈ V ′′i | ∀u ∈ ΓG′i (v), li(u) = 0}. . Li are leaders.
14: ∀v ∈ V ′′i with v ∈ Li, let pari(v) ← v.

15: ∀v ∈ V ′′i with v < Li, let pari(v) ← minu∈Li∩ΓG′
i
(v) u. . Non-leader finds a leader.

16: Let (Gi = (Vi,Ei),g
(r′i)

i) ← TREECONTRACTION(G′′i ,pari). . Algorithm 3.
17: ni ← |Vi |.

18: For each v ∈ V ′i \ V ′′i , let hi(v) ← minu∈ΓG′
i
(v) u. . Contract small component to one vertex.

19: For each v ∈ V ′′i \ Vi, let hi(v) ← g
(r′i)

i (v). . Contract non-leader to leader.
20: For each v ∈ V, if hi−1(v) , null, then let hi(v) ← hi−1(v).

21: end for
22: If nr , 0, return FAIL.
23: ((V̂, Ê),col) = TREECONTRACTION(G, hr). . Algorithm 3.
24: return col .
25: end procedure

Theorem 4.2.13 (Correctness of Algorithm 4). Let G = (V,E) be an undirected graph, m ≥ 4|V |,

and r ≤ |V | be the rounds parameter. If CONNECTIVITY(G,m,r) (Algorithm 4) does not output

60

FAIL, then ∀u, v ∈ V, we have distG(u, v) < ∞⇔ col(u) = col(v).

Proof. Firstly, we show that the input of line 16 is valid.

Claim 4.2.14. ∀i ∈ [r], pari is a set of parent pointers on V ′′i , (See Definition 4.2.5) and is compat-

ible (See Definition 4.2.7) with G′′i .

Proof. ∀v ∈ V ′′i , if v ∈ Li, then pari(v) = v. For v ∈ V ′′i \ Li, due to property 3 of Lemma 4.2.2,

we have pari(v) ∈ V ′′i . Since pari(v) ∈ Li, we have pari(pari(v)) = pari(v). Thus, pari : V ′′i → V ′′i

is a set of parent pointers on V ′′i . Due to property 2 of Lemma 4.2.2 and distG′i (pari(v), v) < ∞, we

know that distGi−1(pari(v), v) < ∞. Thus, distG′′i (pari(v), v) < ∞. It implies that pari is compatible

with G′′i .

The following claim shows that the number of the remaining vertices cannot increase after each

round.

Claim 4.2.15. If CONNECTIVITY(G,m,r) does not output FAIL, then ∀i ∈ [r],Vi ⊆ V ′′i ⊆ V ′i =

Vi−1.

Proof. Let i ∈ [r]. Due to Claim 4.2.14, the input of line 16 is valid. Then, we can apply property 2

of Lemma 4.2.9 to get Vi ⊆ V ′′i . By the construction of V ′′i we have V ′′i ⊆ V ′i . Since the procedure

NEIGHBORINCREMENT(m,Gi−1) (Algorithm 2) does not change the vertex set, we have V ′i =

Vi−1.

Now, we show that ∀u, v ∈ Vi,distGi (u, v) < ∞⇔ distG(u, v) < ∞.

Claim 4.2.16. If CONNECTIVITY(G,m,r) does not output FAIL, then ∀i ∈ [r],∀u, v ∈ Vi, we have

distGi (u, v) < ∞⇔ distG(u, v) < ∞.

Proof. The proof is by induction. Suppose ∀u, v ∈ Vi−1,distGi−1(u, v) < ∞ ⇔ distG(u, v) < ∞.

∀w, z ∈ Vi, according to Claim 4.2.15, w, z ∈ V ′′i . By property 2,3 of Corollary 4.2.12, and

property 2 of Lemma 4.2.9, distGi (w, z) < ∞ ⇔ distG′′i (w, z) < ∞. Due to property 2,3 of

Lemma 4.2.2, there is no edge in Ei−1 between V ′′i and V ′i \ V ′′i . According to Claim 4.2.15,

61

w, z ∈ Vi−1. Thus, distG′′i (w, z) < ∞ ⇔ distGi−1(w, z) < ∞. By induction hypothesis, we have

∀w, z ∈ Vi,distGi (w, z) < ∞⇔ distG(w, z).

The following claim states that once a vertex v ∈ V is contracted to an another vertex, it will

never be operated.

Claim 4.2.17. Suppose CONNECTIVITY(G,m,r) does not output FAIL. ∀i ∈ {0,1, · · · ,r}, v ∈ V,

we have hi(v) = null ⇔ v ∈ Vi . Furthermore, ∀v ∈ V,∃ j ∈ [r] such that h0(v) = h1(v) = · · · =

h j−1(v) = null and h j(v) = h j+1(v) = · · · = hr(v) , null,distG(v, hr(v)) < ∞.

Proof. When i = 0, ∀v ∈ V, h0(v) = null, v ∈ V0 = V . Suppose it is true that ∀v ∈ V, hi−1(v) =

null ⇔ v ∈ Vi−1. If v < Vi, according to Claim 4.2.15, there are three cases: v ∈ V ′′i \ Vi, v ∈

V ′i \ V ′′i , v < Vi−1. In the first case, due to line 19, hi(v) , null. In the second case, due to line 18,

hi(v) , null, In the third case, due to line 20, hi(v) , null. If hi(v) = null, then hi(v) cannot be

updated by line 18, line 19 or line 20 which implies that v ∈ Vi−1, v < V ′i \ V ′′i , v < V ′′i \ Vi . Thus,

v ∈ Vi .

Since the procedure does not FAIL, we have nr = 0 which means that ∀v ∈ V, hr(v) , null.

Notice that by line 20, if hi−1(v) , null, then hi(v) = hi−1(v). Thus, ∀v ∈ V,∃ j ∈ [r] such that

h0(v) = h1(v) = · · · = h j−1(v) = null and h j(v) = h j+1(v) = · · · = hr(v) , null.

For v ∈ V, if h j(v) , null and h j−1(v) = null, then h j(v) can only be updated by 18 or line 19.

In both cases, distG j−1(v, h j(v)) < ∞. By Claim 4.2.16, we have that distG(v, h j(v)) < ∞.

In the following, we show that hr is a rooted tree such that distG(u, v) < ∞ ⇔ u, v have the

same root. Due to Claim 4.2.17, if CONNECTIVITY(G,m,r) does not output FAIL, then nr = 0

which implies that ∀v ∈ V, hr(v) , null. Thus, we can define h(k)r (v) for k ∈ Z>0 as applying hr on

v k times. ∀v ∈ V, by Claim 4.2.17, let j ∈ [r] satisfy that h j(v) , null and h j−1(v) = null. If h j(v)

is updated by line 19, then h j(h j(v)) = null. If h j(v) is updated by line 18, then h j(h j(v)) = h j(v).

In both cases, h j cannot create a cycle. Thus, we can define h(∞)r (v) = h(k)r (v) for some k which

satisfies hr(h
(k)
r (v)) = h(k)r (v).

62

Claim 4.2.18. Suppose CONNECTIVITY(G,m,r) does not output FAIL. Then ∀u, v ∈ V, we have

distG(u, v) < ∞⇔ h(∞)r (u) = h(∞)r (v).

Proof. Let u, v ∈ V . By Claim 4.2.17, if h∞r (u) = h∞r (v) we have distG(u, v) < ∞.

If distG(u, v) < ∞, then let u′ = h(∞)r (u), v′ = h(∞)r (v). By Claim 4.2.17, distG(u′, v′) ≤

distG(u,u′)+distG(u, v)+distG(v, v′) < ∞, and we can find j ∈ [r] such that h j(u′) , null, h j−1(u′) =

null. Without loss of generality, we can assume h j−1(v
′) = null (otherwise we can swap u′ and v′).

Due to Claim 4.2.17, u′, v′ ∈ Vi−1. Since h j(u′) = hr(u′) = u′, h j(u′) can be only updated by line 18,

and u′ ∈ V ′j \ V ′′j . Then due to property 3 of Lemma 4.2.9, v′ should be in ΓG′i (u) ∪ {u}. Since

h j(v
′) = hr(v

′) = v′,we can conclude that u′ = v′.

If CONNECTIVITY(G,m,r) does not output FAIL, then in line 23, col is exactly h(∞)r . By

Claim 4.2.18, we have ∀u, v ∈ V,distG(u, v) < ∞⇔ col(u) = col(v).

Now let us consider the number of iterations of Algorithm 4 and the success probability.

Definition 4.2.19 (Total iterations). Let G = (V,E) be an undirected graph, poly(n) ≥ m > 4n,

and r ≤ n be the rounds parameter where n is the number of vertices in G. The total number of

iterations of CONNECTIVITY(G,m,r) (Algorithm 4) is defined as
∑r

i=1(ki + r′i), where ki denotes

the number of iterations (See Definition 4.2.1) of NEIGHBORINCREMENT(m,Gi−1) (see line 7),

and r′i denotes the number of iterations (See Definition 4.2.11) of TREECONTRACTION(G′′i ,pari)

(see line 16).

Theorem 4.2.20 (Success probability and total iterations). Let G = (V,E) be an undirected graph,

poly(n) ≥ m > 4n, and r ≤ n be the rounds parameter where n = |V |. Let c > 0 be a sufficiently

large constant. If r ≥ c log logm/n(n), then with probability at least 0.98, CONNECTIVITY(G,m,r)

(Algorithm 4) will not return FAIL. If CONNECTIVITY(G,m,r) succeeds, let ki denote the num-

ber of iterations (See Definition 4.2.1) of NEIGHBORINCREMENT(m,Gi−1) (see line 7), and let r′i

denote the number of iterations of (See Definition 4.2.11) of TREECONTRACTION(G′′i ,pari) (see

line 16), then

63

1. ∀i ∈ [r], r′i = 0.

2. ∀i ∈ [r], ki is at most dlog(diam(G))e + 1.

3. The number of iterations of line 23 is at most dlog re .

4.
∑r

i=1 ki ≤ O(r log(diam(G))).

Let c1 > 0 be a sufficiently large constant. If m ≥ c1n log4 n, then with probability at least 0.99,∑r
i=1 ki ≤ O(log(diam(G)) log logdiam(G)(n)). If m < c1n log4 n, then with probability at least 0.98,∑r
i=1 ki ≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2).

Proof. Suppose CONNECTIVITY(G,m,r) succeeds. Property 1 follows from∀v ∈ V ′′i ,pari(pari(v)) =

pari(v) and Lemma 4.2.9. Property 2 follows from diam(Gr) ≤ diam(G′′r) ≤ diam(G′r) ≤ diam(Gr−1) ≤

diam(G′′r−1) ≤ diam(G′r−1) ≤ · · · ≤ diam(G0) = diam(G) and property 1 of Lemma 4.2.2. Prop-

erty 3 follows by the depth of hr is at most r and Lemma 4.2.9. Property 4 follows from property 2.

Now let us prove the success probability. Let i ∈ [r]. If pi < 0.5, then we can apply Lemma 4.2.3

on vertex set V ′′i , parameter γi, and hash function li . Notice that the set Sv in the statement of

Lemma 4.2.3 is ΓG′i (v) in the algorithm. Notice that |V ′′i | ≤ n. Then in the ith round, if pi < 0.5,

then with probability at most 1/(100n2), Li will be {v ∈ V ′′i | li(v) = 1}, and ni = |Li | ≤ 1.5pini−1.

By taking union bound over all i ∈ [r],we have that with probability at least 0.99, event E happens:

for all i ∈ [r], if pi < 0.5, then ni ≤ 1.5pini−1 ≤ 0.75ni−1. Suppose E happens. For i ∈ [r], pi = 0.5,

if we apply Lemma 4.2.4, then condition on ni−1, we have E(ni) ≤ 0.75ni−1. Thus, we know

∀i ∈ [r],E(ni) ≤ 0.75 E(ni−1) ≤ 0.75in.

Next, we discuss the case for p0 = 0.5 and the case for p0 < 0.5 separately.

If p0 = 0.5, then m ≤ n · (600 log n)4. By Markov’s inequality, when i∗ ≥ 4 log4/3(6000 log n),

with probability at least 0.99, ni∗ ≤ n/(600 log n)4 and thus pi∗ < 0.5. Condition on this event and

E, we have

nr ≤

©«
(
n1.5
i∗

m0.5 (45 log n+150)

)1.5

m0.5 (45 log n + 150)
ª®®®¬
· · ·

· · ·
(Apply r ′ = r − i∗ times)

64

=
n1.5r′
i∗

m1.5r′−1
(45 log n + 150)2·(1.5

r′−1)

= ni∗/(m/ni∗)1.5
r′−1 · (45 log n + 150)2·(1.5

r′−1)

≤ n/
(
m/

(
ni∗(45 log n + 150)2

))1.5r′−1

≤ n/
(
m/

(
ni∗(45 log n + 150)2

))1.5r′/2

≤ n/(m/n)1.5
r′/2
≤

1
2
,

where the second inequality follows from ni∗ ≤ n, the third inequality follows from r′ ≥ 5,

the forth inequality follows from ni∗ ≤ n/(600 log n)4, and the last inequality follows from r′ ≥

2
log 1.5 log logm/n(2n). Since 4n ≤ m ≤ n · (600 log n)4, log logm/n n = Θ(log log n). Let c > 0 be a

sufficiently large constant. Thus, when r ≥ c log logm/n n ≥ i∗ + r′ = 4 log(6000 log n)/log(4/3) +
2

log 1.5 log logm/n(2n),with probability at least 0.98, CONNECTIVITY(G,m,r) will not fail.

Since property 1 of Lemma 4.2.2, we have ki ≤ O(log(min(m/ni−1,diam(G)))). Thus,

r∑
i=1

ki =
i∗∑
i=1

ki +
r∑

i=i∗+1
ki ≤ O

(
(log log n)2

)
+

r∑
i=i∗+1

ki

≤ O
(
(log log n)2

)
+

∑
i:i≥i∗+1,m/ni−1≤diam(G)

ki +
∑

i:i≤r ,m/ni−1>diam(G)
ki

≤ O
(
(log log n)2

)
+O ©«

dlog1.25 log2(diam(G))e∑
i=0

log(21.25i)
ª®¬ +O ©«

dlog1.25 logdiam(G)(m)e∑
i=0

log(diam(G))ª®¬
≤ O

(
(log log n)2

)
+O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n))

≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2),

where the first inequality follows from i∗ = O(log log n) and ∀i ≤ [i∗],m/ni−1 ≤ poly(log n), the

third inequality follows from m/ni+1 ≥ (m/ni)
1.5/(45 log n + 150) ≥ (m/ni)

1.25.

If m > n · (600 log n)4, then ∀i ∈ {0} ∪ [r − 1],we have pi < 0.5. Since E happens. We have:

nr ≤

((
n1.5
m0.5 (45 log n+150)

)1.5

m0.5 (45 log n + 150)

) · · ·
· · ·

(Apply r times)

65

=
n1.5r

m1.5r−1 (45 log n + 150)2·(1.5
r−1)

= n/(m/n)1.5
r−1 · (45 log n + 150)2·(1.5

r−1)

= n/
(
m/

(
n(45 log n + 150)2

))1.5r−1

≤ n/
(
m/

(
n(45 log n + 150)2

))1.5r/2

≤ n/
(
m/

(
n(200 log n)2

))1.5r/2

≤
1
2
,

where the second inequality follows from r ≥ 5, the third inequality follows from 45 log n+150 ≤

200 log n, and the last inequality follows from

r ≥ c log logm/n n ≥ 2 log1.5 log(m/n)1/2 2n ≥ 2 log1.5 logm/(n(200 log n)2) 2n

for a sufficiently large constant c > 0.

By property 1 of Lemma 4.2.2, we have ki ≤ O(log(min(m/ni−1,diam(G)))). Thus,

r∑
i=1

ki ≤
∑

m/ni−1≤diam(G)
ki +

∑
m/ni−1>diam(G)

ki

≤ O ©«
dlog1.25 log2(diam(G))e∑

i=0
log(21.25i)

ª®¬ +O ©«
dlog1.25 logdiam(G)(m)e∑

i=0
log(diam(G))ª®¬

≤ O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)),

where the first inequality follows from m/ni+1 ≥ (m/ni)
1.5/(45 log n + 150) ≥ (m/ni)

1.25.

Since nr is an integer, nr must be 0 when nr ≤ 1/2. Let c > 0 be a sufficiently large constant.

For all m ≥ 4n, if r ≥ c log logm/n n then CONNECTIVITY(G,m,r) will succeed with probability at

least 0.98.

66

4.3 Spanning forest

In this section, we will discuss our spanning forest algorithm in the sequential setting. We will

see how to implement the algorithms efficiently in the parallel models in later sections.

4.3.1 Multiple local shortest path trees

In this section, we show a procedure which is a generalization of neighbor increment proce-

dure shown in Section 4.2.1. The input of the procedure is an undirected graph G = (V,E) and a

parameter m which is larger than |V | = n. The output will be n local shortest path trees (See Defi-

nition 4.3.1 shown below) such that ∀v ∈ V, there is a shortest path tree with root v. Furthermore,

each shortest path tree either is a spanning tree of its connected component or it contains exact⌈
(m/|V |)1/4

⌉
vertices. The formal definition of a local shortest path tree is as the following:

Definition 4.3.1 (Local shortest path tree (LSPT)). Let V ′ be a set of vertices, v be a vertex in V ′,

and par : V ′ → V ′ be a set of parent pointers (See Definition 4.2.5) on V ′ which satisfies that v

is the only root of par . Let T = (V ′,par). Given an undirected graph G = (V,E), if V ′ ⊆ V and

∀u ∈ V ′ \ {v}, {u,par(u)} ∈ E,deppar(u) = distG(u, v), then we say T is a local shortest path tree

(LSPT) in G, and T has root v. The vertex set (V ′ in the above) in T is denoted as VT . The set of

parent pointers (par in the above) in T is denoted as parT . For short, depparT is denoted as depT,

and dep(par(T)) is denoted as dep(T).

The algorithm is described in Algorithm 5. The high level idea is that we use the distance

information computed by the truncated broadcasting procedure to decide the parent of each vertex.

The details of the algorithm is described in Algorithm 5, and the guarantees of the algorithm is

stated in the following lemma.

Lemma 4.3.2. Let G = (V,E) be an undirected graph, and m be a parameter which is at least

16|V |. Let
(
{T̃(v) | v ∈ V}, {depT̃(v) | v ∈ V}

)
= MULTIPLELARGETREES(G,m). (Algorithm 5)

Then, the output satisfies the following properties.

67

Algorithm 5 Local Shortest Path Trees
1: procedure MULTIPLELARGETREES(G = (V,E),m) . Lemma 4.3.2, Lemma 4.3.4.
2: Initially, n← |V |, b← d(m/n)1/4e.
3: Regard G as a weighted graph G = (V,E,w) with weights w(u, v) = 1 for every {u, v} ∈ E .
4: Run TRUNCATEDBROADCASTING(G, b), and let Sv,dist(v,u) be the corresponding output for v ∈

V,u ∈ Sv. . Algorithm 1.
5: for v ∈ V do
6: Initialize T̃(v) = (Sv,parT̃ (v)),depT̃ (v) : Sv → Z≥0.
7: For u ∈ Sv, let depT̃ (v)(u) ← dist(v,u).
8: Let parT̃ (v)(v) ← v.
9: For u ∈ Sv \ {v}, find an arbitrary x ∈ Sv such that {u, x} ∈ E and dist(v,u) = dist(v, x) + 1, set

parT̃ (v)(u) ← x.
10: end for
11: Return {T̃(v) | v ∈ V}, {depT̃ (v) | v ∈ V}.
12: end procedure

1. ∀v ∈ V, T̃(v) is a LSPT (See Definition 4.3.1) with root v, and depT̃(v) records the depth of

every vertex in T̃(v).

2. ∀v ∈ V,u ∈ VT̃(v),w ∈ V \ VT̃(v), it satisfies distG(v,u) ≤ distG(v,w).

3. ∀v ∈ V, either |VT̃(v) | ≥ d(m/n)
1/4e or VT̃(v) = {u ∈ V | distG(u, v) < ∞}.

4. ∀v ∈ V, |VT̃(v) | ≤ b(m/n)
1/2c .

Proof. Let us first consider property 1. According to Lemma 3.1.1, the vertex set of T̃(v) is Sv

which is the set of all b-closest vertices of v in G. Consider u ∈ Sv. By the construction of

parT̃(v)(u), we have dist(v,parT̃(v)(u)) < dist(v,u) and parT̃(v)(v) = v. Therefore, parT̃(v) is a set of

parent pointers on Sv. Since Sv is the set of all b-closest vertices of v in G, for each u ∈ Sv \ {v},

there must exist at least one vertex x ∈ Sv such that {u, x} ∈ E and dist(v,u) = dist(v, x) + 1. It

implies that we can always set parT̃(v)(u) successfully for every u ∈ Sv. Next we show that the

depth of u in T̃(v) is exactly the same as distG(v,u). The proof is by induction on distG(v,u). When

distG(v,u) = 0, we have u = v. Since parT̃(v)(v) = v, the depth of v is 0 = distG(v, v). Now suppose

the claim is true for all x ∈ Sv satisfying distG(v, x) ≤ s. Consider a vertex u ∈ Sv satisfying

distG(v,u) = s + 1. By the construction of parT̃(v)(u), we know that distG(v,parT̃(v)(u)) = s. By

induction hypothesis, the depth of parT̃(v)(u) in T̃(v) is also s which implies that the depth of u

68

in T̃(v) is s + 1 = distG(v,u). By our construction of depT̃(v), ∀u ∈ Sv,depT̃(v)(u) = dist(v,u).

According to Lemma 3.1.1, we have distG(v,u) = dist(v,u). Thus, depT̃(v) records the depth of

every vertex in T̃(v).

Consider property 2. Notice that VT̃(v) = Sv. According to Lemma 3.1.1, Sv is exact the set of

all b-closest vertices of v in G. Thus, ∀u ∈ Sv,w < Sv,distG(v,u) ≤ distG(v,w).

Property 3 and property 4 directly follow from that VT̃(v) = Sv is the set of all b-closest vertices

of v in G (see Lemma 3.1.1) and b = d(m/n)1/4e ≤ b(m/n)1/2c.

Definition 4.3.3. Let graph G = (V,E), and let m be a parameter which is at least 16|V |. The num-

ber of iterations of
(
{T̃(v) | v ∈ V}, {depT̃(v) | v ∈ V}

)
= MULTIPLELARGETREES(G,m) (Algo-

rithm 5) is defined as the number of iterations t needed to run TRUNCATEDBROADCASTING(G, b)

(Algorithm 1) in line 4.

Lemma 4.3.4 (Number of iterations of Algorithm 5). Let G = (V,E) be an undirected graph,

and let m be a parameter which is at least 16|V |. The number of iterations (see Definition 4.3.3)

of
(
{T̃(v) | v ∈ V}, {depT̃(v) | v ∈ V}

)
= MULTIPLELARGETREES(G,m) (Algorithm 5) is at most

min(dlog(diam(G))e, dlog(m/n)e) + 1.

Proof. According to Lemma 3.1.1, the number of iterations of TRUNCATEDBROADCASTING(G, b)

(Algorithm 1) in line 4 is at most min(dlog(diam(G))e, dlog(b)e) + 1. Since b = d(m/n)1/4e, the

number of iterations of MULTIPLELARGETREES(m,G), is at most min(dlog(diam(G))e, dlog(m/n)e)+

1.

4.3.2 Path generation and root changing

In this section, we show a procedure which can output a path from a certain vertex to the

root in a rooted tree. Then we show how to use the procedure to change the root of a rooted

tree to a certain vertex in the tree. To output the vertex-root path, we have two stages. The first

stage is using doubling method to compute the depth and the 2ith (for all i ∈ {0,1, · · · , log(dep)})

ancestor of each vertex. The second stage is using divide-and-conquer technique to split the path

69

Algorithm 6 Depth and Ancestors of Every Vertex
1: procedure FINDANCESTORS (par : V → V) . Lemma 4.3.6.
2: For v ∈ V let g0(v) = par(v). If par(v) = v, let h0(v) = 0. Otherwise, let h0(v) = null.
3: Let l = 0.
4: for ∃v ∈ V, hl(v) = null do
5: l ← l + 1.
6: for v ∈ V do
7: Let gl(v) = gl−1(gl−1(v)). . gl is par(2l) .
8: if hl−1(v) , null then hl(v) = hl−1(v).

9: else if hl−1(gl−1(v)) , null then hl(v) = hl−1(gl−1(v)) + 2l−1.

10: else hl(v) = null.
11: end if
12: end for
13: end for
14: Let r = l,deppar ← hr .
15: return r,deppar, {gi : V → V | i ∈ {0} ∪ [r]}. . deppar : V → Z≥0.
16: end procedure

into segments, and recursively find the path for each segment. Once we have the procedure to find

the vertex-root path, then we can use it to implement root-changing. The idea is very simple, if

we want to change the root to a certain vertex, we just need to find the path from that vertex to

the root, and reverse the parent pointers of every vertex on the path. The path finding procedure is

described in Algorithm 7. The root changing procedure is described in Algorithm 8.

Definition 4.3.5. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . The number of iterations of FINDANCESTORS(par) is defined as the value of r at the end of the

procedure.

Lemma 4.3.6. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Let (r,deppar, {gi | i ∈ {0} ∪ [r]}) = FINDANCESTORS(par) (Algorithm 6). Then the number of

iterations (see Definition 4.3.5) r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records

the depth of every vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v).

Proof. hl and gl will satisfies the properties in the following claim.

Claim 4.3.7. ∀i ∈ {0}∪[r], v ∈ V gi(v) = par(2i)(v), and if deppar(v) ≤ 2i−1 then hi(v) = deppar(v).

Otherwise deppar(v) = null.

70

Algorithm 7 Path in a Tree
1: procedure FINDPATH (par : V → V,q ∈ V) . Lemma 4.3.8
2: Output: deppar : V → Z≥0,P ⊆ V,w ∈ V ∪ {null}.
3: (r,deppar, {gi | i ∈ {0} ∪ [r]}) = FINDANCESTORS(par) . Algorithm 6.
4: Let S0 = {(q,gr (q))}, k = dlog(deppar(q))e . . S0 contains (q, the root of q).
5: for i = 1→ k do . Si is a set of segments partitioned the path from q to the root of q.
6: Let Si ← ∅.
7: for (x, y) ∈ Si−1 do
8: if deppar(x) − deppar(y) > 2k−i then Si ← Si ∪ {(x,gk−i(x)), (gk−i(x), y)}.
9: else Si ← Si ∪ {(x, y)}.

10: end if
11: end for
12: end for . Sk only contains segments with length at most 1.
13: Let P← {q}
14: for (x, y) ∈ Sk do
15: Let P← P ∪ {y}
16: end for
17: Find w ∈ P with deppar(w) = 1. If w does not exist, let w ← null.
18: return (deppar,P,w)
19: end procedure

Proof. The proof is by induction. The claim is obviously true when i = 0. Suppose the claim is true

for i−1.We have gi(v) = gi−1(gi−1(v)) = par(2i−1)(par(2i−1)(v)) = par(2i)(v). If hi(v) , null, then there

are two cases. In the first case, we have hi(v) = hi−1(v). By induction we know hi(v) = deppar(v).

In the second case, we have hi(v) = hi−1(gi−1(v)) + 2i−1 = deppar(par(2i−1)(v)) + 2i−1. Notice

that in this case hi−1(v) = null, thus by the induction, deppar(v) ≥ 2i−1. Therefore, deppar(v) =

deppar(par(2i−1)(v)) + 2i−1 = hi(v). If hi(v) = null, then it means that hi−1(par(2i−1)(v)) = null which

implies that deppar(v) ≥ 2i .

Due to the above claim, we know that if i ≥ dlog(deppar(v) + 1)e then hi(v) , null. Thus,

we have r ≤ dlog(dep(par) + 1)e . Since the procedure returns hr as deppar, the returned deppar is

correct.

Lemma 4.3.8. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Let q be a vertex in V . Let (deppar,P,w) = FINDPATH(par,q) (Algorithm 7). Then deppar : V →

Z≥0 records the depth of every vertex in V and P ⊆ V is the set of all vertices on the path from q to

71

the root of q, i.e. P = {v ∈ V | ∃k ≥ 0, v = par(k)(q)}. If deppar(q) ≥ 1, then w = par(deppar(q)−1)(q).

Furthermore, k should be at most dlog(dep(par))e.

Proof. By Lemma 4.3.6, since (r,deppar, {gi | i ∈ {0} ∪ [r]}) = FINDANCESTORS(par), we know

r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records the depth of every vertex in V,

and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v). Thus k = dlog(deppar(q))e ≤ dlog(dep(par) + 1)e

Now let us prove that P is the vertex set of all the vertices on the path from q to the root of q.

We use divide-and-conquer to get P. The following claim shows that Si is a set of segments which

is a partition of the path, and each segment has length at most 2k−i .

Claim 4.3.9. ∀i ∈ {0} ∪ [k], Si satisfies the following properties:

1. ∃(x, y) ∈ Si such that x = q.

2. ∃(x, y) ∈ Si such that y = gr(q).

3. ∀(x, y) ∈ Si, deppar(y) − deppar(x) ≤ 2k−i .

4. ∀(x, y) ∈ Si, if y , gr(q), then ∃(x′, y′) ∈ Si, x′ = y.

5. ∀(x, y) ∈ Si, ∃ j ∈ Z≥0,par(j)(x) = y.

Proof. Our proof is by induction. According to line 4, all the properties hold when i = 0. Suppose

all the properties hold for i−1. For property 1, by induction we know there exists (x, y) ∈ Si−1 such

that x = q. Then by line 8 and line 9, there must be an (x, y′) in Si . For property 2, by induction

we know there exists (x, y) ∈ Si−1 such that y = gr(q). Thus, there must be an (x′, y) in Si . For

property 3, if (x, y) is added into Si by line 9, then deppar(x) − deppar(y) ≤ 2k−i . Otherwise, in

line 8, we have deppar(x) − deppar(gk−i(x)) ≤ 2k−i,deppar(gk−i(x)) − deppar(y) ≤ 2k−i+1 − 2k−i =

2k−i . For property 4, if (x, y) is added into Si by line 9, then by induction there is (y, y′) ∈ Si−1,

and thus by line 9 and line 8, there must be (y, y′′) ∈ Si . Otherwise, in line 8 will generate two

pairs (x,gk−i(x)), (gk−i(x), y). For (x,gk−i(x)), the property holds. For (gk−i(x), y), there must be

(y, y′) ∈ Si−1 and thus there should be (y, y′′) ∈ Si . For property 5, since gk−i(x) = par(k−i)(x), for

all pairs generated by line 8 and line 9, the property holds.

72

Algorithm 8 Root Changing
1: procedure ROOTCHANGE(par : V → V,q ∈ V) . Lemma 4.3.10.
2: Output: p̂ar : V → V .
3: (deppar,P,w) = FINDPATH(par,q). . Algorithm 7.
4: ∀v ∈ V \ P, let p̂ar(v) = par(v).
5: Let p̂ar(q) = q.
6: Let h : {0} ∪ [deppar(q)] → P such that ∀i ∈ {0} ∪ [deppar(q)], h(i) = x where deppar(x) = i.
7: for v ∈ P \ {q} do . Reverse par of all the vertices on the path from q to the root of q.
8: Let p̂ar(v) = h(deppar(v) + 1).
9: end for

10: return p̂ar.
11: end procedure

By Claim 4.3.9, we know

Sk = {(q,par(q)), (par(q),par(2)(q)), (par(2)(q),par(3)(q)), · · · , (par(deppar(q)−1)(q),par(deppar(q))(q))}.

Thus, P is the set of all the vertices on the path from q to the root of q. And w = par(deppar(q)−1)(q)

when deppar(q) ≥ 1.

Lemma 4.3.10. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Let q be a vertex in V . Let p̂ar = ROOTCHANGE(par,q) (Algorithm 8). Then p̂ar : V → V

is still a set of parent pointers (See Definition 4.2.5) on V . ∀v ∈ V, if par(∞)(v) = par(∞)(q) then

p̂ar(∞)(v) = q. Otherwise p̂ar(∞)(v) = par(∞)(v). ∀u , v ∈ V,par(v) = u ⇔ either p̂ar(v) = u or

p̂ar(u) = v. Furthermore, dep(p̂ar) ≤ 2 dep(par).

Proof. For a vertex v ∈ V, if {u | i ∈ Z≥0,u = par(i)(v)} ∩ P = ∅, then we have ∀i ∈ Z≥0,par(i)(v) =

p̂ar(i)(v). According to Lemma 4.3.8, P = {u ∈ V | i ∈ Z≥0,par(i)(q) = u}. Then for all v ∈ P \ {q},

if par(u) = v then p̂ar(v) = u. Thus, ∀u ∈ P, p̂ar(∞)(u) = q. Let i∗ be the smallest number such that

par(i∗)(v) ∈ P. Then p̂ar(i
∗)
(v) ∈ P. Thus, p̂ar(∞)(v) = p̂ar(∞)(p̂ar(i

∗)
(v)) = q. Furthermore, we have

∀v ∈ V,dep(p̂ar) ≤ dep(par) + deppar(q) ≤ 2 dep(par).

73

4.3.3 Spanning forest expansion

In this section, we give the definition of spanning forest. If we are given a spanning forest of

a contracted graph and spanning trees of each contracted component, then we show a procedure

which can merge them to get a spanning forest of the original graph. Before go to the details, let

us formally define the spanning forest.

Definition 4.3.11 (Rooted Spanning Forest). Let G = (V,E) be an undirected graph. Let par :

V → V be a set of parent pointers which is compatible (Definition 4.2.7) with G. If ∀u, v ∈

V,distG(u, v) < ∞ ⇒ par(∞)(u) = par(∞)(v), and ∀v ∈ V,par(v) , v ⇒ {v,par(v)} ∈ E, then we

call par a rooted spanning forest of G.

The Algorithm 9 shows how to combine the spanning forest in the contracted graph with lo-

cal spanning trees to get a spanning forest in the graph before contraction. Figure 4.1 shows an

example.

Lemma 4.3.12. Let G2 = (V2,E2) be an undirected graph. Let p̃ar : V2 → V2 be a set of parent

pointers (See Definition 4.2.5) which satisfies that ∀v ∈ V2 with p̃ar(v) , v, {v, p̃ar(v)} must be in

E2. Let G1 = (V1,E1) be an undirected graph satisfies V1 = {v ∈ V2 | p̃ar(v) = v},E1 = {{u, v} ⊆

V1 | u , v,∃{x, y} ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}. Let par : V1 → V1 be a rooted spanning

forest (See Definition 4.3.11) of G1. Let f : V1 × V1 → {null} ∪ (V2 × V2) satisfy the following

property: for u , v ∈ V1, if par(u) = v, then f (u, v) ∈ {(x, y) ∈ V2 × V2 | {x, y} ∈ E2, p̃ar(∞)(x) =

u, p̃ar(∞)(y) = v}, and f (v,u) ∈ {(x, y) ∈ V2 × V2 | {x, y} ∈ E2, p̃ar(∞)(x) = v, p̃ar(∞)(y) = u}. Let

p̂ar = FORESTEXPANSION(par, p̃ar, f). Then p̂ar : V2 → V2 is a rooted spanning forest of G2. In

addition, dep(p̂ar) ≤ (2 · dep(p̃ar) + 1)(dep(par) + 1).

Proof. Let x, y ∈ V2,u = p̃ar(∞)(x), v = p̃ar(∞)(y) ∈ V1 if distG2(x, y) < ∞, then since E1 =

{(u′, v′) ∈ V1 × V1 | u′ , v′,∃{x′, y′} ∈ E2, p̃ar(∞)(x′) = u′, p̃ar(∞)(y′) = v′}, it must be true that

distG1(u, v) < ∞. Since par is a spanning forest of G1, we have par(∞)(u) = par(∞)(v). It suffices to

say ∀x ∈ V2, p̂ar(∞)(x) = par(∞)(p̃ar(∞)(x)). We can prove it by induction on deppar(p̃ar(∞)(x)). Let

74

1

2 3

4

5 6

7

8

9 10

11 12

13

14 15

16

17

1

2 3

4

5 6

7

8

9 10

11 12

13

14 15

16

17

1

2 3

4

5 6

7

8

9 10

11 12

13

14 15

16

17

1

2 3

4

5 6

7

8

9 10

11 12

13

14 15

16

17

Figure 4.1: Each tree with green edges on the top-left is a rooted tree of each contracted component.
For example, there are five components {1,2,3}, {4,5,6,7}, {8,9,10,11,12}, {13,14,15}, {16,17}.
The dashed edges in the bottom-left figure is a root spanning tree of five components. The red edges
in the top-right figure correspond to the dashed edges in the bottom-left figure before contraction.
In bottom-right figure, by changing (see blue edges) the root of each contracted tree, we get a
rooted spanning tree in the original graph

75

Algorithm 9 Spanning Forest Expansion

1: procedure FORESTEXPANSION(par : V1 → V1, p̃ar : V2 → V2, f : V1 × V1 → {null} ∪
(V2 × V2)) . Lemma 4.3.12.

2: Output: p̂ar : V2 → V2.
3: ((V ′2,∅), p̃ar(∞)) = TREECONTRACTION((V2,∅), p̃ar). . Algorithm 3.
4: for v ∈ V1 do
5: Let V2(v) = {u ∈ V2 | p̃ar(∞)(u) = v}.
6: Let p̃arv : V2(v) → V2(v) such that ∀u ∈ V2(v), p̃arv(u) = p̃ar(u).
7: if par(v) , v then
8: Let (xv, yv) = f (v,par(v)).
9: p̂arv = ROOTCHANGE(p̃arv, xv). . Algorithm 8.

10: Let p̂ar(xv) = yv, and ∀u ∈ V2(v) \ {xv}, p̂ar(u) = p̂arv(u).
11: else ∀u ∈ V2(v) let p̂ar(u) = p̃arv(u).
12: end if
13: end for
14: return p̂ar.
15: end procedure

u = p̃ar(∞)(x). If deppar(u) = 0, then par(∞)(u) = u. In this case, we have p̂ar(∞)(x) = p̃ar(∞)(x) =

u = par(∞)(u) = par(∞)(p̃ar(∞)(x)), and also we have depp̂ar(x) = depp̃ar(x). Now suppose for

all x ∈ V2 with deppar(p̃ar(∞)(x)) ≤ i − 1, it has p̂ar(∞)(x) = par(∞)(p̃ar(∞)(x)) and depp̂ar(x) ≤

i · (2 dep(p̃ar) + 1). Let y ∈ V2 satisfy deppar(p̃ar(∞)(y)) = i. Let v = p̃ar(∞)(y). By line 8 and

the properties of f , we know p̃ar(∞)(xv) = v, and p̃ar(∞)(yv) = par(v). By line 9, line 10 and

Lemma 4.3.10, we have p̂ar(∞)v (y) = xv, p̂ar(xv) = yv . Thus, there must be k ≤ 2 depp̃ar(y) such

that p̂ar(k)(y) = xv . Since p̂ar(∞)(yv) = par(∞)(v) and depp̂ar(yv) ≤ i · (2 dep(p̃ar) + 1), we have

p̂ar(∞)(y) = par(∞)(v) = par(∞)(p̃ar(∞)(y)) and depp̂ar(y) ≤ (i + 1) · (2 dep(p̃ar) + 1).

In addition, by the properties of f and Lemma 4.3.10, ∀v ∈ V2 with p̂ar(v) , v, we have

{v, p̂ar(v)} ∈ E2. To conclude, p̂ar : V2 → V2 is a spanning forest of G2, and dep(p̂ar) ≤ (dep(par)+

1)(2 dep(p̃ar) + 1).

4.3.4 Spanning forest algorithm

In this section, we show how to apply the ideas shown in connectivity algorithm to get an

spanning forest algorithm. Algorithm 10 can output a spanning forest of a graph G, but the edges

76

are not orientated. Then in Algorithm 11, we assign each forest edge an direction thus it is a rooted

spanning forest.

Before we prove the correctness of the algorithms, let us briefly introduce the meaning of each

variables appeared in the algorithms.

In Algorithm 10, G0 is the original input graph, for i ∈ {0} ∪ [r − 1],G′i is obtained by deleting

all the small size connected components in Gi, and Gi+1 is obtained by contracting some vertices

of G′i . For a vertex v in graph Gi, if hi(v) = null, then it means that the connected component which

contains v is deleted when obtaining G′i . If hi(v) , null, it means that the vertex v is contracted

to the vertex hi(v) when obtaining Gi+1. pari is a rooted forest (may not be spanning) in graph

Gi, if a tree from the forest is spanning in Gi, then all the vertex in that tree will be deleted when

obtaining G′i . Otherwise all the vertices in that tree will be contracted to the root, and the root will

be one of the vertex in Gi+1. Since each connected component in Gi+1 is obtained by contraction

of some vertices in a connected component in Gi, each edge in Gi+1 must correspond to an edge in

Gi where the end vertices of the edge are contracted to different vertices. Thus, each edge in Gi

should correspond to an edge in G, and gi : Ei → E records the such correspondence. Di records

the edges added to the spanning forest F in the ith round. For each vertex v in graph Gi, T̃i(v) is

a local shortest path tree (See definition 4.3.1) which is either with a large size or is a spanning

tree in the component of v. Li is a set of random leaders in G′i such that in each local shortest path

tree T̃i(v), there is at least one leader shown in the tree. The following lemmas formally state the

properties of the algorithm.

Lemma 4.3.13. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,

and r be a rounds parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not return FAIL,

then diam(G) = diam(G0) ≥ diam(G′0) ≥ diam(G1) ≥ diam(G′1) ≥ · · · ≥ diam(Gr).

Proof. By property 3 of Lemma 4.3.2, ∀[i] ∈ {0} ∪ [r − 1], there is no edge between Vi \V ′i and V ′i .

Thus, diam(G′i) ≤ diam(Gi). Then due to property 1 of Corollary 4.2.12, we have diam(Gi+1) ≤

diam(G′i).

77

Algorithm 10 Undirected Graph Spanning Forest
1: procedure SPANNINGFOREST(G = (V,E),m,r) . Corollary 4.3.17, Theorem 4.3.22.
2: Output: FAIL or {Vi ⊆ V | i ∈ {0} ∪ [r]}, {pari : Vi → Vi | i ∈ {0} ∪ [r − 1]}, {hi : Vi →

Vi+1 ∪ {null} | i ∈ {0} ∪ [r − 1]},F ⊆ E .
3: n0 = n← |V |,G0 = (V0,E0) = (V,E).
4: Let g0 : E0 → E be an identity map.
5: Let n′0 = n0.

6: for i = 0→ r − 1 do
7: Di ← ∅.

8:
(
{T̃i(v) | v ∈ Vi}, {depT̃i (v) | v ∈ Vi}

)
← MULTIPLELARGETREES(Gi,m). . Algorithm 5.

9: Let V ′i ← {v ∈ Vi | |VT̃i (v) | ≥ d(m/ni)
1/4e},E ′i ← {{u, v} ∈ Ei | u, v ∈ V ′i },G

′
i = (V

′
i ,E

′
i).

10: ∀v ∈ Vi \ V ′i , let hi(v) ← null,uv ← minu∈VT̃i (v)
u. Let pari(v) ← parT̃i (uv)(v).

11: ∀v ∈ Vi \ V ′i , if pari(v) , v, then Di ← Di ∪ {gi(pari(v), v),gi(v,pari(v))}.
12: Let γi ← d(m/ni)1/4e, pi ← min((30 log(n) + 100)/γi,1/2).
13: Let li : V ′i → {0,1} be chosen randomly s.t. ∀v ∈ V ′i , li(v) are i.i.d. Bernoulli random variables

with Pr(li(v) = 1) = pi.
14: Let Li ← {v ∈ V ′i | li(v) = 1} ∪ {v ∈ V ′i | ∀u ∈ VT̃i (v), li(u) = 0}.
15: For v ∈ V ′i , let zi(v) ← arg minu∈Li∩VT̃i (v)

depT̃i (v)(u). If zi(v) = v, let pari(v) ← v.

16: Otherwise, (depT̃i (v),Pi(v),wi(v)) ← FINDPATH(parT̃i (v), zi(v)), and let pari(v) ← wi(v).

. Algorithm 7.
17: Let ((Vi+1,Ei+1),par(∞)i) ← TREECONTRACTION(G′i,pari : V ′i → V ′i). . Algorithm 3.
18: Gi+1 = (Vi+1,Ei+1),ni+1 ← |Vi+1 |.

19: ∀v ∈ V ′i , hi(v) ← par(∞)i (v). If pari(v) , v, then Di ← Di ∪ {gi(pari(v), v),gi(v,pari(v))}.
20: Let gi+1 : Ei+1 → E satisfy gi+1(u, v) ← min{x,y }∈Ei ,hi (x)=u,hi (y)=v gi(x, y).
21: Let n′

i+1 ← n′i + ni+1. If n′
i+1 > 40n, then return FAIL.

22: end for
23: If nr , 0, return FAIL.
24: Let F ←

⋃
i∈{0}∪[r−1] Di .

25: return {Vi | i ∈ {0} ∪ [r]}, {pari | i ∈ {0} ∪ [r − 1]}, {hi | i ∈ {0} ∪ [r − 1]},F .
26: end procedure

Lemma 4.3.14. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,

and r be a rounds parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not return FAIL,

then ∀i ∈ {0} ∪ [r − 1], dep(pari) ≤ min(diam(G), b(m/ni)
1/2c).

Proof. Let v ∈ Vi . If v ∈ Vi\V ′i , then due to property 3 of Lemma 4.3.2, we have VT̃i(v)
= VT̃i(uv)

. Due

to Lemma 4.3.13 and Lemma 4.3.2, we have deppari (v) ≤ dep(T̃i(uv)) ≤ min(diam(G), b(m/ni)
1/2c).

For v ∈ Vi,we define distGi (v, Li) = minu∈Li distGi (v,u). By Lemma 4.3.2, we know distGi (v, Li) =

distGi (v, zi(v)). Since T̃i(v) is a LSPT (See Definition 4.3.1), by applying Lemma 4.3.8, we know

distGi (v, Li) = distGi (wi(v), Li) + 1, and (v,wi(v)) ∈ Ei . Thus, by induction on distGi (v, Li), we can

78

get deppari (v) ≤ distGi (v, Li). By Lemma 4.3.13 and Lemma 4.3.2, we can conclude dep(pari)(v) ≤

min(diam(G), b(m/ni)
1/2c).

Lemma 4.3.15. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,

and r be a rounds parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not return FAIL,

then ∀i ∈ {−1,0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =

v i = −1;

hi(h(i−1)(v)) h(i−1)(v) , null;

null otherwise .

Then we have following properties:

1. If h(i)(v) , null, then h(i)(v) ∈ Vi+1.

2. ∀u, v ∈ V, h(i)(u) , h(i)(v), {u, v} ∈ E, we have {h(i)(u), h(i)(v)} ∈ Ei+1.

3. ∀{x, y} ∈ Ei+1, {u, v} = gi+1(x, y), we have {u, v} ∈ E, h(i)(u) = x, h(i)(v) = y.

Proof. For property 1, we can prove it by induction. It is true for i = −1. If h0(v) , null, we

know h0(v) must be assigned at line 19. Due to property 2 of Lemma 4.2.9, h0(v) ∈ V1. Suppose

∀v ∈ V, h(i−1)(v) , null, we have h(i−1)(v) ∈ Vi . For a vertex v with h(i)(v) , null, according to the

definition of h(i)(v), we know h(i−1)(v) , null. Let u = h(i−1)(v). u must be a vertex in Gi by the

induction hypothesis. Since h(i)(v) , null, we know hi(u) , null. Thus, hi(u) must be assigned at

line 19. Due to property 2 of Lemma 4.2.9, hi(u) must be in Gi+1,which implies h(i)(v) ∈ Vi+1.

For property 2, we can also prove it by induction. It is true for i = −1. If {u, v} ∈ E, then

due to property 3 of Lemma 4.3.2, either both u, v are in V ′0 or both u, v are in V0 \ V ′0 . If both u, v

are in V0 \ V ′0, then h0(u) = h0(v) = null. Otherwise, if h0(u) , h0(v), then due to property 3 of

Lemma 4.2.9, {h0(u), h0(v)} ∈ E1. Now suppose we have ∀u, v ∈ V, if h(i−1)(u) , h(i−1)(v), {u, v} ∈

E, then {h(i−1)(u), h(i−1)(v)} ∈ Ei . Let {u, v} ∈ E, h(i)(u) , h(i)(v). Let x = h(i−1)(u), y = h(i−1)(v).

Due to property 3 of Lemma 4.3.2, either both x, y are in V ′i or both are in Vi \ V ′i . If x, y ∈ Vi \ V ′i ,

79

then hi(x) = hi(y) = null which contradicts to h(i)(u) , h(i)(v). Thus, both of x, y ∈ V ′i . Then due

to property 3 of Lemma 4.2.9, {hi(x), hi(v)} ∈ Ei+1. Thus, {h(i)(u), h(i)(v)} ∈ Ei+1.

For property 3, we can prove it by induction. It is true for i = −1. Let us consider the case

when i = 0. Due to property 3 of Lemma 4.2.9 and the definition of g0,g1, we have ∀{x, y} ∈ E1,

{u, v} = g1(x, y), h0(u) = x, h0(v) = y, {u, v} ∈ E . Now suppose the property holds for i − 1.

Let {x, y} ∈ Ei+1. Then gi+1(x, y) = gi(x′, y′) for some {x′, y′} ∈ Ei, hi(x′) = x, hi(y
′) = y. Let

{u, v} = gi(x′, y′). By the induction hypothesis {u, v} ∈ E, h(i−1)(u) = x′, h(i−1)(v) = y′. Thus,

h(i)(u) = x, h(i)(v) = y.

Lemma 4.3.16. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,

and r be a rounds parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not return FAIL,

then ∀i ∈ {−1,0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =

v i = −1

hi(h(i−1)(v)) h(i−1)(v) , null

null otherwise.

Let ∀i ∈ {0} ∪ [r], Ĝi = (Vi, Êi = {{x, y} | {u, v} ∈
⋃r−1

j=i D j, h(j−1)(u) = x, h(j−1)(v) = y}). Then Ĝi

is a spanning forest of Gi .

Proof. The proof is by induction. When i = r, since Vr = ∅, Ĝr = (∅,∅) is a spanning forest of Gr .

Now suppose Ĝi+1 is a spanning forest of Gi+1. Let u, v ∈ Vi . By property 2, 3 of Lemma 4.3.15,

we have Êi ⊆ Ei . Thus, if distGi (u, v) = ∞, then distĜi
(u, v) = ∞. If distGi (u, v) < ∞, there are

several cases:

1. If hi(u) = hi(v) = null, then due to line 10, we know uu = uv, and T̃i(uv) is a spanning tree

of the component which contains u, v. Thus, Ĝi has a spanning tree of the component which

contains u, v.

2. If hi(u) = hi(v) , null, then pari : {x ∈ Vi | hi(x) = hi(v)} → {x ∈ Vi | hi(x) = hi(v)} is

80

Algorithm 11 Rooted Spanning Forest
1: procedure ORIENTATE({Vi | i ∈ {0}∪[r]}, {pari | i ∈ {0}∪[r−1]}, {hi | i ∈ {0}∪[r−1]},F)

. Takes the output of Algorithm 10 as input.
. Theorem 4.3.19

2: Output: par : V0 → V0.
3: Let F0 = F .
4: for i = 0→ r − 1 do
5: Initialize Fi+1 ← ∅, fi+1 : Vi+1 × Vi+1 → {null}.
6: ∀{u, v} ∈ Fi, hi(u) , hi(v), let Fi+1 ← Fi+1∪{{hi(u), hi(v)}}, fi+1(hi(u), hi(v)) ← (u, v).
7: end for
8: p̂arr : ∅ → ∅.
9: for i = r → 1 do . p̂ari is the spanning forest of Gi .

10: Let Ṽi ← Vi ∪ {v ∈ Vi−1 | hi−1(v) = null,pari−1(v) = v}.
11: Let p̃ari : Ṽi → Ṽi satisfy ∀v ∈ Vi, p̃ari(v) = p̂ari(v), and ∀v ∈ Ṽi \ Vi, p̃ari(v) = v.
12: Let p̂ari−1 ← FORESTEXPANSION(p̃ari,pari−1, fi). . Algorithm 9
13: end for
14: Return p̂ar0 as par .
15: end procedure

a tree, and ∀y ∈ {x ∈ Vi | hi(x) = hi(v)}, if pari(y) , y, then {y,pari(y)} ∈ Êi . Since Ĝi+1

does not have any cycle, there is a unique path from u to v in Ĝi.

3. If hi(u) , hi(v), then neither of them can be null. Since Ĝi+1 is a spanning forest on

Gi+1, there must be a unique path from hi(u) to hi(v) in Ĝi+1. Suppose the path in Ĝi+1

is hi(u) = p1 − p2 − · · · − pt = hi(v). Then there must be a sequence of vertices in Gi, u =

p1,1, p1,2, p2,1, p2,2, · · · , pt,1, pt,2 = v such that hi(p j,1) = hi(p j,2) = p j and {p j−1,2, p j,1} ∈ Êi .

Thus, there is a unique path from u to v.

Thus, Ĝi is a spanning forest of Gi .

Corollary 4.3.17 (Correctness of Algorithm 10). Let G = (V,E) be an undirected graph, m be

a parameter which is at least 16|V |, and r be a rounds parameter. If SPANNINGFOREST(G,m,r)

(Algorithm 10) does not return FAIL, then Ĝ0 = (V,F) is a spanning forest of G.

Proof. Just apply Lemma 4.3.16 for i = 0 case.

81

Lemma 4.3.18. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,

and r be a rounds parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not return FAIL,

then ∀i ∈ {−1,0} ∪ [r − 1], we can define

∀v ∈ V, h(i)(v) =

v i = −1

hi(h(i−1)(v)) h(i−1)(v) , null

null otherwise.

∀i ∈ {0} ∪ [r − 1], v ∈ Vi with pari(v) , v, there exists {x, y} ∈ F such that h(i−1)(x) = v, h(i−1)(y) =

pari(v).

Proof. By line 11, line 19, ∀i ∈ {0}∪[r−1], v ∈ Vi,pari(v) , v,we have gi(v,pari(v)),gi(pari(v), v) ∈

Di ⊆ F . Since {pari(v), v} ∈ Ei, by property 3 of Lemma 4.3.15, {x, y} = gi(v,pari(v)) satisfies

h(i−1)(x) = v, h(i−1)(y) = pari(v).

Theorem 4.3.19 (Correctness of Algorithm 11). Let G = (V,E) be an undirected graph, m be a

parameter which is at least 16|V |, and r be a rounds parameter. If SPANNINGFOREST(G,m,r)

(Algorithm 10) does not return FAIL, then let the output be the input of ORIENTATE(·), (Algo-

rithm 11) and the output par : V → V of ORIENTATE(·) will be a rooted spanning forest (See

Definition 4.3.11) of G. Furthermore, dep(par) ≤ O(diam(G))r .

Proof. The proof is by induction. We want to show p̂ari is a rooted spanning forest of Gi . When

i = r, since Vr = ∅, the claim is true. Now suppose we have p̂ari+1 is a spanning forest of Gi+1. Let

G̃i+1 = (Ṽi+1,Ei+1). It is easy to see p̃ari+1 : Ṽi+1 → Ṽi+1 is a spanning forest of G̃i+1. An obser-

vation is Ṽi+1 = {v ∈ Vi | pari(v) = v}. Thus, p̃ari+1,pari satisfies the condition in Lemma 4.3.12

when invoking FORESTEXPANSION(p̃ari+1,pari, fi+1). By Lemma 4.3.18, we know fi+1 also satis-

fies the condition in Lemma 4.3.12 when we invoke FORESTEXPANSION(p̃ari+1,pari, fi+1). Thus,

p̂ari is a rooted spanning forest of Gi due to Lemma 4.3.12.

By Lemma 4.3.12, we have dep(p̂ari) ≤ 16 dep(p̂ari+1) diam(G). By induction, we have dep(par) ≤

O(diam(G))r .

82

Lemma 4.3.20. Let G = (V,E) be an undirected graph, m be a parameter which is at least 16|V |,

and r ≤ n be a round parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not return

FAIL, then with probability at least 0.89,
∑r

i=0 ni ≤ 40n.

Proof. Since Vr ⊆ Vr−1 ⊆ · · · ⊆ V0 = V, we have nr ≤ nr−1 ≤ nr−2 ≤ · · · ≤ n. Due to

line 14, line 15 and line 17, we know ∀i ∈ {0} ∪ [r − 1], Vi+1 = Li . If pi < 1/2, we know

pi = (30 log(n)+100)/γi . Since |VT̃i
(v)| ≥ γi,we can apply Lemma 4.2.3 to get Pr(|Li | ≤ 1.5pini) ≥

Pr(|Li | ≤ 0.75ni) ≥ 1−1/(100n). By taking union bound over all i ∈ {0}∪[r −1],with probability

at least 0.99, if pi < 0.5, then ni+1 ≤ 0.75ni . By applying Lemma 4.2.4, condition on ni and

pi =
1
2, we have E(ni+1) ≤ 0.75ni . By Markov’s inequality, with probability at 0.89, we have∑r

i=0 ni ≤ 40n.

Now let us define the total iterations of Algorithm 10 as the following:

Definition 4.3.21 (Total iterations). Let graph G = (V,E), m ≤ poly(|V |) be a parameter which is

at least 16|V |,and r be a rounds parameter. The total number of iterations of SPANNINGFOREST(G,m,r)

(Algorithm 10) is defined as
∑r−1

i=0 (ki + k′i), where ∀i ∈ {0} ∪ [r − 1], ki denotes the number of it-

erations (See Definition 4.3.3) of MULTIPLELARGETREES(Gi,m) (see line 8), and k′i denotes the

number of iterations (See Definition 4.2.11) of TREECONTRACTION(G′i,pari) (see line 17).

Theorem 4.3.22 (Success probability of Algorithm 10). Let G = (V,E) be an undirected graph.

Let m ≤ poly(n) and m ≥ 16|V |. Let r be a rounds parameter. Let c > 0 be a sufficiently large

constant. If r ≥ c log logm/n n, then with probability at least 0.79, SPANNINGFOREST(G,m,r)

(Algorithm 10) does not return FAIL. Furthermore, let ∀i ∈ {0} ∪ [r − 1], ki be the number of

iterations (See Definition 4.3.3) of MULTIPLELARGETREES(Gi,m) and k′i be the number of it-

erations (See Definition 4.2.11) of TREECONTRACTION(G′i,pari : V ′i → V ′i). Let c1 > 0 be a

sufficiently large constant. If m ≥ c1n log8 n, then with probability at least 0.99,
∑r−1

i=0 ki + k′i ≤

O(min(log(diam(G)) log logdiam(G)(n), r log(diam(G)))). If m < c1n log8 n, then with probability at

least 0.98,
∑r−1

i=0 k′i + ki ≤ O(min(log(diam(G)) log logdiam(G)(n) + (log log n)2,r log(diam(G)))).

83

Proof. Due to Lemma 4.3.20, with probability at last 0.89, we have ∀i ∈ [r],n′i ≤ 40n. Thus, we

can condition on that SPANNINGFOREST(G,m,r) will not fail on line 21.

Due to Lemma 4.3.4, ki ≤ O(log(diam(Gi))) ≤ O(log(diam(G))). Due to Corollary 4.2.12 and

Lemma 4.3.14, k′i ≤ O(log(diam(G))). Thus,
∑

i∈{0}∪[r−1] k′i + ki ≤ O(r log(diam(G))).

Since Vr ⊆ Vr−1 ⊆ Vr−2 ⊆ · · · ⊆ V0 = V, we have nr ≤ nr−1 ≤ nr−2 ≤ · · · ≤ n. Due

to line 14, line 15 and line 17, we know ∀i ∈ {0} ∪ [r − 1], Vi+1 = Li . If pi < 1/2, we know

pi = (30 log(n)+100)/γi . Since |VT̃i
(v)| ≥ γi,we can apply Lemma 4.2.3 to get Pr(|Li | ≤ 1.5pini) ≥

1 − 1/(100n). By taking union bound over all i ∈ {0} ∪ [r − 1], with probability at least 0.99, if

pi < 0.5, then ni+1 ≤ 1.5pini ≤ 0.75ni . Let E be the event that ∀i ∈ {0} ∪ [r − 1], if pi < 0.5, then

ni+1 ≤ 1.5pini . Now, we suppose E happens.

If p0 = 0.5, then m ≤ n · (600 log n)8. By applying Lemma 4.2.4, E(ni+1) = E(|Li |) ≤

0.75 E(ni) ≤ · · · ≤ 0.75i+1n. By Markov’s inequality, when i∗ ≥ 8 log(6000 log n)/log(4/3), with

probability at least 0.99, ni∗ ≤ n/(600 log n)8 and thus pi∗ < 0.5. Condition on this event and E,

we have

nr ≤

©«
(
n1.25
i∗

m0.25 (45 log n+150)

)1.25

m0.25 (45 log n + 150)
ª®®®¬
· · ·

· · ·
(Apply r ′ = r − i∗ times)

= ni∗/(m/ni∗)1.25r′−1 · (45 log n + 150)4·(1.25r′−1)

≤ n/
(
m/

(
ni∗(45 log n + 150)4

))1.25r′−1

≤ n/
(
m/

(
ni∗(45 log n + 150)4

))1.25r′/2
≤ n/(m/n)1.25r′/2 ≤ 1/2,

where the second inequality follows by ni∗ ≤ n, the third inequality follows by r′ ≥ 5, the forth in-

equality follows by ni∗ ≤ n/(600 log n)8, and the last inequality follows by r′ ≥ 2
log 1.25 log logm/n(2n).

Since 16n ≤ m ≤ n · (600 log n)8, log logm/n n = Θ(log log n). Let c > 0 be a sufficiently large con-

stant. Thus, when r ≥ c log logm/n n ≥ i∗+r′ = 8 log(6000 log n)/log(4/3)+ 2
log 1.25 log logm/n(2n),

with probability at least 0.98, nr = 0 implies that SPANNINGFOREST(G,m,r) will not fail. Due to

84

Lemma 4.3.4, we have ki ≤ O(min(log(m/ni), log(diam(G)))). Thus,

r−1∑
i=0

ki

=

i∗∑
i=0

ki +

r−1∑
i=i∗+1

ki

≤ O
(
(log log n)2

)
+

r−1∑
i=i∗+1

ki

≤ O
(
(log log n)2

)
+

∑
i:i≥i∗+1,m/ni≤diam(G)

ki +
∑

i:i≤r,m/ni>diam(G)
ki

≤ O
(
(log log n)2

)
+O ©«

dlog1.25 log2(diam(G))e∑
i=0

log(21.25i)
ª®¬ +O ©«

dlog1.25 logdiam(G)(m)e∑
i=0

log(diam(G))ª®¬
≤ O

(
(log log n)2

)
+O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n))

≤ O(log(diam(G)) log logdiam(G)(n) + (log log(n))2),

where the first inequality follows by i∗ = O(log log n) and ∀i ≤ [i∗],m/ni ≤ poly(log n), the third

inequality follows by m/ni+1 ≥ (m/ni)
1.25/(45 log n + 100) ≥ (m/ni)

1.125. Due to Corollary 4.2.12

and Lemma 4.3.14, we also have k′i ≤ O(min(log(m/ni), log(diam(G)))). Then, by the same argu-

ment, we have
∑r−1

i=0 k′i = O(log(diam(G)) log logdiam(G)(n) + (log log(n))2).

If m > n · (600 log n)8, then ∀i ∈ {0} ∪ [r − 1],we have pi < 0.5. Since E happens. We have:

nr ≤

((
n1.25
m0.25 (45 log n+150)

)1.25

m0.25 (45 log n + 150)

) ···
· · ·

(Apply r times)

=
n1.25r

m1.25r−1 (45 log n + 150)4·(1.25r−1)

= n/(m/n)1.25r−1 · (45 log n + 150)4·(1.25r−1)

= n/
(
m/

(
n(45 log n + 150)4

))1.25r−1

≤ n/
(
m/

(
n(45 log n + 150)4

))1.25r/2

≤ n/
(
m/

(
n(200 log n)4

))1.25r/2

85

≤
1
2
,

where the second inequality follows by r ≥ 5, the third inequality follows by 45 log n + 150 ≤

200 log n, and the last inequality follows by

r ≥ c log logm/n n ≥ 2 log1.25 log(m/n)1/2 2n ≥ 2 log1.25 logm/(n(200 log n)4) 2n,

for a sufficiently large constant c > 0. Since nr is an integer, nr must be 0 when nr ≤ 1/2.

SPANNINGFOREST(G,m,r) will succeed with probability at least 0.99. Due to Lemma 4.3.4, we

have ki ≤ O(min(log(m/ni), log(diam(G)))). Thus,

r−1∑
i=0

ki ≤
∑

m/ni≤diam(G)
ki +

∑
m/ni>diam(G)

ki

≤ O ©«
dlog1.25 log2(diam(G))e∑

i=0
log(21.25i)

ª®¬ +O ©«
dlog1.25 logdiam(G)(m)e∑

i=0
log(diam(G))ª®¬

≤ O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)),

where the second inequality follows by m/ni+1 ≥ (m/ni)
1.25/(45 log n + 100) ≥ (m/ni)

1.125. Due

to Corollary 4.2.12 and Lemma 4.3.14, we also have k′i ≤ O(min(log(m/ni), log(diam(G)))). Then,

by the same argument, we have
∑r−1

i=0 k′i = O(log(diam(G))) +O(log(diam(G)) log logdiam(G)(n)).

4.4 Implementations in MPC model

In this section, we show how to implement our connectivity and spanning forest algorithms in

the MPC model. For details of basic operations under MPC model, we refer readers to Section 2.3.

86

4.4.1 Neighbor increment operation

Lemma 4.4.1. Let graph G = (V,E),n = |V |,N = |V | + |E | and m = Θ(N1+γ) for some ar-

bitrary γ ∈ [0,2]. NEIGHBORINCREMENT(m,G) (Algorithm 2) can be implemented in (γ, δ) −

MPC model for any constant δ ∈ (0,1). Furthermore, the parallel running time is linear in

the number of iterations (see Definition 4.2.1) of NEIGHBORINCREMENT(m,G) which is at most

O(min(log(diam(G)), log(m/n))).

Proof. To implement line 3 of Algorithm 2, we can create a tuple (“w”, ({u, v},1)) for each tuple

(“E”, {u, v}) stored in the system. According to Lemma 3.1.4, we can implement line 4 of Algo-

rithm 2 in (γ, δ)-MPC model, and the parallel time is linear in the number of iterations (see Defi-

nition 4.2.1) of NEIGHBORINCREMENT(m,G) which is at most O(min(log(diam(G)), log(m/n))).

To finally create E′, we can create a tuple (“E′”, {u, v}) for each tuple (“E”, {u, v}), and create

a tuple (“E′”, {x, y}) for each tuple (“Sx”, y). Thus, all steps can be implemented in (γ, δ)-MPC

model, and the overall parallel time is linear in the number of iterations (see Definition 4.2.1) of

NEIGHBORINCREMENT(m,G) which is at most O(min(log(diam(G)), log(m/n))).

4.4.2 Tree contraction operation

In this section, we show how to implement Algorithm 3 in MPC model.

Lemma 4.4.2. Let graph G = (V,E) and par : V → V be a set of parent pointers (see Defini-

tion 4.2.5) on the vertex set V . TREECONTRACTION(G,par) (Algorithm 3) can be implemented in

(0, δ) − MPC model for any constant δ ∈ (0,1). Furthermore, the parallel running time is O(r),

where r is the number of iterations (see Definition 4.2.11) of TREECONTRACTION(G,par), and

r = O(dep(par)).

Proof. Let N = |V | + |E |. Then the total space is Θ(N).

Initially, each machine scans its local memory. If there is a tuple (“V”, v), then it queries the

value of par(v). It needs O(1) parallel time to answer all the queries (see Multiple queries in

87

Lemma 2.3.6). Then the machine creates a tuple (“g(0)”, (v,par(v))). Thus, in the initialization

stage, mapping g(0),par, set V,E are stored in the system.

In the l th iteration, Each machine scans its local memory. If there is a tuple (“V”, v), then it

queries the value of g(l−1)(v). This can be done by Multiple queries. Then it queries the value of

par(g(l−1)(v)). This can also be done by Multiple queries. If par(g(l−1)(v)) = g(l−1)(v), it creates

a tuple (“Done”, v). Then the machines can compute the sizes (see Section 2.3.3) of V and Done.

Each machine queries the size of V and Done. This can be done by Multiple queries. Then if

|V | = |Done|, every machine knows that the iterations are finished. Otherwise, the machine which

holds (“V”, v) queries the value of g(l−1)(g(l−1))(v). This can be done by Multiple queries. And

then it creates a tuple (“g(l)”, (v,g(l−1)(g(l−1))(v))).

At the end, if a machine holds a tuple (“V”, v), then it queries par(v) (see Multiple queries).

If v = par(v), it creates a tuple (“V ′”, v). If a machine holds a tuple (“E”, {u, v}), then it queries

g(r)(u),g(r)(v), and creates a tuple (“E′”, {g(r)(u),g(r)(v)−}).

Since at the end of each iteration l, the system only stores mappings par : V → V,g(r) : V → V,

and sets V,E, the total space used is at most O(N). Thus, we can implement the algorithm in

(0, δ) −MPC model.

The total parallel time is O(r). By Corollary 4.2.12, r = O(dep(par)). Thus, the total parallel

time is O(dep(par)).

4.4.3 Graph connectivity

Theorem 4.4.3. Let graph G = (V,E),n = |V |,N = |V |+ |E | and m = Θ(N1+γ) for some arbitrary

γ ∈ [0,2]. Let r > 0 be a round parameter. CONNECTIVITY(G,m,r) (Algorithm 4) can be imple-

mented in (γ, δ)−MPC model for any constant δ ∈ (0,1). Furthermore, the parallel running time is

O(R),where R is the total number of iterations (see Definition 4.2.19) of CONNECTIVITY(G,m,r).

Proof. Initially, we store sets V0,E0,V,E and mapping h0 in the system. Now consider the ith

round. Due to Lemma 4.4.1, line 7 can be implemented in total space Θ(m) and with O(ki) parallel

time, where ki is the number of iterations (See Definition 4.2.1) of NEIGHBORINCREMENT(m,Gi−1).

88

To store V ′i and E′i ,we need total space Θ(m). Line 8 can be implemented by operations described

in Sizes of sets and Multiple queries (see Section 2.3). Line 9 can be implemented by the oper-

ations described in Set membership and Multiple queries. To implement line 12, for each tuple

(“V ′′i ”, v),we can create a tuple (“li”, (v, x)) where x = 1 with probability pi, x = 0 with probability

1 − pi. To calculate pi, the machine only needs to know ni−1. This can be done by the operations

described in Sizes of sets and Multiple queries. Line 13 and line 14 can be implemented by op-

erations described in Set membership and Multiple queries. For line 15, set Li ∩ ΓG′i (v) can be

computed by operations described in Set membership and Multiple queries. Then, by opera-

tions in Indexing elements in sets and Multiple queries, we can get minu∈Li∩ΓG′
i
(v) u. Finally, by

operation described in Multiple queries, ∀v ∈ V ′′i with v < Li, the tuple (“ pari ”, (v, x)) can be cre-

ated, where x = minu∈Li∩ΓG′
i
(v) u. Due to Lemma 4.4.2, line 16 can be implemented in total Θ(m)

space and O(r′i) parallel running time, where r′i is the number of iterations (see Definition 4.2.11)

of TreeContraction(G′′i ,pari). Line 18 can be implemented by operations in Set membership, In-

dexing elements in sets and Multiple queries. Line 19 can be implemented by operations in Set

membership and Multiple queries. Line 20 can be implemented by Multiple queries. For other

v ∈ V with hi(v) = null assigned by line 6, we can use the operations in Set membership and

Multiple queries to find those v, and create a tuple (“hi”, (v,null)).

Thus, in the ith round, the parallel time needed is O(ki+r′i). At the end of the ith round, we only

need to keep sets Vi,Ei,V,E and mapping hi in the system. It will take total space at most O(m).

Due to Lemma 4.4.2 and dep(hr) ≤ r , line 23 can be implemented in at most O(m) total space

and O(log r) parallel time.

Thus, the total parallel time is O(log r +
∑r

i=1(ki + r′i)) = O(
∑r

i=1(ki + r′i)). By definition 4.2.19,

the total parallel time is O(R),where R is the total number of iterations of CONNECTIVITY(G,m,r).

The total space in the computation is always at most Θ(m).

Here, we are able to conclude the following theorem for graph connectivity problem.

Theorem 4.4.4. For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ) −MPC

algorithm (see Algorithm 4) which can output the connected components for any graph G = (V,E)

89

in O(min(log D·log(1/γ′), log n)) parallel time, where D is the diameter of G, n = |V |,N = |V |+ |E |

and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success probability is at least 0.98. In addition, if the algorithm

fails, then it will return FAIL.

Proof. The implementation of Algorithm 4 in MPC model is shown by Theorem 4.4.3. The cor-

rectness of Algorithm 4 is proved by Theorem 4.2.13. The total parallel time and the success

probability of Algorithm 4 is proved by Theorem 4.2.20.

4.4.4 Algorithms for local shortest path trees

In this section, we mainly explained how to implement local shortest path tree algorithms

described in Section 4.3.1.

Lemma 4.4.5. Let graph G = (V,E),n = |V |,N = |V | + |E | and m = Θ(N1+γ) for some ar-

bitrary γ ∈ [0,2]. MULTIPLELARGETREES(G,m) (Algorithm 5) can be implemented in (γ, δ) −

MPC model for any constant δ ∈ (0,1). Furthermore, the parallel running time is O(r), where

r is the number of iterations (see Definition 4.3.3) of MULTIPLELARGETREES(G,m), and r =

O(min(log(diam(G)), log(m/n))).

Proof. To implement line 3 of Algorithm 5, we can create a tuple (“w”, ({u, v},1)) for each tuple

(“E”, {u, v}) stored in the system. According to Lemma 3.1.4, line 4 of Algorithm 5 can be imple-

mented in (γ, δ)-MPC model, and the parallel time is linear in the number of iterations (see Defi-

nition 4.3.3) of MULTIPLELARGETREES(G,m) which is at most O(min(log(diam(G)), log(m/n))).

Next, we discuss how to implement the line 5-10 of Algorithm 5 for all v ∈ V simultaneously using

O(1) parallel time and O(m) total space. For each tuple (“Sv”,u), create a tuple (“VT̃(v)”,u). For each

tuple (“Sv”,u), query (see Multiple queries) dist(v,u) and create a tuple (“ depT̃(v) ”, (u,dist(v,u))).

For each tuple (“Sv”,u), query the index of u in Sv (see Multiple queries and Indexing elements

in sets). Suppose the index is j, create a tuple (“ fv”, (j,u)). The function fv(j) denotes the j-

th element in Sv. For each tuple (“Sv”,u), query the size of Sv, and the system copy every Sv

to Sv,1,Sv,2, · · · ,Sv,|Sv | (see Multiple queries, Sizes of sets, and Copies of sets). For each tuple

90

(“Sv,j”,u), query x = fv(j) and check whether {x,u} ∈ E (see Multiple queries and Set member-

ship). If {x,u} ∈ E , query dist(v,u) and dist(v, x) and check whether dist(v,u) = dist(v, x) + 1 (see

Multiple queries). If dist(v,u) = dist(v, x) + 1 is also satisfied, create a tuple (“ parT̃(v) ”, (u, x)). If

for “ parT̃(v) ” and u there are multiple tuples (“ parT̃(v) ”, (u, x1)), (“ parT̃(v) ”, (u, x2)), · · · , only keep

one arbitrary tuple (this can be done by sorting, see Theorem 2.3.1). It is easy to verify that above

procedures only takes O(1) parallel time. The bottleneck of the space usage is the operation Copies

of sets. According to Lemma 4.3.2, the size of Sv is at most O(
√

m/n). Thus, the total space used by

Copies of sets is at most O(m) which implies that all operations can be implemented in (γ, δ)-MPC

model. The overall parallel time is O(r) = O(min(log(diam(G)), log(m/n))).

4.4.5 Path generation and root changing

Lemma 4.4.6. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Let n = |V |. FINDANCESTORS(par) (Algorithm 6) can be implemented in (γ, δ) −MPC model

for any γ ≥ log log(dep(par))
log n and any constant δ ∈ (0,1). The parallel running time is O(r), where

r = O(log(dep(par))) is the number of iterations (see Definition 4.3.5) of FINDANCESTORS(par).

Proof. The structure of the whole algorithm is the same as the Algorithm 3 (see Lemma 4.4.2).

All the steps can be done by operation described in Multiple queries.

Since the number of rounds needed is r , the parallel time is O(r). For the total space, we

need to store all the mappings g1, · · · ,gr . At the end of the ith round, we need to store map-

ping hi . According to Lemma 4.3.6, r = O(log(dep(par))). Thus, the total space is O(rn) =

O(n log(dep(par))).

Lemma 4.4.7. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V . Let q be a vertex in V , and n = |V |. FINDPATH(par,q) (Algorithm 7) can be implemented

in (γ, δ) − MPC model for any γ ≥ log log n
log n and any constant δ ∈ (0,1). The parallel running

time is O(r), where r is the number of iterations (see Definition 4.3.5) of FINDANCESTORS(par)

(Algorithm 6).

91

Proof. By Lemma 4.4.6, FINDANCESTORS(par) can be implemented in (γ, δ) −MPC model for

γ ≥
log log n

log n and any constant δ ∈ (0,1). All the other other steps in the algorithm can be done

by operation described in Multiple queries. Notice that, after each round, we need to do load

balancing which can be done by operation described in Load balance.

The number of rounds must be smaller than O(r), where r should be the number of iterations

of FINDANCESTORS(par) according to Lemma 4.4.6.

We store all the mappings gi,deppar in the system. They need O(n log n) total space. In the ith

round, we only need to additionally store set Si which has size at most O(n). Thus, the total space

needed is at most O(n log n).

Lemma 4.4.8. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set V .

Let q be a vertex in V . ROOTCHANGE(par,q) (Algorithm 8) can be implemented in (γ, δ) −MPC

model for any γ ≥ log log n
log n and any constant δ ∈ (0,1). The parallel running time is O(r), where r

is the number of iterations (see Definition 4.3.5) of FINDANCESTORS(par) (Algorithm 6).

Proof. By Lemma 4.4.7, FINDPATH(par,q) can be implemented in (γ, δ) − MPC model. The

remaining steps in the procedure can be implemented by the operation described by Multiple

queries, and has O(1) parallel running time.

The total space needed is the total space needed for FINDPATH(par,q) plus the space needed to

store mapping h, p̂ar. Thus the total space needed is O(n log n) +O(n) = O(n log n).

The parallel running time is linear in the parallel running time of FINDPATH(par,q). Then, by

Lemma 4.4.7, the parallel running time is O(r) where r is the number of iterations (see Defini-

tion 4.3.5) of FINDANCESTORS(par).

4.4.6 Spanning forest algorithm

Lemma 4.4.9. Let G2 = (V2,E2) be an undirected graph. Let p̃ar : V2 → V2 be a set of parent

pointers (See Definition 4.2.5) which satisfies that∀v ∈ V2 with p̃ar(v) , v, (v, p̃ar(v))must be in E2.

Let G1 = (V1,E1) be an undirected graph satisfies V1 = {v ∈ V2 | p̃ar(v) = v},E1 = {{u, v} ⊆ V1 |

u , v,∃{x, y} ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v}. Let par : V1 → V1 be a rooted spanning forest

92

(See Definition 4.3.11) of G1. Let f : V1×V1 → {null}∪(V2 × V2) satisfy the following property: for

u , v ∈ V1, if par(u) = v, then f (u, v) ∈ {(x, y) ∈ V2×V2 | {x, y} ∈ E2, p̃ar(∞)(x) = u, p̃ar(∞)(y) = v},

and f (v,u) ∈ {(x, y) ∈ V2 × V2 | {x, y} ∈ E2, p̃ar(∞)(x) = v, p̃ar(∞)(y) = u}. Let n = |V2 |.

Then FORESTEXPANSION(par, p̃ar, f) (Algorithm 9) can be implemented in (γ, δ) − MPC model

for any γ ≥ log log n/log n and any constant δ ∈ (0,1) in parallel running time O(R), where

R = log(dep(p̃ar)).

Proof. Due to Lemma 4.4.2, line 3 can be done in O(R) parallel time for R = log(dep(p̃ar)).

Line 9 corresponds to multiple tasks, we can implement them parallelly by operations described in

Multiple queries, and Multiple Tasks (see Section 2.3.6). By Lemma 4.4.8, the total space needed

is at most O(n log n) and the parallel running time is at most O(R) where R = log(dep(p̃ar)).

Theorem 4.4.10. Let graph G = (V,E),n = |V |,N = |V | + |E | and m = Θ(Nγ) for some ar-

bitrary γ ∈ [0,2]. Let r > 0 be a round parameter. SPANNINGFOREST(G,m,r) (Algorithm 10)

can be implemented in (γ, δ) − MPC model for any constant δ ∈ (0,1). Furthermore, the par-

allel running time is O(R), where R is the total number of iterations (see Definition 4.3.21) of

SPANNINGFOREST(G,m,r).

Proof. At the beginning of the algorithm, we just store sets V,E,V0,E0 and mapping g0 in the

system.

Consider the ith round of the loop. By Lemma 4.4.5, line 8 can be implemented in total space

Θ(m) and in parallel running time O(ki) where ki is the number of iterations (see Definition 4.3.3)

of MULTIPLELARGETREES(Gi,m). Line 9 can be implemented by operations described in Sizes

of sets, Set membership, and Multiple queries. Line 10 can be implemented by operations de-

scribed in Indexing elements in sets, Set membership, and Multiple queries. In line 12, to

calculate γi, we need to query ni, this can be done by operations described in Sizes of sets and

Multiple queries. In line 14, to compute Li, we only need operations described in Set member-

ship and Multiple queries. Line 15 can be implemented by operations shown in Set membership,

Indexing elements in sets and Multiple queries. By Lemma 4.4.7, for line 16, there are multiple

93

tasks each can be implemented in O(|VT̃i(v)
| log |VT̃i(v)

|) total space, and O(ki) parallel time. We

can schedule these multiple tasks (see Section 2.3.6) such that we can finish them in parallel in

O(ki) parallel time. According to Lemma 4.4.2, for line 17, we can implement it in O(ni) = O(n)

total space, and in O(k′i) parallel time, where k′i is the number of iterations (see Definition 4.2.11)

of TREECONTRACTION(G′i,pari). Line 19 can be done by the operation described in Multiple

queries. Line 20 can be done by the operation described in Indexing elements in sets and Multi-

ple queries.

Thus, the parallel time is O(R), where R =
∑r−1

i=0 (ki + k′i). By definition of the total number of

iterations (see Definition 4.3.21) of SPANNINGFOREST(G,m,r). R is the total number of iterations

of SPANNINGFOREST(G,m,r).

For the space, we store all the sets V,E,Vi,Di and mappings pari, hi in all the rounds. Notice

that
∑r

i=0 |Vi | ≤ 40|V |. Thus this part takes only O(N) space. In the ith round, we additionally

store all the sets VT̃i(v)
,V ′i ,E

′
i , Li and all the mappings parT̃i(v)

,depT̃i(v)
, li, zi . The total space for this

part is at most O(m). For line 16, it creates multiple tasks. The input of each task is at most

|VT̃i(v)
| ≤ (m/ni)

1/2. There are at most ni tasks, and by Lemma 4.4.7, each task will need space

at most O(|VT̃i(v)
| log |VT̃i(v)

|). Thus, the space for this part is at most O(m). To conclude, the total

space needed is at most O(m).

Theorem 4.4.11. Let graph G = (V,E),n = |V |,N = |V | + |E | and m = Θ(Nγ) for some arbitrary

γ ∈ [0,2]. Let r > 0 be a round parameter. If SPANNINGFOREST(G,m,r) (Algorithm 10) does not

return FAIL, then let the output be the input of ORIENTATE(·) (Algorithm 11), and ORIENTATE(·)

can be implemented in (γ, δ) − MPC model for any constant δ ∈ (0,1). Furthermore, the par-

allel running time is O(R), where R is the total number of iterations (see Definition 4.3.21) of

SPANNINGFOREST(G,m,r).

Proof. Line 4 to line 7 can be implemented by operations described in Multiple queries. Notice

that there is a trick here, if fi(u, v) = null, we do not need to store the tuple (“ fi”, ((u, v),null)) in

the system. The total space needed to store all the mappings fi and all the sets Fi for i ∈ {0} ∪ [r]

94

is at most
∑r

i=0 |Vi | = O(m).

Line 10 and line 11 can be implemented by operations described in Set membership and

Multiple queries.

We now look at the second loop, and focus on round i. Line 12 can be implemented by

Lemma 4.4.9. The total space needed is at most O(|Vi | · (m/|Vi |)
1/2 · log(m/|Vi |)) = O(m). The

parallel running time needed is at most O(ki), where ki is the number of iterations (see Defi-

nition 4.3.3) of MULTIPLELARGETREES(Gi,m), Gi is the intermediate graph in the procedure

SPANNINGFOREST(G,m,r).

Thus, the parallel running time is O(R), where R is the total number of iterations (see Defini-

tion 4.3.21) of SPANNINGFOREST(G,m,r). The total space needed is O(m).

Now, we are able to conclude the following theorem for spanning forest problem.

Theorem 4.4.12. For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ)−MPC

algorithm (see Algorithm 10 and Algorithm 11) which can output the rooted spanning forest for

any graph G = (V,E) in O(min(log D · log 1
γ′ , log n)) parallel time, where D is the diameter of G,

n = |V |, N = |V | + |E | and γ′ = (1 + γ) logn
2N

n1/(1+γ) . Furthermore, the depth of the rooted spanning

forest found is at most DO(log(1/γ′)). The success probability is at least 0.98. In addition, if the

algorithm fails, then it will return FAIL.

Proof. Algorithm 10 outputs all the edges in the spanning forest and all the contraction informa-

tion. Algorithm 11 takes the output of Algorithm 10 as its input, and outputs a rooted spanning

forest.

The implementation of Algorithm 10 and Algorithm 11 in MPC model is shown by Theo-

rem 4.4.10 and Theorem 4.4.11 respectively. The correctness of Algorithm 10 and Algorithm 11

is proved by Corollary 4.3.17 and Theorem 4.3.19 respectively. The parallel time of Algorithm 10

and Algorithm 11 is proved by Theorem 4.3.22. By Theorem 4.3.19, the depth of that rooted

spanning forest is at most DO(log(1/γ′)).

A byproduct of our spanning forest algorithm is an estimator of the diameter of the graph.

95

Theorem 4.4.13. For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ)−MPC

algorithm which can output an diameter estimator D′ for any graph G = (V,E) in O(min(log D ·

log(1/γ′), log n)) parallel time such that D ≤ D′ ≤ DO(log(1/γ′)), where D is the diameter of G,

n = |V |, N = |V | + |E | and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success probability is at least 0.98. In

addition, if the algorithm fails, then it will return FAIL.

Proof. By Theorem 4.4.12, we can find a rooted spanning forest. By Theorem 4.3.19, the depth of

that rooted spanning forest is at most DO(log(1/γ′)). Then we can implement a doubling algorithm

(e.g. Modified Lemma 4.4.6, Algorithm 6 without maintaining useless gl) with log in depth parallel

time to output the depth of that spanning forest.

4.5 Minimum spanning forest

In this section, we discuss how to apply our connectivity/spanning forest algorithm to the Min-

imum Spanning Forest (MSF) and Bottleneck Spanning Forest (BSF) problem.

The input of MSF/BSF problem is an undirected graph G = (V,E) together with a weight

function w : E → Z, where E contains m edges e1, e2, · · · , em with w(e1) ≤ w(e2) ≤ · · · ≤ w(em).

The goal of MSF is to output a spanning forest such that the sum of weights of the edges in the

forest is minimized. The goal of BSF is to output a spanning forest such that the maximum weight

of the edges in the forest is minimized. D is the hop diameter of the minimum spanning forest.

If there are multiple choices of the minimum spanning forest, then let D be the minimum hop

diameter among all the minimum spanning forests.

For simplicity, in all of our proofs, we only discuss the case when all the edges have different

weights, i.e. w(e1) < w(e2) < · · · < w(em). In this case, the minimum spanning forest is unique. It

is easy to extend our algorithms to the case when there are edges with the same weight. We omit

the proof for this fact.

Firstly, we show that D is an upper bound of the diameter of G′ where the vertex set of G′ is

the vertex set of G, and the edge set of G′ is {e1, e2, · · · , ei} for some arbitrary i ∈ [m].

96

Lemma 4.5.1. Given a graph G = (V,E) for E = {e1, e2, · · · , em} together with a weight function

w which satisfies w(e1) < w(e2) < · · · < w(em), then the diameter of G′ = (V,E′) is at most D,

where D is the diameter of the minimum spanning forest of G, and E′ only contains the first i edges

of E , i.e. e1, e2, · · · , ei for some arbitrary i ∈ [m].

Proof. The proof follows by Kruskal’s algorithm directly.

Our algorithms is based on the following simple but useful Lemma.

Lemma 4.5.2. Given a graph G = (V,E) for E = {e1, e2, · · · , em} together with a weight function

w which satisfies w(e1) ≤ w(e2) ≤ · · · ≤ w(em), ∀1 ≤ i < j ≤ m, an edge e from {ei, ei+1, · · · , e j}

is in the minimum spanning forest of G if and only if e′ from {e′i, e
′
i+1, · · · , e

′
j} is in the mini-

mum spanning forest of G′, where the vertices of G′ is obtained by contracting all the edges

e1, e2, · · · , ei−1 of G, and e′, e′i, e
′
i+1, · · · , e

′
j are the edges (or vertices) in G′ which corresponds

to the edges e, ei, ei+1, · · · , e j before contraction.

Proof. The proof follows by Kruskal’s algorithm directly.

A natural way to apply Lemma 4.5.2 to parallel minimum spanning forest algorithm is that

we can divide the edges into several groups, and recursively solve the minimum spanning forest

for each group of edges. More precisely, suppose we have total space Θ(km), we can divide E

into k groups E1,E2, · · · ,Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. We can compute

graph G1,G2, · · · ,Gk where the vertices of Gi is obtained by contracting all the edges from e1 to

e(i−1)·m/k, the edges of Gi are corresponding to the edges in Ei . Then by Lemma 4.5.2, we can

obtain the whole minimum spanning forest by solving these k size O(m/k) minimum spanning

forest problems. For each sub-problem, we can assign it Θ(m) working space, thus each sub-

problem still has Θ(k) factor more total space. Therefore, we can recursively apply the above

argument.

Theorem 4.5.3. For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ) −

MPC algorithm which can output a minimum spanning forest for any weighted graph G = (V,E)

97

with weights w : E → Z in O(min(log D · log(1/γ′), log n) · 1/γ′) parallel time, where n = |V |,

∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning forest of G, and γ′ = γ/2 +

Θ(1/log n). The success probability is at least 0.98. In addition, if the algorithm fails, then it will

return FAIL.

Proof. Let n = |V |,m = |E |. Let E = {e1, · · · , em} with w(e1) ≤ w(e2) ≤ · · · ≤ w(em). The total

space in the system is Θ(m1+γ). Let k = Θ(mγ/2). By our previous discussion, we can divide E

into k groups E1,E2, · · · ,Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. By Lemma 4.5.1

and Theorem 4.4.4, we can use O(min(log D · log(1/γ′), log n)) parallel time and Θ(km1+γ/2) total

space to compute graph G1,G2, · · · ,Gk where the vertices of Gi is obtained by contracting all the

edges from e1 to e(i−1)·m/k, the edges of Gi are corresponding to the edges in Ei after contraction.

By Lemma 4.5.2, it suffices to recursively solve the minimum spanning forest problem for each

group Gi . Since each time, we split the edges into k groups, the recursion will have at most O(1/γ′)

levels. At the end of the recursion, we are able to determine for every edge e whether e is in the

minimum spanning forest.

Now let us consider the success probability. Although Theorem 4.4.4 is a randomized algo-

rithm, the parallel time is always bounded by min(log D · log(1/γ′), log n). If we repeat the algo-

rithm until it succeeds, the expectation of number of trials is a constant. Furthermore, for each level

of the recursion, we can regard the graphs in all the tasks composed one large graph. Thus, in real

implementation, in each level of the recursion, we will only invoke one connectivity procedure.

Thus in expectation, the total parallel time is O(min(log D · log(1/γ′), log n) · 1/γ′). By applying

Markov’s inequality, we complete the proof.

In the following theorem, we show that Lemma 4.5.2 can also be applied in approximate min-

imum spanning forest problem.

Theorem 4.5.4. For any γ ∈ [β,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ) −MPC

algorithm which can output a (1 + ε) approximate minimum spanning forest for any weighted

graph G = (V,E) with weights w : E → Z≥0 in O(min(log D · log(1/γ′), log n)) parallel time,

98

where n = |V |, N = |V | + |E |, β = Θ(log(ε−1 log n)/log n), ∀e ∈ E, |w(e)| ≤ poly(n), D is the

diameter of a minimum spanning forest of G, and γ′ = (1 + γ − β) logn
2N

n1/(1+γ−β) . The success

probability is at least 0.98. In addition, if the algorithm fails, then it will return FAIL.

Proof. For each edge e ∈ E , we can round w(e) to w′(e) such that w′(e) = 0 when w(e) = 0, and

w′(e) = (1 + ε)i when w(e) , 0, and i is the smallest integer such that w(e) ≤ (1 + ε)i .

Since |w(e)| ≤ poly(n) for all e ∈ E, there are only k = O(log(n)/ε) different values of w′(e).

We can divide E into k groups, where the ith group Ei contains all edges with the ith largest weight

in w′. By Lemma 4.5.1 and Theorem 4.4.4, we can use O(min(log D · log(1/γ′), log n)) parallel

time and Θ(kN1+γ−β) = Θ(N1+γ) total space to compute graph G1,G2, · · · ,Gk where the vertices

of Gi is obtained by contracting all the edges from E1 to Ei−1, the edges of Gi are corresponding to

the edges in Ei after contraction.

Then, for each Gi, since all the edges have the same w′ weight, any spanning forest of Gi is a

minimum spanning forest of Gi . By Theorem 4.4.12, we can use O(min(log D · log(1/γ′), log n))

parallel time and Θ(kN1+γ−β) = Θ(N1+γ) total space to compute the spanning forest for each

graph G1,G2, ·,Gk . By Lemma 4.5.2, the union of all the minimum spanning forest with respect

to w′ must be the minimum spanning forest of G with respect to w′. Since all the weights w are

nonnegative integers, w′ is a (1+ ε) approximation to w. Therefore, our output minimum spanning

forest with respect to w′ is a (1+ ε) approximation to the minimum spanning forest with respect to

w.

For the success probability, we can apply the similar argument made in the proof of Theo-

rem 4.5.3 to prove that the success probability is at least 0.98.

In the following, we show that if we only need to find the largest edge in the minimum spanning

tree, then we are able to get a better parallel time. It is an another application of our

Theorem 4.5.5. For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ) −MPC

algorithm which can output a bottleneck spanning forest for any weighted graph G = (V,E) with

weights w : E → Z in O(min(log D · log(1/γ′), log n) · log(1/γ′)) parallel time, where n = |V |,

99

∀e ∈ E, |w(e)| ≤ poly(n), D is the diameter of a minimum spanning forest of G, and γ′ = γ/2 +

Θ(1/log n). The success probability is at least 0.98. In addition, if the algorithm fails, then it will

return FAIL.

Proof. Let n = |V |,m = |E |. Let E = {e1, · · · , em} with w(e1) ≤ w(e2) ≤ · · · ≤ w(em). The total

space in the system is Θ(m1+γ). Let k = Θ(mγ/2). By our previous discussion, we can divide E

into k groups E1,E2, · · · ,Ek, where Ei = {e(i−1)·m/k+1, e(i−1)·m/k+2, · · · , ei·m/k}. By Lemma 4.5.1

and Theorem 4.4.4, we can use O(min(log D · log(1/γ′), log n)) parallel time and Θ(km1+γ/2) total

space to compute graph G1,G2, · · · ,Gk where the vertices of Gi is obtained by contracting all the

edges from e1 to e(i−1)·m/k, the edges of Gi are corresponding to the edges in Ei after contraction.

By Lemma 4.5.2, the edge with largest weight must be in the group Ei for some i with

Gi+1 = Gi+2. Thus, we reduce the problem size to m/k . By double-exponential speed problem size

reduction technique described in Chapter 3, we can finish the recursion in O(log(1/γ′)) phases.

Suppose the bottleneck is ei, then by Theorem 4.4.12, we can find a spanning forest by only

using edges from {e1, · · · , ei} in O(min(log D · log(1/γ′), log n)) parallel time and in Θ(m1+γ/2)

total space. Thus, the resulting spanning forest is a bottleneck spanning forest.

For the success probability, we can apply the similar argument made in the proof of Theo-

rem 4.5.3 to prove that the success probability is at least 0.98.

4.6 Connectivity and spanning forest in PRAM

In this section, we show how to implement the truncated broadcasting, the connectivity algo-

rithm and the spanning forest algorithm in a more careful way such that they can be implemented

in PRAM using linear processors and small parallel time as the same as the MPC implementation.

4.6.1 Framework

We formulate the problem of computing connected components concurrently as follows: label

each vertex v with a unique vertex v.p in its component. Such a labeling gives a constant-time test

for whether two vertices v and w are in the same component: they are if and only if v.p = w.p. We

100

begin with every vertex self-labeled (v.p = v) and successively update labels until there is exactly

one label per component.

The labels define a directed graph (labeled digraph) with arcs (v, v.p), where v.p is the parent

of v. We maintain the invariant that the only cycles in the labeled digraph are self-loops (arcs of the

form (v, v)). Then this digraph consists of a set of rooted trees, with v a root if and only if v = v.p.

The root of a tree here denotes a leader vertex mentioned in previous sections. Acyclicity implies

that when the parent of a root v changes, the new parent of v is not in the tree rooted at v (for any

order of the concurrent parent changes). We call a tree flat if the root is the parent of every vertex

in the tree. Some authors call flat trees stars.

In our connected components and spanning forest algorithms, we maintain the additional in-

variant that if the parent of a non-root v changes, its new parent is in the same tree as v (for

any order of the parent changes). This invariant implies that the partition of vertices among trees

changes only by set union; that is, no parent change moves a proper subtree to another tree. We

call this property monotonicity.

4.6.2 Building blocks

Our algorithms use three standard and one not-so-standard building blocks, which link (sub)trees,

flatten trees, alter edges, and add edges, respectively. (Classic PRAM algorithms develop many

techniques to make the graph sparser, e.g., in [77, 78, 79], not denser by adding edges.)

We treat each undirected edge {v,w} as a pair of oppositely directed arcs (v,w) and (w, v). A

direct link applies to a graph arc (v,w) such that v is a root and w is not in the tree rooted at v; it

makes w the parent of v. Concurrent direct links maintain monotonicity.

Concurrent links can produce trees of arbitrary heights. To reduce the tree heights, we use the

shortcut operation: for each v do v.p B v.p.p. One shortcut roughly halves the heights of all

trees; O(log n) shortcuts make all trees flat. Hirschberg et al. [80] introduced shortcutting in their

connected components algorithm; it is closely related to the compress step in tree contraction [81]

and to path splitting in disjoint-set union [82].

101

Our third operation changes graph edges. To alter {v,w}, we replace it by {v.p,w.p}. Links,

shortcuts, and edge alterations suffice to efficiently compute components. Liu and Tarjan [83]

analyze simple algorithms that use combinations of our first three building blocks.

To obtain a good bound for small-diameter graphs, we need a fourth operation that adds edges.

We expand a vertex u by adding an edge {u,w} for a neighbor v of u and a neighbor w of v. This

operation corresponds to truncated broadcasting (Algorithm 1). To use a small depth and work,

we need to implement the procedure in a more careful way. The key idea for implementing this

expansion procedure is hashing, which is presented below.

Suppose each vertex owns a block of K2 processors. For each processor in a block, we index

it by a pair (p,q) ∈ [K] × [K]. For each vertex u, we maintain a size-K table H(u). We choose a

random hash function h : [n] → [K]. At the beginning of an expansion, for each graph arc (u, v),

we write vertex v into the h(v)-th cell of H(u). Then we can expand u as follows: each processor

(p,q) reads vertex v from the p-th cell of H(u), reads vertex w from the q-th cell of H(v), and

writes vertex w into the h(w)-th cell of H(u). For each w ∈ H(u) after the expansion, {u,w} is

considered an added edge in the graph and is treated the same as any other edge.

The key difference between our hashing-based expansion and that in the MPC algorithms is

that a vertex w within distance 2 from u might not be in H(u) after the expansion due to a collision,

so crucial to our analysis is the way to handle collisions.

4.6.3 Connectivity in ARBITRARY CRCW PRAM

In this section we present our connected components algorithm. For simplicity in presentation,

we first consider the COMBINING CRCW PRAM [84], whose computational power is between

the ARBITRARY CRCW PRAM and MPC. This model is the same as the ARBITRARY CRCW

PRAM, except that if several processors write to the same memory cell at the same time, the

resulting value is a specified symmetric function (e.g., the sum or min) of the individually written

values.

We begin with a simple randomized algorithm proposed by Reif [85] but adapted in our frame-

102

work, which is called Vanilla algorithm. We implement the algorithm on a COMBINING CRCW

PRAM and then generalize it to run on an ARBITRARY CRCW PRAM.

Vanilla algorithm

In each iteration of Vanilla algorithm (see below), some roots of trees are selected to be leaders,

which becomes the parents of non-leaders after the LINK. A vertex u is called a leader if u.l = 1.

Vanilla algorithm: repeat {RANDOM-VOTE; LINK; SHORTCUT; ALTER} until no edge exists

other than loops.

RANDOM-VOTE: for each vertex u: set u.l B 1 with probability 1/2, and 0 otherwise.

LINK: for each graph arc (v,w): if v.l = 0 and w.l = 1 then update v.p to w.

SHORTCUT: for each vertex u: update u.p to u.p.p.

ALTER: for each edge e = {v,w}: replace it by {v.p,w.p}.

It is easy to see that Vanilla algorithm uses O(m) processors and can run on an ARBITRARY

CRCW PRAM. We call an iteration of the repeat loop in the algorithm a phase. Clearly each phase

takes O(1) time. We obtain the following results:

Definition 4.6.1. A vertex is ongoing if it is a root but not the only root in its component, otherwise

it is finished.

Lemma 4.6.2. At the beginning of each phase, each tree is flat and a vertex is ongoing if and only

if it is incident with a non-loop edge.

Proof. The proof is by induction on phases. At the beginning, each vertex is in a single-vertex tree

and the edges between trees are in the original graph, so the lemma holds. Suppose it holds for

phase k − 1. After the LINK in phase k, each tree has height at most two since only non-leader

root can update its parent to a leader root. The following SHORTCUT makes the tree flat, then the

ALTER moves all the edges to the roots. If a root is not the only root in its component, there must

be an edge between it and another vertex not in its tree.

103

Lemma 4.6.3. Given a vertex u, after k phases of Vanilla algorithm, u is ongoing with probability

at most (3/4)k .

Proof. We prove the lemma by an induction on k. The lemma is true for k = 0. Suppose it is

true for k − 1. Observe that a non-root can never again be a root. For vertex u to be ongoing

after k phases, it must be ongoing after k − 1 phases. By the induction hypothesis this is true with

probability at most (3/4)k−1. Furthermore, by Lemma 4.6.2, if this is true, there must be an edge

{u, v} such that v is ongoing. With probability 1/4, u.l = 0 and v.l = 1, then u is finished after

phase k. It follows that the probability that, after phase k, u is still ongoing is at most (3/4)k .

By Lemma 4.6.3, the following corollary is immediate by linearity of expectation and Markov’s

inequality:

Corollary 4.6.4. After k phases of Vanilla algorithm, the number of ongoing vertices is at most

(7/8)kn with probability at least 1 − (6/7)k .

By Lemma 4.6.2, Corollary 4.6.4, and monotonicity, we have that Vanilla algorithm outputs

the connected components in O(log n) time with high probability.

Algorithmic framework

In this section we present the algorithmic framework for our connected components algorithm.

For any vertex v in the current graph, a vertex within distance 1 from v in the current graph

(which contains the (altered) original edges and the (altered) added edges) is called a neighbor of

v. The set of neighbors of every vertex is maintained during the algorithm (see the implementation

of the EXPAND).

Connected Components algorithm: PREPARE; repeat {EXPAND; VOTE; LINK; SHORTCUT;

ALTER} until no edge exists other than loops.

PREPARE: if m/n ≤ logc n for given constant c then run c log8/7 log n phases of Vanilla

algorithm.

104

EXPAND: for each ongoing u: expand the neighbor set of u according to some rule.

VOTE: for each ongoing u: set u.l according to some rule in O(1) time.

LINK: for each ongoing v: for each w in the neighbor set of v: if v.l = 0 and w.l = 1 then

update v.p to w.

The SHORTCUT and ALTER are the same as those in Vanilla algorithm. The LINK is also the

same in the sense that in our algorithm the graph arc (v,w) is added during the EXPAND in the form

of adding w to the neighbor set of v. Therefore, Lemma 4.6.2 also holds for this algorithm.

The details of the EXPAND and VOTE will be presented later. We call an iteration of the repeat

loop after the PREPARE a phase. By Lemma 4.6.2, we can determine whether a vertex is ongoing

by checking the existence of non-loop edges incident on it, therefore in each phase, the VOTE,

LINK, SHORTCUT, and ALTER take O(1) time.

Let δ = m/n′, where n′ is the number of ongoing vertices at the beginning of a phase. Our

goal in one phase is to reduce n′ by a factor of at least a positive constant power of δ with high

probability with respect to δ, so we do a PREPARE before the main loop to obtain a large enough δ

with good probability:

Lemma 4.6.5. After the PREPARE, if m/n > logc n, then m/n′ ≥ logc n; otherwise m/n′ ≥ logc n

with probability at least 1 − 1/logc n.

Proof. The first part is trivial since the PREPARE does nothing. By Corollary 4.6.4, after c log8/7 log n

phases, there are at most n/logc n ongoing vertices with probability at least 1 − (6/7)c log8/7 log n ≥

1 − 1/logc n, and the lemma follows immediately from m ≥ n.

We will be focusing on the EXPAND, VOTE, and LINK, so in each phase it suffices to only

consider the induced graph on ongoing vertices with current edges. If no ambiguity, we call this

induced graph just the graph, call the current edge just the edge, and call an ongoing vertex just a

vertex.

105

In the following algorithms and analyses, we will use the following assumption for simplicity

in the analyses.

Assumption 4.6.6. The number of ongoing vertices n′ is known at the beginning of each phase.

This holds if running on a COMBINING CRCW PRAM with sum as the combining function

to compute n′ in O(1) time. Later we will show how to remove Assumption 4.6.6 to implement

our algorithms on an ARBITRARY CRCW PRAM.

The expansion

In this section, we present the method EXPAND and show that almost all vertices have a large

enough neighbor set after the EXPAND with good probability.

Blocks. We shall use a pool of m processors to do the EXPAND. We divide these into m/δ2/3

indexed blocks, where each block contains δ2/3 indexed processors. Since n′ and δ are known at

the beginning of each phase (cf. Assumption 4.6.6), if a vertex is assigned to a block, then it is

associated with δ2/3 (indexed) processors. We map the n′ vertices to the blocks by a random hash

function hB. Each vertex has a probability of being the only vertex mapped to a block, and if this

happens then we say this vertex owns a block.

Hashing. We use a hash table to implement the neighbor set of each vertex and set the size of the

hash table as δ1/3, because we need δ1/3 processors for each cell in the table to do an expansion

step (see Step (5a) in the EXPAND). We use a random hash function hV to hash vertices into the

hash tables. Let H(u) be the hash table of vertex u. If no ambiguity, we also use H(u) to denote

the set of vertices stored in H(u). If u does not own a block, we think that H(u) = ∅.

We present the method EXPAND as follows:

EXPAND:

1. Each vertex is either live or dormant in a step. Mark every vertex as live at the beginning.

106

2. Map the vertices to blocks using hB. Mark the vertices that do not own a block as

dormant.

3. For each graph arc (v,w): if v is live before Step (3) then use hV to hash v into H(v) and

w into H(v), else mark w as dormant.

4. For each hashing done in Step (3): if it causes a collision (a cell is written by different

values) in H(u) then mark u as dormant.

5. Repeat the following until there is neither live vertex nor hash table getting a new entry:

(a) For each vertex u: for each v in H(u): if v is dormant before Step (5a) in this

iteration then mark u as dormant, for each w in H(v): use hV to hash w into H(u).

(b) For each hashing done in Step (5a): if it causes a collision in H(u) then mark u as

dormant.

The first four steps and each iteration of Step (5) in the EXPAND take O(1) time. We call an

iteration of the repeat loop in Step (5) a round. We say a statement holds before round 0 if it is true

before Step (3), it holds in round 0 if it is true after Step (4) and before Step (5), and it holds in

round i (i > 0) if it is true just after i iterations of the repeat loop in Step (5).

Additional notations. We use dist(u, v) to denote the distance between u and v, which is the

length of the shortest path from u to v. We use B(u, α) = {v ∈ V | dist(u, v) ≤ α} to represent the

set of vertices with distance at most α from u. For any j ≥ 0 and any vertex u, let Hj(u) be the

hash table of u in round j.

Consider a vertex u that is dormant after the EXPAND. We call u fully dormant if u is dormant

before round 0, i.e., u does not own a block. Otherwise, we call u half dormant. For a half dormant

u, let i ≥ 0 be the first round u becomes dormant. For u that is live after the EXPAND, let i ≥ 0 be

the first round that its hash table is the same as the table just before round i. The following lemma

107

shows that in this case, the table of u in round j < i contains exactly the vertices within distance

2 j :

Lemma 4.6.7. For any vertex u that is not fully dormant, let i be defined above, then it must be

that Hi(u) ⊆ B(u,2i). Furthermore, for any j ∈ [0, i − 1], Hj(u) = B(u,2 j).

Proof. According to the update rule of H(u), it is easy to show that for any integer j ≥ 0, Hj(u) ⊆

B(u,2 j) holds by induction. Now we prove that for any j ∈ [0, i − 1], Hj(u) = B(u,2 j). We claim

that for any vertex v, if v is not dormant in round j, then Hj(v) = B(v,2 j). The base case is when

j = 0. In this case, H0(v) has no collision, so the claim holds. Suppose the claim holds for j − 1,

i.e., for any vertex v′ which is not dormant in round j − 1, it has Hj−1(v
′) = B(v′,2 j−1). Let v

be any vertex which is not dormant in round j. Then since there is no collision, Hj(v) should be⋃
v′∈Hj−1(v) Hj−1(v

′) =
⋃

v′∈B(v,2j−1) B(v′,2 j−1) = B(v,2 j). Thus the claim is true, and it implies that

for any j ∈ [0, i − 1], Hj(u) = B(u,2 j).

Lemma 4.6.8. The EXPAND takes O(log d) time, where d is the (hop) diameter of the original

graph.

Proof. By an induction on phases, any path in the previous phase is replaced by a new path with

each vertex on the old path replaced by its parent, so the diameter never increases. Since u either is

fully dormant or stops its expansion in round i, the lemma follows immediately from Lemma 4.6.7.

We want to show that the table of u in round i contains enough neighbors, but u becomes

dormant in round i possibly dues to propagations from another vertex in the table of u that is

dormant in round i−1, which does not guarantee the existence of collisions in the table of u (which

implies large size of the table with good probability). We overcome this issue by identifying the

maximal-radius ball around u with no collision nor fully dormant vertex, whose size serves as a

size lower bound of the table in round i.

Definition 4.6.9. For any vertex u that is dormant after the EXPAND, let r be the minimal integer

such that there is no collision nor fully dormant vertex in B(u,r − 1).

108

Lemma 4.6.10. If u is fully dormant then r = 0. If u is half dormant then 2i−1 < r ≤ 2i.

Proof. If u is fully dormant, then r = 0 since B(u,0) = {u}. Suppose u is half dormant. We prove

the lemma by induction on i. The lemma holds for i = 0 because r > 0 and if r ≥ 2 then u cannot

be dormant in Step (3) nor Step (4). The lemma also holds for i = 1 because if r = 1 then u

becomes dormant in Step (3) or Step (4) and if r ≥ 3 then u cannot be dormant in round 1.

Suppose i ≥ 2. Assume r ≤ 2i−1 and let v ∈ B(u,r) be a fully dormant vertex or a vertex that

causes a collision in B(u,r). Assume u becomes dormant after round i − 1. By Lemma 4.6.7, we

know that Hi−1(u) = B(u,2i−1). Since r ≤ 2i−1, there is no collision in B(u,r) using hV . Thus, there

is a fully dormant vertex v in B(u,r) ⊆ Hi−1(u). Consider the first round j ≤ i − 1 that v is added

into H(u). If j = 0, then u is marked as dormant in round 0 by Step (3). If j > 0, then in round

j, there is a vertex v′ in Hj−1(u) such that v ∈ Hj−1(v
′), and v is added into Hj(u) by Step (5a).

In this case, u is marked as dormant in round j by Step (5a). In both cases j = 0 and j > 0, u is

marked as dormant in round j ≤ i − 1 which contradicts with the definition of i. So the only way

for u to become dormant in round i is for a vertex v to exist in Hi−1(u) which is dormant in round

i − 1. Assume for contradiction that r > 2i, then by Definition 4.6.9 there is no collision nor fully

dormant vertex in B(u,2i). By the induction hypothesis, there exists either a collision or a fully

dormant vertex in B(v,2i−1). By Lemma 4.6.7, we know that Hi−1(u) = B(u,2i−1). It means that

B(v,2i−1) ⊆ B(u,2i) contains a collision or a fully dormant vertex, contradiction.

To state bounds simply, let b B δ1/18, then hash functions hB and hV are from [n] to [m/b12]

and from [n] to [b6], respectively. Note that hB and hV need to be independent with each other, but

each being pairwise independent suffices, so each processor doing hashing only reads two words.

Lemma 4.6.11. For any vertex u that is dormant after the EXPAND, |B(u,r)| ≤ b2 with probability

at most b−2.

Proof. Let j be the maximal integer such that j ≤ d and |B(u, j)| ≤ b2. We shall calculate the

probability of r ≤ j, which is equivalent to the event |B(u,r)| ≤ b2.

109

The expectation of the number of collisions in B(u, j) using hV is at most
(b2

2
)
/b6 ≤ b−2/2, then

by Markov’s inequality, the probability of at least one collision existing is at most b−2/2.

For any u to be fully dormant, at least one of the n′ − 1 vertices other than u must have hash

value hB(u). By union bound, the probability of u being fully dormant is at most

n′ − 1
m/b12 ≤

n′

n′b6 =
1
b6 , (4.1)

where the first inequality follows from m/n′ = b18. Taking union bound over all vertices in B(u, j)

we obtain the probability as at most b2 · b−6 = b−4.

Therefore, for any dormant vertex u, Pr[|B(u,r)| ≤ b2] = Pr[r ≤ j] ≤ b−2/2 + b−4 ≤ b−2 by a

union bound.

Based on Lemma 4.6.11, we shall show that any dormant vertex has large enough neighbor set

after the EXPAND with good probability. To prove this, we need the following lemma:

Lemma 4.6.12. |B(u,r − 1)| ≤ |Hi(u)|.

Proof. Let w be a vertex in B(u,r − 1). If dist(w,u) ≤ 2i−1 then w ∈ Hi−1(u) by Lemma 4.6.7 and

Definition 4.6.9, and position hV (w) in Hi(u) remains occupied in round i. Suppose dist(w,u) >

2i−1. Let x be a vertex on the shortest path from u to w and x satisfies dist(x,w) = 2i−1. We

obtain B(x,2i−1) ⊆ B(u,r − 1) since any y ∈ B(x,2i−1) has dist(y,u) ≤ dist(y, x) + dist(x,u) ≤

2i−1 + r − 1 − 2i−1, and thus w ∈ Hi−1(x) and x ∈ Hi−1(u). So position hV (w) in Hi(u) remains

occupied in round i as a consequence of Step (5a). Therefore Lemma 4.6.12 holds.

Lemma 4.6.13. After the EXPAND, for any dormant vertex u, |H(u)| < b with probability at most

b−1.

Proof. By Lemma 4.6.11, |B(u,r)| > b2 with probability at least 1 − b−2. If this event happens,

u must be half dormant. In the following we shall prove that |H(u)| ≥ b with probability at least

1 − b−4 conditioned on this, then a union bound gives the lemma.

110

If i = 0 then r = 1 by Lemma 4.6.10, which gives |B(u,1)| > b2 ≥ b. Consider hashing

arbitrary b vertices of B(u,1). The expectation of the number of collisions among them is at most

b2/b6 = b−4, then by Markov’s inequality the probability of at least one collision existing is at

most b−4. Thus with probability at least 1 − b−4 these b vertices all get distinct hash values, which

implies |H(u)| ≥ b. So the lemma holds.

Suppose i ≥ 1. If |B(u,r − 1)| ≥ b then the lemma holds by Lemma 4.6.12. Otherwise, since

|B(u,r)| > b2, by Pigeonhole principle there must exist a vertex w at distance r − 1 from u such

that |B(w,1)| > b. Then by an argument similar to that in the second paragraph of this proof we

have that H0(w) ≥ b with probability at least 1 − b−4. If i = 1 then r = 2. Since w ∈ H0(u) dues to

Definition 4.6.9, at least b positions will be occupied in H1(u), and the lemma holds.

Suppose i ≥ 2. Let w0 be a vertex on the shortest path from u to w such that dist(w0,w) = 1.

Recursively, for j ∈ [1, i − 2], let w j be a vertex on this path such that dist(w j−1,w j) = 2 j . We have

that

dist(w,wi−2) = dist(w,w0) +
∑

j∈[i−2]
dist(w j−1,w j) = 2i−1 − 1.

Thus

dist(wi−2,u) = r − 1 − dist(w,wi−2) = r − 2i−1 ≤ 2i−1,

where the last inequality follows from Lemma 4.6.10. It follows that wi−2 ∈ Hi−1(u) by Lemma 4.6.7

and Definition 4.6.9. We also need the following claim, which follows immediately from dist(w j,u) ≤

r − 2 j and Definition 4.6.9:

Claim 4.6.14. Hj(w j) = B(w j,2 j) for all j ∈ [0, i − 2].

Now we claim that |Hi−1(wi−2)| ≥ b and prove it by induction, then |Hi(u)| ≥ b holds since

wi−2 ∈ Hi−1(u). |H1(w0)| ≥ b since w ∈ H0(w0) and |H0(w)| ≥ b. Assume |Hj(w j−1)| ≥ b.

Since w j−1 ∈ Hj(w j) by dist(w j−1,w j) = 2 j and Claim 4.6.14, we obtain |Hj+1(w j)| ≥ b. So the

induction holds and |Hi−1(wi−2)| ≥ b.

By the above paragraph and the first paragraph of this proof we proved Lemma 4.6.13.

111

The voting

In this section, we present the method VOTE and show that the number of ongoing vertices

decreases by a factor of a positive constant power of b with good probability.

VOTE: for each vertex u: initialize u.l B 1,

1. If u is live after the EXPAND then for each vertex v in H(u): if v < u then set u.l B 0.

2. Else set u.l B 0 with probability 1 − b−2/3.

There are two cases depending on whether u is live. In Case (1), by Lemma 4.6.7, H(u) must

contain all the vertices in the component of u, and so does any vertex in H(u), because otherwise u

is dormant. We need to choose the same parent for all the vertices in this component, which is the

minimal one in this component as described: a vertex u that is not minimal in its component would

have u.l = 0 by some vertex v in H(u) smaller than u. Thus all live vertices become finished in the

next phase.

In Case (2), u is dormant. Then by Lemma 4.6.13, |H(u)| ≥ b with probability at least 1−b−1. If

this event happens, the probability of no leader in H(u) is at most (1−b−2/3)b ≤ exp(−b−1/3) ≤ b−1.

The number of vertices in the next phase is the sum of: (i) the number of dormant leaders,

(ii) the number of non-leaders u with |H(u)| < b and no leader in H(u), and (iii) the number of

non-leaders u with |H(u)| ≥ b and no leader in H(u). We have that the expected number of vertices

in the next phase is at most

n′ · (b−2/3 + b−1 + (1 − b−1) · b−1) ≤ n′ · b−1/2.

By Markov’s inequality, the probability of having more than n′ · b−1/4 vertices in the next phase is

at most
n′ · b−1/2

n′ · b−1/4 ≤ b−1/4. (4.2)

112

Removing the assumption

In this section, we remove Assumption 4.6.6 which holds on a COMBINING CRCW PRAM,

thus generalize the algorithm to run on an ARBITRARY CRCW PRAM.

Recall that we set b = δ1/18 where δ = m/n′ is known. The key observation is that in each

phase, all results still hold when we use any ñ to replace n′ as long as ñ ≥ n′ and b is large enough.

This effectively means that we use b = (m/ñ)1/18 for the hash functions hB and hV . This is because

the only places that use n′ as the number of vertices in a phase are:

1. The probability of a dormant vertex u having B(u,r) ≤ b2 (Lemma 4.6.11). Using ñ to

rewrite Inequality (4.1), we have:

n′ − 1
m/b12 =

n′ − 1
ñb6 ≤

n′

n′b6 =
1
b6 ,

followed from m/ñ = b18 and ñ ≥ n′. Therefore Lemma 4.6.11 still holds.

2. The probability of having more than n′ · b−1/4 vertices in the next phase. Now we measure

the progress by the decreasing in ñ. The expected number of vertices in the next phase is still

at most n′ · b−1/4, where n′ is the exact number of vertices. Therefore by Markov’s inequality

we can rewrite Inequality (4.2) as:

n′ · b−1/2

ñ · b−1/4 ≤ b−1/4,

which is the probability of having more than ñ · b−1/4 vertices in the next phase.

As a conclusion, if ñ ≥ n′ and b is large enough in each phase, all analyses still apply. Let c be

the value defined in PREPARE. We give the update rule of ñ:

Update rule of ñ:

113

If m/n ≤ logc n then set ñ B n/logc n for the first phase (after the PREPARE), else set

ñ B n.

At the beginning of each phase, update ñ B ñ/b1/4 then update b B (m/ñ)1/18.

So b ≥ logc/18 n is large enough. By the above argument, we immediately have the following:

Lemma 4.6.15. Let ñ and n′ be as defined above in each phase. If ñ ≥ n′ in a phase, then with

probability at least 1 − b−1/4, ñ ≥ n′ in the next phase.

By an induction on phases, Lemma 4.6.15, and a union bound, the following lemma is imme-

diate:

Lemma 4.6.16. Given any integer t ≥ 2, if ñ ≥ n′ in the first phase, then ñ ≥ n′ in all phases

before phase t with probability at least 1 −
∑

i∈[t−2] bi
−1/4, where bi is the parameter b in phase

i ≥ 1 .

Running time

In this section, we compute the running time of our algorithm and the probability of achieving

it.

Lemma 4.6.17. After the PREPARE, if ñ ≥ n′ in each phase, then the algorithm outputs the con-

nected components in O(log logm/n1
n) phases, where n1 is the ñ in the first phase.

Proof. Let ni be the ñ in phase i. By the update rule of ñ, we have ni+1 ≤ ni/(m/ni)
1/72, which

gives m/nt+1 ≥ (m/n1)
(73/72)t . If t = dlog73/72 logm/n1

me + 1 then nt+1 < 1, which leads to n′ = 0

at the beginning of phase t + 1. By Lemma 4.6.2 and monotonicity, the algorithm terminates and

outputs the correct connected components in this phase since no parent changes.

Theorem 4.6.18 (Connectivity). There is an ARBITRARY CRCW PRAM algorithm using O(m)

processors that computes the connected components of any given graph. With probability 1 −

1/poly(((m + n) log n)/n), it runs in O(log(d + 1) log log2(m+n)/n n) time.

114

Proof. We set c = 100 in the PREPARE. If m/n > logc n, then ñ = n in the first phase by

Lemma 4.6.5 and the update rule. Since δ = m/n1 ≥ logc n, we have that b ≥ δ1/18 ≥ log5 n

in all phases. By Lemma 4.6.16, ñ ≥ n′ in all phases before phase log n with probability at least

1 − log n · b−1/4 = 1 − 1/poly(m log n/n). If this event happens, by Lemma 4.6.17, the number

of phases is O(log logm/n n). By Lemma 4.6.8, the total running time is O(log d log logm/n n) with

good probability.

If m/n ≤ logc n, then by Lemma 4.6.5 and the update rule of ñ, after the PREPARE which takes

time O(log log n), with probability at least 1− 1/logc n we have m/n1 ≥ logc n. If this happens, by

the argument in the previous paragraph, with probability at least 1−1/poly(m/n1 ·log n), Connected

Components algorithm takes time O(log d log logm/n n). Taking a union bound, we obtain that with

probability at least 1−1/poly(m/n1 · log n)−1/logc n ≥ 1−1/polylog(n) = 1−1/poly(m log n/n),

the total running time is O(log log n) +O(log d · log logm/n1
n) = O(log d log logm/n n).

4.6.4 Spanning forest in ARBITRARY CRCW PRAM

Many existing connected components algorithm can be directly transformed into a spanning

forest algorithm. For example in Reif’s algorithm [85], one can output the edges corresponding to

leader contraction in each step to the spanning forest. However this is not the case here as we also

add edges to the graph. The solution shown in our MPC spanning forest uses several subroutines

including computing the distances by truncated broadcasting, which heavily relies on computing

the minimum function in constant time – a goal easily achieved by sorting on an MPC but requiring

Ω(log log n) time on a PRAM [86].

We show how to modify our connected components algorithm with an extended expansion

procedure to output a spanning forest. Observe that in our previous expansion procedure, if a

vertex u does not stop expansion in step i, then the space corresponding to u contains all the

vertices within distance 2i from u. Based on this, we are able to maintain the distance from u

to the closest leader in O(log d) time (d here denotes the (hop) diameter of the original graph)

by the distance doubling argument used before. After determining the distance of each vertex

115

to its closest leader, for each edge {u, v}, if u has distance x to the closest leader, and v has

distance x − 1 to the closest leader, then we can set v as the parent of u and add edge {u, v} to

the spanning forest. (If there are multiple choices of v, we can choose arbitrary one.) Since this

parents assignment does not induce any cycle, we can find a subforest of the graph. If we contract

all vertices in each tree of such subforest to the unique leader in that tree (which also takes O(log d)

time by shortcutting as any shortest path tree has height at most d), the problem reduces to finding

a spanning forest of the contracted graph. Similar to the analysis of our connected components

algorithm, we need O(log d) time to find a subforest in the contracted graph and the number of

contraction rounds is O(log logm/n n). Thus, the total running time is asymptotically the same as

our connected components algorithm.

Since the EXPAND method will add new edges which are not in the input graph, our connected

components algorithm cannot give a spanning forest algorithm directly. To output a spanning

forest, we only allow direct links on graph arcs of the input graph. However, we want to link

many graph arcs concurrently to make a sufficient progress. We extend the EXPAND method to

a new subroutine which can link many graph arcs concurrently. Furthermore, after applying the

subroutine, there is no cycle induced by link operations, and the tree height is bounded by the

diameter of the input graph.

For each arc e in the current graph, we use ê to denote the original arc in the input graph that is

altered to e during the execution. Each edge processor is identified by an original arc ê and stores

the corresponding e in its private memory during the execution. To output the spanning forest, for

a original graph arc ê = (v,w), if at the end of the algorithm, ê. f = 1, then it denotes that the graph

edge {v,w} is in the spanning forest. Otherwise if both ê. f = 0 and ê′. f = 0 where ê′ denotes a

graph arc (w, v), then the edge {v,w} is not in the spanning forest.

Vanilla algorithm for spanning forest

Firstly, let us see how to extend Vanilla algorithm to output a spanning forest. The extended

algorithm is called Vanilla-SF algorithm (see below).

116

The RANDOM-VOTE and SHORTCUT are the same as those in Vanilla algorithm. In the ALTER

we only alter the current edge as in Vanilla algorithm but keep the original edge untouched. We add

a method MARK-EDGE and an attribute e for each vertex v to store the current arc that causes the

link on v, then v.ê is the original arc in the input graph corresponding to v.e. The LINK is the same

except that we additionally mark the original arc in the forest using attribute f if the corresponding

current arc causes the link.

Vanilla-SF algorithm: repeat {RANDOM-VOTE; MARK-EDGE; LINK; SHORTCUT; ALTER} un-

til no edge exists other than loops.

MARK-EDGE: for each current graph arc e = (v,w): if v.l = 0 and w.l = 1 then update v.e

to e and update v.ê to ê.

LINK: for each ongoing u: if u.e = (u,w) exists then update u.p to w and update u.ê. f B 1.

The digraph defined by the labels is exactly the same as in Vanilla algorithm, therefore Lemma 4.6.2

holds for Vanilla-SF algorithm. It is easy to see that Vanilla-SF algorithm uses O(m) processors

and can run on an ARBITRARY CRCW PRAM. Each phase takes O(1) time.

Definition 4.6.19. For any positive integer j, at the beginning of phase j, let Fj be the graph

induced by all the edges corresponding to all the arcs ê with ê. f = 1.

By the execution of the algorithm, for any positive integers i ≤ j, the set of the edges in Fi is a

subset of the set of the edges in Fj .

Lemma 4.6.20. For any positive integer j, at the beginning of phase j, each vertex u is in the

component of u.p in Fj .

Proof. The proof is by induction. In the first phase, the lemma is vacuously true since u.p = u

for all vertices u. Now, suppose the lemma is true at the beginning of phase i. In phase i, if u.p

does not change, the claim is obviously true. Otherwise, there are two cases: (i) u.p is changed

in the LINK, or (ii) u.p is changed in the SHORTCUT. If u.p is changed in the SHORTCUT, then

117

by Lemma 4.6.2, the original u.p.p is changed in the LINK, and since u and the original u.p is in

the same component of Fi, we only need to show that the LINK does not break the invariant. In

the LINK, if u.p is updated to w, there is a current graph arc u.e = (u,w), and thus there exists a

graph arc u.ê = (x, y) in the input graph such that x.p = u and y.p = w at the beginning of phase

i. By the induction hypothesis, x and u are in the same component of Fi and thus of Fi+1. Similar

argument holds for y and w. Since u.ê. f is set to 1 in the LINK, x and y are in the same component

in Fi+1. Thus, u and w are in the same component in Fi+1.

Lemma 4.6.21. For any positive integer j, Fj is a forest. And in each tree of Fj , there is exactly

one root.1

Proof. By the LINK, every time the size of {u | u.p = u} decreases by 1, the size of {ê | ê. f = 1}

increases by 1. Thus the size of {ê | ê. f = 1} is exactly n − |{u | u.p = u}|, which induce at least

|{u | u.p = u}| components in Fj . By Lemma 4.6.20, there are at most |{u | u.p = u}| components

in Fj . So there are exactly |{u | u.p = u}| components in Fj and each such component must be a

tree, and each component contains exactly one vertex u with u.p = u.

Algorithmic framework

In this section, we show how to extend our Connected Components algorithm to a spanning

forest algorithm.

Spanning Forest algorithm: FOREST-PREPARE; repeat {EXPAND; VOTE; TREE-LINK; TREE-

SHORTCUT; ALTER} until no edge exists other than loops.

FOREST-PREPARE: if m/n ≤ logc n for given constant c then run Vanilla-SF algorithm for

c log8/7 log n phases.

TREE-LINK: for each ongoing u: update u.p, u.e, u.ê, and u.ê. f according to some rule.

TREE-SHORTCUT: repeat {SHORTCUT} until no parent changes.

1The tree we used here in the forest of the graph should not be confused with the tree in the digraph defined by
labels.

118

The EXPAND, VOTE, SHORTCUT, and ALTER are the same as in our connected component

algorithm.

Similarly to that in Connected Components algorithm, the FOREST-PREPARE makes the num-

ber of ongoing vertices small enough with good probability. As analyzed before, the EXPAND

takes O(log d) time, and VOTE takes O(1) time. TREE-SHORTCUT takes O(log d′) time where d′ is

the height of the highest tree after the TREE-LINK. Later, we will show that the height d′ is O(d),

giving O(log d) running time for each phase.

The tree linking

In this section, we present the method TREE-LINK. The purpose of the TREE-LINK is two-fold:

firstly, we want to add some edges to expand the current forest (a subgraph of the input graph);

secondly, we need the information of these added edges to do link operation of ongoing vertices

to reduce the total number of ongoing vertices. For simplicity, all vertices discussed in this section

are ongoing vertices in the current phase.

Similar to the EXPAND, we shall use a pool of m processors to do the TREE-LINK. Let n′

be the number of vertices. We set all the parameters as the same as in the EXPAND: δ = m/n′,

the processors are divided into m/δ2/3 indexed blocks where each block contains δ2/3 indexed

processors, and both hB, hV are the same hash functions used in the EXPAND. Comparing to

Connected Components algorithm, we store not only the final hash table H(u) of u, but also the

hash table Hj(u) of u in each round j ≥ 0. (In Connected Components algorithm, Hj is an analysis

tool only.) Let T denote the total number of rounds in Step (5) of the EXPAND.

We present the method TREE-LINK as follows, which maintains: (i) the largest integer u.α for

each vertex u such that there is neither collisions, leaders, nor fully dormant vertices in B(u,u.α);

(ii) u.β as the distance to the nearest leader v (if exists in B(u,u.α + 1)) from u; (iii) a hash table

Q(u) to store all vertices in B(u,u.α), which is done by reducing the radius by a factor of two in

each iteration and attempting to expand the current Q(u) to a temporary hash table Q′(u).

119

TREE-LINK:

1. For each vertex u:

(a) If u.l = 1, set u.α B −1 and set hash table Q(u) B ∅.

(b) If u.l = 0 and u does not own a block, set u.α B −1 and set Q(u) B ∅.

(c) If u.l = 0 and u owns a block, set u.α B 0 and use hV to hash u into Q(u).

2. For j = T → 0: for each vertex u with u.α ≥ 0: if every v in table Q(u) is live in round

j of Step (5) of the EXPAND:

(a) Initialize Q′(u) B ∅.

(b) For each v in Q(u): for each w in Hj(v): use hV to hash w into Q′(u).

(c) If there is neither collisions nor leaders in Q′(u) then set Q(u) to be Q′(u) and

increase u.α by 2 j .

3. For each current graph arc (v,w): if v.l = 1 then mark w as a leader-neighbor.

4. For each vertex u:

(a) If u.l = 1 then set u.β B 0.

(b) If u.l = 0 and Q(u) contains a vertex w marked as a leader-neighbor then set

u.β B u.α + 1.

5. For each current graph arc e = (v,w): if v.β = w.β + 1 then write e into v.e and write ê

to v.ê.

6. For each vertex u: if u.e = (u,w) exists then update u.p to w and update u.ê. f B 1.

For simplicity, if there is no ambiguity, we also use Q(u) to denote the set of vertices which are

stored in the table Q(u). We call each iteration j from T down to 0 in Step (2) a round.

120

Lemma 4.6.22. In any round in the TREE-LINK, for any vertex u, Q(u) = B(u,u.α). Furthermore,

at the end of the TREE-LINK, u.α is the largest integer such that there is neither collisions nor

dormant vertices in B(u,u.α).

Proof. Firstly, we show that Q(u) = B(u,u.α). Our proof is by an induction on j of Step (2). The

base case holds since before Step (2), the initialization of Q(u) and u.α satisfy the claim. Now

suppose Q(u) = B(u,u.α) at the beginning of round j of Step (2). There are two cases. The first

case is that Q(u) does not change in this round. In this case the claim is true by the induction

hypothesis. The second case is that Q(u) will be set to Q′(u) in Step (2c). Since there is no

collision in Q′(u), we have Q′(u) =
⋃

v∈Q(u) Hj(v), where Q(u) is not set in Step (2c) yet. Since

every v in Q(u) is live in round j of Step (5) of the EXPAND, we have Hj(v) = B(v,2 j) according to

Lemma 4.6.7. Together with the induction hypothesis, Q′(u) =
⋃

v∈B(u,u.α) B(v,2 j) = B(u,u.α+2 j).

Thus by Step (2c), after updating Q(u) and u.α, the first part of the lemma holds. Now we prove the

second part of the lemma. For convenience in the notation, we say that B(u, α) satisfies property

P if and only if there is neither collisions, leaders, nor fully dormant vertices in B(u, α). We shall

show that at the end of the TREE-LINK, u.α is the largest integer such that B(u,u.α) satisfies P.

For any vertex u, if u.l = 0 and u is fully dormant, or u.l = 1, then the claim holds due to Step (1).

Consider a vertex u with u.l = 0 and u owning a block. Our proof is by induction on j of Step (2).

We claim that at the end of round j of Step (2), the following two invariants hold: (i) B(u,u.α+2 j)

does not satisfy P; (ii) B(u,u.α) satisfies P. The base case is before Step (2). There are two cases:

if u is live after round T of Step (5) of the EXPAND, then there is a leader in B(u,2T+1) by the VOTE;

otherwise, there is either a fully dormant vertex or a collision in B(u,2T+1). Thus, the invariants

hold for the base case.

Now suppose the invariants hold after round j of Step (2). In round j − 1, there are two cases.

In the first case, Q(u) is set to Q′(u). This means that before Step (2c), ∀v ∈ Q(u) = B(u,u.α),

B(v,2 j−1) satisfies P. Thus, B(u,u.α+2 j−1) satisfies P. Notice that by the induction, B(u,u.α+2 j)

does not satisfy P. Therefore, the invariants hold after updating Q(u) and u.α in Step (2c). In the

second case, Q(u) remains unchanged. There exists v ∈ Q(u) = B(u,u.α) such that B(v,2 j−1) does

121

not satisfy P which means that B(u,u.α + 2 j−1) does not satisfy P. Since Q(u) and u.α can only

change together, B(u,u.α) satisfies P. The invariants also hold. Therefore, after round j = 0,

B(u,u.α) satisfies P and B(u,u.α+1) does not satisfy P, giving the second part of the lemma.

Lemma 4.6.23. For any vertex u, if u.β is updated, then u.β = min
v:v.l=1

dist(u, v).

Proof. For any vertex u with u.l = 1, u.β is set to 0. Now, consider a vertex u with u.l = 0. By

Lemma 4.6.22, Q(u) = B(u,u.α) and there is no leader in B(u,u.α). If w ∈ B(u,u.α) is marked as

a leader-neighbor, there is a vertex v with v.l = 1 such that v ∈ B(u,u.α + 1). Thus, in this case

u.β = u.α + 1 = minv:v.l=1 dist(u, v).

The following lemma shows that the construction of the tree in Steps (5,6) using the β values

is valid.

Lemma 4.6.24. For any vertex u, if u.β > 0, then there exists an edge {u,w} such that w.β =

u.β − 1.

Proof. Consider a vertex u with u.β = 1. Then u.α = 0, and by Lemma 4.6.22, Q(u) = B(u,0) =

{u}. Thus, u is marked as a leader-neighbor which means that there is a graph edge {u, v} where v

is a leader. Notice that v.β = 0. So the lemma holds for u with u.β = 1.

Consider a vertex u with u.β > 1. By Lemma 4.6.23, there is a leader v such that dist(u, v) =

u.β. Let {u,w} be a graph edge with dist(w, v) = u.β−1, which must exist by Step (5). It suffices to

show that w.β = u.β−1. Since B(w,u.β−1) contains a leader v, and B(w,u.β−2) ⊆ B(u,u.β−1) =

B(u,u.α) which does not contain a leader by Lemma 4.6.22, we have that w.α = u.β−2. Let {x, v}

be a graph edge such that dist(w, x) = u.β − 2, which must exist by Step (5). Then, x is marked as

a leader-neighbor and x is in B(w,w.α). Hence w.β = w.α + 1 = u.β − 2 + 1 = u.β − 1.

The above lemma implies that if u.β > 0 then u is a non-root in the next phase due to

Steps (5,6):

Corollary 4.6.25. For any vertex u, if u.β > 0, then u is finished in the next phase.

Lemma 4.6.26. The height of any tree is O(d) after the TREE-LINK.

122

Proof. If u.p is updated to w, then u.β = w.β + 1 by Step (6). Thus, the height of a tree is at most

maxu u.β + 1. By Lemma 4.6.23 and the fact that an ALTER and adding edges never increase the

diameter, the height of any tree is at most d.

As mentioned before, by the above lemma and Lemma 4.6.8, the following is immediate:

Corollary 4.6.27. Each phase of the algorithm takes O(log d) time.

Similar to Definition 4.6.19 and Lemma 4.6.21, we can show the following, which guarantees

the correctness of Spanning Forest algorithm:

Lemma 4.6.28. At the end of the TREE-LINK, all the edges ê with ê. f = 1 constitute a forest. And

in each tree of the forest, there is exactly one root.

Running time

Now let us analyze the number of vertices in the next phase. If a vertex u is live after the EX-

PAND, then it is finished in the next phase. Thus all the vertices in the next phase are dormant after

the EXPAND in this phase. Consider a dormant vertex u, and let r be that defined in Definition 4.6.9

with respect to u.

Lemma 4.6.29. For a dormant non-leader u, if there is a leader in B(u,r), then u is finished in the

next phase.

Proof. Let v be the leader closest to u. Since v is in B(u,r), by the definition of r and Lemma 4.6.22,

we have that u.α = dist(u, v) − 1, and Q(u) = B(u,dist(u, v) − 1) which contains a leader-neighbor.

By Step (4b) in the TREE-LINK, u.β = dist(u, v) > 0. By Corollary 4.6.25, u is finished in the next

phase.

Using the above lemma and Corollary 4.6.27, the remaining analysis is almost identical to that

in Connected Components algorithm.

123

Theorem 4.6.30 (Spanning forest). There is an ARBITRARY CRCW PRAM algorithm using O(m)

processors that computes the spanning forest of any given graph. With probability 1−1/poly((2(m+

n) log n)/n), it runs in O(log(d + 1) log log2(m+n)/n n) time.

Proof. By Lemma 4.6.11, we have that |B(u,r)| ≤ b2 with probability at most b−2. Conditioned

on |B(u,r)| > b2, the probability that B(u,r) contains no leader is at most b−1. The number of

vertices in the next phase is at most the sum of (i) the number of dormant leaders, (ii) the number

of vertices u with |B(u,r)| ≤ b2, and (iii) the number of vertices u with |B(u,r)| > b2 and no

leader in B(u,r). Thus, the probability that a dormant vertex u is in the next phase is at most

b−2/3 + b−2 + (1 − b−2) · b−1 ≤ b−1/2. By Markov’s inequality, the probability of having more than

n′ · b−1/4 vertices in the next phase is at most b−1/4.

Finally, using exactly the same analyses in Removing the assumption and Running time in

Section 4.6.3, we obtain that the algorithm runs on an ARBITRARY CRCW PRAM and outputs

the spanning forest. Moreover, with probability 1 − 1/poly(m log n/n), the number of phases is

O(log logm/n n) thus the total running time is O(log d log logm/n n) (cf. Corollary 4.6.27).

4.6.5 Connectivity in COLLISION CRCW PRAM

In this section, we show that our connectivity algorithm can be further implemented in the

COLLISION CRCW PRAM model which is much weaker model than ARBITRARY CRCW

PRAM. In the COLLISION CRCW PRAM model, if multiple processors are trying to write the

same cell at the same time, then the cell can be written an arbitrary value and there is a flag indi-

cating that the cell is written by multiple processors.

Simulation of concurrent writing in COLLISION CRCW PRAM

In this section, we show a randomized COLLISION CRCW subroutine which can simulate the

simultaneous writing of ARBITRARY CRCW PRAM.

Lemma 4.6.31 (Balls and bins). If we throw k balls independently at random into k′ bins for

k ≤ k′. With probability at least 1 − k/k′, there exists at least one bin which contains exactly one

124

ball.

Proof. Consider the first ball, the probability that it is in the same bin as the i-th ball is 1/k′. By

union bound, the probability that the first ball collides an another ball is at most k/k′. Thus, with

probability at least 1 − k/k′, the bin containing the first ball only contains the first ball.

Lemma 4.6.32. Let n ≥ 1. Let c > 0 be an arbitrary constant. Let k ∈ [c′′ log n,nc] for a

sufficiently large constant c′′ > 0 only depending on c. Consider a shared memory cell C in the

ARBITRARY CRCW PRAM model. Consider m processors which may potentially write C at the

same time, where m ≤ nc. Then, each concurrent write on C in the ARBITRARY CRCW PRAM

can be simulated in the COLLISION CRCW PRAM model in O(1) parallel time with probability at

least 1−1/k if we can use additional Θ(k6) processors associated with the cell C. If the simulation

fails, the process will output FAIL.

Proof. Let p1, p2, · · · , pm be the processors which may potentially write the target shared memory

cell C in the ARBITRARY CRCW PRAM model.

Without loss of generality, we can suppose that at least one of p1, · · · , pm is going to write C

due to the following reason. For each processor pi, if it tries to write C, then it directly writes C.

If there is no collision, it is done. Otherwise, we know that at least 2 processors are trying to write

C. Then we do the following procedure to simulate concurrent write.

We create L = dc log(n)e + 1 groups of bins, where the groups are indexed from {0,1, · · · , L}.

Each group contains k2 bins. Here each bin in each group corresponds to a shared memory cell in

the COLLISION CRCW PRAM model.

In the following, we describe the simulation process.

1. For each processor pi, if pi is going to write C, let pi write a random bin of the 0-th group

and also let pi choose another group j ∈ [L] where j is chosen with probability 1/2 j ,2 and

write a random bin of the j-th group.

2With probability 1/2L , the processor may not choose any j.

125

2. Look at all bins over all groups. Find the bin which is successfully written (written by exactly

one processor of p1, p2, · · · , pm) and has the smallest index (the index of a bin is first ranked

by the index of its group and then its index in the group). Write the value from that bin to C.

If such bin does not exist, output FAIL.

Claim 4.6.33. The above process can be simulated in the COLLISION CRCW PRAM model in

O(1) parallel time using additional O(L · k2) = O(k3) additional shared memory cells and O((L ·

k2)2) = O(k6) additional processors.

Proof. It is clear that step 1 only needs O(L · k2) additional total space to represent bins, and it

does not need any additional processors. The parallel time of step 1 is O(1). For step 2, we assign

each pair of bins an additional processor. If bin w is successfully written (written by exactly one

processor from p1, p2, · · · , pm) and its index is smaller than bin z, mark a flag for z. Then we

assign each bin a processor. If bin w is not marked a flag (if there is a collision for the flag, then it

is known that some processors mark a flag for w) and bin w is successfully written, then write the

value of bin w to C. Consider the bin x which is successfully written and has the smallest index.

We know that every bin with index larger than x will be marked a flag and x cannot be marked a

flag. If C is not written at the end, we can output FAIL. Thus, step 2 can be simulated. In addition,

step 2 uses additional O((L · k2)2) processors and can be done in O(1) parallel time.

The only thing remaining is to prove the success probability. It suffices to show that with prob-

ability at least 1 − 1/k, there is at least one bin such that it is written by exact one processor of

p1, · · · , pm.

Let q be the number of processors of p1, p2, · · · , pm that is trying to write C. Consider the

first case: q ≤ k. Since the number of bins in 0-th group is k2, according to Lemma 4.6.31,

the probability that at least one bin that is written by exact one processor of p1, · · · , pm is at least

1 − k/k2 = 1 − 1/k. Consider the second case: q > k. We can find i ∈ [L] such that q/2i ∈

[k/8, k/4]. Since k ≥ c′′·log n, according to Chernoff bound, with probability at least 1−1/(2nc) ≥

1 − 1/(2k), the number of processors of p1, p2, · · · , pm that is writing some bin of the i-th group

126

is in [k/16, k/2]. According to Lemma 4.6.31, conditioning on that the number of processors of

p1, p2, · · · , pm that is writing some bin of the i-th group is in [k/16, k/2], the probability that at least

one bin that is written by exact one processor is at least 1 − 1/(2k). By taking union bound, with

probability at least 1 − 1/k, there is at least one bin such that it is written by exact one processor

of p1, p2, · · · , pm.

Lemma 4.6.34. Consider a shared memory cell C in the ARBITRARY CRCW PRAM model. Con-

sider k processors which may potentially write C at the same time. Then each concurrent write on

C in the ARBITRARY CRCW PRAM can be simulated in the COLLISION CRCW PRAM model in

O(1) parallel time if we can use additional Θ(k2) processors.

Proof. Let p1, p2, · · · , pk be the processors which may potentially write the target shared memory

cell C. For each pair i, j ∈ [k], we assign a processor. If pi tries to write C, and i < j, mark j a

flag. Finally, if pi wants to write C and i is not marked a flag, let pi write C. The parallel time is

O(1) and the number of additional processors used is Θ(k2).

Vanilla algorithm in COLLISION CRCW PRAM

Let us first look back to the vanilla algorithm described in Section 4.6.3. The main challenge

of implementing vanilla algorithm in the COLLISION CRCW PRAM model is that if there are

multiple arcs (v,w) such that v is not a leader and w is a leader, i.e., v.l = 0,w.l = 1 then there

are multiple processors which may update v.p which may cause writing conflict. Let L = dlog me.

For each vertex v, we add additional L variables v.p1, · · · , v.pL . These variables are used to update

v.p We say that a variable/shared memory cell is successfully written if it is written by exact one

processor. We modify the vanilla algorithm as the following:

Vanilla-COLLISION algorithm: repeat {RANDOM-VOTE; LINK; SHORTCUT; ALTER} until no

edge exists other than loops.

RANDOM-VOTE: for each vertex u: set u.l B 1 with probability 1/2, and 0 otherwise.

127

LINK:

1. For each graph arc (v,w):

(a) If v.l = 0 and w.l = 1 then sample j ∈ [L] with probability 1/2 j (with probability

1/2L , none of j is sampled). If j is sampled, write w to v.p j .

(b) If v.p j is successfully written:

i. If none of v.p j+1, v.p j+2, · · · , v.pmin(j+10,L) was successfully written by other

processors in step 1a, write w to v.p.

ii. Clear the writing value of v.p j .

2. For each vertex v, if writing conflict happens for v.p, recover v.p as its previous value.

SHORTCUT: for each vertex u: update u.p to u.p.p.

ALTER: for each edge e = {v,w}: replace it by {v.p,w.p}.

Since the writing value is always cleared at the end of LINK operation when v.p j is success-

fully written, at any time outside the LINK operation, every v.p j is either marked writing conflict

or not written any value. Therefore, in step 1(b)i of LINK, if v.p j+x has a written value, it must

be written by another processor in step 1a. To implement step 2 of LINK, we just need to make a

copy of v.p for each vertex v before LINK.

It is easy to see that Vanilla algorithm uses O(m + n) processors since we only need to assign

one processor for each vertex and one processor for each arc. We call an iteration of the repeat

loop in the algorithm a phase. Clearly each phase takes O(1) parallel time.

We follow Definition 4.6.1 to define ongoing vertices. Lemma 4.6.2 still holds for Vanilla-

COLLISION algorithm. Next, we prove an analog of Lemma 4.6.3.

Lemma 4.6.35. Given a vertex u, after k phases of Vanilla-COLLISION algorithm, u is ongoing

with probability at most (31/32)k

128

Proof. We prove the lemma by an induction on k. The lemma is true for k = 0. Suppose it is

true for k − 1. Observe that a non-root can never again be a root. For vertex u to be ongoing

after k phases, it must be ongoing after k − 1 phases. By the induction hypothesis this is true with

probability at most (31/32)k−1. Furthermore, by Lemma 4.6.2, there must be an edge {u, v} such

that v is ongoing. Thus, with probability at least 1/4, there is at least one arc (u,w) such that u.l = 0

and w.l = 1. We condition on this event. Suppose the number of arcs (u,w) with u.l = 0,w.l = 1

is q. let j′ ∈ [L] satisfy q ∈ [2 j ′−1,2 j ′]. Then the probability that u.p j ′ is written by exact one

processor and none of u.p j for j > j′ is written is

q · 1/2 j ′ · (1 − 1/2 j ′+1)q−1

≥
1
2
· (1 − 1/2 j ′+1)2

j ′+1

≥
1
4

Now consider j ∈ [L] and q ≥ 100 · 2 j . The expected number of processors which write u.p j is

q/2 j ≥ 100. The variance of number of processors that write u.p j is at most q/2 j . By Chebyshev’s

inequality, the probability that the number of processors which write u.p j is at least 2 is at least

2 j+2/q. By taking union bound, with probability at least 1 − 1/8, ∀ j ∈ [L] with q ≥ 100 · 2 j ,

writing conflict must happen for u.p j .

Thus, with probability at least 1/8, the following things happens:

1. u.p j ′ is written by exact one processor and none of u.p j for j > j′ is written.

2. ∀ j ∈ [L] with q ≥ 100 · 2 j , writing conflict happens for u.p j .

According to step 1(b)i, with probability at least 1/8, u.p is written by exact one processor — the

processor which successfully writes u.p j ′. Therefore, with probability at least 1/32, a ongoing

vertex u after phase k − 1 is finished after phase k. It follows that the probability that after phase

k, a vertex u is still ongoing is at most (31/32)k .

129

By Lemma 4.6.35, the following corollary is immediate by linearity of expectation and Markov’s

inequality:

Corollary 4.6.36. After k phases of Vanilla-COLLISION algorithm, the number of ongoing ver-

tices is at most (63/64)kn with probability at least 1 − (62/63)k .

Thus, we know that Vanilla-COLLISION algorithm outputs the connected components in

O(log n) time with high probability.

Algorithmic framework

The algorithmic framework of our COLLISION CRCW PRAM connectivity algorithm is al-

most the same as the algorithmic frame work shown in Section 4.6.3.

COLLISION CRCW Connected Components algorithm: PREPARE-COL; repeat {EXPAND-

COL; VOTE; LINK-COL; SHORTCUT; ALTER} until no edge exists other than loops.

PREPARE-COL: if m/n ≤ logc n for given constant c then run c log63/62 log n phases of

Vanilla-COLLISION algorithm.

EXPAND-COL: for each ongoing u: expand the neighbor set of u according to some rule.

VOTE: for each ongoing u: set u.l according to some rule in O(1) time.

LINK-COL: for each ongoing v: for each w in the neighbor set of v: if v.l = 0 and w.l = 1

then update v.p to w.

The SHORTCUT and ALTER are the same as those in Vanilla-COLLISION algorithm. The VOTE

is the same as the VOTE of the Connected Components algorithm described in Section 4.6.3. We

will see later that the outcome of LINK-COL is the same as the LINK of the Connected Components

algorithm described in Section 4.6.3. Therefore, Lemma 4.6.2 also holds for this algorithm.

The details of the EXPAND-COL and LINK-COL will be presented later. We call an iteration

of the repeat loop after the PREPARE-COL a phase. By Lemma 4.6.2, we can determine whether

130

a vertex is ongoing by checking the existence of non-loop edges incident on it, therefore in each

phase, the VOTE, SHORTCUT, and ALTER take O(1) time.

Let δ = m/n′, where n′ is the number of ongoing vertices at the beginning of a phase. Our

goal in one phase is to reduce n′ by a factor of at least a positive constant power of δ with high

probability with respect to δ, so we do a PREPARE-COL before the main loop to obtain a large

enough δ with good probability:

Lemma 4.6.37. After the PREPARE-COL, if m/n > logc n, then m/n′ ≥ logc n; otherwise m/n′ ≥

logc n with probability at least 1 − 1/logc n.

Proof. The proof is similar to the proof of Lemma 4.6.5. The first part is trivial since the PREPARE-

COL does nothing. By Corollary 4.6.36, after c log63/62 log n phases, there are at most n/logc n

ongoing vertices with probability at least 1 − 1/logc n, and the lemma follows immediately from

m ≥ n.

We will be cocusing on EXPAND-COL, VOTE, and LINK-COL. So in each phase it suffices to

only consider the induced graph on ongoing vertices with current edges. If no ambiguity, we call

this induced graph just graph, call the current edge just the edge, and call an ongoing vertex just a

vertex.

In the following algorithms and analyses, we will first assume Assumption 4.6.6 for simplicity

in the analyses. Later we will show how to remove the assumption.

The expansion

In this section, we present the method EXPAND-COL and show that all vertices have a large

enough neighbor set after the EXPAND-COL with good probability. Two concepts blocks and

hashing are very similar to the concepts that are described for EXPAND in Section 4.6.3.

Blocks. We shall use a pool of Θ(m) processors to do the EXPAND-COL. We divide these into

m/δ13/14 indexed blocks, where each block contains Θ(δ13/14) indexed processors. Since n′ and

131

δ are known at the beginning of each phase (cf. Assumption 4.6.6), if a vertex is assigned to a

block, then it is associated with δ13/14 (indexed) processors. We map the n′ vertices to the blocks

by a random hash function hB. Each vertex has a probability of being the only vertex mapped to a

block, and if this happens then we say this vertex owns a block.

Hashing. We use a hash table to implement the neighbor set of each vertex and set the size of

the hash table as δ1/14, because we will see later that we need δ6/7 processors for each cell in the

table to do an expansion step. We use a random hash function hV to hash vertices into the hash

tables. Let H(u) be the hash table of vertex u. If no ambiguity, we also use H(u) to denote the set

of vertices stored in H(u). If u does not own a block, we think that H(u) = ∅.

Collision and writing conflict. In our presentation, a writing conflict corresponds to the event

that multiple processors want to write the same cell. A collision corresponds to the event that some

vertices u, v have hV (u) = hV (v).

Let b = δ1/84 = (m/n′)1/84, i.e., m = n′ · b84. Thus, we know that hB : [n] → [m/b78] and

hV : [n] → [b6]. Each block contains Θ(b78) indexed processors. We present the method EXPAND-

COL as follows. The major differences between EXPAND-COL and EXPAND from Section 4.6.3 is

marked in bold.

EXPAND-COL:

1. Each vertex is either live or dormant in a step. Mark every vertex as live at the beginning.

2. Map the vertices to blocks using hB. Mark each vertex v that does not own a block as

dormant and set H(v) = {v}.

3. For each live vertex v, assign Θ(b72) indexed processors for each cell in the table

H(v).

4. For each graph arc (v,w): if v is live before Step (4) then use the procedure described

132

by Lemma 4.6.32 with k = b12 to write v into the hV (v)-th cell of H(v) and write w

into the hV (w)-th cell of H(v).

5. For each live vertex v before Step (5), if some cell of H(v) was going to be written

some value in Step (4) but failed (see FAIL in Lemma 4.6.32), mark v as dormant

and set H(v) = {v}.

6. For each live vertex v before Step (6), if there is a vertex u ∈ H(v) which is marked as

dormant before Step (6), mark v as dormant.

7. For each hashing done in Step (4): if it causes a collision (a cell was trying to be written

by different values) in H(v) then mark v as dormant.

8. Repeat the following until there is neither live vertex nor hash table getting a new entry:

(a) For each live vertex u before Step (8a) in this iteration: for each v in H(u): if v is

dormant before Step (8a) in this iteration then mark u as dormant, for each w in

H(v): write w to the hV (w)-th cell of H(u) by using the procedure described in

Lemma 4.6.34 with k = Θ((b6)2).

(b) For each hashing done in Step (8a): if it causes a collision in H(u) then mark u as

dormant.

Notice that since if a vertex v owns a block, there are Θ(b78) indexed processors in the block.

The number of cells in table H(v) is b6. According to Lemma 4.6.32, simulating the concurrent

write of all graph arc processors on all cells of H(v) with k = b12 needs O(b6 · k6) = O(b78)

processors. Thus, the number of processors in a block is larger than the number of processors

required in Step (4). Consider Step (8a). The number of processors which may potentially write a

cell in H(u) is at most (b6)2 = O(b12) According to Lemma 4.6.34, simulating the concurrent write

of (b6)2 processors on all cells of H(u) needs O(b6 · (b12)2) = O(b30) processors. Thus, the number

133

of processors in a block is larger than the number of processors required in Step (8a).

According to Lemma 4.6.32 and Lemma 4.6.34, the first seven steps and each iteration of

Step (8) in the EXPAND-COL take O(1) time. We call an iteration of the repeat loop in Step (8) a

round. We say a statement holds before round 0 if it is true before Step (6), it holds in round 0 if

it is true after Step (7) and before Step (8), and it holds in round i (i > 0) if it is true just after i

iterations of the repeat loop in Step (8).

Additional notations. We follow the same notation dist(u, v),B(u, α),Hj(u) used in Section 4.6.3.

The definition of fully dormant is slightly different from that was defined in Section 4.6.3. Con-

sider a vertex u that is dormant after the EXPAND-COL. We call u fully dormant if u is dormant

before round 0, i.e., either u does not own a block or the concurrent write on some cell in H(u) in

Step (4) fails (see Lemma 4.6.32 for the definition of FAIL). Otherwise, we call u half dormant.

For a half dormant u, let i ≥ 0 be the first round u becomes dormant. For u that is live after the

EXPAND-COL, let i ≥ 0 be the first round that its hash table is the same as the table just before

round i. It is easy to verify that the proof of Lemma 4.6.7 still holds.

Lemma 4.6.38 (Restatement of Lemma 4.6.7). For any vertex u that is not fully dormant, let i

be defined above, then it must be that Hi(u) ⊆ B(u,2i). Furthermore, for any j ∈ [0, i − 1],

Hj(u) = B(u,2 j).

It is easy to verify that the proof of Lemma 4.6.8 still holds.

Lemma 4.6.39 (Similar statement of Lemma 4.6.8). The EXPAND-COL takes O(log d) time, where

d is the (hop) diameter of the input graph.

We want to show that the table of u in round i contains enough vertices, but u becomes dormant

in round i possibly dues to propagations from another vertex in the table of u that is dormant in

round i − 1, which does not guarantee the existence of collisions in the table of u (which implies

large size of the table with good probability). We overcome this issue by identifying the maximal-

radius ball around u with no collision nor fully dormant vertex, whose size serves as a size lower

bound of the table in round i.

134

Let r be the same as defined in Definition 4.6.9, i.e., for any vertex u that is dormant after the

EXPAND-COL, let r be the minimal integer such that there is no collision nor fully dormant vertex

in B(u,r − 1).

It is easy to verify that the proof of Lemma 4.6.10 still holds.

Lemma 4.6.40 (Restatement of Lemma 4.6.10). If u is fully dormant then r = 0. If u is half

dormant then 2i−1 < r ≤ 2i.

Lemma 4.6.41. A vertex u is fully dormant with probability at most 2/b6.

Proof. The probability that ∃v , u, hB(v) = hB(u) is at most

n′ − 1
m/b78 ≤

n′

n′b6 =
1
b6 . (4.3)

Thus with probability at least 1−1/b6, u owns a block. Consider Step (4). According to Lemma 4.6.32,

the probability that the concurrent write is failed to simulate for a cell in H(u) is at most 1/b12.

Since there are b6 cells in the table H(u), by union bound, the probability that none of concurrent

writes for any cell of H(u) is failed is at least 1 − 1/b6. Thus, the overall probability that vertex u

is fully dormant is at most 2/b6.

By plug Lemma 4.6.41 into the proof of Lemma 4.6.11 to bound the probability that a vertex

is fully dormant, we can verify that the proof of Lemma 4.6.11 still holds.

Lemma 4.6.42 (Restatement of Lemma 4.6.11). For any vertex u that is dormant after the EXPAND-

COL, |B(u,r)| ≤ b2 with probability at most b−2.

It is easy to verify that the proof of Lemma 4.6.12 still holds.

Lemma 4.6.43 (Restatement of Lemma 4.6.12). |B(u,r − 1)| ≤ |Hi(u)|.

Thus, we are able to verify that the proof of the core lemma Lemma 4.6.13 still holds.

Lemma 4.6.44 (Restatement of Lemma 4.6.13). After the EXPAND-COL, for any dormant vertex

u, |H(u)| < b with probability at most b−1.

135

The voting and the link

In this section, we present the method VOTE, the method LINK-COL, and show that the number

of ongoing vertices decreases by a factor of a positive constant power of b with good probability.

VOTE: for each vertex u: initialize u.l B 1,

1. If u is live after the EXPAND-COL then for each vertex v in H(u): if v < u then set

u.l B 0.

2. Else set u.l B 0 with probability 1 − b−2/3.

Notice that if u is live, then u owns a block which contains Θ(b78) indexed processors. To

implement Step (1), for each pair of cells of table H(u), we need a processor. Thus, we only need

b12 processors. Thus, the processors in the block owned by u is enough.

LINK-COL: For each u which is not fully dormant, for each v in H(u), if v.l = 1, use

Lemma 4.6.34 with k = b6 to write u.p := v.

Notice that if u is not fully dormant, then u owns a block containing Θ(b78) indexed processors.

Notice that the table H(u) has size at most b6. According to Lemma 4.6.34, writing u.p only

requires O(b12) processors. Thus, the processors in the block owned by u is enough.

Now let us analyze the number of ongoing vertices remained for the next phase.

There are two cases depending on whether u is live. In Case (1), by Lemma 4.6.38, H(u) must

contain all the vertices in the component of u, and so does any vertex in H(u), because otherwise

u is dormant. We need to choose the same parent for all the vertices in this component, which is

the minimal one in this component as described: a vertex u that is not minimal in its component

would have u.l = 0 by some vertex v in H(u) smaller than u. Thus after LINK-COL, SHORTCUT

and ALTER all live vertices become finished in the next phase.

136

In Case (2), u is dormant. Then by Lemma 4.6.44, |H(u)| ≥ b with probability at least 1−b−1. If

this event happens, the probability of no leader in H(u) is at most (1−b−2/3)b ≤ exp(−b−1/3) ≤ b−1.

Furthermore, if |H(u)| ≥ b, then u must own a block of Θ(b78) processors. Thus, we are able to

simulate concurrent write on u.p as described in LINK-COL according to Lemma 4.6.34 and the

fact that the size of table |H(u)| ≤ b6.

The number of vertices in the next phase is the sum of: (i) the number of dormant leaders,

(ii) the number of non-leaders u with |H(u)| < b and no leader in H(u), and (iii) the number of

non-leaders u with |H(u)| ≥ b and no leader in H(u). We have that the expected number of vertices

in the next phase is at most

n′ · (b−2/3 + b−1 + (1 − b−1) · b−1) ≤ n′ · b−1/2.

By Markov’s inequality, the probability of having more than n′ · b−1/4 vertices in the next phase is

at most
n′ · b−1/2

n′ · b−1/4 ≤ b−1/4. (4.4)

Removing the assumption

In this section, we remove Assumption 4.6.6.

Recall that we set b = δ1/84 where δ = m/n′. The key observation is that in each phase, all

results still hold when we use any ñ to replace n′ as long as ñ ≥ n′ and b is large enough. This

effectively means that we use b = (m/ñ)1/84 for the hash functions hB and hV . This is because the

only places that use n′ as the number of vertices in a phase are:

1. The probability that a vertex is fully dormant in Lemma 4.6.41. Using ñ to rewrite Inequal-

ity (4.3), we have:
n′ − 1
m/b78 =

n′ − 1
ñb6 ≤

n′

n′b6 =
1
b6 ,

followed from m/ñ = b84 and ñ ≥ n′. Therefore Lemma 4.6.41 still holds.

137

2. The probability of having more than n′ · b−1/4 vertices in the next phase. Now we measure

the progress by the decreasing in ñ. The expected number of vertices in the next phase is still

at most n′ · b−1/4, where n′ is the exact number of vertices. Therefore by Markov’s inequality

we can rewrite Inequality (4.4) as:

n′ · b−1/2

ñ · b−1/4 ≤ b−1/4,

which is the probability of having more than ñ · b−1/4 vertices in the next phase.

As a conclusion, if ñ ≥ n′ and b is large enough in each phase, all analyses still apply. Let c be

the value defined in PREPARE-COL. We give the update rule of ñ:

Update rule of ñ:

If m/n ≤ logc n then set ñ B n/logc n for the first phase (after the PREPARE-COL), else set

ñ B n.

At the beginning of each phase, update ñ B ñ/b1/4 then update b B (m/ñ)1/84.

So b ≥ logc/84 n is large enough. By the above argument, we immediately have the following:

Lemma 4.6.45. Let ñ and n′ be as defined above in each phase. If ñ ≥ n′ in a phase, then with

probability at least 1 − b−1/4, ñ ≥ n′ in the next phase.

By an induction on phases, above lemma, and a union bound, the following lemma is immedi-

ate:

Lemma 4.6.46. Given any integer t ≥ 2, if ñ ≥ n′ in the first phase, then ñ ≥ n′ in all phases

before phase t with probability at least 1 −
∑

i∈[t−2] bi
−1/4, where bi is the parameter b in phase

i ≥ 1 .

138

Running Time

In this section, we compute the running time of our algorithm and the probability of achieving

it.

Lemma 4.6.47. After the PREPARE-COL, if ñ ≥ n′ in each phase, then the algorithm outputs the

connected components in O(log logm/n1
n) phases, where n1 is the ñ in the first phase.

Proof. Let ni be the ñ in phase i. By the update rule of ñ, we have ni+1 ≤ ni/(m/ni)
1/336, which

gives m/nt+1 ≥ (m/n1)
(337/336)t . If t = dlog337/336 logm/n1

me + 1 then nt+1 < 1, which leads to

n′ = 0 at the beginning of phase t+1. By Lemma 4.6.2 and monotonicity, the algorithm terminates

and outputs the correct connected components in this phase since no parent changes.

Theorem 4.6.48 (Connectivity). There is an COLLISION CRCW PRAM algorithm using O(m)

processors that computes the connected components of any given graph. With probability 1 −

1/poly(((m + n) log n)/n), it runs in O(log(d + 1) log log2(m+n)/n n) time.

Proof. We set c = 109 in the PREPARE-COL. If m/n > logc n, then ñ = n in the first phase by

Lemma 4.6.37 and the update rule. Since δ = m/n1 ≥ logc n, we have that b ≥ δ1/84 ≥ log1000 n in

all phases. By Lemma 4.6.46, ñ ≥ n′ in all phases before phase log n with probability at least 1 −

log n ·b−1/4 = 1−1/poly(m log n/n). If this event happens, by Lemma 4.6.47, the number of phases

is O(log log2(m+n)/n n). By Lemma 4.6.39, the total running time is O(log(d + 1) log log2(m+n)/n n)

with good probability.

If m/n ≤ logc n, then by Lemma 4.6.37 and the update rule of ñ, after the PREPARE which takes

time O(log log n), with probability at least 1 − 1/logc n we have m/n1 ≥ logc n. If this happens,

by the argument in the previous paragraph, with probability at least 1 − 1/poly(m/n1 · log n),

COLLISION CRCW Connected Components algorithm takes time O(log(d + 1) log log2(m+n)/n n).

Taking a union bound, we obtain that with probability at least 1−1/poly(m/n1 · log n)−1/logc n ≥

1 − 1/polylog(n) = 1 − 1/poly(m log n/n), the total running time is O(log log n) + O(log(d + 1) ·

log log2(m+n)/n1
n) = O(log(d + 1) log log2(m+n)/n n).

139

Chapter 5: 2-Edge and 2-Vertex Connectivity

In this chapter, we will show how to use graph connectivity and spanning tree algorithms in-

troduced in Chapter 4 to design 2-edge and 2-vertex connectivity algorithms. 2-Edge connectivity

and 2-vertex connectivity (biconnectivity) are two fundamental problems in graph theory. Con-

sider an n-vertex, m-edge undirected graph G. A bridge of G is an edge whose removal increases

the number of connected components of G. In the 2-edge connectivity problem, the goal is to

find all the bridges of G. For any two different edges e, e′ of G, e, e′ are in the same biconnected

component (block) of G if and only if there is a simple cycle which contains both e, e′. If we define

a relation R such that eRe′ if and only if e = e′ or e, e′ are contained by a simple cycle, then R is

a equivalence relation [23]. Thus, a biconnected component is an induced graph of an equivalence

class of R. In the biconnectivity problem, the goal is to output all the biconnected components of

G. Our algorithms can be implemented in the MPC model with small number of rounds and small

total space.

5.1 Overview of techniques

Biconnectivity: At a high level our biconnectivity algorithm is based on a framework proposed

by [50]. The main idea is to reduce the problem of finding biconnected components of G to the

problem of finding connected components of G′. At first glance, it should be efficiently solved

by the connectivity algorithm (see Chapter 4). However, there are two main issues: 1) since the

parallel time of the MPC algorithm described in Chapter 4 depends on the diameter of the input

graph, we need to make the diameter of G′ small, 2) we need to construct G′ efficiently. Let us

first consider the first issue, and we will discuss the second issue later.

We give an analysis of the diameter of G′ = (V ′,E′) constructed by [50]. Without loss of gen-

140

erality, we can suppose the input G = (V,E) is connected (otherwise we can first run connectivity

algorithm to find all connected components). Each vertex in G′ corresponds to an edge of G. Let T

be an arbitrary spanning tree of G with depth d. Each non-tree edge e can define a simple cycle Ce

which contains the edge e and the unique path between the endpoints of e in the tree T . Thus, the

length of Ce is at most 2d + 1. If there is a such cycle containing any two tree edges {u, v}, {v,w},

vertices {u, v}, {v,w} are connected in G′. For each non-tree edge e, we connect the vertex e to

the vertex e′ in graph G′ where e′ is an arbitrary tree edge in the cycle Ce. By the construction

of G′, any e, e′ from the same connected components of G′ should be in the same biconnected

components of G. Now consider arbitrary two edges e, e′ in the same biconnected component of

G. There must be a simple cycle C which contains both edges e, e′ in G. Since all the simple cycles

defined by the non-tree edges are a cycle basis of G [23], the edge set of C can be represented by

the xor sum of all the edge sets of k basis cycles C1,C2, · · · ,Ck where Ci is a simple cycle defined

by a non-tree edge ei on the cycle C. k is upper bounded by the bi-diameter of G. Furthermore,

we can assume Ci intersects Ci+1. There should be a path between e, e′ in G′, and the length of the

path is at most
∑k

i=1 |Ci | ≤ O(k · d). So, the diameter of G′ is upper bounded by O(k · d).

Now let us consider how to construct G′ efficiently. The bottleneck is to determine whether the

tree edges {u, v}, {v,w} should be connected in G′ or not. Suppose w is the parent of v and v is

the parent of u. The vertex {u, v} should connect to the vertex {v,w} in G′ if and only if there is

a non-tree edge that connects a vertex x in the subtree of u and a vertex y which is on the outside

of the subtree of v. For each vertex x, let lev(x) be the minimum depth of the lowest common

ancestor (LCA) of (x, y) over all the non-tree edges {x, y}. Then {u, v} should be connected to

{v,w} in G′ if and only if there is a vertex x in the subtree of u in G such that lev(x) is smaller than

the depth of v. Since the vertices in a subtree should appear consecutively in the DFS sequence,

this question can be solved by some range queries over the DFS sequence. Next, we will discuss

how to compute the DFS sequence of a tree.

141

DFS sequence: The DFS sequence of a tree is a variant of the Euler tour representation of the

tree. For an n-vertex tree T , [50] gives an O(log n) parallel time PRAM algorithm for the Euler

tour representation of T . However, since their construction method will destroy the tree structure,

it is hard to get a faster MPC algorithm based on this framework. In the following, we show the

idea of our new algorithm for computing a DFS sequence.

First of all, we use our spanning tree algorithm (see Chapter 4) to compute a rooted tree,

reducing the problem to computing a DFS sequence for a rooted tree. The idea is motivated by

TeraSort [51]. If the size of the tree is small enough such that it can be handled by a single machine,

then we can just use a single machine to generate its DFS sequence. Otherwise, our algorithm can

be roughly described as follows. (Recall that δ is the parameter such that each machine has Θ(nδ)

local memory.)

1. Sample nδ/2 leaves l1, l2, · · · , ls .

2. Determine the order of sampled leaves in the DFS sequence.

3. Compute the DFS sequence Ã of the tree which only consists of sampled leaves and their ancestors.

4. Compute the DFS sequence Av of every root-v subtree which does not contain any sampled leaf.

5. Merge Ã and all the Av .

The MPC implementation of the first and second steps go as follows. Since we only sample

nδ/2 leaves, we can send them to a single machine. We generate queries for every pair of sampled

leaves where each query (li, l j) queries LCA of (li, l j). We have nδ such queries in total. Since the

input tree is rooted, we can use a doubling algorithm to preprocess a data structure in O(log d)

parallel time and answer all the queries simultaneously in O(log d) parallel time. Thus, we know

the LCA of any pair of sampled leaves, and we can store this all on a single machine. Based on

the information of LCAs of each pair of sampled leaves, we are able to determine the order of the

leaves.

For the third step, suppose the sampled leaves have order l1, l2, · · · , ls . Let v be the root of the

tree. Then the DFS sequence Ã should be: the path from v to l1, the path from l1 to the LCA of

142

(l1, l2), the path from the LCA of (l1, l2) to l2, the path from l2 to the LCA of (l2, l3), ..., the path

from ls to v. We can find these paths simultaneously by a doubling algorithm together with a

divide-and-conquer algorithm in O(log d) parallel time.

In the fourth step, we apply the procedure recursively. Suppose the total number of leaves in

the tree is q ≤ n. Since we randomly sampled nδ/2 number of leaves, with high probability, each

subtree which does not contain a sampled leaf will have at most O(q/nδ/2) number of leaves. Thus,

the depth of the recursion will be at most a constant, O(1/δ).

Notice that if we simply apply the doubling algorithm to solve the LCA problem and generate

multiple path sequences, the total space needed will be Ω(n log d) which is not linear in the size

of the tree T . We also show how to compress the tree T into a new tree T ′ which only contains at

most n/dlog de vertices. We argue that applying the doubling algorithm on T ′ is sufficient for us

to find the DFS sequence of T . Thus, our final space usage is linear in the size of the tree.

2-Edge connectivity: Without loss of generality, we can assume the input graph G is connected

(otherwise, we can first apply the connectivity algorithm to find all connected components, e.g.,

see Chapter 4). Consider a rooted spanning tree T and an edge e = {u, v} in G. Suppose the depth

of u is at least the depth of v in T , i.e., v cannot be a child of u. The edge e is not a bridge if and

only if either e is a non-tree edge or there is a non-tree edge {x, y} connecting the subtree of u and

a vertex outside of the subtree of u. Similarly, the second case can be solved by some range queries

over the DFS sequence of T .

5.2 DFS sequence of a tree

In this section, we show how to compute a DFS sequence of a rooted tree. We first introduce

several subroutines and then we will show how to use these subroutines to build the DFS sequence.

Since we can use our spanning tree algorithm to get a rooted tree, in this section, we only

consider how to get a Depth-First-Search (DFS) sequence for a rooted tree. Before we go to the

details, let us firstly give formal definitions of some useful concepts.

143

Definition 5.2.1 (Children in the forest). Given a set of parent pointers (See Definition 4.2.5)

par : V → V on a vertex set V . ∀u, v ∈ V,u , v if par(u) = v, then we say u is a child of v. ∀v ∈ V,

we can define childpar(v) as the set of all children of v, i.e. childpar(v) = {u ∈ V | u , v,par(u) = v}.

Furthermore, if u is the k th smallest vertex in the children set childpar(v), then we say rankpar(u) = k,

or u is the k th child of v. If par(v) = v, then rankpar(v) = 1. We use childpar(v, k) to denote the k th

child of v.

For simplicity of the notation, if par : V → V is clear in the context, we just use child(v), rank(v)

and child(v, k) to denote childpar(v), rankpar(v) and childpar(v, k) respectively.

Definition 5.2.2 (Leaves in the forest). Given a set of parent pointers (See Definition 4.2.5) par :

V → V on a vertex set V . If childpar(v) = ∅, then v is called a leaf. The set of all the leaves of par

is defined as leaves(par) = {v | childpar(v) = ∅}.

Definition 5.2.3 (Subtree). Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a

vertex set V . Let v ∈ V,V ′ = {u ∈ V | v is an ancestor (Definition 5.2.8) of u}. Let par′ : V ′ → V ′

be a set of parent pointers on V ′. If ∀u ∈ V ′ \ {v},par′(u) = par(u), and par′(v) = v, then we say

par′ is the subtree of v in par. For u ∈ V ′, we say u is in the subtree of v.

Definition 5.2.4 (Depth-First-Search (DFS) sequence). Let par : V → V be a set of parent pointers

(See Definition 4.2.5) on a vertex set V . Let v be a vertex in V . If v is a leaf (See Definition 5.2.2)

in par, then the DFS sequence of the subtree (See Definition 5.2.3) of v is (v). Otherwise the DFS

sequence of the subtree of v in par is recursively defined as

(v,a1,1,a1,2, · · · ,a1,n1, v,a2,1,a2,2, · · · ,a2,n2, v, · · · ,ak,1,ak,2, · · · ,ak,nk , v),

where k = | child(v)| is the number of children (See Definition 5.2.1) of v, and∀i ∈ [k], (ai,1, · · · ,ai,ni)

is the DFS sequence of the subtree of child(v, i), i.e. the ith child of v.

If ∀u ∈ V,par(∞)(u) = v, then the subtree of v is exactly par, and thus the DFS sequence of the

subtree of v is also called the DFS sequence of par .

144

Here are some useful facts of the above defined DFS sequence.

Fact 5.2.5. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set V ,

and par has a unique root. Let A = (a1,a2, · · · ,am) be the DFS sequence (See Definition 5.2.4) of

par . Then, A satisfies the following properties:

1. ∀v ∈ V, v appears exactly | child(v)| + 1 times in A.

2. If ai is the k th time that v appears, and a j is the (k + 1)th time that v appears. Then

(ai+1,ai+2, · · · ,a j−1) is the DFS sequence of the subtree of child(v, k) (See Definition 5.2.1),

the k th child of v. Furthermore, ai+1 is the first time that child(v, k) appears, and a j−1 is the

last time of child(v, k) appears.

3. If ai is the first time that v appears, and a j is the last time that v appears. Then (ai,ai+1, · · · ,a j)

is the DFS sequence of the subtree of v.

4. m = 2|V | − 1.

Proof. The property 1, 2, 3 directly follows by Definition 5.2.4.

For property 4, notice that∀u ∈ V,par(u) , u,u can only be a child of par(u). Thus,
∑

v∈V (| child(v)|+

1) = |V | − 1 + |V | = 2|V | − 1.

Due to the above fact, if v is a leaf in par, then it will only once in the DFS sequence. Thus, we

are able to determine the order of all the leaves.

Definition 5.2.6 (The order of the leaves). Let par : V → V be a set of parent pointers (See

Definition 4.2.5) on a vertex set V , and par has a unique root. Let A = (a1,a2, · · · ,am) be the

DFS sequence (See Definition 5.2.4) of par . Let u, v be two leaves (See definition 5.2.2) of par . If

u appears before v in A, then we say u <par v.

5.2.1 Compressed rooted tree

Given a set of parent pointers par : V → V , we will show how to compress the rooted tree

represented by par.

145

Algorithm 12 Construction of a Compressed Rooted Tree
1: procedure COMPRESS(par : V → V) . par : V → V is a set of parent pointers representing a rooted

tree on a set V of n vertices (par has a unique root r).
2: Compute the depth of par, the depth of each vertex and set d ← dep(par), t ← dlog de. . Run

TREECONTRACTION((V,∅),par) (see Algorithm 3). Let the output g(r) : V → Z≥0 be deppar : V →
Z≥0 (see Lemma 4.2.9).

3: Compute par(t)(u) for each u ∈ V .
4: V ′← {v ∈ V | deppar(v) mod t = 0,∃u ∈ V, v = par(t)(u)}.
5: Initialize par′ : V ′→ V ′. For each v ∈ V ′, par′(v) ← par(t)(v).
6: Output V ′, par′.
7: end procedure

Lemma 5.2.7 (Properties of a compressed rooted tree). Let par : V → V be a set of parent

pointers on a vertex set V with |V | > 1, and par has a unique root. Let t = dlog(dep(par))e and let

(V ′,par′) =COMPRESS(par) (see Algorithm 12). Then it has the following properties:

1. |V ′| ≤ max(|V |/log(dep(par)),1).

2. ∀v ∈ V ′, i ∈ N, par′(i)(v) = par(i·t)(v) ∈ V ′.

3. ∀v ∈ V, ∃i ∈ {0,1, · · · ,2t}, such that par(i)(v) ∈ V ′.

4. ∀v ∈ V,∀l ∈ Z≥0, if l ∈ [t,deppar(v)] and (deppar(v) − l) mod t = 0, then par(l)(v) ∈ V ′.

Proof. Consider the first property. Consider the case if dep(par) < t, we know that V ′ = {the root of par}.

Next consider the case dep(par) ≥ t. For each v ∈ V ′, we define a set

S(v) = {u ∈ V | deppar(u) > deppar(v),∃i ∈ [t − 1],par(i)(u) = v}.

∀u ∈ S(v), we have deppar(u) − deppar(v) < t. Since ∀v ∈ V ′, deppar(v) mod t = 0, we have

S(v) ∩ V ′ = ∅. Furthermore, it is easy to show that ∀u , v ∈ V ′, S(u) ∩ S(v) = ∅. Thus,

|V ′| +
∑

v∈V ′ |S(v)| =
∑

v∈V ′(|S(v)| + 1) ≤ |V |. On the other hand, since ∀v ∈ V ′, ∃u ∈ V,par(t)(u) =

v, we know that |S(v)| ≥ t − 1 if v is not the root. If v is the root, since dep(par) ≥ t, we also have

S(v) ≥ t − 1. Therefore
∑

v∈V ′(|S(v)| + 1) ≥ |V ′| · t. To conclude, |V ′| ≤ |V |/t ≤ |V |/log(dep(par)).

Consider the second property. If v is a root vertex, par′(v) = par(t)(v) = v ∈ V ′. For a

non-root vertex v ∈ V ′, deppar(par(t)(v)) = deppar(v) − t. Since deppar(v) mod t = 0, we have

146

deppar(par(t)(v)) mod t = 0 which means that par′(v) = par(t)(v) ∈ V ′. Now we prove by induc-

tion. Suppose par′(i−1)(v) = par((i−1)·t)(v), then par′(i)(v) = par′(par′(i−1)(v)) = par(t)(par((i−1)·t)(v)) =

par(i·t)(v).

Consider the third property. For v ∈ V , ∃ j ∈ {0,1, · · · , t − 1}, such that deppar(par(j)(v))

mod t = 0. Since deppar(par(j+t)(v)) mod t = 0 and par(t)(par(j)(v)) = par(j+t)(v), we know that

par(j+t)(v) ∈ V ′. Since j + t ≤ 2t, the property holds.

Consider the forth property. For v ∈ V , if l ≤ deppar(v) and (deppar(v) − l) mod t = 0, we have

deppar(par(l)(v)) mod t = 0. Since l ≥ t, we know that par(t)(par(l−t)(v)) = par(l)(v). According to

the construction of V ′, we know that par(l)(v) ∈ V ′.

5.2.2 Lowest common ancestor

Definition 5.2.8 (Ancestor). Let par : V → V be a set of parent pointers (See Definition 4.2.5) on

a vertex set V . For u, v ∈ V, if ∃k ∈ Z≥0 such that u = par(k)(v), then u is an ancestor of v.

Definition 5.2.9 (Common ancestor and the lowest common ancestor). par : V → V be a set of

parent pointers (See Definition 4.2.5) on a vertex set V . For u, v ∈ V, if w is an ancestor of u and

is also an ancestor of v, then w is a common ancestor of (u, v). If a common ancestor w of (u, v)

satisfies deppar(w) ≥ deppar(x) for any common ancestor x of (u, v), then w is the lowest common

ancestor (LCA) of (u, v).

Given a rooted tree represented by a set of parent pointers par : V → V on a vertex set V , and

a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q],ui , vi,ui, vi ∈ leaves(par), we

show a space efficient algorithm which can output the LCA of each queried pair of vertices. Notice

that the assumption that queries only contain leaves is without loss of generality: we can attach an

additional child vertex v to each non-leaf vertex u. Thus, v is a leaf vertex. When a query contains

u, we can use v to replace u in the query, and the result will not change.

We first show an algorithm (Algorithm 13) with slightly larger space, then we show how to get

a space-efficient algorithm in Algorithm 14.

147

Algorithm 13 Lowest Common Ancestor (larger space)
1: procedure LCALARGE(par : V → V,Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}) . Lemma 5.2.10.
2: Output: lca : Q→ V × V × V
3: (r,deppar, {gi | i ∈ {0} ∪ [r]}) ← FINDANCESTORS(par). . Algorithm 6.
4: Let Q′← ∅.
5: ∀(u, v) ∈ Q, if deppar(u) ≥ deppar(v), then let Q′← Q′ ∪ {(u, v)}; Otherwise let Q′← Q′ ∪ {(v,u)}.
6: Let hr : Q′→ Q′ be an identity mapping.
7: for i = r − 1→ 0 do . Move u to the almost same depth as v.
8: For each (u, v) ∈ Q′, let (x, v) ← hi+1(u, v). If deppar(x) − 2i ≥ deppar(y), then let hi(u, v) ←
(gi(x), v); Otherwise let hi(u, v) ← (x, v).

9: end for
10: For each (u, v) ∈ Q′, let h′r (u, v) ← h0(u, v).
11: for i = r − 1→ 0 do . Move u, v to the lowest common ancestor.
12: For each (u, v) ∈ Q′, let (x, y) ← h′

i+1(u, v). If gi(x) , gi(y), then let h′i(u, v) ←
(gi(x),gi(y)), h′i(u) ← gi(x), h′i(v) ← gi(y); Otherwise let h′i(u, v) ← (x, y), h

′
i(u) ← x, h′i(v) ← y.

13: end for
14: For each (u, v) ∈ Q′, if (u, v) ∈ Q, then let lca(u, v) ← (par(h′0(u)), h

′
0(u), h

′
0(v)); Otherwise

lca(v,u) ← (par(h′0(v)), h
′
0(v), h

′
0(u)).

15: return lca .
16: end procedure

Lemma 5.2.10. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Suppose par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of

vertices, and ∀i ∈ [q],ui , vi, neither ui nor vi is the LCA of (ui, vi). Let lca = LCALARGE(par,Q)

(Algorithm 13). Then for any (u, v) ∈ Q, (p, pu, pv) = lca(u, v) satisfies the following properties: p

is the lowest common ancestor of (u, v), pu , p is an ancestor of u, pv , p is an ancestor of v, and

par(pu) = par(pv) = p.

Proof. According to Lemma 4.3.6, r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0

records the depth of every vertex in V, and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v).

Then for all (u, v) ∈ Q, either (u, v) ∈ Q′ or (v,u) ∈ Q′. For each (u, v) ∈ Q′,we have deppar(u) ≥

deppar(v). For all (u, v) ∈ Q′, by induction we can prove that ∀i ∈ {0} ∪ [r − 1], (x, y) = hi(u, v)

satisfies that x is an ancestor of u, y = v, deppar(x) ≥ deppar(v) and deppar(par(2i)(x)) < deppar(v).

Thus, ∀(u, v) ∈ Q′, (x, y) = h0(u, v) satisfies that deppar(x) = deppar(y) and x is an ancestor of u,

y = v.

Now let (u, v) ∈ Q′. We have deppar(h
′
r(u)) = deppar(h

′
r(v)), h

′
r(u) , h′r(v), and h′r(u), h

′
r(v) are

148

ancestors of u, v respectively. We can prove by induction to get ∀i ∈ {0} ∪ [r], h′i(u) , h′i(v) and

par(2i)(h′i(u)) = par(2i)(h′i(v)) is a common ancestor of (u, v). Thus, p = par(h′0(u)) = par(h′0(v))

is the lowest common ancestor of (u, v), and deppar(h
′
0(u)) = deppar(h

′
0(v)) = deppar(p) + 1. Since

pu = h′0(u), pv = h′0(v),we complete the proof.

Algorithm 14 Lowest Common Ancestor (space efficient)
1: procedure LCA(par : V → V,Q) . par : V → V is a set of parent pointers

representing a rooted tree on a set V of n vertices (par has a unique root r), and Q is a set of q queries
Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q],ui , vi,ui, vi ∈ leaves(par).

2: (V ′,par′) ←COMPRESS(par). . Algorithm 12.
3: Compute the depth of each vertex in par. . Run TREECONTRACTION((V,∅),par) (see

Algorithm 3). Let the output g(r) : V → Z≥0 be deppar : V → Z≥0 (see Lemma 4.2.9).
4: Compute the depth of each vertex in par′. . Run TREECONTRACTION((V ′,∅),par′) (see

Algorithm 3). Let the output g(r) : V ′→ Z≥0 be deppar′ : V → Z≥0 (see Lemma 4.2.9).
5: Set d ← dep(par), t ← dlog de.
6: Compute mappings g0,g1, · · · gt : V ′ → V ′ such that ∀v ∈ V ′, j ∈ {0,1, · · · , t}, gj(v) = par′(2 j)(v).

. Run FINDANCESTORS(par) (see Algorithm 6).
7: for (ui, vi) ∈ Q do . Suppose deppar(ui) ≥ deppar(vi).
8: If deppar(ui) > deppar(vi)+2t, find an ancestor ûi of ui in par such that deppar(ûi) ≤ deppar(vi)+2t

and deppar(ûi) ≥ deppar(vi). Otherwise, ûi ← ui.
9: If ∃ j ∈ [4t] par(j)(ûi) is the LCA of (ûi, vi) in par, set lca(ui, vi) = (par(j)(ûi), x, y) where x, y are

children of par(j)(ûi) and x, y are ancestors of ûi, vi respectively. The query of (ui, vi) is finished.
10: Find an ancestor u′i of ûi in par such that u′i is the closest vertex to ûi in V ′, i.e., deppar(ûi) −

deppar(u
′
i) is minimized. Similarly, find an ancestor v′i of vi in par such that v′i is the closest vertex to vi

in V ′, i.e., deppar(vi) − deppar(v
′
i) is minimized.

11: Find u′′i , v′′i ∈ V ′ such that they are ancestors of u′i and v′i respectively, and par′(u′′i) = par′(v′′i)
is the LCA of (u′i, v

′
i) in par′. . Run LCALARGE(par′,Q′) for Q′ which contains all (u′i, v

′
i) (see

Algorithm 13).
12: Find the smallest j ∈ [2t] such that par(j)(u′′i) = par(j)(v′′i). Set lca(ui, vi) =
(par(j)(u′′i),par(j−1)(u′′i),par(j−1)(v′′i)).

13: end for
14: end procedure

Remark 5.2.11. Before we analyze the algorithm LCA(par,Q) (Algorithm 14), let us discuss the

details of the implementation of line 8 of the algorithm. To implement line 8, we firstly check

whether deppar(ui) > deppar(vi) + 2t. If it is not true, we can set ûi to be ui directly. Other-

wise, according to Lemma 5.2.7, there is a j ∈ {0,1, · · · ,2t} such that par(j)(ui) ∈ V ′. Since

deppar(ui) > deppar(vi) + 2t, deppar(par(j)(ui)) > deppar(vi). We initialize ûi to be par(j)(ui) ∈ V ′.

For k = t → 0, if deppar(gk(ûi)) > deppar(vi) (i.e., deppar(par′(2k)(ûi)) > deppar(vi)), we set ûi ←

149

gk(ûi) = par′(2k)(ûi). Due to Lemma 5.2.7 again, the final ûi must satisfy deppar(ûi) ≥ deppar(vi)

and deppar(ûi) ≤ deppar(vi) + 2t. This step takes time O(t).

Lemma 5.2.12 (LCA algorithm). Let par : V → V be a set of parent pointers on a vertex set V .

par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices where

∀i ∈ [q],ui , vi,ui, vi ∈ leaves(par). Let lca : Q → V × V × V be the output of LCA(par) (see

Algorithm 14). For (ui, vi) ∈ Q, (pi, pi,ui, pi,vi) = lca(ui, vi) satisfies that pi is the LCA of (ui, vi),

pi,ui, pi,vi are ancestors of ui, vi respectively, and pi,ui, pi,vi are children of pi.

Proof. Without loss of generality, we can assume deppar(ui) ≥ deppar(vi). After line 8, ûi satisfies

deppar(ûi) ≥ deppar(vi) and deppar(ûi) ≤ deppar(vi) + 2t. Notice that the LCA of (ui, vi) in par is the

same as the LCA of (ûi, vi) in par. In line 9, if we find the LCA of (ûi, vi), then the lemma holds for

lca(ui, vi). Otherwise, the depth of the LCA of (ûi, vi) is smaller than deppar(ûi)−4t ≤ deppar(vi)−2t.

By combining with Lemma 5.2.7, neither of u′i nor v′i in line 10 can be the LCA of (ûi, vi) in par.

Thus, the LCA of (ui, vi) in par is the same as the LCA of (u′i, v
′
i) in par. According to line 11, u′′i , v

′′
i

are ancestors of u′i, v
′
i respectively in both par and par′, but neither of u′′i nor v′′i is the common

ancestor of (u′i, v
′
i). Furthermore, par′(u′′i) = par′(v′′i) is the LCA of u′i, v

′
i in par′. Thus, par′(u′′i)

is a common ancestor of (u′i, v
′
i) in par. According to Lemma 5.2.10, line 11 can be implemented

by Algorithm 13. By combining with Lemma 5.2.7, we know that there exists j ∈ [2t] such that

par(j)(u′′i) is the LCA of (u′i, v
′
i) in par. In line 12, we can find the LCA of (u′i, v

′
i) in par and thus

the LCA of (ui, vi).

5.2.3 Multi-paths generation

Definition 5.2.13 (Path between two vertices). par : V → V be a set of parent pointers (See

Definition 4.2.5) on a vertex set V . For u, v ∈ V, if par(∞)(u) = par(∞)(v), then the path from u to

v is a sequence (x1, x2, · · · , x j, x j+1, · · · xk) such that ∀i , i′ ∈ [k], xi , xi′, x1 = u, xk = v, x j is the

lowest common ancestor of (u, v),∀i ∈ [j−1],par(xi) = xi+1, and ∀i ∈ { j+1, j+2, · · · , k},par(xi) =

xi−1.

150

Consider a rooted tree represented by a set of parent pointers par : V → V on a vertex set V and

a set of q vertex-ancestor pairs Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], vi is an ancestor

of ui.

We first show an algorithm (Algorithm 15) with slightly larger space. Then we show how to im-

prove the space usage. The following lemma claims the properties of the outputs of Algorithm 15.

Algorithm 15 Multiple-Paths Generation (larger space)
1: procedure MULTIPATHLARGE(par : V → V,Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}) . Lemma 5.2.14.
2: Output: deppar : V → Z≥0, {Pi ⊆ V | i ∈ [q]}.
3: (r,deppar, {gi | i ∈ {0} ∪ [r]}) ← FINDANCESTORS(par). . Algorithm 6.

4: ∀ j ∈ [q], let S(0)j ← {(u j, vj) | (u j, vj) ∈ Q}.
5: for i = 1→ r do
6: for j = 1→ q do . S(i)j is a set of segments partitioned the path from u j to vj .

7: Let S(i)j ← ∅.

8: for (x, y) ∈ S(i−1)
j do

9: if deppar(x) − deppar(y) > 2r−i then S(i)j ← S(i)j ∪ {(x,gr−i(x)), (gr−i(x), y)}.

10: else S(i)j ← S(i)j ∪ {(x, y)}.
11: end if
12: end for
13: end for
14: end for . S(r)j only contains segments with length 1.
15: Let ∀ j ∈ [q],Pj ← {u j}.

16: for j = 1→ q do
17: for (x, y) ∈ S(r)j do
18: Let Pj ← Pj ∪ {y}.

19: end for
20: end for
21: end procedure

And the proof is similar to the proof of Lemma 4.3.8.

Lemma 5.2.14. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V satisfy ∀ j ∈ [q], v j is an ancestor (See Defini-

tion 5.2.8) of u j in par. Let (deppar, {Pj | j ∈ [q]}) = MULTIPATHLARGE(par,Q) (Algorithm 15).

Then deppar : V → Z≥0 records the depth of every vertex in V and ∀ j ∈ [q],Pj ⊆ V is the set of all

vertices on the path from u j to v j , i.e. Pj = {v ∈ V | ∃k1, k2 ∈ Z≥0, v = par(k1)(u j), v j = par(k2)(v)}.

Furthermore, r should be at most dlog(dep(par) + 1)e .

151

Proof. By Lemma 4.3.6, since (r,deppar, {gi | i ∈ {0} ∪ [r]}) = FINDANCESTORS(par), we know

r should be at most dlog(dep(par) + 1)e, deppar : V → Z≥0 records the depth of every vertex in V,

and ∀i ∈ {0} ∪ [r], v ∈ V gi(v) = par(2i)(v).

For j ∈ [q], let us prove that Pj is the vertex set of all the vertices on the path from u j to its

ancestor v j . We use divide-and-conquer to get Pj . The following claim shows that S(i)j is a set of

segments which is a partition of the path from u j to v j , and each segment has length at most 2r−i .

Claim 5.2.15. ∀i ∈ {0} ∪ [r], j ∈ [q] S(i)j satisfies the following properties:

1. ∃(x, y) ∈ S(i)j such that x = u j .

2. ∃(x, y) ∈ S(i)j such that y = v j .

3. ∀(x, y) ∈ S(i)j , deppar(y) − deppar(x) ≤ 2r−i .

4. ∀(x, y) ∈ S(i)j , if y , v j, then ∃(x′, y′) ∈ S(i)j , x
′ = y.

5. ∀(x, y) ∈ S(i)j , ∃k ∈ Z≥0,par(k)(x) = y.

Proof. We fix a j ∈ [q]. Our proof is by induction. According to line 4, all the properties hold

when i = 0. Suppose all the properties hold for i − 1. For property 1, by induction we know there

exists (x, y) ∈ S(i−1)
j such that x = u j . Then by line 9 and line 10, there must be an (x, y′) in S(i)j . For

property 2, by induction we know there exists (x, y) ∈ S(i−1)
j such that y = v j . Thus, there must be

an (x′, y) in S(i)j . For property 3, if (x, y) is added into S(i)j by line 10, then deppar(x) − deppar(y) ≤

2r−i . Otherwise, in line 9, we have deppar(x) − deppar(gr−i(x)) ≤ 2r−i,deppar(gr−i(x)) − deppar(y) ≤

2r−i+1 − 2r−i = 2r−i . For property 4, if (x, y) is added into S(i)j by line 10, then by induction

there is (y, y′) ∈ S(i−1)
j , and thus by line 10 and line 9, there must be (y, y′′) ∈ S(i)j . Otherwise,

in line 9 will generate two pairs (x,gr−i(x)), (gr−i(x), y). For (x,gr−i(x)), the property holds. For

(gr−i(x), y), there must be (y, y′) ∈ Si−1 and thus there should be (y, y′′) ∈ S(i). For property 5, since

gr−i(x) = par(r−i)(x), for all pairs generated by line 9 and line 10, the property holds.

152

By Claim 5.2.15, we know

S(r)j = {

(u j,par(u j)),(
par(u j),par(2)(u j)

)
,(

par(2)(u j),par(3)(u j)

)
,

· · · ,(
par(deppar(u j)−deppar(vj)−1)(u j),par(deppar(u j)−deppar(vj))(u j)

)
} .

Thus, Pj is the set of all the vertices on the path from u j to an ancestor v j .

Then we show a space efficient algorithm MULTIPATH(par,Q) (see Algorithm 16) which can

generate all the paths P(u1, v1),P(u2, v2), · · · ,P(uq, vq).

Remark 5.2.16. Before we analyze the correctness of Algorithm 16, let us discuss some details.

In line 8, if the length of the path is at most 2t, then we can generate the path in O(t) rounds.

In the j-th round, we can find the vertex par(j)(ui) = par(par(j−1)(ui)). In line 9, we use the fol-

lowing way to find v′i . We initialize v′i as u′i . For k = t → 0, if deppar(gk(v
′
i)) > deppar(vi) (i.e.,

deppar(par′(2k)(v′i)) > deppar(vi)), we set v′i ← gk(v
′
i) = par′(2k)(v′i).

Lemma 5.2.17 (Generation of multiple paths). Let par : V → V be a set of parent pointers on a

vertex set V . par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V be a set of

pairs of vertices where ∀ j ∈ [q], v j is an ancestor of u j in par. Let P1,P2, · · · ,Pq be the output of

MULTIPATH(par,Q) (Algorithm 16). Then ∀ j ∈ [q],Pj = P(u j, v j), i.e., Pj is a sequence which

denotes a path from u j to v j in par.

Proof. Consider a pair (ui, vi) ∈ Q. If deppar(ui) − deppar(vi) ≤ 2t, then Pi will be the path from ui

to vi in par by line 8.

153

Algorithm 16 Multi-Paths Generation (space efficient)
1: procedure MULTIPATH(par : V → V,Q) . par : V → V is a set of parent pointers of

a rooted tree on a set V of n vertices (par has a unique root r), and Q is a set of q vertex-ancestor pairs
Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], vi is an ancestor of ui.

2: (V ′,par′) ←COMPRESS(par). . Algorithm 12.
3: Compute the depth of each vertex in par. . Run TREECONTRACTION((V,∅),par) (see

Algorithm 3). Let the output g(r) : V → Z≥0 be deppar : V → Z≥0 (see Lemma 4.2.9).
4: Compute the depth of each vertex in par′. . Run TREECONTRACTION((V ′,∅),par′) (see

Algorithm 3). Let the output g(r) : V ′→ Z≥0 be deppar′ : V → Z≥0 (see Lemma 4.2.9).
5: Set d ← dep(par), t ← dlog de.
6: Compute mappings g0,g1, · · · gt : V ′ → V ′ such that ∀v ∈ V ′, j ∈ {0,1, · · · , t}, gj(v) = par′(2 j)(v).

. Run FINDANCESTORS(par) (see Algorithm 6).
7: for vertex-ancestor pair (ui, vi) ∈ Q do
8: If deppar(ui) − deppar(vi) ≤ 2t, generate the path sequence Pi = (ui,par(1)(ui),par(2)(ui), · · · , vi)

directly.
9: Otherwise, find the minimum j ∈ [2t] such that par(j)(ui) ∈ V ′. Set u′i ← par(j)(ui). Find an

ancestor v′i of u′i in par′ such that deppar(v
′
i) ≥ deppar(vi) and deppar(v

′
i) − 2t ≤ deppar(vi).

10: Generate the path P′(u′i, v
′
i) in par′. . Run MULTIPATHLARGE(par′,Q′), where Q′ contains all

(u′i, v
′
i) (see Algorithm 15).

11: Initialize a sequence A as the concatenation of (ui), P′(u′i, v
′
i) and (vi).

12: Repeat: for each element ai in A, if ai is not the last element and ai+1 , par(ai), insert par(ai)
between ai and ai+1; until A does not change. Output the final sequence A as the path sequence Pi.

13: end for
14: end procedure

We only need to consider the case when deppar(ui) > deppar(vi)+2t. According to Lemma 5.2.7,

∃ j ∈ [2t] such that par(j)(ui) ∈ V ′. Thus, u′i ∈ V ′ can be found by line 9. Then v′i can be

found. vi is an ancestor of v′i . v′i is an ancestor of u′i . u′i is an ancestor of ui. In line 10,

the path P′(u′i, v
′
i) can be found according to Lemma 5.2.14. In line 11, the initialization of

A should be (ui,u′i,par′(1)(u′i),par′(2)(u′i), · · · , v
′
i , vi). By Lemma 5.2.7, the initialization of A is

also (ui,u′i,par(t)(u′i),par(2t)(u′i), · · · , v
′
i , vi). Then by line 12, the final sequence Pi = A will be

(ui,par(1)(ui),par(2)(ui), · · · , vi) which denotes the path from ui to vi in par.

5.2.4 Leaf sampling

Given a set of rooted trees, our goal is to sample a set of leaves for each tree, and to give an

order of those sampled leaves. The algorithm is shown in Algorithm 17.

Lemma 5.2.18. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

154

Algorithm 17 Leaf Sampling
1: procedure LEAFSAMPLING(par : V → V,m, δ) . Lemma 5.2.18
2: Output: A = (a1,a2, · · · ,as).
3: Let t ← dm1/3e .

4: Compute L ← leaves(par).
5: Compute rank : V → Z≥0 such that ∀v ∈ V, rank(v) ← rankpar(v). . Definition 5.2.1
6: If |V | ≤ m, let {a1,a2, · · · ,as} ← L, and return A← (a1,a2, · · · ,as) which satisfies a1 <par a2 <par
· · · <par as . . <par follows Definition 5.2.6

7: If |L | ≤ 8t, let S ← L.
8: Let p← min(1,640(1 + log(m)/δ)t/|L |).
9: If |L | > t, sample each v ∈ L with probability p independently. let S be the set of samples.

10: Compute par′ : V → V such that ∀v ∈ V, if childpar(v) , ∅, then par′(v) = childpar(v,1); Otherwise
let par′(v) = v. . par′(v) points to v’s first child in par.

11: (par′(∞) : V → V,G′) ← TREECONTRACTION((V,∅),par′). . Algorithm 3.
12: Find w ∈ V with par(w) = w. . Find the root.
13: Let a1 ← par′(∞)(w),S ← S ∪ {a1}. . Find the first leaf.
14: Let Q← {(u, v) | (u, v) ∈ S × S,u , v}.

15: Let lca← LCA(par,Q). . Algorithm 14.
16: Let s← |S |.
17: for i = 2→ s do . Determine the order of sampled leaves.
18: For all x, y ∈ S \ {a1,a2, · · · ,ai−1}, let (px,y, pxy,x, pxy,y) = lca(x, y).
19: Find x∗ ∈ S \ {a1,a2, · · · ,ai−1} s.t. ∀y ∈ S \ {a1,a2, · · · ,ai−1, x∗}, rank(px∗y,x∗) < rank(px∗y,y).

20: Let ai ← x∗.
21: end for
22: return A = (a1,a2, · · · ,as).
23: end procedure

set V , and par has a unique root. Let m > 0, δ ∈ (0,1) be parameters, and let |V | ≤ m1/δ . Let

(a1,a2, · · · ,as) = LEAFSAMPLING(par,m, δ) (Algorithm 17). Then it has following properties:

1. a1 <par a2 <par · · · <par as .

2. If |V | ≤ m or | leaves(par)| ≤ 8dm1/3e, then {a1,a2, · · · ,as} = leaves(par). Otherwise,

with probability at least 1 − 1/(100m5/δ), ∀v ∈ leaves(par) \ {a1}, there is a vertex w ∈

{a1,a2, · · · ,as} such that w <par v and the number of leaves between w and v is at most

| leaves(par)|/dm1/3e, i.e. |{u ∈ leaves(par) | w <par u <par v}| ≤ | leaves(par)|/dm1/3e .

3. If |V | > m and | leaves(par)| > 8dm1/3e, then with probability at least 1 − 1/(100m5/δ),

s = |S | = |{a1,a2, · · · ,as}| ≤ 960dm1/3e(1 + log(m)/δ).

Proof. Firstly, let us focus on property 1. According to line 11 to line 13 and Lemma 4.3.6, we

155

know ∀k ∈ Z≥0 rankpar(par(k)(a1)) = 1, and par′(a1) = a1 which implies that a1 is a leaf. Due

to Definition 5.2.4, we know that a1 must be the first leaf appeared in the DFS sequence of par .

We can prove the property by induction. Suppose we already have a1 <par a2 <par · · · <par

ai−1. According to line 18 and Lemma 5.2.12, pai−1,ai is the LCA of (ai−1,ai). pai−1ai,ai−1 is a child

of pai−1,ai and is an ancestor of ai−1. pai−1ai,ai is a child of pai−1,ai and is an ancestor of ai . By

Fact 5.2.5, since rank(pai−1ai,ai−1) < rank(pai−1ai,ai), we have ai−1 <par ai . To conclude, we have

a1 <par a2 <par · · · <par as .

For property 2, if |V | ≤ m or | leaves(par)| ≤ 8dm1/3e, then by line 6 and line 7, we know

{a1,a2, · · · ,as} = leaves(par).

Now consider the case when |V | > m and | leaves(par)| > 8dm1/3e . Let t = dm1/3e . Let

leaves(par) = {u1,u2, · · · ,uq}, and let u1 <par u2 <par · · · <par uq. Let us partition u1, · · · ,uq into

4 · t groups G1 = {u1,u2, · · · ,ubq/(4t)c},G2 = {ubq/(4t)c+1,ubq/(4t)c+2, · · · ,u2·bq/(4t)c}, · · · ,G4t =

{u(4t−1)bq/(4t)c+1,u(4t−1)bq/(4t)c+2, · · · ,uq}. Then each group has size at least q/(8t) and at most

q/(2t). For a certain Gi, by Chernoff bound, we have

Pr
(
|Gi ∩ S | ≤

1
2
·

q
8t
· p

)
≤ exp

(
−

1
8
·

q
8t
· p

)
≤ 1/(100m10/δ)

where the last inequality follows by p = min(1, (10 + 10 log(m)/δ) · 64t/q). Notice that q ≤

|V | ≤ m1/δ . We can take union bound over all Gi. Then with probability at least 1 − 1/(100m5/δ),

∀i ∈ [4t],Gi ∩ S , ∅. Thus, ∀v ∈ leaves(par), there is a vertex w ∈ {a1,a2, · · · ,as} such that

w <par v and the number of leaves between w and v is at most | leaves(par)|/dm1/3e, i.e. |{u ∈

leaves(par) | w <par u <par v}| ≤ | leaves(par)|/dm1/3e .

For property 3, by applying Chernoff bound, we have

Pr
(
|S ∩ leaves(par)| ≥

3
2
| leaves(par)| · p

)
156

≤ exp
(
−

1
12
· | leaves(par)| · p

)
≤ 1/(100m10/δ)

where the last inequality follows by p = min(1, (10 + 10 log(m)/δ) · 64t/| leaves(par)|).

Since 3
2 | leaves(par)| · p ≤ 960dm1/3e(1 + log(m)/δ),we complete the proof.

5.2.5 DFS subsequence

Let par : V → V be a set of parent pointers on a vertex set V , and par has a unique root v. Let

{u1,u2, · · · ,uq} = leaves(par), and u1 <par u2 <par · · · <par uq. One observation is that the DFS

sequence of par can be generated in the following way:

1. The first part of the DFS sequence is the path from v to u1.

2. Then it follows by the path from par(u1) to the LCA of (u1,u2), the path from one of the child

of the LCA of (u1,u2) to u2, the path from par(u2) to the LCA of (u2,u3), the path from one

of the child of the LCA of (u2,u3) to u3, · · · , the path from one of the child of the LCA of

(uq−1,uq) to uq.

3. The last part of the DFS sequence is a path from par(uq) to v.

Fact 5.2.19. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V , and par has a unique root v. Let {u1,u2, · · · ,uq} = leaves(par) (See Definition 5.2.2), and

u1 <par u2 <par · · · <par uq. Let A = (a1,a2, · · · ,am) be the DFS sequence (See Definition 5.2.4) of

par. Then,

1. If u1 appears at ai, then (a1,a2, · · · ,ai) is the path from v to u1.

2. ∀i ∈ [q − 1], if ui appears at a j, and ui+1 appears at ak, then ∃ j < t < k such that at is the

LCA of (ui,ui+1). In addition, (a j,a j+1, · · · ,at) is the path from a j to at, and (at,at+1, · · · ,ak)

is the path from at to ak .

157

Algorithm 18 DFS Subsequence
1: procedure SUBDFS(par : V → V,m, δ) . Lemma 5.2.22, Lemma 5.2.23.
2: Output: V ′ ⊆ V, A = (a1,a2, · · · ,as).
3: If V = {v}, return V ′← V, A← (v).
4: Let v be the root in par, i.e. par(v) = v.
5: L = (l1, l2, · · · , lt) ← LEAFSAMPLING(par,m, δ). . Algorithm 17.
6: Q = {(li, li+1) | i ∈ [t − 1]}.
7: lca = LCA(par,Q). . Algorithm 14.
8: ∀i ∈ [t − 1], (pli,li+1, pi,li, pi,li+1) = lca(li, li+1).
9: Q′ = {(l1, v), (par(l1), pl1,l2), (l2, p1,l2), (par(l2), pl2,l3), (l3, p2,l3), · · · , (lt, pt−1,lt), (par(lt), v)}.

10: {path sequence Pi | i ∈ [2t]} ← MULTIPATH(par,Q′). . Algorithm 16.
11: V ′←

⋃2t
i=1{v ∈ V | v appears in Pi}.

12: Let par′ : V ′→ V ′ satisfy ∀v ∈ V ′,par′(v) = par(v).
13: for i ∈ {1,3,5, · · · ,2t − 1} do
14: Compute A′i ← Pi.
15: end for
16: for i ∈ {2,4,6, · · · ,2t} do
17: Compute A′i as the inverse of P′i , i.e., A′i ← (u|Pi |,u|Pi |−1, · · · ,u1) for Pi =

(u1,u2, · · · ,u|Pi |).
18: end for
19: Let A′← A′1 A′2 · · · A

′
2t . . A′ is the concatenation of A′1, A

′
2, · · · , A

′
2t .

20: ∀u ∈ V ′, compute rankpar(u) and rankpar′(u).
21: ∀u ∈ V ′, i ∈ [| childpar′ | + 1] compute pos(u, i) = j such that the j th element in A′ is the ith

time that u appears.
22: Let b be the length of A′.
23: Initialize c : [b] → Z≥0.. c determine the number of copies needed for each element in A′.
24: for u ∈ V ′ \ {v} do
25: If u ∈ leaves(par′), let c(pos(u,1)) ← 1. . A leaf should only have one copy.
26: If rankpar′(u) = 1, let c(pos(par′(u),1)) ← rankpar(u).
27: If rankpar′(u) = | childpar′(par′(u))|, let c(pos(par′(u), rankpar′(u) + 1)) ←

| childpar(par(u))| + 1 − rankpar(u).
28: If 1 ≤ rankpar′(u) < | childpar′(par′(u))|, let c(pos(par′(u), rankpar′(u) + 1)) ←

rankpar(childpar′(par′(u), rankpar′(u) + 1)) − rankpar(u).
29: end for
30: For each j ∈ [b], duplicate the j th element of A′ c(j) times. Let A be the obtained sequence.
31: return V ′, A.
32: end procedure

3. If uq appears at ai, then (ai,ai+1, · · · ,am) is the path from uq to v.

Proof. Property 1, 3 follows by the definition of DFS sequence (See Definition 5.2.4) and a simple

induction.

158

Now consider property 2. Since A is a DFS sequence, ∀l ∈ { j, j+1, · · · , k−1}, either par(al) =

al+1 or par(al+1) = al . Thus, the path between ui and ui+1 is a subsequence of (a j,a j+1, · · · ,ak).

If par(al+1) = al but al+1 is not on the path between ui and ui+1, then there must be a leaf x in the

subtree of al+1 which implies ui <par x <par ui+1, and thus leads to a contradiction. If par(al) = al+1

but al+1 is not on the path between ui and ui+1, then both ui and ui+1 should be in the subtree of

al, and both of ui and ui+1 should be in the DFS sequence of the subtree of al . But we know al+1

cannot be in the DFS sequence of the subtree of al . This leads to a contradiction.

Lemma 5.2.20. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set V ,

with a unique root. Let v ∈ V . Let V ′ = V \ {u ∈ V | v is an ancestor (See Definition 5.2.8) of u},

i.e., V ′ denotes the vertices outside the subtree of v. Let par′ : V ′ → V ′ satisfy ∀u ∈ V ′,par′(u) =

par(u). Then the DFS sequence (See Definition 5.2.4) of par′ is a subsequence of the DFS sequence

of par .

Proof. The proof follows by the property 3 of Fact 5.2.5 directly.

Corollary 5.2.21. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V , and par has a unique root. Let v1, v2, · · · , vt be t vertices in V . Let V ′ = V \ {u ∈ V |

∃v ∈ {v1, · · · , vt}, v is an ancestor (See Definition 5.2.8) of u}. Let par′ : V ′ → V ′ satisfy ∀u ∈

V ′,par′(u) = par(u). Then the DFS sequence (See Definition 5.2.4) of par′ is a subsequence of the

DFS sequence of par .

Proof. The proof is by induction on t. When t = 1, then the statement is true by Lemma 5.2.20.

Suppose the statement is true for t−1. Let V ′′ = V\{u ∈ V | ∃v ∈ {v1, · · · , vt−1}, v is an ancestor of u},

and let par′′ : V ′′ → V ′′ satisfy ∀v ∈ V ′′,par′′(v) = par(v). By induction hypothesis, the DFS se-

quence of par′′ is a subsequence of the DFS sequence of par. If one of the v1, · · · , vt−1 is an ancestor

of vt, then par′ = par′′, thus, the DFS sequence of par′ is a subsequence of the DFS sequence of

par. Otherwise, we have V ′ = V ′′ \ {u ∈ V ′′ | vt is an ancestor of u}. By Lemma 5.2.20, the DFS

sequence of par′ is a subsequence of the DFS sequence of par′′ . Thus, the DFS sequence of par′ is

a subsequence of the DFS sequence of par.

159

Lemma 5.2.22 (Removing several subtrees). Let par : V → V be a set of parent pointers (See

Definition 4.2.5) on a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0,1) be pa-

rameters, and let |V | ≤ m1/δ . Let (V ′, A) = SUBDFS(par,m, δ) (Algorithm 18). Then ∀u ∈ V ′,

we have par(u) ∈ V ′. Furthermore, with probability at least 1 − 1/(100m5/δ), ∀u ∈ V \ V ′,

the number of leaves (See Definition 5.2.2) in the subtree (See Definition 5.2.3) of u is at most

b| leaves(par)|/dm1/3ec .

Proof. By Lemma 5.2.18, we know L ⊆ leaves(par), and l1 <par l2 <par · · · <par lt .

We first prove ∀u ∈ V ′,par(u) ∈ V ′. Our proof is by induction on the leaf li . By Lemma 5.2.12,

we have that ∀i ∈ [t − 1], pli,li+1 is the LCA of (li, li+1), pi,li+1 is an ancestor of li+1, and pi,li+1 ,

pli,li+1,par(pi,li+1) = pli,li+1 . By Lemma 5.2.17, P1 is the path from l1 to the root v. P1 contains all the

ancestors of l1. Thus, every ancestor u of l1 appears in P1 and satisfies par(u) ∈ V ′. P2 is the path

from l1 to an ancestor of l1. Thus, P2 is a subsequence of P1. Suppose now the set of vertices ap-

peared in at least one of paths P1,P2, · · · ,P2i−2 is {u ∈ V | ∃ j ∈ [i − 1],u is an ancestor of l j}. No-

tice that every vertex on the path from li to the ancestor pi−1,li appears in P2i−1. Since par(pi−1,li) =

pli−1,li is also an ancestor of li−1, we have that the set of vertices appeared in at least one of paths

P1,P2, · · · ,P2i−2,P2i−1 is {u ∈ V | ∃ j ∈ [i],u is an ancestor of l j}. Since P2i contains all the ver-

tices on the path from li to an ancestor of li, we have that the set of vertices appeared in at least

one of paths P1,P2, · · · ,P2i−1,P2i is {u ∈ V | ∃ j ∈ [i],u is an ancestor of l j}. Therefore, we have

V ′ = {u ∈ V | ∃ j ∈ [t],u is an ancestor of l j}. Thus, ∀u ∈ V ′,we have par(u) ∈ V ′.

By Lemma 5.2.18, with probability at least 1 − 1/(100m5/δ), ∀u ∈ leaves(par) \ L, there exists

w ∈ L,w <par u such that |{x ∈ leaves(par) | w <par x <par u}| ≤ b| leaves(par)|/dm1/3ec . In the

following, we condition on that the above event happens. Let u ∈ V \V ′. Due to Fact 5.2.5, the DFS

sequence of the subtree of u in par must be a consecutive subsequence of the DFS sequence of par .

Thus, ∃x, y ∈ leaves(par), the leaves in the subtree of u in par is the set {z ∈ leaves(par) | x <par

z <par y}∪{x}∪{y}. If the number of leaves in the subtree of u is more than b| leaves(par)|/dm1/3ec,

then ∃li ∈ L, u is an ancestor of leaf li. But li ∈ V ′ contradicts to u < V ′. Thus, the number of

leaves in the subtree of u is at most b| leaves(par)|/dm1/3ec .

160

Lemma 5.2.23 (A is a subsequence). Let par : V → V be a set of parent pointers (See Defini-

tion 4.2.5) on a vertex set V , and par has a unique root. Let m > 0, δ ∈ (0,1) be parameters, and

let |V | ≤ m1/δ . Let (V ′, A) = SUBDFS(par,m, δ) (Algorithm 18). Then A is a subsequence of the

DFS sequence of par . Furthermore, ∀u ∈ V ′, u appears in A exactly | childpar(u) + 1| times, and

∀u < V ′, u does not appear in A.

Proof. We first show that A′ is the DFS sequence of par′ .

Claim 5.2.24. A′ is the DFS sequence of par′ : V ′→ V ′.

Proof. By Lemma 5.2.18, we know {l1, l2, · · · , lt} = L ⊆ leaves(par), and l1 <par l2 <par · · · <par lt .

By Lemma 5.2.12, we have that ∀i ∈ [t − 1], pli,li+1 is the LCA of (li, li+1), pi,li+1 is an ancestor of

li+1, and pi,li+1 , pli,li+1,par(pi,li+1) = pli,li+1 . By Lemma 5.2.17, ∀i ∈ [t], P2i−1 and P2i only contains

some ancestors of li . Thus, leaves(par′) = L.

According to Lemma 5.2.22 and Corollary 5.2.21, the DFS sequence of par′ is a subsequence

of the DFS sequence of par . Thus, we still have l1 <par′ l2 <par′<par′ · · · <par′ lt . Due to

Lemma 5.2.17, P1 denotes the path from l1 to the root v, P2t denotes the path from lt to the root

v, ∀i ∈ [t − 1],P2i denotes the path from par′(li) to the LCA of (li, li+1), and P2i+1 denotes the path

from li+1 to pi,li+1 . Thus, A′1 is the path from the root v to leaf l1, A′2t is the path from lt to the root

v, ∀i ∈ [t − 1], A′2i A
′
2i+1 is the path from par′(li) to li+1. Due to Fact 5.2.19, A′ = A′1 A′2 · · · A

′
2t is the

DFS sequence of par′ .

Let us define some notations. Let Ã = (ã1, ã2, · · · , ãs̃) be the DFS sequence of par . ∀u ∈ V,

let stÃ(u) = j such that ã j is the first time that u appears in Ã. We define edÃ(u) be the po-

sition such that ãedÃ(u) is the last time that u appears in Ã. Similarly, ∀u ∈ V ′, we can define

stA′(u), stA(u),edA′(u),edA(u) to be the positions of the first time u appears in A′, the first time u

appears in A, the last time u appears in A′, and the last time u appears in A respectively.

Since v is the root (in both par and par′), it suffices to prove that (astA(v),astA(v)+1, · · · ,aedA(v)) is

a subsequence of (ãstÃ(v), ãstÃ(v)+1, · · · , ãedÃ(v)
). Our proof is by induction on deppar(u) for u ∈ V ′.

If deppar(u) = dep(par), then u must be a leaf in par′ (or par, since par′ and par are the same on V ′).

161

In this case, stA(u) = edA(u), stÃ(u) = edÃ(u), and (astA(u)) = (ãstÃ(u)) = (u). Suppose for all u ∈ V ′

with deppar(u) > d, we have that (astA(u), · · · ,aedA(u)) is a subsequence of (ãstÃ(u), · · · , ãedÃ(u)).

Let u be a vertex in V ′ with deppar(u) = d. If u is a leaf, then it is the same as the previous

argument. Now let us consider the case when u is not a leaf. According to Claim 5.2.24, A′

is the DFS sequence of par′ . Due to line 30, A is obtained by duplicating each element of A′

several times. Let w1,w2, · · · ,wk be the children of u in par′, and rankpar′(w1) = 1, rankpar′(w2) =

2, · · · , rankpar′(wk) = | childpar′(u)|. Then, according to Fact 5.2.5, (astA(u), · · · ,aedA(u)) should look

like:

(u, · · · ,u,astA(w1), · · · ,aedA(w1),u, · · · ,u,astA(w2), · · · ,aedA(w2), · · · ,astA(wk), · · · ,aedA(wk),u, · · · ,u)

where the number of u before astA(w1) is rankpar(w1) (see line 26), the number of u before astA(wi)

for i ∈ [k] \ {1} is rankpar(wi) − rankpar(wi−1) (see line 28), and the number of u after aedA(wk)

is | childpar(u)| − rankpar(wk) + 1 (see line 27). Since Ã is the DFS sequence of par, according

to Fact 5.2.5, the number of u in Ã before ãstÃ(w1) is rankpar(w1). By our induction hypothe-

sis, (astA(w1), · · · ,aedA(w1)) is a subsequence of (ãstÃ(w1), · · · , ãedÃ(w1)). Thus, (astA(u), · · · ,aedA(w1))

is a subsequence of (ãstÃ(u), · · · , ãedÃ(w1)
). According to Fact 5.2.5, ∀i ∈ [k] \ {1}, the number of

u in Ã between ãedÃ(wi−1) and ãstÃ(wi) is rankpar(wi) − rankpar(wi−1). By our induction hypothe-

sis, for all i ∈ [k] \ {1}, (astA(wi), · · · ,aedA(wi)) is a subsequence of (ãstÃ(wi), · · · , ãedÃ(wi)). Thus,

(astA(u), · · · ,aedA(wk)) is a subsequence of (ãstÃ(u), · · · , ãedÃ(wk)
). According to Fact 5.2.5, the number

of u in Ã after ãedÃ(wk) is | childpar(u)| − rankpar(wk)+1. Thus, (astA(u), · · · ,aedA(u)) is a subsequence

of (ãstÃ(u), · · · , ãedÃ(u)
). Furthermore, the number of u appears in A is | childpar(u)| − rankpar(wk) +

1 + rankpar(w1) +
∑k

i=2 rankpar(wi) − rankpar(wi−1) = | childpar(u)| + 1.

Since A′ is the DFS sequence of par′, ∀u < V ′, u does not appear in A′. Thus, ∀u < V ′, u does

not appear in A.

162

1

2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

1

2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

1

2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

1

2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

Figure 5.1: Given a tree that has 42 vertices (top-left), we label all the vertices from 1 to 42. Firstly,
we sample some leaves (red vertices, i.e. {5,13,24,30,32,34,36,37,40,42}) in the tree (top-right
tree). Then we find a DFS sequence of the tree (the tree formed by all the blue and red vertices in
the bottom-left tree) which only contains all the sampled leaves and their ancestors. Finally, we
recursively find the DFS sequences of remaining subtrees(bottom-right).

5.2.6 DFS sequence

In this section, we show how to use Algorithm 18 as a subroutine to output a DFS sequence.

The high level idea is that we use Algorithm 18 to generate subsequences of the DFS sequence

in each iteration, and we ensure that the missing part of the DFS sequence must be the DFS

sequences of many subtrees. After the ith iteration, we should ensure that the number of leaves

of each subtree which has a missing DFS sequence is at most n/mi, where m is some parameter

depending on some computational resources (e.g. memory size of a machine). The description of

the algorithm is shown in Algorithm 19. Figure 5.1 shows one step in our algorithm.

Theorem 5.2.25 (Correctness of DFS sequence). Let par : V → V be a set of parent pointers

163

Algorithm 19 DFS Sequence
1: procedure DFS(par : V → V,m) . Theorem 5.2.25, Theorem 5.2.27.
2: Output: FAIL or A = (a1,a2, · · · ,a2 |V |−1).

3: n← |V |, δ← 1/logm n.
4: Let par0 = par .
5: (V0, A0) ← SUBDFS(par0,m, δ). . Algorithm 18.
6: Let r ← d3/δe + 2.
7: for i = 1→ r do . v ∈ Vi ⇔ v appears in Ai.

. If v ∈ Vi, then v appears | childpar(v)| + 1 times in Ai.
8: Let V ′i ← V \ Vi−1.

9: Initialize pari : V ′i → V ′i .
10: For v ∈ V ′i , if par(v) ∈ Vi−1, let pari(v) ← v; Otherwise, let pari(v) ← par(v).
11: (par(∞)i , (V ′′i ,∅)) ← TREECONTRACTION((V ′i ,∅),pari). . Algorithm 3.
12: Vi ← Vi−1.

13: Ai ← Ai−1.

14: for v ∈ V ′i ,pari(v) = v do . The DFS sequence of the subtree of v in par is missing.
15: Let V ′i (v) ← {u ∈ V ′i | par(∞)i (u) = v}.

16: Let pari,v : V ′i (v) → V ′i (v) satisfy ∀u ∈ V ′i (v),pari,v(u) = pari(u).
17: Let (Vi,v, Ai,v) ← SUBDFS(pari,v,m, δ). . Algorithm 18.
18: Vi ← Vi ∪ Vi,v .

19: Insert Ai,v after the rankpar(v)
th time appearance of v in Ai .

20: end for
21: end for
22: If Vr = V, return Ar as A. Otherwise, return FAIL.
23: end procedure

(See Definition 4.2.5) on a vertex set V , and par has a unique root. Let n = |V |,m = nδ for some

constant δ ∈ (0,1). If A = DFS(par,m) (Algorithm 19) does not output FAIL, then A is the DFS

sequence of par .

Proof. It suffices to prove the following claim.

Claim 5.2.26. Let i ∈ {0} ∪ [r]. Ai is a subsequence of the DFS sequence of par . ∀v ∈ Vi,

par(v) ∈ Vi . Furthermore, ∀v ∈ Vi, v appears in Ai exactly | childpar(v)| + 1 times, and ∀v < Vi, v

does not appear in Ai .

Proof. Our proof is by induction on i. If i = 0, then by Lemma 5.2.23, A0 is a subsequence of the

DFS sequence of par, ∀v ∈ V0, v appears in A0 exactly | childpar(v)| + 1 times, and ∀v < V0, v does

not appear in A0. By Lemma 5.2.22, we have ∀v ∈ V0,par(v) ∈ V0.

Suppose the claim is true for i − 1. Let u ∈ Vi .

164

If u ∈ Vi−1, then since Vi−1 ⊆ Vi, par(u) ∈ Vi . Otherwise u ∈ Vi,v for some v with pari(v) = v. If

u = v, then par(v) ∈ Vi−1 ⊆ Vi . Otherwise, by Lemma 5.2.22, par(u) ∈ Vi,v ⊆ Vi .

Now consider the property of Ai . If u ∈ Vi−1, then since Ai−1 is a subsequence of Ai, and

by Lemma 5.2.23 u cannot appear in any Ai,v, u must appear in Ai exactly | childpar(u)| + 1

times. Otherwise u ∈ Vi,v for some v with pari(v) = v. By Lemma 5.2.23, u must appear in

Ai,v | childpari,v (u)| + 1 = | childpar(u)| + 1 times. Since u cannot appear in Ai−1, u must appear

in Ai exactly | childpar(u)| + 1 times. For v ∈ V ′i with pari(v) = v, according to Fact 5.2.5 and

∀w ∈ {x ∈ V | v is an ancestor of x}, w cannot be in Vi−1, the rankpar(v)
th time appearance of v

and the (rankpar(v) + 1)th time appearance of v should be adjacent in Ai−1. Due to Lemma 5.2.23,

Ai,v is a subsequence of the DFS sequence of the subtree of v in par . Due to Fact 5.2.5, Ai is still a

subsequence of the DFS sequence of par after insertion of the sequence Ai,v.

For any x < Vi, by Lemma 5.2.23, x cannot be in any Ai,v . By our induction hypothesis, x

cannot be in Ai−1. Thus, x cannot be in Ai .

If the procedure does not output FAIL, then according to the above Claim 5.2.26, ∀v ∈ Vr = V,

v appears in Ar = A exactly | childpar(v)| + 1 times, and Ar = A is a subsequence of the DFS

sequence of par. Due to Fact 5.2.5, A = Ar is the DFS sequence of par.

The following lemma claims the success probability of Algorithm 19.

Theorem 5.2.27 (Success probability). Let par : V → V be a set of parent pointers (See Defini-

tion 4.2.5) on a vertex set V , and par has a unique root. Let n = |V |,m = nδ for some constant

δ ∈ (0,1). With probability at least 1−1/(100n4), A = DFS(par,m) (Algorithm 19) does not output

FAIL.

Proof. ∀i ∈ [r], v ∈ V ′i with pari(v) = v, let Ei,v be the event that ∀u ∈ V ′i (v) \ Vi,v, the number of

leaves in the subtree of u in par is at most | leaves(pari,v)|/n
δ/3. Notice that due to Lemma 5.2.22,

if pari(v) = v, then v will be in Vi . Thus, we use Ev to denote the event Ei,v . By Lemma 5.2.22, Ev

happens with probability at least 1− 1/(100n5). By taking union bound over all v,with probability

at least 1 − 1/(100n4), all the events Ev will happen.

165

Claim 5.2.28. Condition on all the events Ev happen. ∀i ∈ [r], v ∈ V ′i with pari(v) = v, we have

| leaves(pari,v)| ≤ n/n(i−1)δ/3.

Proof. When i = 1, the claim is obviously true, since | leaves(pari,v)| ≤ n. Suppose the claim

holds for i − 1. Let v ∈ V ′i with pari(v) = v. There must be v′ ∈ V ′i−1 with pari−1(v
′) = v′, and

v ∈ V ′i−1(v
′) \ Vi−1,v′ . Since Ev′ happens, the number of leaves in the subtree of v in par is at most

| leaves(pari−1,v′)|/n
δ/3 ≤ n/n(i−1)δ/3.

If V ′r , ∅, then ∃v ∈ V ′r with pari(v) = v and | leaves(pari,v)| ≥ 1. If all the events Ev happens, it

will contradict to Claim 5.2.28. Thus, if all the events Ev happens, V ′r must be ∅, and thus Vr = V

which implies that the procedure will not fail.

5.3 Implementation of DFS sequence in the MPC model

In this section, we show how to implement the subroutines introduced by previous sections in

the MPC model. For basic operations in MPC model, we refer readers to Section 2.3.

5.3.1 Compressed rooted tree

Lemma 5.3.1. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V . Suppose par has a unique root. Let n = N = |V |. COMPRESS(par) (Algorithm 12) can be

implemented in (0, δ)-MPC model for any constant δ ∈ (0,1) in O(log(dep(par))) parallel running

time.

Proof. Consider the implementation of COMPRESS(par : V → V) (Algorithm 12) in the MPC

model. The input size is |V | = n. In the first step, we need to compute the depth of every vertex in

par. This can be computed in the MPC model with O(n) total space and Θ(nδ) local memory size

per machine for any constant δ ∈ (0,1) in O(log(dep(par))) time (see Algorithm 3, Lemma 4.4.2,

and Lemma 4.2.9). Next, we can simultaneously compute par(t)(v) for every vertex v ∈ V . It takes

O(t) = O(log(dep(par))) time (each step can be done by Multiple queries). In the next step, V ′ can

be computed in O(1) time. Finally par′(v) for each v ∈ V ′ is already computed. It is easy to verify

166

that the total space needed for each step is O(n). Therefore, COMPRESS(par) can be implemented

in the (0, δ)-MPC model for any constant δ ∈ (0,1) in O(log(dep(par))) time.

5.3.2 Lowest common ancestor and multi-paths generation

Lemma 5.3.2. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set V .

Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices, and ∀i ∈ [q],ui , vi, neither

ui nor vi is the LCA of (ui, vi). Let n = |V |,N = n + q. LCALARGE(par,Q) (Algorithm 13) can

be implemented in (γ, δ) −MPC model for any γ satisfying N1+γ ≥ q + n log(dep(par)) and any

constant δ ∈ (0,1) in O(log(dep(par))) parallel running time.

Proof. By Lemma 4.4.6, line 3 can be implemented in space O(n log(dep(par))) and O(log(dep(par)))

parallel running time. It is easy to see that all the other steps in the procedure can be done by the

operations shown in Multiple queries and can be done in O(r) = O(log(dep(par))) parallel time.

Thus, the total space needed is O(q+n log(dep(par))) and the parallel running time is O(log(dep(par))).

Lemma 5.3.3. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of vertices, and ∀i ∈ [q],ui ,

vi,ui, vi ∈ leaves(par). Let n = |V |,N = n + q. LCA(par,Q) (Algorithm 14) can be implemented in

(0, δ) −MPC model for any constant δ ∈ (0,1) in O(log(dep(par))) parallel running time.

Proof. Consider the implementation of LCA(par : V → V,Q) (Algorithm 14) in the MPC model.

The input size is |V | + |Q | = n + q. The first step computes a compressed rooted tree par′ :

V ′ → V ′. According to Lemma 5.3.1, this only requires O(n) total space and Θ(nδ) local memory

per machine for any constant δ ∈ (0,1). Before line 6, we need to compute the depth of each

vertex in par and the depth of each vertex in par′. According to Algorithm 3, Lemma 4.2.9 and

Lemma 4.4.2, it can be done in (0, δ)-MPC model and only take O(log(dep(par))+log(dep(par′))) =

O(log(dep(par))) time. In line 6, according to Algorithm 6, Lemma 4.3.6 and Lemma 4.4.6, g0(·) ≡

par′(20)(·),g1 ≡ par′(21)(·), · · · ,gt ≡ par′(2t)(·) : V ′→ V ′ for t = dlog(dep(par))e can be computed in

167

the MPC model with O(|V ′| log(dep(par′))) total space and O(|V ′|δ) local memory per machine for

any constant δ ∈ (0,1) in O(log(dep(par′))) = O(log(dep(par))) time. According to Lemma 5.2.7,

|V ′| ≤ |V |/log(dep(par)). Thus, line 6 only needs O(n) total space and takes time O(log(dep(par))).

For step 7, we can handle all the queries in Q simultaneously. For line 8, we can use O(1) time to

check whether deppar(ui) > deppar(vi) + 2t (see Multiple queries). If it is true, we can use O(t) =

O(log(dep(par))) time to find a j ∈ {0,1, · · · ,2t} such that par(j)(ui) ∈ V ′ (see Multiple queries).

Then, we apply an exponential search by using g0,g1, · · · ,gt to find ûi (see Multiple queries).

This takes O(t) = O(log(dep(par))) time. Line 9 checks whether par(j)(ûi) is the LCA for every

j ∈ [4t] (see Multiple queries). Thus, it takes O(t) = O(log(dep(par))) time. In line 10, according

to Lemma 5.2.7, there exists j ∈ {0,1,2, · · · ,2t} such that par(j)(ûi) ∈ V ′. Thus, we only need time

O(t) to find u′i (see Multiple queries). Similarly, we only need time O(t) to find v′i (see Multiple

queries). In step 11, according to Algorithm 13, Lemma 5.3.2 and Lemma 5.2.10, the LCA of each

(u′i, v
′
i) in par′ can be computed simultaneously in the MPC model with O(|V ′| log(dep(par′)) +

|Q |) = O(|V |/log(dep(par)) · log(dep(par)) + |Q |) = O(N) total space in O(log(dep(par′))) =

O(log(dep(par))) time. The last step checks (see Multiple queries) whether par(j)(u′′i) = par(j)(v′′i)

for each j ∈ [2t]. Thus it requires O(t) = O(log(dep(par))) time. To conclude, LCA(par : V →

V,Q) (Algorithm 14) can be implemented in the (0, δ)-MPC model for any constant δ ∈ (0,1) in

O(log(dep(par))) parallel time.

Lemma 5.3.4. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set

V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V satisfy ∀ j ∈ [q], v j is an ancestor (See Defini-

tion 5.2.8) of u j in par. Let n = |V |,N = n + q. MULTIPATHLARGE(par,Q) (Algorithm 15) can be

implemented in (γ, δ)−MPC model for any γ with n log dep(par)+
∑q

i=1(deppar(ui)−deppar(vi)+1) =

O(N1+γ) and any constant δ ∈ (0,1) in O(dep(par)) parallel running time.

Proof. By Lemma 4.4.6, line 3 can be implemented in total space O(n log dep(par)) and O(log(dep(par)))

parallel running time. It is easy to see that all the other steps in the procedure can be done by the

operations shown in Multiple queries. Notice that after each round, we need to do load balanc-

ing (see Load balance) to make each machine have large enough available local memory. The

168

total space needed is to store all the pathes and the output of line 3. Notice that in round i, we

do not need to keep S(i
′)

j for i′ < i − 1, thus, the space to keep S(i)j for all j ∈ [q] only needs

O(
∑q

j=1(deppar(u j) − deppar(v j) + 1)) space.

Thus, the total space needed is at most O(n log dep(par) +
∑q

i=1(deppar(ui) − deppar(vi) + 1)) =

O(N1+γ). The parallel running time is then O(dep(par)).

Lemma 5.3.5. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V . Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V satisfy ∀ j ∈ [q], v j is an ancestor (See

Definition 5.2.8) of u j in par. Let n = |V |,N = n + q. MULTIPATH(par,Q) (Algorithm 16) can be

implemented in (0, δ) − MPC model for any constant δ ∈ (0,1) in O(dep(par)) parallel running

time.

Proof. Consider the implementation of MULTIPATH(par : V → V,Q) (Algorithm 16) in the MPC

model. The steps before line 6 are the same as the steps of the LCA procedure described in

Algorithm 14. According to Lemma 5.3.3, they can be implemented in the MPC model with

O(|V |) = O(n) total space and Θ(nδ) local memory per machine for any constant δ ∈ (0,1) in

O(log(dep(par))) time. In line 7, all queries (ui, vi) ∈ Q can be handled simultaneously. In line 8,

if deppar(ui) ≤ deppar(vi) + 2t, the length of the path from ui to vi is at most 2t, and thus P(ui, vi)

can be computed in O(t) = O(log(dep(par))) time (see Multiple queries). In line 9, we can

use O(t) = O(log(dep(par))) time to find the minimum j ∈ [2t] such that par(j)(ui) ∈ V ′ (see

Multiple queries). Then we can apply exponential search to find v′i by using g0,g1, · · · ,gt in O(t) =

O(log(dep(par))) time (see Multiple queries). According to Lemma 5.2.7, |V ′| ≤ n/log(dep(p)).

In line 10, according to Algorithm 15, Lemma 5.2.14 and Lemma 5.3.4, each path P′(u′i, v
′
i) in

par′ can be generated simultaneously in the MPC model with O(|V ′| log |V ′| +
∑

i∈[q] |P′(u′i, v
′
i)|) =

O(n +
∑

i∈[q] |P(ui, vi)|) total space in O(log(dep(par′))) = O(log(dep(par))) time. Consider the

initialization of A = (a1,a2, · · · ,ah) in line 11. Vertex a1 should be ui and ah should be vi. By

Lemma 5.2.7, ∀ j ∈ [h − 1], dep(a j) − dep(a j+1) ≤ 2t. Thus, the number of repetitions in the

final step is at most O(t) = O(log(dep(par))). To conclude, MULTIPATH(par : V → V,Q =

{(u1, v1), (u2, v2), · · · , (uq, vq)}) can be implemented in the MPC model with total space linear in

169

O(|V | +
∑

i∈[q] |P(ui, vi)|) and local memory size Θ(|V |δ) per machine for any constant δ ∈ (0,1) in

O(log(dep(par))) time.

5.3.3 Leaf sampling

Lemma 5.3.6. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V , and par has a unique root. Let n = |V |. Let δ be an arbitrary constant in (0,1), and let

m = dnδe . Then LEAFSAMPLING(par,m, δ) (Algorithm 17) can be implemented in (0, δ) − MPC

model. Furthermore, with probability at least 1−1/(100m5/δ), the parallel running time is at most

O(log dep(par)).

Proof. To implement line 4, for each v ∈ V, we can add par(v) to a temporary set X . Then each v

can check whether v is a leaf by checking whether v is in X , and this can be done by the operations

shown in Set membership and Multiple queries.

To implement line 5, for each v ∈ V, we can add v to the set childpar(par(v)). Then rank can

be computed by the operations shown in Indexing elements in sets and Multiple queries. For

line 6, we can implement it on a single machine, since a single machine has local memory Θ(m).

For line 7 to line 9, for each x ∈ L, we add x into S with probability p, where p can be computed

by querying the size of L (see Sizes of sets and Multiple queries). Line 10 can be implemented

by operation described in Indexing elements in sets, Set membership, and Multiple queries. By

Lemma 4.4.2, line 11 can be implemented in total space O(N) and O(log dep(par)) parallel time.

By Property 3 of Lemma 5.2.18, with probability at least 1 − 1/(100m5/δ), |S |2 = O(m). Thus, Q

can be stored on a single machine. By Lemma 5.3.3, line 15 can be implemented in total space

O(n + |Q |) = O(n) and in O(log dep(par)) parallel time. Then line 17-21 can be implemented on a

single machine.

Thus, the total space needed is at most O(n). The parallel time is at most O(log dep(par))

170

5.3.4 DFS sequence

Lemma 5.3.7. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex set V ,

and par has a unique root. Let n = |V |. Let δ be an arbitrary constant in (0,1), and let m = dnδe .

SUBDFS(par,m, δ) (Algorithm 18) can be implemented in (0, δ) −MPC model. Furthermore, with

probability at least 1 − 1/(100m5/δ), the parallel running time is at most O(log dep(par)).

Proof. By Lemma 5.3.6, line 5 can be implemented in total space O(n) and with probability at

least 1 − 1/(100m5/δ) has parallel running time O(log dep(par)). By Lemma 5.3.3, line 7 can be

implemented in total space O(n) and in parallel running time O(log dep(par)). Line 9 can be imple-

mented by operation shown in Multiple queries. By Lemma 5.3.5, since all the paths are disjoint

(except the first path and the last path intersecting on the root) and V has n vertices, line 10 can

be implemented in O(n) total space and in O(log dep(par)) parallel running time. Loop in line 13

and Loop in line 16 can be implemented in parallel. Line 20 can be implemented by operations

shown in Indexing elements in sets and Multiple queries. Now we describe the implementation

of line 21. Firstly, we can standardize (see Sequence standardizing) the sequence A′. For each

tuple (“A′”, (j,u)), create a tuple (“tempu”, j). Thus, “tempu” is a set which contains all the posi-

tions that u appeared. For each tuple (“tempu”, j),we query (see Multiple queries) the index i (see

Indexing elements in sets) of j in set (“tempu”, j), and create a tuple (“ pos ”, ((u, i), j)). Thus, the

desired mapping pos is stored in the system. The loop in line 24 is implemented in parallel. Line 25

can be implemented by the operations shown in Set membership and Multiple queries. Line 26

to line 28 can be implemented by the operation shown in Multiple queries. Finally, line 30 can be

implemented by Multiple queries and Sequence duplicating.

The total space used in the procedure is at most O(n). The parallel running time is O(log dep(par)).

Theorem 5.3.8. Let par : V → V be a set of parent pointers (See Definition 4.2.5) on a vertex

set V , and par has a unique root. Let n = |V |,m = nδ for some arbitrary constant δ ∈ (0,1).

DFS(par,m) (Algorithm 19) can be implemented in (0, δ) −MPC model. With probability at least

171

0.99, the parallel running time is O(log(dep(par))).

Proof. By Lemma 5.3.7, line 5 can be implemented in total space O(n). With probability at least

1 − 1/(100n5), the parallel running time is O(log(dep(par))). Line 8-10 can be implemented by

operations shown in Set membership and Multiple queries. By Lemma 4.4.2, line 11 can be

implemented in O(n) total space, and O(log dep(par)) parallel running time. The loop in line 14

contains multiple tasks (see Section 2.3.6 Multiple Tasks), thus we can implement those tasks in

parallel. By Lemma 5.3.7, line 17 can be implemented in total space O(|V ′i (v)|). Furthermore, with

probability at least 1 − 1/(100n5), the parallel running time is O(log(dep(par))). Thus, the total

space needed for those tasks is at most O(n). Line 19 can be implemented by operations shown in

Indexing elements in sets, Sequence insertion and Multiple queries.

Thus, the total space needed is O(n). By taking union bound over all the task SUBDFS, with

probability at least 0.99, the parallel running time is O(log dep(par)).

Now we are able to conclude the following theorem.

Theorem 5.3.9. For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is a randomized (γ, δ) −MPC

algorithm (Algorithm 19) which can output a Depth-First-Search sequence for any tree graph

G = (V,E) in O(min(log D · log(1/γ′), log n)) parallel time, where n = |V |, D is the diameter of G,

and γ′ = (1 + γ) logn
2N

n1/(1+γ) . The success probability is at least 0.98. In addition, if the algorithm

fails, then it will return FAIL.

Proof. Firstly, by Theorem 4.4.12, we can find a rooted tree with depth at most DO(log(1/γ′)). Al-

gorithm 19 can output the DFS sequence for a rooted tree.

The implementation and parallel time of Algorithm 19 is shown by Theorem 5.3.8. The cor-

rectness of Algorithm 19 is proved by Theorem 5.2.25. The success probability of Algorithm 19

is proved by Theorem 5.2.27.

172

5.4 2-Edge connectivity and biconnectivity

Consider a connected undirected graph G with a vertex set V and an edge set E . In the 2-edge

connectivity problem, the goal is to find all the bridges of G, where an edge e ∈ E is called a bridge

if its removal disconnects G. In the biconnectivity problem, the goal is to partition the edges into

several groups E1,E2, · · · ,Ek , i.e., E =
⋃k

i=1 Ei,∀i , j,Ei ∩ E j = ∅, such that ∀e , e′ ∈ E , e and

e′ are in the same group if and only if there is a simple cycle in G which contains both e and e′. A

subgraph induced by an edge group Ei is called a biconnected component (block). In other words,

the goal of the biconnectivity problem is to find all the blocks of G.

In this section, we describe the algorithms for both the 2-edge connectivity problem and the bi-

connectivity problem in the sequential setting. In later sections, we will discuss how to implement

them in the MPC model.

5.4.1 2-Edge connectivity

The 2-edge connectivity problem is much simpler than the biconnectivity problem. We first

compute a spanning tree of the graph. Only a tree edge can be a bridge. Then for any non-root

vertex v, if there is no non-tree edge which crosses between the subtree of v and the outside of the

subtree of v, then the tree edge which connects v to its parent is a bridge.

Algorithm 20 2-Edge Connectivity Algorithm
1: procedure BRIDGES(G = (V,E)) . G = (V,E) is a connected undirected graph.
2: Compute a rooted spanning tree of G. The spanning tree is represented by a set of parent pointers

par : V → V . . Algorithm 10,Algorithm 11.
3: Compute lev : V → Z≥0: for each v ∈ V,

lev(v) ← min
(
deppar(v), min

w∈V\{par(v)}:(v,w)∈E
deppar(the LCA of (v,w))

)
.

4: Compute the DFS sequence A of par. . Algorithm 19.
5: Initialize B ← ∅. For each non-root vertex v, let ai,aj be the first and the last appearance of v in A

respectively. If mink:i≤k≤ j lev(ak) ≥ deppar(v), B← B ∪ {{v,par(v)}}. Output B.
6: end procedure

173

Lemma 5.4.1 (2-Edge connectivity). Consider an undirected graph G = (V,E). Let B be the

output of BRIDGES(G) (Algorithm 20). Then B is the set of all the bridges of G.

Proof. Suppose {u, v} ∈ E is not a bridge. If {u, v} is a non-tree edge in par, then since B only

contains tree edges, {u, v} < B. Otherwise, suppose par(v) = u. There must be a non-tree edge

(x, y) ∈ E such that x is in the subtree of v but y is not in the subtree of v. Thus, the LCA of (x, y)

is not v, and it is an ancestor of v which means that the depth of the LCA of (x, y) is smaller than

deppar(v). By line 3, we have lev(x) < deppar(v). Let ai,a j be the first and the last appearance of

v in the DFS sequence of par. Since x is in the subtree of v, there exists k ∈ {i, i + 1, · · · , j} such

that v = ak . By line 5, since lev(ak) < deppar(v), {u, v} < B.

If {u, v} ∈ E is a bridge, then (u, v) must be a tree edge in par, i.e., either par(u) = v or

par(v) = u. Suppose par(v) = u. Then for any non-tree edge {x, y} with x in the subtree of v, y

must also be in the subtree of v. Thus, the depth of the LCA of {x, y} should be at least deppar(v).

By line 3, for any x in the subtree of v, we have lev(x) ≥ deppar(v). Let ai,a j be the first and the

last appearance of v in the DFS sequence of par. Since all the vertices ai,ai+1, · · · ,a j are in the

subtree of v, we have {u, v} ∈ B by line 5.

5.4.2 Biconnectivity

In this section, we will show a biconnectivity algorithm. It is a modification of the algorithm

proposed by [50]. The high level idea is to construct a new graph G′ based on the input graph G,

and reduce the biconnectivity problem of G to the connectivity problem of G′. Since the running

time of our connectivity algorithm depends on the diameter of the graph, we also give an analysis

of the diameter of the graph G′.

Lemma 5.4.2 (Biconnectivity). Consider an undirected graph G = (V,E). Let col : E → V be

the output of BICONN(G) (Algorithm 21). Then ∀e, e′ ∈ E, e , e′, col satisfies col(e) = col(e′) ⇔

there is a simple cycle in G which contains both e and e′. Furthermore, the diameter of the graph

G′ constructed by BICONN(G) is at most O(dep(par) · bi-diam(G)), the number of vertices of G′ is

at most |V |, and the number of edges of G′ is at most |E |.

174

Algorithm 21 Biconnectivity Algorithm
1: procedure BICONN(G = (V,E)) . G = (V,E) is a connected undirected graph.
2: Compute a rooted spanning tree of G. The spanning tree is represented by a set of parent pointers

par : V → V . . Algorithm 10,Algorithm 11.
3: Compute lev : V → Z≥0: for each v ∈ V,

lev(v) ← min
(
deppar(v), min

w∈V\{par(v)}:(v,w)∈E
deppar(the LCA of (v,w))

)
.

4: Compute the DFS sequence A of par. . Algorithm 19.
5: Let r be the root of par. Initialize V ′← V \ {r},E ′← ∅.
6: For each v ∈ V ′, let ai,aj be the first and the last appearance of v in A respectively. If

mink∈{i,i+1, · · · , j } lev(ak) < deppar(par(v)), E ′← E ′ ∪ {{v,par(v)}}.
7: For each {u, v} ∈ E , if neither u nor v is the LCA of (u, v) in par, E ′← E ′ ∪ {{u, v}}.
8: Compute the connected components of G′ = (V ′,E ′). Let col′ : V ′ → V ′ be the coloring of the

vertices in V ′ such that ∀u′, v′ ∈ V ′, u′, v′ are in the same connected component in G′ ⇔ col′(u′) =
col′(v′).

9: Initialize col : E → V . For each e = {u, v} ∈ E , if deppar(u) ≥ deppar(v), set col(e) ← col′(u);
otherwise, set col(e) ← col′(v). Output col : E → V .

10: end procedure

Proof. Each v ∈ V ′ corresponds to a tree edge {par(v), v} ∈ E . Since V ′ ⊂ V , |V ′| ≤ |V |. By line 6

and line 7, each edge of G creates at most 1 edge of G′. Thus, |E′| ≤ |E |.

Claim 5.4.3. If distG′(u, v) < ∞, i.e., vertices u, v ∈ V ′ are in the same connected component of

G′, then there is a simple cycle in G which contains both edges {u,par(u)} and {v,par(v)}.

Proof. Firstly, let us consider the case when {u, v} ∈ E′. If {u, v} is added into E′ by line 7, then

there is a simple cycle in G:

(u,par(1)(u),par(2)(u), · · · , the LCA of (u, v), · · · ,par(2)(v),par(1)(v), v,u).

Both edges {u,par(u)} and {v,par(v)} are in the such cycle. If {u, v} is added into E′ by line 6,

then u = par(v). Let ai,a j be the first and the last appearance of v in A respectively. By line 6,

there exists k with i ≤ k ≤ j such that lev(ak) < deppar(v). Thus, there is a vertex x in the subtree

of v such that lev(x) < deppar(u). By line 3, there is an edge {x, y} ∈ E such that the depth of the

LCA of {x, y} is smaller than deppar(u) which means that y is not in the subtree of u. In this case,

175

there is a simple cycle in G:

(x,par(1)(x),par(2)(x), · · · , v,u,par(u), · · · , the LCA of (x, y), · · · ,par(2)(y),par(1)(y), y, x).

Since u = par(v), both edges {v,par(v)}, {u,par(u)} are in such cycle.

Suppose v,u ∈ V ′ are in the same connected component of G′ and {v,par(v)}, {u,par(u)} are

in a simple cycle C1 in G. Suppose u,w ∈ V ′ are in the same connected component of G′ and

{u,par(u)}, {w,par(w)} are in a simple cycle C2 in G. Then, v and w are in the same connected

component of G′. The symmetric difference of the edge set of C1 and the edge set of C2 should

form another simple cycle C3 in G which contains both edges {v,par(v)} and {w,par(w)}. By

induction on distG′(v,w), the claim holds.

By Claim 5.4.3 and line 9, ∀u, v ∈ V ′, if col({u,par(u)}) = col({v,par(v)}), then there should

be a simple cycle in G which contains both edges {u,par(u)} and {v,par(v)}. Consider an edge

{u, v} ∈ E such that neither u nor v is the LCA of (u, v), i.e., {u, v} is a non-tree edge. Without loss

of generality, suppose deppar(u) ≥ deppar(v). There is always a cycle in G:

(u,par(1)(u),par(2)(u), · · · , the LCA of (u, v), · · · ,par(2)(v),par(1)(v), v,u),

which contains both edges {u, v}, {u,par(u)}. By line 9, we have col({u, v}) = col({u,par(u)}) =

col′(u). Therefore, ∀e1, e2 ∈ E , there are always tree edges e′1, e
′
2 ∈ E such that col(e′1) =

col(e1),col(e′2) = col(e2), e1, e′1 are either in a simple cycle in G or e1 = e′1, and e2, e′2 are ei-

ther in a simple cycle in G or e2 = e′2. If col(e1) = col(e2), then col(e′1) = col(e′2) which implies

that e′1, e
′
2 are either in a simple cycle in G or e′1 = e′2. Hence if col(e1) = col(e2), then either there

is a simple cycle in G which contains both e1, e2 or e1 = e2.

Next, let us show that if there is a simple cycle in G which contains both edges e, e′ ∈ E , then

col(e) = col(e′). An observation is that each non-tree edge e = (u, v) (i.e., neither u nor v is the

176

LCA of (u, v) in par) defines a simple cycle Ce in G:

(u,par(1)(u), · · · , the LCA of (u, v), · · · ,par(1)(v), v,u).

Claim 5.4.4. For any simple cycle Ce defined by a non-tree edge e = {u, v}, there is a path Pe in

G′ such that Pe contains every vertex in Ce except the LCA of (u, v) in par. Furthermore, the length

of Pe is at most 2 dep(par).

Proof. Without loss of generality, we can assume deppar(u) ≥ deppar(v). If v is an ancestor of u,

then the cycle Ce is

(u,par(1)(u),par(2)(u), · · · ,par(s)(u), v,u)

for some s ≥ 1. For each j ∈ [s], u is in the subtree of par(j−1)(u). By line 6, since lev(u) ≤

deppar(v) < par(j)(u) for any j ∈ [s], we have {par(j−1)(u),par(j)(u)} ∈ E′. Thus, there is a path Pe

in G′: (u,par(1)(u),par(2)(u), · · · ,par(s)(u)). In this case, the length of Pe should be at most dep(par).

If v is not an ancestor of u, then the cycle Ce is

(u,par(1)(u), · · · ,par(s1)(u), the LCA of (u, v),par(s2)(v), · · · ,par(1)(v), v,u)

for some s1, s2 ≥ 1. By the similar argument, ∀ j ∈ [s1] the edge {par(j−1)(u),par(j)(u)} (∀ j′ ∈ [s2]

the edge {par(j ′−1)(v),par(j ′)(v)}) is added into E′ by line 6. By line 7, {u, v} is added into E′.

Therefore, there is a path Pe in G′:

(par(s1)(u),par(s1−1)(u), · · · ,par(1)(u),u, v,par(1)(v),par(2)(v), · · · ,par(s2)(v)).

In this case, the length of Pe should be at most 2 dep(par) − 1.

Notice that all the simple cycles defined by the non-tree edges formed a cycle basis of the cycle

space of G, i.e., the edge set of any simple cycle in G can be represented by an xor sum of the edge

sets of cycles Ce1,Ce2, · · · ,Ces defined by some non-tree edges e1, e2, · · · , es ∈ E [23]. Consider

177

any two tree edges {u,par(u)}, {v,par(v)} ∈ E contained by a simple cycle C. Let e1, e2, · · · , es ∈ E

be all the non-tree edges in C. Then C can be represented by an xor sum of Ce1,Ce2, · · · ,Ces .

Furthermore, ∀i ∈ [s−1],Cei and Cei+1 should have a common tree edge. According to Claim 5.4.4,

for each i ∈ [s], we can find a path Pei in G′ and ∀ j ∈ [s − 1], Pej intersects Pej+1 . Therefore, u

and v are in the same connected component in G′. By line 9, col((u,par(u))) = col′(u) = col′(v) =

col((v,par(v))). Now consider a non-tree edge e = (u, v) ∈ E . Without loss of generality, we can

assume deppar(u) ≥ deppar(v). A tree edge {u,par(u)} is the simple cycle Ce defined by e. By line 9,

we know that col(e) = col′(u) = col({u,par(u)}). Therefore, we can conclude that ∀e1, e2 ∈ E , if

there is a simple cycle in G which contains both e1, e2, then col(e1) = col(e2).

The only thing remaining to prove is the diameter of G′. According to Claim 5.4.3, ∀u, v ∈ V ′

with distG′(u, v) < ∞, there is a cycle C in G which contains both edges {u,par(u)} and {v,par(v)}.

Claim 5.4.5. ∀u, v ∈ V ′, if there is a cycle in G which contains both edges {u,par(u)}, (v,par(v)),

then there is a cycle C in G with length O(bi-diam(G)) which contains both edges {u,par(u)},

{v,par(v)}.

Proof. By the definition of bi-diam(G), there is a cycle C1 with length at most bi-diam(G) which

contains both vertices u, v. If C1 already contains both edges {u,par(u)}, {v,par(v)}, then we are

done. Otherwise, suppose C1 does not contain {u, p(u)}. There is an another cycle C2 with length

at most bi-diam(G) which contains both vertices par(u), v. We can regard C2 as two disjoint paths

from par(u) to v. Thus at least one of the path does not contain the edge {u,par(u)}. Suppose this

path is (par(u), · · · , x, · · · , v) where x is the first vertex which appears in C1, then we can combine

the path (u,par(u), · · · , x) with the path obtained by removing the sub-path from u to x of C1 to

get a new cycle which contains both the edge {u,par(u)} and v. The length of the new cycle is

at most 2 · bi-diam(G). We can do the similar operation to add edge {v,par(v)} into the cycle.

Thus, finally we will get a cycle which contains both {u,par(u)}, {v,par(v)} with length at most

3 · bi-diam(G).

According to the above claim, we can find a cycle C in G which contains both edges {u,par(u)},

178

{v,par(v)} with length at most O(bi-diam(G)). It means that C can be represented by an xor

sum of s ≤ O(bi-diam(G)) basis cycles Ce1,Ce2, · · · ,Ces defined by non-tree edges e1, e2, · · · , es.

Furthermore, ∀i ∈ [s−1],Ci and Ci+1 have at least one common tree edge. By Claim 5.4.4, we can

find s paths Pe1,Pe2, · · · ,Pes defined by e1, e2, · · · , es in G′ such that ∀i ∈ [s−1], Pei intersects Pei+1

at some vertex, and u, v are on some path Pex,Pey respectively. Thus, distG′(u, v) ≤
∑s

i=1 |Pei | ≤

s ·O(dep(par)) ≤ O(dep(par) · bi-diam(G)), where the second inequality follows from Claim 5.4.4.

To conclude, diam(G′) ≤ O(dep(par) · bi-diam(G)).

5.5 2-Edge connectivity and biconnectivity in MPC

In this section, we will discuss how to implement the 2-edge connectivity algorithm and the bi-

connectivity algorithm in the MPC model. Let us firstly introduce how to implement an subroutine

called range minimum query (RMQ) in the MPC model.

5.5.1 Parallel range minimum query

Range Minimum Query (RMQ) problem is defined as the following: given a sequence of

n numbers a1,a2, · · · ,an, the goal is to preprocess the sequence a to get a data structure such

that for any query (p,q), (p < q) we can efficiently find the element which is the minimum in

ap,ap+1, · · · ,aq. A classic method is to preprocess a sparse table f in log(n) number of iterations

such that ∀i ∈ [n], j ∈ [dlog ne] ∪ {0}, fi,j = arg mini≤i′≤min(n,i+2j−1) ai . To answer query for (p,q),

it just needs to return arg mini∈{ fp, j∗, fq−2j∗+1, j∗ }
ai for j∗ = blog(q − p + 1)c . In this section, we

firstly show a modified data structure. We will compute f̂i,j = arg mini≤i′≤min(n,i+dnδe j−1) ai′ The

Algorithm is shown in Algorithm 22. Then we show how to use f̂ to compute f in Algorithm 23.

The total space needed to store f for Algorithm 23 is O(n log n). In Algorithm 24, we show how

to improve the space to O(n) and we can finally solve RMQ in linear total space.

Lemma 5.5.1. Let a1,a2, · · · ,an be a sequence of numbers, and δ ∈ (0,1). Let { f̂p,q} be the output

of SPARSETABLE+(a1,a2, · · · ,an, δ) (Algorithm 22). Then ∀p ∈ [n],q ∈ {0} ∪ [d1/δe], f̂p,q =

arg minp≤p′≤min(n,i+dnδeq−1) ap′ .

179

Algorithm 22 A Sparser Table for RMQ
1: procedure SPARSETABLE+(a1,a2, · · · ,an, δ) . Lemma 5.5.1.
2: . Output: f̂i, j for i ∈ [n], j ∈ {0} ∪ [d1/δe].
3: Initially, for all i ∈ [n] let f̂i,0 = i. ∀i > n, j ∈ Z, let f̂i, j = 0, and let a0 = ∞. Let m = dnδe .
4: For t ∈ [d1/δe], let St = {x | ∃y ∈ [m − 1], x = y · mt }.

5: for l = 1→ d1/δe do
6: for j = 0→ dn/me do
7: i ← j · m + 1.
8: z∗

j ,l
← arg min

z:t∈[l−1],x∈St ,z= f̂j ·m+1+x ,t
az .

9: for i′ = 0→ min(m − 1,n − i) do
10: T ← {x ∈ Z | i + i′ ≤ x ≤ i + m − 1} ∪ {x ∈ Z | i + ml ≤ x ≤ i + ml + i′ − 1} ∪ {z∗

j ,l
}

11: f̂i+i′,l = arg minz∈T az .
12: end for
13: end for
14: l ← l + 1.
15: end for
16: return f̂i, j for i ∈ [n], j ∈ {0} ∪ [d1/δe].
17: end procedure

Proof. The proof is by induction on q. When q = 0, the statement obviously holds for all f̂p,0.

Suppose all p ∈ [n], f̂p,0, f̂p,1, · · · , f̂p,q−1 satisfy the property. The first observation is that the value

of f̂p,q will be assigned in the procedure when l = q, j = b(p − 1)/mc, i′ = (p − 1) mod m.

Then by line 8, z∗j,l will be the position of the minimum value in a j ·m+m,a j ·m+m+2, · · · ,a j ·m+ml−1

by our induction hypothesis. Then by line 11, f̂i+i′,l will be the position of the minimum value in

a j ·m+i′+1,a j ·m+i′+2, · · · ,a j ·m+i′+ml . Thus, Since j · m + i′ + 1 = p, f̂p,q satisfies the property.

Lemma 5.5.2. Let A = (a1,a2, · · · ,an) be a sequence of numbers. Let δ be an arbitrary constant in

(0,1). SPARSETABLE+(a1,a2, · · · ,an, δ) (Algorithm 22) can be implemented in (0, δ)−MPC model

with O(1) parallel running time.

Proof. Let A be the sequence (a1,a2, · · · ,an). The algorithm takes O(1/δ) rounds. m is the local

space of a machine. There are Θ(n/m) machines each holds a consecutive Θ(m) elements of se-

quence A.Now consider the round l. Machine j ∈ {0}∪[dn/me] needs to compute f̂ j ·m+1,l, f̂ j ·m+2,l, · · · ,

f̂ j ·m+m−1,l . The number of queries machine j made in line 8 and line 11 is at most
∑d1/δe

t=1 |St |+2m ≤

O(m/δ) = O(m). Thus, there are total O(n) queries. These queries can be answered simultaneously

by operation shown in Multiple queries (see Section 2.3).

180

Thus, the total space needed is O(n), and the parallel running time is O(1).

Algorithm 23 A Sparse Table for RMQ
1: procedure SPARSETABLE(a1,a2, · · · ,an, δ) . Lemma 5.5.3.
2: . Output: fi, j for i ∈ [n], j ∈ {0} ∪ [dlog ne].
3: Initially, for all i ∈ [n] let fi,0 = i. ∀i > n, j ∈ Z, let fi, j = 0, and let a0 = ∞. Let m = dnδe .
4: Let { f̂p,q | p ∈ [n],q ∈ {0} ∪ d1/δe} = SPARSETABLE+(a1,a2, · · · ,an, δ). . Algorithm 22.
5: Let all undefined f̂p,q be 0.
6: for t ∈ [dlog ne] do
7: if 2t ≤ m then
8: kt ← −1
9: St ← ∅

10: else
11: kt ← blogm(2t − m)c
12: St ← {x | x ∈ [2t − m − mkt + 1] s.t. x ≡ 1 (mod mkt) or (2t − m − x) ≡ −1 (mod mkt)}

13: end if
14: end for
15: for j = 0→ dn/me do
16: for t = 0→ dlog ne do
17: i ← j · m + 1.
18: z∗j ,t ← arg min

z:x∈St ,z= f̂j ·m+m+x ,kt
az .

19: for i′ = 0→ min(m − 1,n − i) do
20: T1 ← {x ∈ Z | i + i′ ≤ x ≤ min(i + m − 1, i + i′ + 2t − 1)}
21: T2 ← {x ∈ Z | max(i + 2t, i + i′) ≤ x ≤ i + 2t + i′ − 1}
22: T ← T1 ∪ T2 ∪ {z∗j ,t }
23: fi+i′,t = arg minz∈T az .
24: end for
25: end for
26: end for
27: return fi, j for i ∈ [n], j ∈ {0} ∪ [dlog ne].
28: end procedure

Lemma 5.5.3. Let a1,a2, · · · ,an be a sequence of numbers, and δ ∈ (0,1). Let { fp,q} be the output

of SPARSETABLE(a1,a2, · · · ,an, δ) (Algorithm 23). Then ∀p ∈ [n],q ∈ {0} ∪ [dlog ne], fp,q =

arg minp≤p′≤min(n,i+2q−1) ap′ .

Proof. Let m = dnδe . By Lemma 5.5.1, ∀x ∈ [n], y ∈ {0}∪[d1/δe], f̂x,y = arg minx≤x′≤min(n,i+my−1) ax′ .

Thus, by the definition of St,we know z∗j,t = arg min j ·m+m+1≤z≤ j ·m+2t az . An observation is that the

value of fp,q will be assigned in the procedure when t = q, j = b(p − 1)/mc, i′ = (p − 1) mod m.

181

By line 23, we know

fp,q = fi+i′,t = arg min
z:i+i′+1≤z≤i+i′+2t

az = arg min
p≤p′≤min(n,i+2q−1)

ap′ .

Lemma 5.5.4. Let a1,a2, · · · ,an be a sequence of numbers. Let δ be an arbitrary constant in (0,1).

SPARSETABLE(a1,a2, · · · ,an, δ) (Algorithm 23) can be implemented in (γ, δ)−MPC model for any

γ ≥ log log n/log n in O(1) parallel time.

Proof. By Lemma 5.5.2, line 4 can be implemented in O(n) total space and O(1) parallel time. The

loop in line 15 is similar to Algorithm 22. Each machine j needs to compute f j ·m+1,t, · · · , f j ·m+m−1,t

for all t ∈ [dlog ne] ∪ {0}. The difference from Algorithm 22 is that, it can compute for all t at the

same time since it only depends on the value of f̂ . The number of queries made by each machine is

O(m log n). Thus, the total number of queries is at most O(n log n). These queries can be answered

simultaneously by operation shown in Multiple queries (see Section 2.3).

Thus, the total space needed is O(n log n), and the parallel running time is O(1).

Algorithm 24 Multiple RMQ Algorithm (space efficient)
1: procedure RMQ(A,Q) . A = (a1,a2, · · · ,an) ∈ Zn is a sequence and Q = {(l1,r1), (l2,r2), · · · , (lq,rq)}

is a set, where ∀i ∈ [q], li,ri ∈ [n], li + dlog ne ≤ ri.
2: Set t ← dlog ne. Set A′← (a′1,a

′
2, · · · ,a

′
dn/t e
), where

∀i ∈ [dn/te],a′i ← min
j∈[n]:(i−1)·t< j≤i ·t

aj .

3: Initialize left : [n] → Z, right : [n] → Z. For each i ∈ [n], find j ∈ [dn/te] such that i ∈ ((j−1)t, jt].
Set left(i) ← mink∈[n]∩((j−1)t ,i] ak, right(i) ← mink∈[n]∩[i, jt] ak .

4: for (li,ri) ∈ Q do
5: Find the smallest l ′i ≥ li with l ′i mod t = 0 and find the largest r ′i ≤ ri with r ′i mod t = 0.
6: If l ′i = r ′i , set mi ←∞; otherwise mi ← minl′i/t+1≤ j≤r′i/t a′j . .
7: Set rmq((li,ri)) ← min(right(li),mi, left(ri)).
8: end for
9: end procedure

182

Lemma 5.5.5 (Range minimum query). Let A = (a1,a2, · · · ,an) ∈ Z
n be a sequence of n numbers

and Q = {(l1,r1), (l2,r2), · · · , (lq,rq)} where ∀i ∈ [q], li,ri ∈ [n], li + dlog ne ≤ ri. Let rmq : Q → Z

be the output of RMQ(A,Q). Then ∀(li,ri) ∈ Q, rmq((li,ri)) = min j∈[n]∩[li,ri] a j . In addition, RMQ

can be implemented in the (0, δ)-MPC model for any constant δ ∈ (0,1) in O(1) parallel time.

Proof. Firstly, let us consider the correctness of RMQ(A,Q). Let t = dlog ne. For a query

(li,ri) ∈ Q, since li + t ≤ ri, the l′i ,r
′
i found by line 5 will satisfy l′i ≤ r′i . If l′i = r′i , then

mi = ∞ and rmq((li,ri)) = min(minli≤ j≤l ′i a j,minl ′i ≤ j≤ri a j) = minli≤ j≤ri a j . Otherwise, by line 6,

mi = minl ′i+1≤ j≤r ′i a j . By line 7, rmq((li,ri)) = min(minli≤ j≤l ′i a j,minl ′i+1≤ j≤r ′i a j,minr ′i ≤ j≤ri a j) =

minli≤ j≤ri a j .

Let us analyze the total space required and the parallel time for running RMQ(A,Q) in the

MPC model. According to Theorem 2.3.1, the sorting takes O(1) time and requires linear total

space. Notice that δ ∈ (0,1) is a constant and each machine has Θ(nδ) local memory. We can

sort a1,a2, · · · ,an by their indexes and o(n) number of duplicates of some elements in A such

that ai·nδ+1, · · · ,a(i+1)·nδ,a(i+1)·nδ+1, · · · ,a(i+1)·nδ+t are on the ith machine. Therefore, the first two

steps of RMQ(A,Q) can be implemented in the MPC model with O(n) total space and in time

O(1). For line 4, we can handle all the queries (li,ri) ∈ Q simultaneously. Line 5 only requires

local computations. Line 6 needs to handle at most |Q | RMQ on the sequence A′. Notice that

|A′| = O(|A|/t) = O(n/log n). Due to Lemma 5.5.3, Lemma 5.5.4 and Multiple queries (see

Section 2.3), this can be implemented in the MPC model with O(|A′| log |A′| + |Q |) = O(n + q)

total space and O(1) parallel time. Line 7 can be done in O(1) time. To conclude, RMQ(A,Q)

can be implemented in the (0, δ)-MPC model for any constant δ ∈ (0,1) and the parallel time is

O(1).

5.5.2 MPC implementation of 2-edge connectivity and biconnectivity

The input is a connected undirected graph G = (V,E). G has |V | = n vertices and |E | = m

edges. Thus, the input size is N = m + n. Consider the (γ, δ)-MPC model for γ ∈ [0,2] and an

arbitrary constant δ ∈ (0,1). The total space in the system should beΘ(N1+γ) and the local memory

183

size of each machine is Θ(Nδ). Let D and D′ be the diameter and bi-diameter of G respectively.

Theorem 5.5.6 (2-Edge connectivity in MPC). For any γ ∈ [0,2] and any constant δ ∈ (0,1),

there is a randomized (γ, δ)-MPC algorithm which outputs all the bridges of the graph G in

O
(
log D · log log n

log(N1+γ/n)

)
parallel time. The success probability is at least 0.97. If the algorithm

fails, then it returns FAIL.

Proof. In the first step of BRIDGES(G) (Algorithm 20), according to Theorem 4.4.12, with prob-

ability 0.98, the rooted spanning tree of G can be computed in the MPC model with total space

O(N1+γ) in O(log diam(G) · log logN1+γ/n n) time, and the depth of the spanning tree is at most

diam(G)O(log log
N1+γ/n n). In line 3, to compute lev(v) for each v ∈ V , we can query the LCA of

(v,w) in par for each edge {v,w} ∈ E . We can use our LCA algorithm (Algorithm 14) as the

subroutine for this purpose. It takes the total space O(m) and the running time O(log(dep(par))) =

O(log diam(G) · log logN1+γ/n n) (see Lemma 5.2.12, Lemma 5.3.3). In line 4, with probability at

least 0.99, the DFS sequence can be computed using O(n) total space in time O(log(dep(par))) =

O(log diam(G) · log logN1+γ/n n) (see Theorem 5.3.9). In line 5, we can use sorting (see The-

orem 2.3.1) to find the first appearance ai and the last appearance a j in the DFS sequence of

each vertex v, and mink∈{i,i+1,··· ,j} lev(ak) corresponds to a range minimum query. If the size

of the subtree of v is at most log n, the corresponding RMQ can be solved by local compu-

tation. Otherwise, we use our RMQ algorithm (see Algorithm 24) to handle the correspond-

ing RMQ of v. By Lemma 5.5.5, this step only takes O(1) time and requires O(n) space. To

conclude, BRIDGES(G) (Algorithm 20) only takes total space O(N1+γ) and has parallel time

O(log diam(G) · log logN1+γ/n n).

Since the correctness of BRIDGES(G) (Algorithm 20) is guaranteed by Lemma 5.4.1, we can

conclude the proof.

Theorem 5.5.7 (Biconnectivity in MPC). For any γ ∈ [0,2] and any constant δ ∈ (0,1), there is

a randomized (γ, δ)-MPC algorithm which outputs all the biconnected components of the graph G

in O
(
log D · log2 log n

log(N1+γ/n) + log D′ · log log n
log(N1+γ/n)

)
parallel time. The success probability is at

least 0.95. If the algorithm fails, then it returns FAIL.

184

Proof. The first several lines before line 6 of BICONN(G) (Algorithm 21) are the same as BRIDGES(G)

(Algorithm 20). Thus, the success probability of these lines is at least 0.97. The total space used

is at most O(N1+γ) and the running time is at most O(log diam(G) · log logN1+γ/n n). Line 6 of

BICONN(G) (Algorithm 21) corresponds to the RMQ problem which is almost the same as line 5

of BRIDGES(G) (Algorithm 20). Thus, it takes O(n) total space and O(1) parallel time. Line 7

requires m LCA queries. We can run our LCA algorithm (Algorithm 14) for this step. It takes

O(m + n) space and O(log(dep(par))) = O(log diam(G) · log logN1+γ/n n) time (see Lemma 5.2.12,

Lemma 5.3.3). By Lemma 5.4.2, we have diam(G′) ≤ diam(G)O(log log
N1+γ/n n)

· bi-diam(G).

According to Theorem 4.4.12, with probability at least 0.98, the connected components of G′

can be computed in line 8, the total space needed is O(N1+γ), and the parallel running time

is O(log diam(G) log2 logN1+γ/n n + log bi-diam(G) log logN1+γ/n n). To conclude, the total space

needed is at most O(N1+γ), and the parallel running time is O(log diam(G) log2 logN1+γ/n n +

log bi-diam(G) log logN1+γ/n n).

Since the correctness of BICONN(G) (Algorithm 21) is guaranteed by Lemma 5.4.2, we can

conclude the proof.

5.6 Open ear decomposition

In this section, we show how to extend our biconnectivity algorithm to find an open ear decom-

position of a biconnected graph.

Let G = (V,E) be an undirected graph with n = |V | vertices and m = |E | edges. An ear decom-

position of G is a partition of E into ordered disjoint subsets E1, · · · ,Es such that the following

holds:

1. E1 forms a simple cycle in the graph. E1 is called a root ear.

2. For i ∈ [s] \ {1}, Ei forms a simple path in the graph. ∀i ∈ [s], Ei is called a ear.

3. For i ∈ [s] \ {1}, each end point of the path formed by Ei is also in the path (or cycle) formed

by E j for some j ∈ [i − 1].

185

4. For i ∈ [s] \ {1}, no internal vertex of the path formed by Ei is in any path (or cycle) formed

by E j for j ∈ [i − 1].

Furthermore, for i ∈ [s] \ {1} if the end points of the path formed by Ei are different, the ear is

open. Otherwise, it is closed. If every ear except the root ear is open, the such ear decomposition

is an open ear decomposition.

In the open ear decomposition algorithm, the goal is to find a mapping col : E → Z≥1 such that

∀e ∈ E,col(e) denotes that e is in the ear Ecol(e), and E1,E2, · · · ,Es is an open ear decomposition

of G.

According to [87], a graph G has an open ear decomposition if and only if G is biconnected.

Thus, in this section, we only consider the graph which is biconnected. For graphs which are not

biconnected, we can first run our biconnectivity algorithm to find each biconnected components

and then find the open ear decomposition for each biconnected component.

The high level idea of our open ear decomposition algorithm is very similar to [88]. In particu-

lar, we first find a spanning tree of the input graph. Then we generate a proper ordering of non-tree

edges, i.e., we give each non-tree edge a proper rank. For each non-tree edge, we create an ear.

For each tree edge, find a non-tree edge with the smallest rank such that the tree edge is on the

path between two end vertices of such non-tree edge, and put the tree edge into the ear containing

such non-tree edge. Our process of generating the ordering of non-tree edges and the process of

determining the ear of each tree edge are different from those in [88].

Open ear decomposition has many applications in other graph problems. We refer readers

to [88] for more applications of open ear decomposition.

5.6.1 Open ear decomposition via a proper ordering of non-tree edges

Consider an n-vertex m-edge biconnected graph G = (V,E) and let par be an arbitrary rooted

spanning tree of G. Then there are s = m − n + 1 non-tree edges e1, e2, · · · , es. For i ∈ [s], let Cei

186

be the simple cycle defined by ei, i.e., Cei denotes the cycle

(u,par(1)(u),par(2)(u), · · · , the LCA of (u, v), · · · ,par(2)(v),par(1)(v), v,u),

where u, v are end points of ei.

Lemma 5.6.1 (Open ear decomposition obtained by a good ordering of non-tree edges.). Suppose

∀i ∈ [s] \ {1},∃ j ∈ [i − 1] there is at least one edge e ∈ E which appears in both cycles Cei and

Cej . Let E1,E1, · · · ,Es ⊆ E satisfy that ∀e ∈ E, e ∈ Ei ⇐⇒ i = min j∈[s]:e appears in Cej
j. Then

E1,E1, · · · ,Es is an open ear decomposition of G.

Proof. Since G is biconnected, every edge e ∈ E should be in some simple cycle. Since all the

simple cycles defined by the non-tree edges are a cycle basis of G [23], each edge e ∈ E must be

appeared in Cei for some i ∈ [s]. Thus, E1,E2, · · · ,Es is a partition of E , i.e., ∀e ∈ E , there is a

unique i ∈ [s] such that e ∈ Ei.

It is easy to verify that ∀i ∈ [s],E1∪E2∪ · · · ∪Ei is exactly the set of all edges that appeared in

at least one cycle of Ce1,Ce2, · · · ,Cei . As a specific case, E1 is exactly the set of all edges appeared

in Ce1 .

∀i ∈ [s], define Vi = {u ∈ V | ∃v ∈ V, {u, v} ∈ E1 ∪ E1 ∪ · · · ∪ Ei}, i.e., Vi is the vertex set

of all vertices that appeared as an end point of an edge of E1 ∪ E2 ∪ · · · ∪ Ei. Let ∀i ∈ [s],Pi =

E1 ∪ E2 ∪ · · · ∪ Ei \ {e1, e2, · · · , ei}. Let graph Ti = (Vi,Pi).

Claim 5.6.2. ∀i ∈ [s],Ti is a tree. Furthermore, ∀{u, v} ∈ Pi, either u = par(v) or v = par(u).

Proof. By the construction of E j for j ∈ [s], an edge {u, v} in E1 ∪ E2 ∪ · · · ∪ Ei for i ∈ [s]

must appear in some cycle Cek for k ≤ i. By the definition of Ce1,Ce2, · · · ,Cei , if {u, v} ∈ Pi, i.e.,

{u, v} < {e1, e2, · · · , ei}, we know that either u = par(v) or v = par(u). Since par is a rooted tree

and each edge in Ti has a form {u,par(u)}, ∀i ∈ [s],Ti does not contain any cycle.

It suffices to show that ∀i ∈ [s],Ti is connected. The proof is by induction. Consider the case

i = 1. We have P1 = E1 \ {e1} which contains all edges on the path obtained from deleting the

187

edge e1 from the cycle Ce1 . Now suppose Ti−1 is connected. By the construction of Vi, we know

that ∀u ∈ Vi \ Vi−1, there is an edge {u, v} ∈ Ei \ {ei} which is on the path obtained from deleting

ei from Cei . By the construction of Pi = E1 ∪ E2 ∪ · · · ∪ Ei \ {e1, e2, · · · , ei}, we know that the

path obtained from deleting the edge ei from the cycle Cei is a subgraph of Ti. Thus, all endpoints

of edges in Ei \ {ei} are connected in Ti. Since ∃ j ∈ [i − 1], Cei and Cej share a common edge e′,

we know that e′ is in the tree Ti−1 and is also on the path obtained from deleting ei from Cei . Since

Ti−1 is connected, we can conclude that Ti is also connected.

As we mentioned previously, the edges of E1 form a simple cycle Ce1 . Now we are going to

show that E2,E3, · · · ,Es are open ears. The proof is by induction. We observe that ∀i ∈ [s], Ei is

the set of edges appeared on the cycle Cei but not on the cycles Ce1,Ce2, · · · ,Cei−1 . Equivalently, it

means that Ei is the set of edges appeared on the cycle Cei but not on the tree Ti−1. Since ∃ j ∈ [i−1],

Cei and Cej share a common edge e′ = {u′, v′}, there is at least one pair of different vertices u′, v′

such that both of them appear in both Cei and Ti−1. Consider arbitrary two different vertices u and

v which both appear on the cycle Cei and the tree Ti−1. The path between u and v in Ti−1 is the same

as the path between u and v in the tree represented by par because Ti−1 is a induced subgraph of

the tree represented by par. By the construction of Cei , this path is also a subgraph of the cycle Cei .

Thus, all edges which are on both Cei and Ti−1 are consecutive on the cycle Cei . Thus, Ei forms

a path such that the end vertices of the path are different vertices in Ti−1, and none of the internal

vertex of the path is in Ti−1. By the construction of Ti−1, we know that all vertices in Ti−1 are on

ears E1,E2, · · · ,Ei−1. Thus, by the definition of open ear, Ei must be an open ear.

Next, in Algorithm 25, we show how to find a good ordering of non-tree edges.

Lemma 5.6.3 (Good ordering of non-tree edges). Consider an n-vertex m-edge undirected bicon-

nected graph G = (V,E) and a rooted spanning tree of G represented by a set of parent pointers

par : V → V . Let e1, e2, · · · , em−n+1 be the output of ORDERING(G,par) (Algorithm 25). Then,

∀i ∈ [m − n + 1] \ {1},∃ j ∈ [i − 1], there exists an edge which is on both simple cycles defined by

ei and e j in par.

188

Algorithm 25 Good Ordering of Non-tree Edges
1: procedure ORDERING(G = (V,E),par : V → V) . G = (V,E)

is an n-vertex m-edge biconnected undirected graph, par is a set of parent pointers which represents an
arbitrary rooted spanning tree of G.

2: Compute lev : V → Z≥0,edg : V → V : for each v ∈ V,

lev(v) ← min
(
deppar(v), min

w∈V\{par(v)}:{v,w }∈E
deppar(the LCA of (v,w))

)
,

edg(v) ←
{
v, lev(v) = deppar(v);
w, otherwise, arbitrary w ∈ V \ {par(v)} : {v,w} ∈ E, lev(v) = deppar(the LCA of (v,w)).

3: Compute the DFS sequence A of par. . Algorithm 19.
4: Let r be the root of par. Initialize V ′← V \ {r},E ′← ∅,map : E ′→ E .
5: For each v ∈ V ′, let ai,aj be the first and the last appearance of v in A respectively. Compute k∗ =

arg mink∈{i,i+1, · · · , j } lev(ak). If lev(ak∗) < deppar(par(v)), E ′ ← E ′ ∪ {{v,par(v)}},map({v,par(v)}) ←
{ak∗,edg(ak∗)}.

6: For each {u, v} ∈ E , if neither u nor v is the LCA of (u, v) in par, E ′← E ′∪{{u, v}},map({u, v}) ←
{u, v}.

7: Compute a rooted spanning tree of G′ = (V ′,E ′). The spanning tree is a set of parent pointers
par′ : V ′→ V ′. . Algorithm 10, Algorithm 11.

8: Compute the DFS sequence A′ = (a′1,a
′
2, · · · ,a

′
2n−3) of par′. . Algorithm 19.

9: For each e ∈ E , initialize ord(e) ← ∞.
10: For i ∈ [2n − 4],ord(map({a′i,a

′
i+1})) ← i. If there is multiple i that tries to update

ord(map({a′i,a
′
i+1})), let ord(map({a′i,a

′
i+1})) take the minimum i.

11: Sort all non-tree edges e = {u, v} ∈ E , i.e., u , par(v) and v , par(u): e1, e2, · · · , em−n+1 such that
ord(ei) ≤ ord(ei+1) for all i ∈ [m − n].

12: end procedure

Proof. Observe that the graph G′ constructed by Algorithm 25 is exactly the same as that con-

structed by Algorithm 21. Since G is a biconnected graph, G′ is a connected graph according

to Lemma 5.4.2. Thus, a rooted spanning tree par′ of G′ can be found, i.e., par′ has a unique

root. Since V ′ = V \ {r} where r is the root of the rooted spanning tree par, G′ is a graph on

|V ′| = n − 1 vertices. Thus, according to Fact 5.2.5, the length of the DFS sequence of par′ is

2n − 3. Let A′ = (a′1,a
′
2, · · · ,a

′
2n−3) computed by line 8 of Algorithm 25 be the DFS sequence of

par′. According to Definition 5.2.4, ∀i ∈ [2n − 4], {a′i,a
′
i+1} ∈ E′.

Claim 5.6.4. For each edge e′ = {u′, v′} ∈ E′, {u, v} = map(e′) is a non-tree edge in par such that

the cycle defined by {u, v} contains both edges {u′,par(u′)}, {v′,par(v′)} ∈ E .

Proof. Consider the case that e′ = {u′, v′} is added into E′ by line 5 of Algorithm 25. In this case,

189

either u′ = par(v′) or v′ = par(u′). Without loss of generality, let us assume u′ = par(v′). According

to Fact 5.2.5, ak∗ is in the subtree of v′. By the computation of lev(ak∗) and edg(ak∗) in line 2 of Al-

gorithm 25, lev(ak∗) = deppar(the LCA of (ak∗,edg(ak∗) in par)), and map(e′) = {ak∗,edg(ak∗)} ∈

E is a non-tree edge in par. According to line 5, deppar(the LCA of (ak∗,edg(ak∗)) in par) <

deppar(u
′). Since ak∗ is in the subtree of v′, both edges {v′,u′}, {u′,par(u′)} are on the path from

ak∗ to the LCA of (ak∗,edg(ak∗)) in par. Thus, both edges {v′,par(v′)}, {u′,par(u′)} are on the cycle

defined by map(e′).

Consider the case e′ = {u′, v′} is added into E′ by line 6 of Algorithm 25. We have map(e′) =

{u′, v′}. According to line 6 of Algorithm 25, neither u′ nor v′ is the LCA of (u′, v′) in par. Thus,

both edges {v′,par(v′)}, {u′,par(u′)} are on the cycle defined by map(e′).

Let e1, e2, · · · , em−n+1 be the output of ORDERING(G,par). We want to show that ∀i ∈ [m − n+

1] \ {1},∃ j ∈ [i − 1], there exists an edge which is on both simple cycles defined by ei and e j in

par.

Consider the case that ord(ei) = ∞. Suppose ei = {u, v}. Since {u, v} is a non-tree edge in

par, either {u,par(u)} or (v,par(v)) is in the cycle defined by {u, v}. Without loss of generality, we

assume {u,par(u)} is in the cycle defined by {u, v} in par. Let a′q be the first appearance of u in

A′. Then {a′q,a
′
q+1} ∈ E′. Let e = map({a′q,a′q+1}). We have ord(e) ≤ q < ord(ei). According

to Claim 5.6.4, the cycle defined by the non-tree edge e in par contains the edge {a′q,par(a′q)} =

{u,par(u)} ∈ E . Thus, ∃ j < i such that ord(e j) = ord(e) ≤ q < ord(ei).

Consider the case that ord(ei) = i′ < ∞. Then ei = map({a′i′,a
′
i′+1}). If i , 1, then i′ > 1.

Let e = map({a′i′−1,a
′
i′}). According to Claim 5.6.4, {a′i′,par(a′i′)} ∈ E is contained by both cycles

defined by non-tree edges e and ei separately. Furthermore, we have ord(e) ≤ i′ − 1 < ord(ei).

Thus, ∃ j < i such that ord(e j) = ord(e) ≤ q < ord(ei).

5.6.2 Segment coloring over trees

In the previous section, we show how to find a good ordering of non-tree edges. Let s =

m − n + 1. Suppose the order of non-tree edges is e1, e2, · · · , es. Then according to Lemma 5.6.1,

190

each non-tree edge ei should be in the ear Ei. But since each tree edge can be in multiple cycles

defined by non-tree edges, it is non-trivial to find the ear which should contain the tree edge.

We reduce the problem of determining the ear of each tree edge to the following segment

coloring problem. Given a rooted tree represented by a set of parent pointers par : V → V and a

set of tuples (segments) Q ⊆ V × Z≥0 × [s], we want to output col : V → [s] ∪ {∞} such that

∀v ∈ V,col(v) = min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−l≤deppar(v)

c

)
.

In other word, for each tuple (segment) (u, l, c), we want to assign each ancestor of u within distance

l a color c, and if a vertex v is assigned multiple colors, v only keeps the smallest color.

To determine the ear of each tree edge, we can create Q as the following. For each ei = {ui, vi},

let zi be the LCA of (ui, vi) in par. If ui , zi, we add a tuple (ui,deppar(ui) − deppar(zi) − 1, i) into Q.

If vi , zi, we add a tuple (vi,deppar(vi) − deppar(zi) − 1, i) into Q. It is easy to verify that for each

tree edge {v,par(v)}, col(v) = min j∈[s]:{v,par(v)} appears in Cej
j. Thus, the tree edge {v,par(v)} should

be in the ear Ecol(v).

Segment coloring for fixed length segments

First let us consider a special case: ∀(u, l, c), l is the same and is the power of 2. In this case,

we solve the segment coloring problem over par. The algorithm is shown in Algorithm 26.

Algorithm 26 Segment Coloring for Segments with Fixed Length
1: procedure COLORSAMELEN(par : V → V,Q ⊂ V × Z≥0 × [s], p ∈ Z≥0) . par represents an arbitrary

rooted spanning tree of G, each segment has length 2p.
2: For each v ∈ V , initialize g(0)(v) ← par(v),col(0)(v) ← min(∞,min(u,l,c)∈Q:u=v or par(u)=v c).
3: for i := 1→ p do
4: For each vertex v ∈ V , col(i)(v) ← col(i−1)(v).
5: For each vertex v ∈ V , if col(i−1)(v) < col(i)(g(i−1)(v)), update col(i)(g(i−1)(v)) ← col(i−1)(v). If

col(i)(g(i−1)(v)) is updated by multiple v, take the minimum value col(i−1)(v).
6: For each vertex v ∈ V , g(i)(v) ← g(i−1)(g(i−1)(v)).
7: end for
8: Return col : V → [s] where ∀v ∈ V,col(v) ← col(p)(v).
9: end procedure

191

Lemma 5.6.5 (Segment coloring for segments with fixed length). Consider an n-vertex rooted tree

represented by a set of parent pointers par : V → V . Let p ∈ Z≥0. Let s ∈ Z≥1. Let Q ⊆ V×Z≥0×[s]

satisfy that ∀(u, l, c) ∈ Q, l = 2p. Let col : V → [s] be the output of COLORSAMELEN(par,Q, p)

(Algorithm 26). Then,

∀v ∈ V,col(v) = min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−l≤deppar(v)

c

)
.

Proof. Similar as the proof of Lemma 4.2.9, we can prove that ∀i ∈ {0,1, · · · , p},∀v ∈ V,g(i)(v) =

par(2i)(v) by induction.

Claim 5.6.6.

∀v ∈ V, i ∈ {0,1, · · · , p},col(i)(v) = min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−2i≤deppar(v)

c

)
.

Proof. The proof is by induction. Notice that

∀v ∈ V,col(0)(v) = min
(
∞, min
(u,l,c)∈Q:par(u)=v or u=v

c
)
.

Thus the claim holds for the base case i = 0.

Suppose the claim holds for i − 1 for every vertex v ∈ V . Then we have ∀v ∈ V,

col(i)(v)

=min

(
col(i−1)(v), min

u∈V :par(2i−1)(u)=v
col(i−1)(u)

)

=min
©«∞, min

(u,l,c)∈Q:
u is in the subtree of v,deppar(u)−2i−1≤deppar(v)

c, min
(u,l,c)∈Q:

∃u′∈V ,u is in the subtree of u′,deppar(u)−2i−1≤deppar(u′),par(2i−1)(u′)=v

c
ª®®®¬

=min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−2i≤deppar(v)

c

)
,

192

where the first step follows from the computation of col(i)(v), the second step follows from the

induction hypothesis, and the last step follows from that ∀v ∈ V ,

{
u ∈ V | u is in the subtree of v,deppar(u) − 2i ≤ deppar(v)

}
=

{
u ∈ V | u is in the subtree of v,deppar(u) − 2i−1 ≤ deppar(v)

}
∪

{
u ∈ V | ∃u′ ∈ V,u is in the subtree of u′,deppar(u) − 2i−1 ≤ deppar(u

′),par(2
i−1)(u′) = u

}
.

Since col ≡ col(p), the lemma is directly implied by the above claim since l is always 2p.

Segment coloring for segments with various lengths

. In this section, we show how to reduce the general segment coloring problem to the segment

coloring problem for fixed length segments. The algorithm is shown in Algorithm 27.

Algorithm 27 Segment Coloring for Segments with Various Lengths
1: procedure COLORDIFLEN(par : V → V,Q ⊂ V × Z≥0 × [s]) . par represents an arbitrary rooted

spanning tree of G.
2: Compute the depth of par, and set d ← dep(par), t ← dlog de. Compute par(2i)(v) for each v ∈

V, i ∈ {0,1, · · · , t} . Run FINDANCESTORS(par) (see Algorithm 6).
3: Initialize Q′t ← ∅. For each (u, l, c) ∈ Q, add (u,min(l, d), c) into Q′t .
4: For u ∈ V, l ∈ Z≥0 if there are multiple c s.t. (u, l, c) ∈ Q′t , only keep (u, l, c) ∈ Q′t with the minimum

c and delete others.
5: for i := t → 0 do
6: Compute Qi = {(u, l, c) ∈ Q′i | l = 2i}.
7: Initialize Q′

i−1 ← ∅. For each (u, l, c) ∈ Q′i with l < 2i, if l < 2i−1, add (u, l, c) into Q′
i−1,

otherwise, add (u,2i−1, c) and (par(2i−1)(u), l − 2i−1, c) into Q′
i−1.

8: For u ∈ V, l ∈ Z≥0 if there are multiple c s.t. (u, l, c) ∈ Q′
i−1, only keep (u, l, c) ∈ Q′

i−1 with the
minimum c and delete others.

9: end for
10: For each v ∈ V , initialize col−1(v) ← ∞. For each (u, l, c) ∈ Q′

−1,col−1(u) ← c.
11: For each i ∈ {0,1, · · · , t}, find coli ←COLORSAMELEN(par,Qi, i). . See Algorithm 26.
12: Initialize col : V → [s]. For v ∈ V , col(v) ← mini∈{−1,0,1, · · · ,t } coli(v).
13: Return col.
14: end procedure

193

Lemma 5.6.7 (Segment coloring for segments with various lengths). Consider an n-vertex rooted

tree represented by a set of parent pointers par : V → V . Let s ∈ Z≥1. Let Q ⊆ V × Z≥0 × [s] be a

set of m tuples. Let col be the output of COLORDIFLEN(par,Q) (Algorithm 27). Then,

∀v ∈ V,col(v) = min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−l≤deppar(v)

c

)
.

Furthermore, let t,Q′
−1,Q

′
0,Q
′
1, · · · ,Q

′
t be the same as computed in Algorithm 27. Then ∀i ∈

{−1,0,1, · · · , t}, |Q′i | ≤ m + n.

Proof. Firstly, according to Lemma 4.3.6, line 2 can be implemented by calling Algorithm 6.

Let us first prove that ∀i, |Q′i | ≤ m + n.

Claim 5.6.8. ∀i ∈ {−1,0, · · · , t}, we have ∀(u, l, c) ∈ Q′i, l ≤ 2i and |{(u, l, c) ∈ Q′i | l < 2i}| ≤ m.

Proof. The proof is by induction. For i = t, we have |Q′t | ≤ |Q | = m and ∀(u, l, c) ∈ Q′t, l ≤

dep(par) ≤ 2t . Thus the claim is true for i = t.

Suppose the claim is true for i. consider the construction of Q′i−1. For each tuple (u, l, c) ∈ Q′i,

if l = 2i, we will not create any tuple for Q′i−1. For each tuple (u, l, c) ∈ Q′i, if l < 2i, we will

create at most one tuple (u′, l′, c) for Q′i−1 such that l′ < 2i−1. Thus, by induction hypothesis

|{(u, l, c) ∈ Q′i−1 | l < 2i−1}| ≤ |{(u, l, c) ∈ Q′i | l < 2i}| ≤ m Furthermore, for each tuple

(u, l, c) ∈ Q′i, if l < 2i, any tuple (u′, l′, c) created satisfies that l′ ≤ 2i−1.

According to Claim 5.6.8, ∀i ∈ {−1,0, · · · , t}, |Q′i | ≤ m + n since ∀u ∈ V, there is at most one

tuple (u,2i, c) ∈ Q′i due to line 4 and line 8 of Algorithm 27. According to Claim 5.6.8, we know

that ∀(u, l, c) ∈ Q′
−1, we have l = 0.

Next, let us consider col(v) for v ∈ V . According to line 4 and line 8, we know that ∀v ∈ V ,

col−1(v) = c if there is a unique (v,0, c) ∈ Q′
−1, otherwise col−1(v) = ∞. Thus, we have

col−1(v) = min

(
∞, min
(u,0,c)∈Q′

−1:u is in the subtree of v,deppar(u)−0≤deppar(v)
c

)
. (5.1)

194

Claim 5.6.9. ∀i ∈ {−1,0, · · · , t}, we have ∀v ∈ V:

min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−l≤deppar(v)

c = min
(u,l,c)∈Q′i∪

⋃t
j=i+1 Q j :u is in the subtree of v,deppar(u)−l≤deppar(v)

c.

Proof. The proof is by induction. Let us consider the case i = t. According to the construction of

Q′t , we can easily verify that ∀v ∈ V, ĉ ∈ [s] :

∃(u, l, c) ∈ Q,u is in the subtree of v,deppar(u) − l ≤ deppar(v), c ≤ ĉ

⇐⇒ ∃(u′, l′, c′) ∈ Q′t,u
′ is in the subtree of v,deppar(u

′) − l′ ≤ deppar(v), c
′ ≤ ĉ.

Thus, the claim holds for i = t. Now suppose the claim holds for i. To prove the claim for i − 1,

according to the induction hypothesis, it suffices to prove ∀v ∈ V, ĉ ∈ [s],

∃(u, l, c) ∈ Q′i,u is in the subtree of v,deppar(u) − l ≤ deppar(v), c ≤ ĉ

⇐⇒ ∃(u′, l′, c′) ∈ Qi ∪Q′i−1,u
′ is in the subtree of v,deppar(u

′) − l′ ≤ deppar(v), c
′ ≤ ĉ.

This can be easily verified by the construction of Qi and Q′i−1. Thus the claim holds for i − 1.

Thus, we have ∀v ∈ V :

col(v) = min(col−1(v),col0(v), · · · ,colt(v))

= min

(
∞, min
(u,l,c)∈Q′

−1∪
⋃t

j=0 Q j :u is in the subtree of v,deppar(u)−l≤deppar(v)
c

)
= min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−l≤deppar(v)

c

)
,

where the second step follows from Equation (5.1) and Lemma 5.6.5, and the last step follows

from Claim 5.6.9.

Next, we show how to improve the space usage of Algorithm 27, the improved space efficient

algorithm is given in Algorithm 29. Before presenting Algorithm 29, we need to present a useful

195

subroutine which computes a target ancestor for each vertex (see Algorithm 28).

Algorithm 28 Find Target Ancestor for Each Vertex
1: procedure TARANCESTOR(par : V → V,Q ⊆ V × Z≥0) . par represents an arbitrary rooted spanning

tree of G. The goal is to compute par(l)(v) for each tuple (v, l) ∈ Q
2: Compute the depth of each vertex in par. . Run TREECONTRACTION((V,∅),par) (see

Algorithm 3. Let the output g(r) : V → Z≥0 be deppar : V → Z≥0 (see Lemma 4.2.9).
3: Set d ← dep(par), t ← dlog de.
4: Initialize g(0)(v) ← par(v) for each v ∈ V .
5: Initilize map(0)(v, l) ← v for each tuple (v, l) ∈ Q.
6: for i = 0→ t do
7: For each tuple (v, l) ∈ Q, if min(deppar(v), l) mod 2i+1 ≥ 2i, map(i+1)(v, l) ← g(i)(map(i)(v, l)),

otherwise map(i+1)(v, l) ← map(i)(v, l).
8: For each vertex v ∈ V , g(i+1)(v) ← g(i)(g(i)(v)).
9: end for

10: Return map(v, l) ← map(t+1)(v, l) for each (v, l) ∈ Q.
11: end procedure

Lemma 5.6.10. Consider an n-vertex rooted spanning tree represented by a set of parent pointers

par : V → V and a set of m tuples Q ⊆ V × Z≥0. Let map be the output of TARANCESTOR(par,Q)

(Algorithm 28). Then, ∀(v, l) ∈ Q,map(v, l) = par(l)(v).

Proof. Similar as the proof of Lemma 4.2.9, we can prove that ∀i ∈ {0,1, · · · , t + 1}, ∀v ∈

V,g(i)(v) = par(2i)(v) by induction. Notice that if l ≥ deppar(v), then par(l)(v) = par(deppar(v))(v).

Now, consider an arbitrary tuple (v, l) ∈ Q. We want to show that ∀i ∈ {0,1, · · · , t + 1},

map(i)(v, l) = par(min(l,deppar(v)) mod 2i)(v). The proof is by induction. If i = 0, we have min(l,deppar(v)) mod

1 = 0 and map(0)(v, l) = v = par(0)(v, l). Now suppose the induction claim is true for i. If

min(l,deppar(v)) mod 2i+1 < 2i, then we have min(l,deppar(v)) mod 2i = min(l,deppar(v)) mod

2i+1 and map(i+1)(v, l) = map(i)(v, l) = par((min(l,deppar(v)) mod 2i+1)(v, l). If min(l,deppar(v)) mod

2i+1 ≥ 2i, then we have min(l,deppar(v)) mod 2i+1 = (min(l,deppar(v)) mod 2i)+2i and map(i+1)(v, l) =

g(i)(map(i)(v, l)) = par((min(l,deppar(v)) mod 2i+1)(v, l).

Notice that ∀v ∈ V,min(l,deppar(v)) ≤ 2t . Thus min(l,deppar(v)) mod 2t+1 = min(l,deppar(v))

which implies that map(v, l) = map(t+1)(v, l) = par(l)(v).

196

Algorithm 29 Segment Coloring for Segments with Various Lengths (space efficient)
1: procedure COLORING(par : V → V,Q ⊂ V × Z≥0 × [s]) . par represents an arbitrary rooted spanning

tree of G.
2: (V ′,par′) ← COMPRESS(par). . Algorithm 12.
3: Compute the depth of each vertex in par. . Run TREECONTRACTION((V,∅),par) (see

Algorithm 3). Let the output g(r) : V → Z≥0 be deppar : V → Z≥0 (see Lemma 4.2.9).
4: Compute the depth of each vertex in par′. . Run TREECONTRACTION((V ′,∅),par′) (see

Algorithm 3). Let the output g(r) : V ′→ Z≥0 be deppar′ : V → Z≥0 (see Lemma 4.2.9).
5: Set d ← dep(par), t ← dlog de.
6: Compute mappings g0,g1, · · · gt : V ′ → V ′ such that ∀v ∈ V ′, j ∈ {0,1, · · · , t}, gj(v) = par′(2 j)(v).

. Run FINDANCESTORS(par) (see Algorithm 6).
7: For each (u, l, c) ∈ Q, if l > deppar(u), replace (u, l, c) with (u,deppar(u), c) in Q.
8: Initialize Q′← ∅.
9: Initialize col(v) ← ∞ for v ∈ V .

10: for (u, l, c) ∈ Q do
11: if l ≤ 10 · t then
12: Update col(v) ← c for every v = par(i)(u), i ∈ {0,1, · · · , l} if c < col(v) (col(v) is updated

by the minimum c).
13: else
14: Find the minimum j ∈ {0,1 · · · ,2t} such that x = par(j)(u) ∈ V ′.
15: Let h be the maximum value such that (deppar(u) − h) mod t = 0 and h ≤ l.
16: Find y = par(h)(u). . Run Algorithm 28 for par and all such tuples (u, h).
17: Q′← Q′ ∪ {(x,deppar′(x) − deppar′(y) − 1, c)}.
18: Update col(v) ← c for every v = par(k)(u), k ∈ {0,1, · · · , j} if c < col(v) (col(v) is updated

by the minimum c).
19: Update col(v) for every v = par(k)(u), k ∈ {h, h + 1, · · · , l} if c < col(v) (col(v) ← c is

updated by the minimum c).
20: end if
21: end for
22: (col′ : V ′→ [s]) ← COLORDIFLEN(par′,Q′). . Algorithm 27.
23: For each u ∈ V ′, update col(v) ← col′(u) for every v = par(i)(u), i ∈ {0,1, · · · , t} if col′(u) < col(v)

(col(v) is updated by the minimum col′(u)).
24: Return col.
25: end procedure

Lemma 5.6.11 (Segment coloring). Consider an n-vertex rooted tree represented by a set of parent

pointers par : V → V . Let s ∈ Z≥1. Let Q ⊆ V × Z≥0 × [s] be a set of m tuples. Let col be the

output of COLORING(par,Q) (Algorithm 29). Then,

∀v ∈ V,col(v) = min

(
∞, min
(u,l,c)∈Q:u is in the subtree of v,deppar(u)−l≤deppar(v)

c

)
.

Proof. Consider v ∈ V . We first prove that col(v) computed by Algorithm 29 is at most c for every

197

(u, l, c) ∈ Q satisfying that u is in the subtree of v and deppar(u) − l ≤ deppar(v). Let us focus on a

tuple (u, l, c) ∈ Q satisfying that u is in the subtree of v and deppar(u) − l ≤ deppar(v). In the first

case l ≤ 10t. In this case, col(v) ≤ c according to line 12. In the second case l > 10t. According

to Lemma 5.2.7, both x and y are in V ′. Furthermore y is an ancestor of x, x is an ancestor of u

and deppar(u) − deppar(x) ≤ 2t, l − (deppar(u) − deppar(y)) ≤ t. If v is an ancestor of u but not an

ancestor of x, we have col(v) ≤ c according to line 18. If v is an ancestor of y, we have col(v) ≤ c

according to line 19. If v is an ancestor of x but not an ancestor of y, we can find a vertex w ∈ V ′

such that v = par(k)(w) for some k ∈ {0,1, · · · , t}. According to line 17, line 22 and Lemma 5.6.7,

we have col′(w) ≤ c. According to line 23, we have col(v) ≤ col′(w) ≤ c.

Next, we prove that if col(v) < ∞, there exists (u, l, c) ∈ Q satisfying that u is in the subtree of v

and deppar(u)− l ≤ deppar(v) such that c = col(v). Suppose col(v) is finally updated by line 23, then

there is a vertex w ∈ V ′ such that ∃k ∈ {0,1, · · · , t},par(k)(w) = v and col(v) = col′(w). According

to line 17, line 22 and Lemma 5.6.7, there is a tuple (u, l, c) ∈ Q such that w is an ancestor of u,

deppar(u) − l ≤ deppar(w) − t such that col′(w) = c. It implies that (u, l, c) satisfies that u is in the

subtree of v and deppar(u) − l ≤ deppar(v).

Suppose col(v) is finally updated by line 12, line 18 or line 19. Then, it is easy to verify that

∃(u, l, c) ∈ Q such that u is in the subtree of v, deppar(u) − l ≤ deppar(v), and c = col(v).

5.6.3 Open ear decomposition

In this section, we present our final open ear decomposition algorithm (see Algorithm 30).

Lemma 5.6.12 (Open ear decomposition). Consider an n-vertex m-edge undirected biconnected

graph G = (V,E). Let E1,E2, · · · ,Es be the output of OPENEARDECOMP(G) (Algorithm 30).

Then E1,E2, · · · ,Es is an open ear decomposition of G.

Proof. Notice that the cycle Cei defined by ei = {ui, vi} is:

(ui,par(ui),par(2)(ui), · · · , zi, · · · ,par(2)(vi),par(vi), vi,ui),

198

Algorithm 30 Open Ear Decomposition
1: procedure OPENEARDECOMP(G = (V,E)) . G is an n-vertex m-edge biconnected graph.
2: Compute a rooted spanning tree of G. The spanning tree is represented by a set of parent pointers

par : V → V . . Algorithm 10,Algorithm 11.
3: Let e1, e2, · · · , es be the output of ORDERING(G,par), where s = m − n + 1. . Algorithm 25.
4: Let Ei ← {ei} for i ∈ [s].
5: Initialize Q← ∅. For each ei = {ui, vi}, i ∈ [s], find the LCA zi of (ui, vi).
6: Compute deppar(v) for each v ∈ V . . Run TREECONTRACTION((V,∅),par). Let the output

g(r) : V → Z≥0 be deppar : V → Z≥0 (see Lemma 4.2.9).
7: Consider each i ∈ [s]. If ui , zi, we add a tuple (ui,deppar(ui) − deppar(zi) − 1, i) into Q. If vi , zi,

we add a tuple (vi,deppar(vi) − deppar(zi) − 1, i) into Q. .
8: col←COLORING(par,Q). . Algorithm 29.
9: ∀v ∈ V if par(v) , v, add {v,par(v)} into Ecol(v).

10: Output E1,E2, · · · ,Es.
11: end procedure

where zi is the LCA of (ui, vi).

According to Lemma 5.6.3, ∀i ∈ [s] \ {1},∃ j ∈ [i − 1], there exists an edge which is on both

simple cycles defined by ei and e j in par. According to line 4, line 9, line 7, and Lemma 5.6.11,

we have

∀i ∈ [s],Ei =

{
e ∈ E | i = min

j∈[s]:e appears in Cej

j

}
.

Thus, according to Lemma 5.6.1, E1,E2, · · · ,Es is an open ear decomposition of G.

5.7 Open ear decomposition in MPC

In this section, we will discuss how to implement the open ear decomposition algorithm in the

MPC model. For basic MPC operations, we refer readers to Section 2.3.

5.7.1 Find a proper ordering of non-tree edges in MPC

In this section, we show how to implement Algorithm 25 in the MPC model.

Lemma 5.7.1. Let G = (V,E) be an n-vertex m-edge undirected graph. Let par : V → V be a set

of parent pointers representing a rooted spanning tree of G. ORDERING(G,par) (Algorithm 25)

199

can be implemented in the (γ, δ)-MPC model for any γ ∈ [0,2] and any constant δ ∈ (0,1) in

O
(
(log D′ + log dep(par)) · log log n

log(N1+γ/n)

)
parallel time with probability at least 0.96, where D′ =

bi-diam(G′).

Proof. Let N = n + m be the input size. In line 2, to compute lev(v) and edg(v) for each v ∈ V ,

we can query the LCA of (v,w) in par for each edge {v,w} ∈ E . We can use our LCA algorithm

(Algorithm 14) as the subroutine for this purpose. It takes the total space O(N) and the running

time O(log(dep(par))) (see Lemma 5.2.12 and Lemma 5.3.3). In line 3, with probability at least

0.99, the DFS sequence can be computed using O(n) total space in time O(log(dep(par))) (see

Theorem 5.3.9). In line 5, we can use sorting (see Theorem 2.3.1) to find the first appearance ai

and the last appearance a j in the DFS sequence of each vertex v, and k∗ corresponds to a range

minimum query1. If the size of the subtree of v is at most log n, the corresponding RMQ can

be solved by local computation. Otherwise, we use our RMQ algorithm (see Algorithm 24) to

handle the corresponding RMQ of v. By Lemma 5.5.5, this step only takes O(1) time and requires

O(n) space. Line 6 can be implemented using O(N) space and O(1) parallel time. Since the

graph G′ computed by Algorithm 25 is the same as that computed by Algorithm 21. According to

Lemma 5.4.2, we have diam(G′) = O(dep(par) · bi-diam(G)), |V ′| = n − 1, |E′| ≤ m. According to

Theorem 4.4.12, with probability at least 0.98, the rooted spanning tree par′ of G′ in line 7 can be

computed in the MPC model with total space O(N1+γ) in O(log diam(G′) · log logN1+γ/n n) parallel

time, and the depth of the spanning tree par′ is at most diam(G′)O(log log
N1+γ/n n). The DFS sequence

of par′ can be computed in the MPC model with total space O(n) in time O(log(dep(par′))) parallel

time with probability at least 0.99 (see Theorem 5.3.9). The remaining steps of the algorithm can

be implemented by Multiple queries (see Section 2.3) and sorting (see Theorem 2.3.1). Thus, the

remaining steps only need O(N) total space and O(1) parallel time. Thus, the overall total space

needed is O(N1+γ). The success probability is at least 0.96. The overall parallel time needed is

O
(
(log D′ + log dep(par)) · log log n

log(N1+γ/n)

)
where D′ = bi-diam(G′).

1Notice that this is doable since we can embed the index k into ak , i.e., replace each ak with ak · 100N + k. Thus
bak/100Nc = k.

200

5.7.2 Segment coloring in MPC

In this section, we show how to implement Algorithm 26, Algorithm 27, Algorithm 28 and

Algorithm 29.

Lemma 5.7.2. Consider an n-vertex rooted tree represented by a set of parent pointers par : V →

V . Let p ∈ Z≥0. Let s ∈ Z≥1. Let Q ⊆ V×Z≥0×[s] be a set of m-tuples. COLORSAMELEN(par,Q, p)

(Algorithm 26) can be implemented in the (0, δ)-MPC model for any constant δ ∈ (0,1) in O(p)

parallel time.

Proof. g(0)(v) and col(0)(v) can be computed in O(N) total space and O(1) parallel time using

Multiple queries and sorting (Theorem 2.3.1). In the i-th iterations, we only need to store

col(i−1),col(i),g(i−1) and g(i). Thus, the total space needed is O(m + n). It is easy to verify that

each iteration can be implemented in O(1) parallel time by using Multiple queries and sorting

(Theorem 2.3.1).

Lemma 5.7.3. Consider an n-vertex rooted tree represented by a set of parent pointers par : V →

V . Let s ∈ Z≥1. Let Q ⊆ V × Z≥0 × [s] be a set of m tuples. Then COLORDIFLEN(par,Q)

(Algorithm 27) can be implemented in (γ, δ)-MPC model for any constant δ ∈ (0,1) and any γ ≥ 0

satisfying (m + n)1+γ ≥ m + n log dep(par). The parallel time needed is O(log(dep(par))).

Proof. According to Lemma 4.4.6, line 2 can be implemented in the MPC model in O(n log(dep(par)))

total space and O(log(dep(par))) parallel time. Line 4 can be implemented using sorting (Theo-

rem 2.3.1) in O(1) parallel time and O(m + n) total space. Then the algorithm has t iterations. For

the iteration with i, we need to store Q′i−1,Q
′
i,Qi−1,Qi,Qi+1, · · · ,Qt in the space. Notice that each

Qk for k ≥ i − 1 has size O(n), and |Q′i−1 |, |Q
′
i | ≤ m + n according to Lemma 5.6.7. Thus, the

total space needed is at most nt + m = O(n log(dep(par)) + m). Each step in the iteration can be

implemented by sorting (Theorem 2.3.1) and Multiple queries. Line 11 can be implemented si-

multaneously for every i (see Multiple tasks). According to Lemma 5.7.2, the total space needed is

O(nt) = O(n log(dep(par))). Thus, the overall total space needed is at most O(n log(dep(par))+m)

and the parallel time needed is O(log(dep(par))).

201

Lemma 5.7.4. Consider an n-vertex rooted spanning tree represented by a set of parent pointers

par : V → V and a set of m tuples Q ⊆ V × Z≥0. TARANCESTOR(par,Q) (Algorithm 28) can

be implemented in the (0, δ)-MPC model for any constant δ ∈ (0,1) and O(log(dep(par))) parallel

time.

Proof. According to lemma 4.4.2, the depth of each vertex in par can be computed in O(n) space

and O(log(dep(par))) parallel time. Each remaining step can be implemented in O(n + m) total

space and O(1) parallel time by Multiple queries. Since the algorithm has t = O(log(dep(par)))

iterations, the overall total space needed is O(n + m) and the overall parallel time is O(t) =

O(log(dep(par))).

Lemma 5.7.5. Consider an n-vertex rooted tree represented by a set of parent pointers par : V →

V . Let s ∈ Z≥1. Let Q ⊆ V ×Z≥0 × [s] be a set of m tuples. COLORING(par,Q) (Algorithm 29) can

be implemented in the (0, δ)-MPC model and O(log(dep(par))) parallel time.

Proof. Notice that the steps before line 6 are also implemented as the first several steps of Algo-

rithm 14, according to Lemma 5.3.3, the total space needed is at most O(n+m) and the parallel time

is at most O(log(dep(par))). We can handle all tuples (u, l, c) ∈ Q in the loop of line 10 simultane-

ously. Line 12 can be implemented in O(n+m) space and O(10·t) = O(log(dep(par))) parallel time.

Line 14 can be implemented in O(2t) = O(log(dep(par))) and O(n + m) total space. According

to Lemma 5.7.4, line 16 can be implemented in O(log(dep(par))) parallel time and O(n + m) total

space. Line 18 and line 19 can be implemented in O(2t + l − h) = O(t) = O(log(dep(par))) parallel

time and O(n + m) total space. Notice that the size of Q′ is at most |Q | and dep(par′) ≤ dep(par).

According to Lemma 5.2.7, |V ′| ≤ |V |/log(dep(p)). According to Lemma 5.7.3, line 22 can be im-

plemented in the MPC model in O(log(dep(par))) parallel time and O(|V ′| log(dep(par′)) + |Q′|) =

O(n+m) space. Line 23 can be implemented in O(n+m) space and O(t) = O(log(dep(par))) parallel

time. Thus, the overall space needed is O(n + m) and the parallel time is O(log(dep(par))).

202

Open ear decomposition in MPC

Now we are able to describe the implementation of Algorithm 30 in the MPC model. Consider

an n-vertex m-edge biconnected graph G with diameter D and bi-diameter D′.

Theorem 5.7.6 (Open ear decomposition in MPC). For any γ ∈ [0,2] and any constant δ ∈ (0,1),

there is a randomized (γ, δ)-MPC algorithm which outputs an open ear decomposition of G in

O
(
log D · log2 log n

log(N1+γ/n) + log D′ · log log n
log(N1+γ/n)

)
parallel time. The success probability is at least

0.94. If the algorithm fails, then it returns FAIL.

Proof. Let E1,E2, · · · ,Es be the output of OPENEARDECOMP(G) (Algorithm 30). As shown by

Lemma 5.6.12, E1,E2, · · · ,Es is an open ear decomposition of G.

We show how to implement OPENEARDECOMP(G) (Algorithm 30) in the MPC model. Firstly,

the only reason that Algorithm 30 may fail is that the computation2 of DFS sequence or the rooted

spanning tree may fail. According to Theorem 5.3.9 and Theorem 4.4.12, if the DFS sequence

algorithm or the spanning tree algorithm fails, it will output FAIL. Due to Theorem 4.4.12, the

success probability of computing par′ is at least 0.98. Due to Lemma 5.7.5, the success proba-

bility of computing ORDERING(G,par) (Algorithm 25) is at least 0.96. Thus, the overall success

probability is at least 0.94.

Let γ′ = (1 + γ) logn(2N/(n1/(1+γ))). According to Theorem 4.4.12, the computation of par

can be done in (γ, δ)-MPC model in O(min(log D · log 1
γ′ , log n)) parallel time and the depth of

par is at most DO(log(1/γ′)). According to Lemma 5.7.1, ORDERING(G,par) (Algorithm 25) can be

computed in (γ, δ)-MPC model in O
(
(log D′ + log D · log 1/γ′) · log log n

log(N1+γ/n)

)
parallel time. Ac-

cording to Lemma 5.3.3, line 5 can be implemented in the (0, δ)-MPC model and O(D′ · log(1/γ′))

parallel time. According to Lemma 4.4.2, deppar : V → Z≥0 can be computed in (0, δ)-MPC model

and O(D · log(1/γ′)) parallel time. According to Lemma 5.7.5, col can be computed in (0, δ)-MPC

model and O(D · log(1/γ′)) parallel time.

Thus, algorithm can be implemented in the (γ, δ)-MPC model and the overall parallel time is

2Also include the computation in the subroutines of Algorithm 30.

203

O
(
log D · log2 log n

log(N1+γ/n) + log D′ · log log n
log(N1+γ/n)

)
.

204

Chapter 6: Shortest Path and Uncapacitated Minimum Cost Flow

In this chapter, we show how to design efficient parallel algorithms for undirected shortest path

and uncapacitated minimum cost flow problem. We will first introduce several new graph concepts

such as subemulator and low hop emulator. We will show how to use truncated broadcasting and

double-exponential speed problem size reduction techniques to construct subemulators and low

hop emulators. Then we will show how to use them to design efficient algorithms for shortest path

and uncapacitated minimum cost flow.

6.1 Overview of techniques

In this section, we give an overview of techniques that we use in our algorithms. Figure 6.1

sketches the dependencies between our techniques and the main algorithms.

6.1.1 Low hop emulator

We introduce a new notion — low hop emulator. A low hop emulator G′ = (V,E′,w′) of G is

a sparse graph with n poly(log n) edges satisfying two properties. First, the distance between every

pair of vertices in G′ is a poly(log n) approximation to the distance in G. The second property is

that G′ has a low hop diameter, i.e., a shortest path between every pair of two vertices in G′ only

contains O(log log n) number of hops (edges). A concept closely related to low hop emulator is

hopset [34]. A hopset is a set of weighted shortcut edges such that for any two vertices s and t

we can always find an approximate shortest path connecting them using small number of edges

from the hopset and the original graph. Many hopset construction methods [34, 28, 89, 52, 37,

90, 91, 42, 38, 53] share some common features — they all choose a layer or multiple layers of

leader vertices, and the hopset edges are some shortcut edges connecting to these leader vertices.

205

Subemulator Low Hop Emulator Parallel SSSP
 (- approximation) npoly log

Parallel Bourgain's
Embedding

Parallel Metric
Tree Embedding

Parallel Low Diameter
Decomposition

Compressible
Preconditioner

Parallel Uncapacitated
Minimum Cost Flow

 (- approximation))1(

Parallel Recursive
Path/Tree Construction

Parallel
 shortest path

 (- approximation)

ts

)1(

 Parallel SSSP
 (- approximation))1(

(only primal solution needed)(primal/dual solution needed)

Figure 6.1: A summary of techniques and main algorithms. Blue rounded rectangles indicate new
techniques.

However, when connecting shortcut edges to a layer of leader vertices, none of these algorithms

can avoid processing information for all n vertices from the original graph, even though there may

be a large fraction of vertices which are not connecting any this layer’s leader vertex in the final

hopset. Furthermore, each of these algorithms needs either n · logω(1) n work (sequential time) or

logω(1) n depth to process n vertices for constructing shortcut edges for some layers. To improve

the efficiency of these algorithms, a natural question is: can we reduce the number of vertices

needed to be processed when constructing the shortcut edges?

Subemulator: Motivated by the above question, we introduce a new concept called subemulator.

For α ≥ 1 and an integer b ≥ 1, we say H = (V ′,E′,w′) is an (α, b)-subemulator of G = (V,E,w)

if 1) V ′ is a subset of V ; 2) for any vertex v in G, at least one of the b-closest vertices of v is in

V ′; 3) for any two vertices u, v in H, distH(u, v) α-approximates distG(u, v). In addition, if we can

assign each vertex v ∈ V a leader q(v) ∈ V ′ such that q(v) is one of the b-closest vertices of v and

206

for any two vertices u, v ∈ V it always satisfies

distG(q(u),q(v)) ≤ distH(q(u),q(v)) ≤ distG(q(u),u) + β · distG(u, v) + distG(v,q(v)) (6.1)

for some β ≥ 1, we call H a strong (α, b, β)-subemulator of G. A subemulator H can be regarded

as a sparsification of vertices of G. Two notions related to subemulators are vertex sparsifiers [92,

93] and distance-preserving minors [94]. The major difference between subemulators and vertex

sparisfiers is that the vertex sparsifier approximately preserves flow/cut properties for the subset

of vertices while the subemulator approximately preserves distances for the subset of vertices.

Furthermore, both vertex sparsifiers and distance-preserving minors have given fixed vertex sets,

whereas the vertex set of the subemulator is not given but should satisfy the condition 2) mentioned

above, i.e., each vertex in G has a b-closest neighbor which is in the subemulator.

To construct a strong subemulator H = (V ′,E′,w′), we need to construct both a vertex set V ′

and a edge set E′. For convenience, let us consider the case for b � log n. Constructing V ′ is

relatively easy. We can add each vertex of V to V ′ with probability Θ(log(n)/b). By Chernoff

bound, with high probability, each vertex has at least one of the b-closest vertices in V ′ and the

size of V ′ is roughly Õ(n/b). For each vertex v ∈ V , it is natural to set the leader vertex q(v) to be

the vertex in V ′ which is the closest vertex to v. The challenge remaining is to construct the edge

set E′ such that condition 3) and Equation (6.1) can be satisfied. In our construction, we add two

categories of edges to E′:

1. For each edge {u, v} ∈ E , add an edge {q(u),q(v)} with weight distG(q(u),u) + w(u, v) +

distG(v,q(v)) to E′.

2. For each v ∈ V and for each u which is a b-closest vertex of v, we add an edge {q(u),q(v)}

with weight distG(q(u),u) + distG(u, v) + distG(q(v), v) to E′.

The first category of edges looks natural — for an edge {u, v} of which two end points u, v are

assigned to different leader vertices q(u),q(v), we add a shortcut edge connecting those two leader

vertices with a weight which is equal to the smallest length of the q(u) − q(v) path crossing edge

207

{u, v}. However, if we only have the edges from the first category, it is not good enough to preserve

the distances between leader vertices (see Section 7.4 for examples). To fix this, we add the second

category of edges. We now sketch the analysis. It follows from our construction that each edge

in H corresponds to a path in G. Thus, ∀u′, v′ ∈ V ′, distG(u′, v′) ≤ distH(u′, v′). We only need to

upper bound distH(u′, v′). Let us fix a shortest path u′ = z0 → z1 → · · · → zh = v′ between u′, v′

in the original graph G. We want to construct a path in H with a short length. We use the following

procedure to find some crucial vertices on the shortest path z0 → · · · → zh:

1. y0 ← u′, k ← 0. Repeat the following two steps:

2. Let xk+1 be the last vertex on the path z0 → · · · → zh such that xk+1 is one of the b-closest

vertices of yk . If xk+1 is zh, finish the procedure.

3. Set yk+1 to be the next vertex of xk+1 on the path z0 → · · · → zh. k ← k + 1.

It is obvious that

distG(u′, v′) = distG(yk, xk+1) +

k−1∑
i=0
(distG(yi, xi+1) + w(xi+1, yi+1)).

For i = 0,1, · · · , k, xi+1 is a b-closest vertex of yi. Thus, there is an edge {q(yi),q(xi+1)} in H from

the second category of the edges. For i = 1,2, · · · , k, yi is adjacent to xi. Thus, there is an edge

{q(xi),q(yi)} in H from the first category of the edges. Thus u′ = q(y0) → q(x1) → q(y1) →

q(x2) → q(y2) → · · · → q(xk+1) = v′ is a valid path (see Figure 6.2) in H and the length is

distG(u′, v′) + 2 ·
k∑

i=1
(distG(xi,q(xi)) + distG(yi,q(yi))) .

By our choice of q(·), we have ∀v ∈ V,distG(v,q(v)) = distG(v,V ′). So,

∀i = 1,2, · · · , k,distG(xi,q(xi)) ≤ distG(yi−1,q(yi−1)) + distG(yi−1, xi).

208

0y 1x 1y 2x 2y kx ky 1x k

)q(x1)q(y1)q(x 2)q(y2)q(x k)q(yk

'y0 u 'x 1 vk

Figure 6.2: For u′, v′ ∈ V ′ and a shortest path between u′, v′ in G, we can find a corresponding path
between u′, v′ in the subemulator H. A single dashed line denotes a shortest path in G between
yi−1 and xi. A single solid line denotes an edge {xi, yi} in G. A double dashed line denotes a
shortest path in G between a vertex and its leader vertex. A double solid blue line denotes an edge
in the subemulator H with a weight which is equal to the length of the path in G represented by
the corresponding blue arc.

Since yi is not a b-closest vertex of yi−1 but q(yi−1) is a b-closest vertex of yi−1,

∀i = 1,2, · · · , k,distG(yi−1,q(yi−1)) ≤ distG(yi−1, xi) + w(xi, yi).

Since xk+1 ∈ V ′, we have distG(yk,q(yk)) ≤ distG(yk, xk+1). Then we know
∑k

i=1 distG(xi,q(xi)) ≤

2 · distG(u′, v′) and
∑k

i=1 distG(yi,q(yi)) ≤ distG(u′, v′). Thus, we can conclude distH(u′, v′) ≤

8 · distG(u′, v′). We now argue that our construction of E′ also satisfies Equation (6.1) with β = 22.

There are two cases. The first case is that either u is a b-closest vertex of v or v is a b-closest

vertex of u. In this case, E′ contains an edge from the second category with weight distG(q(u),u)+

distG(u, v) + distG(v,q(v)) which implies Equation (6.1). The second case is that neither u is a

b-closest vertex of v nor v is a b-closest vertex of u. In this case, we have

distH(q(u),q(v)) ≤ 8 distG(q(u),q(v)) ≤ 8(distG(q(u),u) + distG(u, v) + distG(v,q(v)))

≤ distG(q(u),u) + distG(v,q(v)) + 22 distG(u, v),

where the last step follows from distG(u,q(u)),distG(v,q(v)) ≤ distG(u, v).

The bottleneck of computing a subemulator is to obtain b-closest vertices for each vertex. We

can use the truncated broadcasting technique (see Algorithm 1) to handle this in poly(log n) parallel

time using Õ(m + nb2) total work (see Lemma 3.1.3). The output subemulator has Õ(n/b) vertices

209

and O(m + nb) edges. As we can see, there is a trade-off between total work used and the number

of vertices in the subemulator: if we can afford more work for the construction of the subemulator,

fewer vertices appear in the subemulator.

Low hop emulator via subemulator: Now, we describe how to use strong subemulators to

construct a low hop emulator. Consider a weighted undirected graph G = (V,E,w). Suppose we

obtain a sequence of subemulators H0 = (V0,E0,w0),H1 = (V1,E1,w1), · · · ,Ht = (Vt,Et,wt) where

H0 = G and ∀i = 0, · · · , t − 1, Hi+1 is a strong (8, bi,22)-subemulator of Hi for some integer bi ≥ 1.

We have V = V0 ⊇ V1 ⊇ V2 ⊇ · · · ⊇ Vt . For v ∈ Vi, let us denote qi(v) ∈ Vi+1 as the corresponding

assigned leader vertex of v in the subemulator Hi+1 satisfying Equation (6.1). We add following

three types of edges to the graph G′ = (V,E′,w′) and we will see that G′ is a low hop emulator of

G:

1. ∀i = 0, · · · , t − 1, ∀v ∈ Vi, add an edge {v,qi(v)} with weight 27t−i−1 · distHi (v,qi(v)) to G′.

2. ∀i = 0, · · · , t, for each edge {u, v} ∈ Ei, add an edge {u, v} with weight 27t−i · wi(u, v) to G′.

3. ∀i = 0, · · · , t, ∀v ∈ Vi, add an edge {v,u} with weight 27t−i · distHi (v,u) to G′ for each u

which is one of the bi-closest vertices of v in Hi (define bt = |Vt |).

Roughly speaking, we can imagine that G′ is obtained from flattening a graph with t + 1 layers.

Each layer corresponds to a subemulator. The lowest layer corresponds to the original graph G,

and the highest layer corresponds to the last subemulator Ht . The first type of edges connect the

vertices in the lower layer to the leader vertices in the higher layer. The second type of edges

correspond to the subemulators on all layers. The third type of edges shortcut the close vertices

from the same layer. Furthermore, the weights of the edges on the lower layers have larger penalty

factor, i.e., the penalty factor of the edges on the layer i is 27t−i.

By Equation (6.1) of strong subemulator, we can show that ∀u, v ∈ V,distG(u, v) ≤ distG′(u, v).

Consider the first layer. By the second type edges, we know that∀u, v ∈ V,distG′(u, v) ≤ 27t distG(u, v).

In particular, for t = O(log log n), G′ preserves the distances in G up to a poly(log n) factor. Now

210

we want to show that ∀u, v ∈ V , there is always a shortest path connecting u, v in G′ such that

the number of hops (edges) of the path is at most 4t. For convenience, we conceptually split each

vertex of G′ into vertices on different layers based on the construction of G′. Consider a shortest

path u = z0 → z1 → z2 → · · · → zh = v using the smallest number of hops in G′ with splitting

vertices. By the constructions of three types of edges we know that ∀ j = 0,1, · · · , h − 1, z j, z j+1

are either on the same layer or on the adjacent layers, and z0, zh are on the lowest layer which is

corresponding to H0 = G. We will claim two properties of the shortest path z0 → · · · → zh.

Suppose z j, z j+1 are on the same layer corresponding to Hi. We claim that z j+2 cannot be on the

same layer as z j and z j+1. Intuitively, this is because if z j+2 is on the same layer of z j then there are

two cases which both lead to contradictions: in the first case, z j+2 is close to z j such that there is

a third type edge connecting z j, z j+2 which implies that z j+1 is redundant; in the second case, z j+2

is far away from z j such that distHi (z j,qi(z j)) + distHi+1(qi(z j),qi(z j+2)) + distHi (qi(z j+2), z j+2) is a

good approximation to distHi (z j, z j+2), and due to a smaller penalty factor, the length of the path

z j → qi(z j) → (shortest path) → qi(z j+2) → z j+2 is smaller than the length of z j → z j+1 → z j+2.

We claim another property of z0 → · · · → zh as the following. If the layer of z j+1 is lower than the

layer of z j , the layer of any of z j+2, z j+3, · · · , zh must be lower than the layer of z j . At a high level,

this is because of Equation (6.1) and the smaller penalty factor for higher layers: if we move from

higher layer to lower layer then come back to the higher layer, it is always worse than we only

move in the higher layers. Due to these two claims, the shortest path in G′ should have the follow-

ing shape: the path starts from the lowest layer, then keeps moving to the non-lower layers until

reach some vertex, and finally keeps moving to the non-higher layers until reach the target. Fur-

thermore, there are no three consecutive vertices on the path which are on the same layer. Hence

we can conclude that the shortest path has number of hops at most 4t. Based on above analysis,

the shortest path in G′ will never use the second type edges. Thus, in our final construction of G′,

we only need the first type and the third type of edges.

The size of G′ is at most
∑t

i=0 |Vi | ·bi. The bottleneck of the construction of G′ is to compute the

third type edges. This can be done by truncated broadcasting (Algorithm 1) in t · poly(log n) paral-

211

lel time using
∑t

i=0
(
|Ei | + |Vi | · b2

i

)
·poly(log n) total work (Lemma 3.1.3). The problem remaining

is to determine the sequence of bi. As we discussed previously, we are able to use poly(log |Vi |)

parallel time and Õ(|Ei | + |Vi |bi) total work to construct a subemulator Hi+1 with Õ(|Vi |/bi) ver-

tices and O(|Ei | + |Vi |bi) edges. By double-exponential problem size reduction technique (see

Section 3.2), we can make bi grow double exponentially fast in this situation. More precisely, if

we set b0 ← poly(log n), bi+1 ← b1.25
i , and t ← O(log log n), then in this case, the result low

hop emulator can be computed in poly(log n) parallel time and Õ(m + n) total work. Furthermore,

the size of the result low hop emulator is Õ(n), the approximation ratio is poly(log n), and the hop

diameter is O(log log n).

Applications of low hop emulator: We can build a useful oracle based on a low hop emulator:

given a query subset S of vertices, the oracle can output a poly(log n) approximations to distG(v,S)

for all v ∈ V . Furthermore, the output approximate distances always satisfy triangle inequality.

To implement the such oracle, we preprocess an Õ(n) size low hop emulator G′ with poly(log n)

approximation ratio and O(log log n) hop diameter in poly(log n) parallel time using Õ(m+n)work.

For each oracle query, we can just run Bellman-Ford on G′ with source S. The work needed for

each Bellman-Ford iteration is at most Õ(n). Since the hop diameter is O(log log n), the number

of iterations needed is O(log log n). Therefore, each query can be handled in poly(log n) parallel

time and Õ(n) total work. The triangle inequality is always satisfied since the output approximate

distances are exact distances in the graph G′. Several parallel applications such as Bourgain’s

embedding, metric tree embedding and low diameter decomposition directly follow the oracle.

6.1.2 Minimum cost flow and shortest path

Uncapacitated minimum cost flow: At a high level, our uncapacitated minimum cost flow algo-

rithm is based on Sherman’s framework [46]. Sherman’s algorithm has several recursive iterations.

It first uses the multiplicative weights update method [95] to find a flow which almost satisfies the

demands and has nearly optimal cost. If the unsatisfied parts of demands are sufficiently small, it

212

routes them naively to make the flow truly feasible without increasing the cost by too much. Oth-

erwise, it updates the demands to be the unsatisfied parts of the original demands and recursively

routes the new demands. [46] shows that if the problem is well conditioned, then the final solution

can be computed by the above process efficiently. However, most of the time the natural form of

the uncapacitated minimum cost flow problem is not well-conditioned. Thus, a preconditioner, i.e.,

a linear operator P ∈ Rr×n applied to the flow constraints, is needed to make the problem well-

condtitioned. Consider a given graph G = (V,E,w). Sherman shows that if for any valid demands

b ∈ Rn we always have

OPT(b) ≤ ‖Pb‖1 ≤ γ · OPT(b),

then P can make the condition number of the flow problem on G be upper bounded by γ, where

OPT(b) denotes the optimal cost of the flow on G satisfying the demands b. Sherman gives a

method to construct such P. However, to have a smaller approximation ratio γ, the time of com-

puting matrix-vector multiplication with P must increase such that the running time of the mul-

tiplicative weights update step increases. To balance the trade-off, Sherman constructs P with

γ = 2O(
√

log n) approximation ratio and nnz(x) · 2O(
√

log n) time for matrix-vector multiplication

P · x, where nnz(x) denotes the number of non-zero entries of x. Thus, its final running time is

m · 2O(
√

log n). To design a parallel minimum cost flow algorithm using poly(log n) parallel time

and m poly(log n) work, we cannot avoid improving the sequential running time of minimum cost

flow to m poly(log n) time in sequential setting. By above discussion, a natural way is to find

a linear transformation P which can embed the uncapacitated minimum cost flow into `1 with

poly(log n) approximation ratio and the running time for matrix-vector multiplication P · x needs

to be nnz(x) · poly(log n). Next, we will introduce how to construct such embedding P.

First, we compute a mapping ϕ which embeds the vertices into `d
1 for d = O(log2 n) such that

∀u, v ∈ V , ‖ϕ(u) − ϕ(v)‖1 is a poly(log n) approximation to distG(u, v). This step can be done by

Bourgain’s embedding. The parallel version of Bourgain’s embedding is one of the applications

213

of low hop emulator as we mentioned previously. Then we can reduce the minimum cost flow

problem to the geometric transportation problem. The geometric transportation problem is also

called Earth Mover’s Distance (EMD) problem. Specifically, it is the following minimization

problem:

min
π:V×V→R≥0

∑
(u,v)∈V×V

π(u, v) · ‖ϕ(u) − ϕ(v)‖1

s.t. ∀u ∈ V,
∑
v∈V

π(u, v) −
∑
v∈V

π(v,u) = bu.

We denote OPTEMD(b) as the optimal cost of the above EMD problem. It is easy to see that

OPTEMD(b) is a poly(log n) approximation to OPT(b). Therefore, it suffices to construct P such

that for any valid demand vector b ∈ Rn,

OPTEMD(b) ≤ ‖Pb‖1 ≤ poly(log n) · OPTEMD(b).

One known embedding of EMD into `1 is based on randomly shifted grids [96]. We can without

loss of generality assume that the coordinates of ϕ(v) are integers in {1, · · · ,∆} for some ∆ which

is a power of 2 and upper bounded by poly(n). We create 1+ log∆ levels of cells. We number each

level from 0 to log∆. Each cell in level log∆ has side length ∆. Each cell in level i+1 is partitioned

into 2d equal size cells in level i and thus each cell in level i has side length 2i. Therefore each cell

in level 0 can contain at most one point ϕ(v) for v ∈ V . According to [96], for any valid demand

vector b ∈ Rn,

E
τ∼{0,1,··· ,∆−1}

log∆∑
i=0

∑
C: a cell in level i

2i ·

������ ∑
v∈V :ϕ(v)+τ·1d is in the cell C

bv

������
 (6.2)

is always a poly(log n) approximation to OPTEMD(b), where τ is drawn uniformly at random from

{0,1, · · · ,∆− 1}, and ϕ(v)+ τ · 1d is the point obtained after shifting each coordinate of ϕ(v) by τ.

214

1C

0 …
…

…
…

…

…

P

v

4

1
2

3

2C

4C3C

1
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1

1C

2C

3C

4C
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0

Figure 6.3: Consider cells C1,C2,C3,C4 shown above with side length 4. Blue dots denote the positions of
ϕ(v) + τ · 1d for some vertex v and τ = 0,1,2,3. The entries of P in the column corresponding to v and in
the rows corresponding to (C, τ) for C = C1,C2,C3,C4 and τ = 0,1,2,3 are shown on the right.

Since each cell in level i has side length 2i, Equation (6.2) is equal to

log∆∑
i=0

1
2i

2i−1∑
τ=0

∑
C: a cell in level i

2i ·

������ ∑
v∈V :ϕ(v)+τ·1d is in the cell C

bv

������
=

log∆∑
i=0

∑
C: a cell in level i

2i−1∑
τ=0

������ ∑
v∈V :ϕ(v)+τ·1d is in the cell C

bv

������ . (6.3)

Equation (6.3) can be written in the from of ‖Pb‖1 where each row of P corresponds to a cell C

and a shift value τ, and each column of P corresponds to a vertex v. Figure 6.3 shows how does

P look like: for a entry Pi,j corresponding to a cell C, a shift value τ and a vertex v, we have

Pi,j = 1 if the point ϕ(v) + τ · 1d is in the cell C and Pi,j = 0 otherwise. Therefore, P can be used

to precondition the minimum cost flow problem on G with condition number at most poly(log n).

However, such matrix P is dense and have poly(n) number of rows. It is impossible to naively

write down the whole matrix. Fortunately, we will show that P has a good structure and we can

write down a compressed representation of P. Consider a cell C in level i and a vertex v. If there

exists τ ∈ {0,1, · · · ,2i − 1} such that ϕ(v) + τ · 1d is in the cell C, then there must exist τ1, τ2 such

that ϕ(v) + τ · 1d is in the cell C if and only if τ ∈ {τ1, τ1 + 1, · · · , τ2}. In other words, the shift

values τ that can make ϕ(v) + τ · 1d be in C are consecutive. Another important property that we

can show is that the number of cells in level i that can contain at least one of the shifted points

ϕ(v), ϕ(v) + 1d, ϕ(v) + 2 · 1d, · · · , ϕ(v) + (2i − 1) · 1d is at most d + 1. Now consider a column of

215

P corresponding to some vertex v. The entries with value 1 in this column should be in several

consecutive segments. The number of such segments is at most (d + 1) · (1 + log∆) ≤ poly(log n).

Thus, for each column of P, we can just store the beginning and the ending positions of these

segments. The whole matrix P can be represented by n poly(log n) segments. The only problem

remaining is to use this compressed representation to do matrix-vector multiplication. Suppose we

want to compute y = P · x for some x ∈ Rn. It is equivalent to the following procedure:

1. Initialize y to be an all-zero vector.

2. For each column i and for each segment [l,r] in column i, increase all yl, yl+1, · · · , yr by xi.

We can reduce the above procedure to the following one:

1. Initialize z to be an all-zero vector.

2. For each column i and for each segment [l,r] in column i, increase zl by xi and increase zr+1

by −xi.

3. Compute y j ←
∑ j

k=1 zk .

In the above procedure, we only need to compute a prefix sum for z. Since each column of P has

at most poly(log n) segments, the total number of segments involved is at most nnz(x) · poly(log n).

The total running time is Õ(nnz(x) · poly(log n)). Notice that even though y has a large dimension,

it can be decomposed into Õ(nnz(x) ·poly(log n)) segments where the entries of each segment have

the same value. Thus, we just store the beginning and the ending positions of each segment of y.

Each step of computing the compressed representation can be implemented in poly(log n) par-

allel time and each step of computing the matrix-vector multiplication can also be implemented in

poly(log n) parallel time. We obtained a desired preconditioner. By plugging this preconditioner

into Sherman’s framework, we can obtain a parallel (1 + ε)-approximate uncapacitated minimum

cost flow algorithm with poly(log n) depth and ε−2m · poly(log n) work.

216

Parallel (1+ε)-approximate s−t shortest path and single source shortest paths: s−t Shortest

path is closely related to uncapacitated minimum cost flow. If we set demand bs = 1, bt = −1 and

bv = 0 for v , s, t ∈ V , then the optimal cost of the flow is exactly distG(s, t). Thus, computing

a (1 + ε)-approximation to distG(s, t) can be achieved by our flow algorithm. However, the flow

algorithm can only output a flow but not a path. We need more effort to find a path from s to t

with length at most (1 + ε) · distG(s, t). As mentioned by [43], if the (1 + ε)-approximate flow

does not contain any cycles, then for each vertex v , t we can choose an out edge with probability

proportional to the magnitude of its out flow, and the expected length of the path found from s to t

is exactly the cost of the flow which is (1+ ε) · distG(s, t). Unfortunately, the flow outputted by our

flow algorithm may create cycles. If we randomly choose an out edge for each vertex v , t with

probability proportional to the magnitude of the out flow, we may stuck in some cycle and may not

find a path from s to t. To handle cycles, we propose the following procedure to find a path from s

to t.

1. If the graph only has constant number of vertices, find the shortest path from s to t directly.

2. Otherwise, compute the (1 + ε′)-approximate minimum cost flow from s to t for ε′ =

Θ(ε/log n).

3. For each vertex except t, choose an out edge with probability proportional to its out flow.

4. Consider the graph with n − 1 chosen edges. Each connected component in the graph is

either a tree or a tree plus an edge. A component is a tree if and only if t is in the component.

For each component, we compute a spanning tree. If the component contains t, we set t as

the root of the spanning tree. Otherwise, we set an arbitrary end point of the non-tree edge

as the root of the spanning tree.

5. Construct a new graph of which vertices are roots of spanning trees. For each edge {u, v} in

the original graph, we add an edge connecting the root of u and the root of v with weight

(distance from u to the root of u on the spanning tree) + w(u, v)

217

+(distance from v to the root of u on the spanning tree).

6. Recursively find a (1+ ε′)-approximate shortest path from the root of s to t in the new graph.

Recover a path in the original graph from the path in the new graph.

In the above procedure, only 1/2 vertices can be root vertices. Thus, the procedure can recurse at

most log n times which implies that the parallel time of the algorithm is at most poly(log n) and the

total work is still ∼ m poly(n). Now analyze the correctness. It is easy to see that each edge in the

new graph corresponds to a path between two root vertices in the original graph. Thus a path from

the root of s to t in the new graph corresponds to an s − t path in the original graph. We only need

to show that the distance between the root of s and t in the new graph can not be much larger than

the distance between s and t in the original graph. To prove this, we show that if we do a random

walk starting from s and for each step we choose the next vertex with probability proportional to

the out flow, the expected length of the random walk to reach t is exactly the cost of the flow. By

coupling argument, we can prove that the expected length of the distance between the root of s and

t in the new graph is at most (1 + O(ε′)) · (the cost of the flow). Thus, the expected length of the

final s − t path is at most (1 +O(ε′))log n · distG(s, t) ≤ (1 + ε) · distG(s, t).

The single source shortest path (SSSP) problem is a more general problem. Given a source

vertex s ∈ V , we want to approximate distG(s,u) for every vertex u ∈ V simultaneously. Consider

a special case of the uncapacitated minimum cost flow problem. If we set demand bu ≥ 0 for all

u , s ∈ V and bs = −
∑

u,s∈V bu, then the optimal cost of the flow is exactly
∑

u∈V\{s} bu ·distG(s,u).

Thus, the flow routes on the shortest path tree is the optimal flow. We extend our recursive path

construction method to recursively compute a tree T such that
∑

u∈V\{s} bu · distT (s,u) is a (1 + ε)-

approximation to the optimal cost. Notice that the dual solution of the uncapacitated minimum

cost flow can also be obtained by Sherman’s algorithm [46]. By plugging these two subroutines

into the framework proposed by [43], we are able to compute approximate single source shortest

paths.

218

6.2 Low hop emulator

Given a weighted undirected graph G, we give a new construction of the graph emulator of G.

For any two vertices in our constructed emulator, there is always a shortest path with small number

of hops. Furthermore, our construction can be implemented in parallel efficiently.

6.2.1 Subemulator

In this section, we introduce subemulator. Later, we will show how to use subemulator to

construct an emulator with low hop diameter.

Definition 6.2.1 (Subemulator). Consider two connected undirected weighted graphs G = (V,E,w)

and H = (V ′,E′,w′). For b ∈ [|V |] and α ≥ 1, if H satisfies

1. V ′ ⊆ V ,

2. ∀v ∈ V, BallG,b(v) ∩ V ′ , ∅,

3. ∀u, v ∈ V ′, distG(u, v) ≤ distH(u, v) ≤ α · distG(u, v),

then H is an (α, b)-subemulator of G. Furthermore, if there is a mapping q : V → V ′ which

satisfies ∀v ∈ V,q(v) ∈ BallG,b(v) and

∀u, v ∈ V,distH(q(u),q(v)) ≤ distG(u,q(u)) + distG(v,q(v)) + β · distG(u, v)

for some β ≥ 1, then H is a strong (α, b, β)-subemulator of G, q(·) is called a leader mapping, and

q(v) is the leader of v.

Next, we will show how to construct a strong subemulator. Algorithm 31 gives a construction of

the vertices of the subemulator. Algorithm 32 gives a construction of the edges of the subemulator.

The next lemma shows the correctness of the construction of the vertices of the subemulator. It

also gives an upper bound of the number of vertices in the subemulator.

219

Algorithm 31 Construction of the Vertices of the Subemulator
1: procedure SAMPLES(G = (V,E,w), b ∈ [|V |])
2: Output: V ′

3: Initialize S,V ′← ∅, n← |V |
4: For v ∈ V , add v into S with probability min(50 log(n)/b,1/2).
5: For v ∈ V , if either v ∈ S or BallG,b(v) ∩ S = ∅, V ′← V ′ ∪ {v}.
6: Return V ′.
7: end procedure

Algorithm 32 Construction of the Edges of the Subemulator
1: procedure CONNECTS(G = (V,E,w),V ′ ⊆ V, b ∈ [|V |]) . V ′, b satisfies ∀v ∈ V,BallG,b(v) ∩ V ′ , ∅.
2: Output: H = (V ′,E ′,w′), q : V → V ′

3: For v ∈ V , q(v) ← arg minu∈BallG ,b (v)∩V ′ distG(u, v). . Choose an arbitrary u if there is a tie.
4: Initialize E ′ = ∅.
5: For {u, v} ∈ E , E ′← E ′ ∪ {{q(u),q(v)}}.
6: For v ∈ V,u ∈ BallG,b(v), E ′← E ′ ∪ {{q(u),q(v)}}.
7: For e′ ∈ E ′, initialize w′(e′) ← ∞.
8: For {u, v} ∈ E , consider e′ = {q(u),q(v)} ∈ E ′,

w′(e′) ← min(w′(e′),distG(q(u),u) + w(u, v) + distG(v,q(v))).

9: For v ∈ V,u ∈ BallG,b(v), consider e′ = {q(u),q(v)},

w′(e′) ← min(w′(e′),distG(q(u),u) + distG(u, v) + distG(v,q(v))).

10: Return H = (V ′,E ′,w′) and q : V → V ′.
11: end procedure

Lemma 6.2.2 (Construction of the vertices). Consider a connected n-vertex m-edge undirected

weighted graph G = (V,E,w) and a parameter b ∈ [n]. SAMPLES(G, b) (Algorithm 31) will output

V ′ ⊆ V such that ∀v ∈ V,BallG,b(v) ∩V ′ , ∅. Furthermore, E[|V ′|] ≤ 3
2 ·min(50 log(n)/b,1/2) · n.

Proof. The correctness follows from line 5 of Algorithm 31, i.e., ∀v ∈ V,BallG,b(v) ∩ V ′ , ∅.

Let us consider the expected size of V ′. We have

E[|V ′|] = E[|S |] + E[|{v ∈ V | BallG,b(v) ∩ S = ∅}|].

Consider the case when 1/2 < 50 log(n)/b. We have E[|S |] = 1/2 · |V |. Notice that BallG,b(v)∩

S = ∅ implies that neither v ∈ S nor u ∈ S, where u , v is an arbitrary vertex in BallG,b(v). Thus,

220

we have Pr[BallG,b(v) ∩ S = ∅] ≤ 1/4, and it implies that E[|V ′|] ≤ 1/2 · |V | + 1/4 · |V | = 3/4 · n.

Consider the case when 1/2 > 50 log(n)/b. We have E[|S |] = 50 log(n)/b · |V |. Since

E[| BallG,b(v) ∩ S |] = b · 50 log(n)/b = 50 log(n), by Chernoff bound, we have

Pr[BallG,b(v) ∩ S = ∅] ≤ Pr[| BallG,b(v) ∩ S | ≤ 25 log(n)] ≤ e−50 log(n)/8 ≤ 1/n2.

By union bound,

Pr[∃v,BallG,b(v) ∩ S = ∅] = 1/n.

Thus, E[|{v ∈ V | BallG,b(v) ∩ S = ∅}|] ≤ 1/n · n = 1. We can conclude that E[|V ′|] ≤

50 log(n)/b · n + 1 ≤ 75 log(n)/b · n.

The next lemma shows the correctness of the construction of the edges of the subemulator. It

also gives an upper bound of the number of edges in the subemulator.

Lemma 6.2.3 (Construction of the edges). Consider a connected n-vertex m-edge undirected

weighted graph G = (V,E,w), a vertex set V ′ ⊆ V and a parameter b ∈ [n]. If ∀v ∈ V,BallG,b(v) ∩

V ′ , ∅, then the output graph H = (V ′,E′,w′) of CONNECTS(G,V ′, b) (Algorithm 32) will be

a strong (8, b,22)-subemulator (Definition 6.2.1) of G, and the output q : V → V ′ is a leader

mapping. Furthermore, |E′| ≤ m + nb.

Proof. Firstly, let us consider the size of |E′|. The number of edges added to E′ by line 5 of

Algorithm 32 is at most m. By the definition of BallG,b(v), we have | BallG,b(v)| ≤ b. The number

of edges added to E′ by line 6 is at most n · b. Thus, we can conclude |E′| ≤ m + nb.

In the following, we will show that H is actually a good subemulator of G. The first two

properties of Definition 6.2.1 are automatically satisfied by the guarantees of the input V ′, b. Let

us prove the remaining properties.

Consider two arbitrary vertices u, v ∈ V ′. Let p = (u = x0, x1, · · · , xh = v) be an arbitrary

shortest path between u, v in the graph H. Then distH(u, v) = w′(p) =
∑h

i=1 w
′(xi−1, xi). By

221

line 8 and line 9, ∀i ∈ [h], there should be yi, zi ∈ V with q(yi) = xi−1,q(zi) = xi such that

w′(xi−1, xi) ≥ distG(xi−1, yi) + distG(yi, zi) + distG(zi, xi) ≥ distG(xi−1, xi). Then, distH(u, v) =∑h
i=1 w

′(xi−1, xi) ≥
∑h

i=1 distG(xi−1, xi) ≥ distG(x0, xh) = distG(u, v).

Next, we show how to upper bound distH(u, v). Consider two arbitrary vertices u, v ∈ V ′. If

v ∈ BallG,b(u), then by line 9,

distH(u, v) ≤ w′(u, v) ≤ distG(q(u),u) + distG(u, v) + distG(v,q(v)) = distG(u, v),

where the last equality follows from q(u) = u,q(v) = v. Otherwise, we use the following procedure

to find a sequence of vertices which are on the shortest path between u and v in the graph G.

1. y0 ← u, t ← 0.

2. If v ∈ BallG,b(yt), finish the procedure.

3. Otherwise, find an edge {xt+1, yt+1} ∈ E on the shortest path between yt and v in G such that

xt+1 ∈ BallG,b(yt), yt+1 < BallG,b(yt).

4. t ← t + 1. Go to step 2.

By the above procedure, it is easy to show that

distG(u, v) = distG(yt, v) +

t∑
i=1
(distG(yi−1, xi) + w(xi, yi)). (6.4)

Claim 6.2.4.
∑t

i=1 rG,b(yi−1) ≤ distG(u, v).

Proof. By our construction of xi, yi, we know that ∀i ∈ [t], yi < BallG,b(yi−1). Thus, ∀i ∈ [t],

rG,b(yi−1) ≤ distG(yi−1, yi). We have

t∑
i=1

rG,b(yi−1) ≤

t∑
i=1

distG(yi−1, yi) = distG(u, yt) ≤ distG(u, v).

222

Claim 6.2.5. ∀u, v ∈ V, |rG,b(u) − rG,b(v)| ≤ distG(u, v).

Proof. Since BallG(u,rG,b(u)) ⊆ BallG(v,rG,b(u)+distG(u, v)), we have | BallG(v,rG,b(u)+distG(u, v))| ≥

b which implies that rG,b(v) ≤ rG,b(u) + distG(u, v). Similarly, we have rG,b(u) ≤ rG,b(v) +

distG(u, v).

Claim 6.2.6. ∀i ∈ [t], w′(q(yi−1),q(xi)) ≤ 2rG,b(yi−1) + 2 distG(yi−1, xi).

Proof. Since xi ∈ BallG,b(yi−1), we have w′(q(yi−1),q(xi)) ≤ distG(q(yi−1), yi−1) + distG(yi−1, xi) +

distG(xi,q(xi)) ≤ rG,b(yi−1) + distG(yi−1, xi) + rG,b(xi) by line 9. Due to Claim 6.2.5, rG,b(xi) ≤

rG,b(yi−1) + distG(yi−1, xi). We can conclude w′(q(yi−1),q(xi)) ≤ 2rG,b(yi−1) + 2 distG(yi−1, xi).

Claim 6.2.7. ∀i ∈ [t], w′(q(xi),q(yi)) ≤ 2rG,b(yi−1) + 2 distG(yi−1, xi) + 2w(xi, yi).

Proof. Since {xi, yi} ∈ E , we have w′(q(xi),q(yi)) ≤ distG(q(xi), xi) + w(xi, yi) + distG(yi,q(yi)) ≤

rG,b(xi) + w(xi, yi) + rG,b(yi) by line 8. By Claim 6.2.5, rG,b(xi) ≤ rG,b(yi−1) + distG(yi−1, xi) and

rG,b(yi) ≤ rG,b(yi−1)+distG(yi−1, xi)+w(xi, yi). We can conclude that w′(q(xi),q(yi)) ≤ 2rG,b(yi−1)+

2 distG(yi−1, xi) + 2w(xi, yi).

Claim 6.2.8. w′(q(yt), v) ≤ 2 distG(yt, v).

Proof. By our procedure of finding xi, yi, we know that v ∈ BallG,b(yt). Notice that q(v) =

v ∈ V ′. By line 3, we know that distG(yt,q(yt)) ≤ distG(yt, v). Then by line 9, w′(q(yt), v) ≤

distG(q(yt), yt) + distG(yt, v) + distG(v,q(v)) ≤ 2 distG(yt, v).

By Claim 6.2.6, Claim 6.2.7, and Claim 6.2.8, we have:

distH(u, v) ≤ w′(q(yt), v) +

t∑
i=1
(w′(q(yi−1),q(xi)) + w

′(q(xi),q(yi)))

≤ 2 distG(yt, v) +

t∑
i=1
(4rG,b(yi−1) + 4 distG(yi−1, xi) + 2w(xi, yi))

≤ 4 distG(u, v) + 4
t∑

i=1
rG,b(yi−1)

≤ 8 distG(u, v), (6.5)

223

where the third inequality follows from Equation (6.4), and the last inequality follows from Claim 6.2.4.

Next, we will show that H is actually a strong subemulator of G, and q : V → V ′ is a cor-

responding leader mapping. By line 3, ∀v ∈ V, we have q(v) ∈ BallG,b(v) ∩ V ′. Consider two

arbitrary vertices u, v ∈ V . There are two cases. In the first case, u ∈ BallG,b(v) or v ∈ BallG,b(u).

In this case, we have distH(q(u),q(v)) ≤ w′(q(u),q(v)) ≤ distG(q(u),u)+distG(u, v)+distG(v,q(v)),

where the last inequality follows from line 9. In the second case, neither u ∈ BallG,b(v) nor

v ∈ BallG,b(u). In this case, since q(u) ∈ BallG,b(v),q(v) ∈ BallG,b(u), we know that distG(u, v) ≥

max(distG(v,q(v)),distG(u,q(u))). Thus, we have

distH(q(u),q(v)) ≤ 8 distG(q(u),q(v))

≤ 8(distG(q(u),u) + distG(u, v) + dist(v,q(v)))

= distG(q(u),u) + distG(q(v), v) + (7 distG(q(u),u) + 7 distG(q(v), v) + 8 distG(u, v))

≤ distG(q(u),u) + distG(q(v), v) + 22 distG(u, v),

where the first inequality follows from Equation (6.5), the second inequality follows from triangle

inequality, and the last inequality follows from distG(u, v) ≥ max(distG(v,q(v)),distG(u,q(u))).

Algorithm 33 Construction of the Subemulator
1: procedure SUBEMULATOR(G = (V,E,w), b ∈ [|V |])
2: Output: H = (V ′,E ′,w′),q : V → V ′

3: V ′←SAMPLES(G, b). . Algorithm 31.
4: H,q←CONNECTS(G,V ′, b). . Algorithm 32.
5: Return H,q.
6: end procedure

Theorem 6.2.9 (Construction of the subemulator). Consider a connected n-vertex m-edge undi-

rected weighted graph G = (V,E,w) and a parameter b ∈ [n]. SUBEMULATOR(G, b) (Algo-

rithm 33) will output an undirected weighted graph H = (V ′,E′,w′) and q : V → V ′ such that H is

a strong (8, b,22)-subemulator of G, and q is a corresponding leader mapping (Definition 6.2.1).

Furthermore, E[|V ′|] ≤ min(75 log(n)/b,3/4)n, |E′| ≤ m + nb.

224

Proof. Follows directly from Lemma 6.2.2 and Lemma 6.2.3.

6.2.2 A warm-up algorithm: distance oracle via subemulator

Given a weighted undirected graph, a distance oracle is a static data structure which uses small

space and can be used to efficiently return an approximate distance between any pair of query

vertices. In this section, we give a warm-up algorithm which is a direct application of subemulator.

In section 6.2.3, we will show how to apply the preprocessing procedure PREPROC (Algorithm 34)

in our construction of low hop emulator.

Algorithm 34 Distance Oracle
1: procedure PREPROC(G = (V,E,w), k)
2: n← |V |,m← |E |.
3: t ← 0,H0 = (V0,E0,w0) ← G, b0 ← max

(
d(75 log n)2e,n1/(2k)) .

4: n0 ← |V0 |,m0 ← |E0 |

5: while nt ≥ bt do
6: Ht+1 = (Vt+1,Et+1,wt+1),qt ←SUBEMULATOR(Ht, bt). . See Algorithm 33.
7: ∀v ∈ Vt , let Bt (v) ← BallHt ,bt (v) and compute and store distHt (v,u) for every u ∈ Bt (v).
8: nt+1 ← |Vt+1 |,mt+1 ← |Et+1 |.
9: bt+1 ← b1.25

t .
10: t ← t + 1.
11: end while
12: For v ∈ Vt , Bt (v) ← Vt , compute distHt (v,u) for u ∈ Vt , and qt (v) ← x where x ∈ Vt is smallest.
13: end procedure
14: procedure QUERY(u, v)
15: Output: d ∈ Z≥0
16: l ← 0, d0 ← 0,u0 ← u, v0 ← v.
17: while vl < Bl(ul) and ul < Bl(vl) do
18: dl ← distHl

(ul,ql(ul)) + distHl
(vl,ql(vl)).

19: ul+1 = ql(ul), vl+1 = ql(vl).
20: l ← l + 1
21: end while
22: dl ← distHl

(ul, vl).
23: Return d =

∑l
i=0 di.

24: end procedure

Lemma 6.2.10 (Properties of the preprocessing algorithm). Given a connected weighted graph

G = (V,E,w) with |V | = n, |E | = m, and a parameter k ∈ [0.5,0.5 log n], let t be the value at the

end of PREPROC(G, k) (Algorithm 34). For i > t, define ni = mi = 0, bi = b1.25
i−1 ,Vi = ∅. We have

following properties:

225

1. t ≤ 4dlog(k) + 1e.

2. For i ∈ Z≥0,

• E[ni] ≤ max(n1+1/k,n · (75 log n)4)/b2
i ,

• E[mi] ≤ m + 2 ·max(n1+1/(2k),n · (75 log n)2),

• E
[∑

v∈Vi |Bi(v)|
]
≤ max(n1+1/k,n · (75 log n)4)/bi.

Proof. By line 9 and the definition of bi for i > t, we have ∀i ∈ Z≥0, bi = b1.25i
0 .

Consider i = 1 + dlog1.25 logb0
ne. We have bi = b1.25i

0 > n. By line 5, we can conclude t < i.

Thus, t ≤ dlog1.25 logb0
ne ≤ d(log 2k)/log 1.25e ≤ 4dlog(k) + 1e.

Consider ni, we have ∀i ∈ Z≥1,

E[ni] ≤ (75 log n)/bi−1 · E[ni−1]

≤ E[ni−1]/b0.5
i−1

≤ n/©«
i−1∏
j=0

b j
ª®¬

0.5

≤ n/
(
b
∑i−1

j=0 1.25j

0

)0.5

= n/b(1.25i−1)·2
0

= n/b2
i · b

2
0

≤ max(n1+1/k,n · (75 log n)4)/b2
i , (6.6)

where the first inequality follows from Theorem 6.2.9, the second inequality follows from that bi

is increasing and b0.5
0 ≥ 75 log n, the forth inequality follows from ∀ j ∈ Z≥0, b j = b1.25j

0 .

Consider mi, we have ∀i ∈ Z≥1,

E[mi] ≤ E[mi−1] + E[ni−1] · bi

226

= m +
i−1∑
j=0

E[n j] · b j

≤ m +
i−1∑
j=0

max(n1+1/k,n · (75 log n)4)/b j

≤ m + 2 max(n1+1/(2k),n · (75 log n)2),

where the first inequality follows from Theorem 6.2.9, the second inequality follows from Equa-

tion (6.6), and the last inequality follows from b j+1 ≥ 2b j and b0 = max(n1/(2k), (75 log n)2).

Consider
∑

v∈Vi |Bi(v)|, we have ∀i ∈ Z≥1,

E

[∑
v∈Vi

|Bi(v)|

]
≤ E

[∑
v∈Vi

bi

]
= E[ni] · bi ≤ max(n1+1/k,n · (75 log n)4)/bi,

where the first inequality follows from line 7, line 12 and the definition of BallHi,bi , and the last

inequality follows from Equation (6.6).

Lemma 6.2.11 (Correctness of the query algorithm). Given a connected weighted graph G =

(V,E,w)with |V | = n, |E | = m, and a parameter k ∈ [0.5,0.5 log n], run preprocessing PREPROC(G, k)

(Algorithm 34). Then ∀u, v ∈ V , the output d of QUERY(u, v) (Algorithm 34) satisfies distG(u, v) ≤

d ≤ 264dlog(k)+1e distG(u, v). The running time of QUERY(u, v) is O(log(4k)).

Proof. Let t be the value at the end of the preprocessing procedure PREPROC(G, k). Let l be

the value at the end of the query procedure QUERY(u, v). By induction, we can show that ∀i ∈

{0,1, · · · , l},ui, vi ∈ Vi. Since ∀v ∈ Vt,Bt(v) = Vt and the condition of line 17, we have l ≤ t,

i.e., the query procedure will terminate. By Lemma 6.2.10, we have t ≤ 4dlog(k) + 1e. Thus, the

running time of QUERY(u, v) is O(log(4k)).

In the following we will show that∀i ∈ {0,1, · · · , l},distHi (ui, vi) ≤
∑l

j=i d j ≤ 26l−i distHi (ui, vi).

Our proof is by induction. The base case is i = l. By line 22, dl = distHl
(ul, vl). Suppose

227

distHi+1(ui+1, vi+1) ≤
∑l

j=i+1 d j ≤ 26l−i−1 distHi+1(ui+1, vi+1). For the contraction,

l∑
j=i

d j = distHi (ui,ui+1) + distHi (vi, vi+1) +

l∑
j=i+1

d j

≥ distHi (ui,ui+1) + distHi (vi, vi+1) + distHi+1(ui+1, vi+1)

≥ distHi (ui,ui+1) + distHi (vi, vi+1) + distHi (ui+1, vi+1)

≥ distHi (ui, vi),

where the first equality follows from line 18, the first inequality follows from
∑l

j=i+1 d j ≥ distHi+1(ui+1, vi+1),

the second inequality follows from Theorem 6.2.9 that Hi+1 is a subemulator of Hi and Defini-

tion 6.2.1, and the last inequality follows from triangle inequality.

For the expansion,

l∑
j=i

d j = distHi (ui,ui+1) + distHi (vi, vi+1) +

l∑
j=i+1

d j

≤ distHi (ui,ui+1) + distHi (vi, vi+1) + 26l−i−1 distHi+1(ui+1, vi+1)

≤ distHi (ui,ui+1) + distHi (vi, vi+1) + 8 · 26l−i−1 distHi (ui+1, vi+1)

≤ distHi (ui,ui+1) + distHi (vi, vi+1) + 8 · 26l−i−1(distHi (ui+1,ui) + distHi (ui, vi) + distHi (vi, vi+1))

= (8 · 26l−i−1 + 1)(distHi (ui,ui+1) + distHi (vi, vi+1)) + 8 · 26l−i−1 distHi (ui, vi)

≤ 24 · 26l−i−1 distHi (ui, vi) + 2 distHi (ui, vi)

≤ 26 · 26l−i−1 distHi (ui, vi) = 26l−i distHi (ui, vi),

where the first equality follows from line 18, the first inequality follows from

l∑
j=i+1

d j ≤ 26l−i−1 distHi+1(ui+1, vi+1),

the second inequality from Theorem 6.2.9 that Hi+1 is an (8, bi)-subemulator of Hi and Defini-

tion 6.2.1, the third inequality follows from triangle inequality, and the forth inequality follows

228

from that distHi (ui, vi) ≥ max(distHi (ui,ui+1),distHi (vi, vi+1)) since neither ui ∈ BallHi,bi (vi) nor

vi ∈ BallHi,bi (ui).

By Lemma 6.2.10, we have t ≤ 4dlog(k) + 1e. Since l ≤ t ≤ 4dlog(k) + 1e and distG(u, v) =

distH0(u0, v0), distG(u, v) ≤ d ≤ 264dlog(k)+1e distG(u, v).

6.2.3 Low hop emulator

Distance preserving graph with low hop diameter

In this section, we construct a new graph with more vertices and edges such that the distance

is approximately preserved and there always exists a low hop shortest path between any pair of

vertices in the new graph. In the next section, we will show how to refine the construction to make

the new graph be an emulator.

Lemma 6.2.12 (Size of the graph). Consider a connected undirected weighted graph G = (V,E,w)

and k ∈ [0.5,0.5 log n], where n = |V |. Let G′ = (V ′,E′,w′) be the output of LOWHOPDIMGRAPH(G, k)

(Algorithm 35). Then, E[|V ′|] ≤ O(n), E[|E′|] ≤ O((n1+1/(2k) + n log2 n + m) log k).

Proof. For i ∈ {0,1, · · · , t}, let ni = |Vi |,mi = |Ei |. We have

E[|V ′|] =
t∑

i=0
E[ni] ≤

t∑
i=0

max(n1+1/k,n(75 log n)4)/b2
i ≤

t∑
i=0

max(n1+1/k,n(75 log n)4)/(b2
0 · 2

i) ≤ 2n,

(6.7)

where the first inequality follows from Lemma 6.2.10, the second inequality follows from bi/b0 >

2i, and the last inequality follows from b0 = max
(
(75 log n)2,n1/(2k)

)
.

Consider |E′|, we have

E[|E′|] ≤
t−1∑
i=0

E[ni] +

t∑
i=0

E

[∑
v∈Vi

|Bi(v)|

]
+

t∑
i=0

E[mi]

≤ 2n +
t∑

i=0
E

[∑
v∈Vi

|Bi(v)|

]
+

t∑
i=0

E[mi]

229

Algorithm 35 Low Hop Diameter Distance Preserving Graph
1: procedure LOWHOPDIMGRAPH(G = (V,E,w), k)
2: Output: G′ = (V ′,E ′,w′)
3: Run the processing procedure PREPROC(G, k), and let t be the value at the end of the procedure.
∀i ∈ {0,1, · · · , t}, let Hi = (Vi,Ei,wi), qi : Vi → Vi+1,Bi : Vi → 2Vi , bi be computed by the such
procedure. . See Algorithm 34.

4: Initialize V ′← ∅,E ′← ∅.
5: For v ∈ V , if v ∈ Vi, v < Vi+1, add i + 1 copies of v into V ′, i.e., V ′← V ′ ∪ {v(0), v(1), · · · , v(i)}.
6: For i ∈ {0,1, · · · , t − 1}, for each v ∈ Vi, E ′← E ′ ∪ {{v(i),u(i+1)}}, where u = qi(v).
7: For i ∈ {0,1, · · · , t}, for each {u, v} ∈ Ei, E ′← E ′ ∪ {{u(i), v(i)}}.
8: For i ∈ {0,1, · · · , t}, for each v ∈ Vi, for each u ∈ Bi(v), E ′← E ′ ∪ {{u(i), v(i)}}.
9: For each e′ ∈ E ′, initialize w′(e′) ← ∞.

10: For i ∈ {0,1, · · · , t − 1}, for each v ∈ Vi, consider e′ = {v(i),u(i+1)} where u = qi(v). Let

w′(e′) ← min(w′(e′),27t−i−1 · distHi (u, v)).

11: For i ∈ {0,1, · · · , t}, for each {u, v} ∈ Ei, consider e′ = {u(i), v(i)}. Let

w′(e′) ← min(w′(e′),27t−i · wi(u, v)).

12: For i ∈ {0,1, · · · , t}, for each v ∈ Vi, for each u ∈ Bi(v), consider e′ = {u(i), v(i)}. Let

w′(e′) ← min(w′(e′),27t−i · distHi (u, v)).

13: Output G′ = (V ′,E ′,w′).
14: end procedure

≤ 2n +
t∑

i=0
max(n1+1/k,n · (75 log n)4)/bi +

t∑
i=0

E[mi]

≤ 2n +
t∑

i=0
max(n1+1/k,n · (75 log n)4)/(2i · b0) +

t∑
i=0

E[mi]

≤ 2n + 2 ·max(n1+1/(2k),n · (75 log n)2) +
t∑

i=0
E[mi]

≤ 2n + 2 ·max(n1+1/(2k),n · (75 log n)2) + 4(dlog(k) + 1e · (m + 2 ·max(n1+1/(2k),n · (75 log n)2))

≤ 8dlog(k) + 1e · (m + 2 ·max(n1+1/(2k),n · (75 log n)2)),

where the first inequality follows from line 6, line 7 and line 8, the second inequality follows from

Equation (6.7), the third inequality follows from Lemma 6.2.10, the forth inequality follows from

230

bi > b0 · 2i, the sixth inequality follows from that t ≤ 4dlog(k) + 1e and

E[mi] ≤ m + 2 ·max(n1+1/(2k),n · (75 log n)2)

by Lemma 6.2.10.

Lemma 6.2.13 (Low hop diameter). Consider a connected undirected weighted graph G = (V,E,w)

and k ∈ [0.5,0.5 log n], where n = |V |. Let G′ = (V ′,E′,w′) be the output of LOWHOPDIMGRAPH(G, k)

(Algorithm 35). Then, ∀u, v ∈ V,

distG(u, v) ≤ distG′(u(0), v(0)) ≤ 274dlog(k)+1e · distG(u, v).

Furthermore, ∀x, y ∈ V ′,

distG′(x, y) = dist(16dlog(k)+1e)
G′ (x, y).

Proof. Consider two vertices u, v ∈ V . Since H0 = G and the construction of the weights in line 11,

we have distG′(u(0), v(0)) ≤ 27t · distG(u, v). Due to Lemma 6.2.10, t ≤ 4dlog(k) + 1e. We have

distG′(u(0), v(0)) ≤ 274dlog(k)+1e · distG(u, v). Because ∀i ∈ [t], Hi is a subemulator of Hi−1, we have

distG′(u(0), v(0)) ≥ distG(u, v) by Definition 6.2.1 and the construction of the weights in line 10,

line 11 and line 12.

For a vertex v(i) ∈ V ′, we define the level of v(i) as i, i.e., level(v(i)) = i. Consider two arbitrary

vertex x, y ∈ V ′. Let p = (x = z0, z1, z2, · · · , zh = y) be a shortest path with minimum number of

hops between x and y in G′.

Claim 6.2.14. ∀ j ∈ [h], | level(z j−1) − level(z j)| ≤ 1.

Proof. It follows directly from the construction of E′ in Algorithm 35.

Claim 6.2.15. ∀ j ∈ [h − 1], either level(z j−1) , level(z j) or level(z j) , level(z j+1).

231

Proof. We prove by contradiction. Suppose level(z j−1) = level(z j) = level(z j+1) = c. Suppose

z j−1, z j, z j+1 are copies of u,a, v respectively, i.e, z j−1 = u(c), z j = a(c), z j+1 = v(c). By the con-

struction, we know that w′(z j−1, z j) ≥ 27t−c distHc (u,a) and w′(z j, z j+1) ≥ 27t−c distHc (a, v). Thus,

w′(z j−1, z j)+w
′(z j, z j+1) ≥ 27t−c distHc (u, v). There are two cases. In the first case, either v ∈ Bc(u)

or u ∈ Bc(v). In this case, {z j−1, z j+1} ∈ E′ by line 8 and w′(z j−1, z j+1) ≤ 27t−c distHc (u, v)

by line 12. Thus, {z j−1, z j+1} ∈ E′,w′(z j−1, z j+1) ≤ w′(z j−1, z j) + w′(z j, z j+1), and it contradicts

to that p has the minimum number of hops. In the second case, neither v ∈ BallHc,bc (u) nor

u ∈ BallHc,bc (v). Consider this case. Let u′ = qc(u), v′ = qc(v). We have

w′(z j−1,u′(c+1)) + distG′(u′(c+1), v′(c+1)) + w′(v′(c+1), z j+1)

≤ 27t−c−1 · (distHc (u,u
′) + distHc+1(u

′, v′) + distHc (v
′, v))

≤ 27t−c−1 · (2 distHc (u, v) + distHc+1(u
′, v′))

≤ 27t−c−1 · (2 distHc (u, v) + 8 distHc (u
′, v′))

≤ 27t−c−1 · (2 distHc (u, v) + 8(distHc (u,u
′) + distHc (u, v) + distHc (v

′, v)))

≤ 27t−c−1 · 26 distHc (u, v)

< 27t−c distHc (u, v)

≤ w′(z j−1, z j) + w
′(z j, z j+1),

where the first inequality follows from the construction of the edges and the corresponding weights

in G′, the second inequality follows from that distHc (u, v) ≥ max(distHc (u,u
′),distHc (v, v

′)) implied

by neither v ∈ BallHc,bc (u) nor u ∈ BallHc,bc (v), the third inequality follows from Hc+1 is a (8, bc)-

subemulator of Hc (see Theorem 6.2.9 and Definition 6.2.1), the forth inequality follows from

triangle inequality, the fifth inequality follows from distHc (u, v) ≥ max(distHc (u,u
′),distHc (v, v

′))

again. In this case, we can find a shorter path which contradicts to that p is the shortest path.

Claim 6.2.16. ∀ j ∈ {0,1, · · · , h−2}, if level(z j+1) < level(z j), then ∀ j′ ∈ { j+2, · · · , h}, level(z j ′) <

level(z j).

232

Proof. We prove it by contradiction. Suppose level(z j+1) < level(z j) and ∃ j′′ > j such that

level(z j ′′) ≥ level(z j). We can find an z j ′ such that level(z j ′) is the minimum among level(z j), level(z j+1),

· · · , level(z j ′′). Let f < j′ be the largest value such that level(z f) > level(z j ′). Let g > j′ be

the smallest value such that level(zg) > level(z j ′). Due to Claim 6.2.14, we have level(z f) =

level(z f+1) + 1 = · · · = level(z j ′) + 1 = · · · = level(zg−1) + 1 = level(zg). Suppose level(z j ′) = c.

Let z f+1, zg−1 be the copies of u, v respectively, i.e., z f+1 = u(c) and zg−1 = v(c). Let u′ = qc(u), v′ =

qc(v). Then z f = u′(c+1) and zg = v′(c+1). We have

distG′(u′, v′) =
g−1∑
a= f

w′(za, za+1)

= 27t−c−1 distHc (u
′,u) + 27t−c distHc (u, v) + 27t−c−1 distHc (v, v

′)

= 27t−c−1(distHc (u
′,u) + distHc (v

′, v) + 27 distHc (u, v)).

According to Theorem 6.2.9, Hc+1 is a strong (8, bc,22)-subemulator. By Definition 6.2.1, we have

distHc+1(u
′, v′) ≤ distHc (u

′,u) + distHc (v
′, v) + 22 distHc (u, v). Thus, we have

distG′(u′, v′) ≤ 27t−c−1 distHc+1(u
′, v′) ≤ 27t−c−1(distHc (u

′,u) + distHc (v
′, v) + 22 distHc (u, v))

which leads to a contradiction.

By Claim 6.2.16, there must exist j ∈ [h] such that ∀ j′ ∈ {0,1, · · · , j − 1}, level(z j ′) ≤

level(z j ′+1) and ∀ j′ ∈ { j, j +1, · · · , h−1}, level(z j ′) ≥ level(z j ′+1). Together with Claim 6.2.15, we

can conclude that h ≤ 4·t ≤ 16dlog(k)+1e where the last inequality follows from t ≤ 4dlog(k)+1e

by lemma 6.2.10.

Low hop emulator

In this section, we show how to simplify Algorithm 35 to obtain an emulator which has smaller

size than the graph obtained in the previous section. We have two observations. The first observa-

tion is that line 7 and line 11 of Algorithm 35 are useless.

233

Observation 6.2.17. Consider a connected undirected weighted graph G = (V,E,w) and k ∈

[0.5,0.5 log n], where n = |V |. Let G′ = (V ′,E′,w′) be the output of LOWHOPDIMGRAPH(G, k)

(Algorithm 35), and let t,Hi = (Vi,Ei,wi),Bi(·) be the same as described in Algorithm 35. Then

for any i ∈ {0,1, · · · , t} and for any {u, v} ∈ Ei, we have either distG′(u(i), v(i)) < 27t−i · wi(u, v),

u ∈ Bi(v), or v ∈ Bi(u).

Proof. Suppose u < Bi(v) and v < Bi(u). Let u′ = qi(u), v′ = qi(v). We have

distG′(u(i), v(i)) ≤ w′(u(i),u′(i+1)) + distG′(u′(i+1), v′(i+1)) + w′(v′(i+1), v(i))

≤ 27t−i−1 · (distHi (u,u
′) + distHi+1(u

′, v′) + distHi (v
′, v))

≤ 27t−i−1 · (2 distHi (u, v) + distHi+1(u
′, v′))

≤ 27t−i−1 · (2 distHi (u, v) + 8 distHi (u
′, v′))

≤ 27t−i−1 · (2 distHi (u, v) + 8(distHi (u,u
′) + distHi (u, v) + distHi (v

′, v)))

≤ 27t−i−1 · 26 distHi (u, v)

< 27t−i · distHi (u, v)

≤ 27t−i · wi(u, v),

where the second inequality follows from the construction of the edges and their corresponding

weights in Algorithm 35, the third inequality follows from distHi (u,u
′),distHi (v

′, v) ≤ distHi (u, v)

since v < Bi(u) and u < Bi(v), the forth inequality follows from that Hi+1 is a (8, bi)-subemulator of

Hi (see Theorem 6.2.9 and Definition 6.2.1), the fifth inequality follows from triangle inequality,

the sixth inequality follows from distHi (u,u
′),distHi (v

′, v) ≤ distHi (u, v) again.

If u ∈ Bi(v) or v ∈ Bi(u), then by line 8 and line 12 of Algorithm 35, there is an edge in

G′ with weight at most 27t−i · distHi (u, v) ≤ 27t−i · wi(u, v). Otherwise distG′(u(i), v(i)) < 27t−i ·

wi(u, v). Together with the above observation, we can avoid using the edges constructed by line 7 of

Algorithm 35 in any shortest path. The second observation is that ∀i ∈ [t], v ∈ Vi, w′(v(i−1), v(i)) =

0. Thus, we can use a single vertex v to denote v(0), v(1), · · · , v(i).

234

By removing line 7 and line 11 of Algorithm 35, and contraction of the vertices from different

levels, we obtain Algorithm 36.

Algorithm 36 Low Hop Emulator
1: procedure LOWHOPDIMEMULATOR(G = (V,E,w), k)
2: Output: G′ = (V ′,E ′,w′)
3: Run the processing procedure PREPROC(G, k), and let t be the value at the end of the procedure.
∀i ∈ {0,1, · · · , t}, let Hi = (Vi,Ei,wi), qi : Vi → Vi+1,Bi : Vi → 2Vi , bi be computed by the such
procedure. . See Algorithm 34.

4: Initialize E ′← ∅.
5: For i ∈ {0,1, · · · , t − 1}, for each v ∈ Vi, E ′← E ′ ∪ {{v,u}}, where u = qi(v).
6: For i ∈ {0,1, · · · , t}, for each v ∈ Vi, for each u ∈ Bi(v), E ′← E ′ ∪ {{u, v}}.
7: For each e′ ∈ E ′, initialize w′(e′) ← ∞.
8: For i ∈ {0,1, · · · , t − 1}, for each v ∈ Vi, consider e′ = {v,u} where u = qi(v). Let

w′(e′) ← min(w′(e′),27t−i−1 · distHi (u, v)).

9: For i ∈ {0,1, · · · , t}, for each v ∈ Vi, for each u ∈ Bi(v), consider e′ = {u, v}. Let

w′(e′) ← min(w′(e′),27t−i · distHi (u, v)).

10: Output G′ = (V,E ′,w′).
11: end procedure

Theorem 6.2.18 (Low hop emulator). Consider a connected undirected weighted graph G =

(V,E,w) and k ∈ [0.5,0.5 log n]. Let G′ = (V,E′,w′) be the output of LOWHOPDIMEMULATOR(G, k)

(Algorithm 36). Then, E[|E′|] ≤ O(n1+1/(2k) + n log2 n), where n = |V |. Furthermore, ∀u, v ∈ V,

distG(u, v) ≤ distG′(u, v) ≤ 274dlog(k)+1e · distG(u, v).

Furthermore, ∀u, v ∈ V ,

distG′(u, v) = dist(16dlog(k)+1e)
G′ (u, v).

235

Proof. Consider |E′|, we have

E[|E′|] ≤
t−1∑
i=0

E[ni] +

t∑
i=0

E

[∑
v∈Vi

|Bi(v)|

]
≤ 2n +

t∑
i=0

E

[∑
v∈Vi

|Bi(v)|

]
≤ 2n +

t∑
i=0

max(n1+1/k,n · (75 log n)4)/bi

≤ 2n +
t∑

i=0
max(n1+1/k,n · (75 log n)4)/(2i · b0)

≤ 2n + 2 ·max(n1+1/(2k),n · (75 log n)2),

where the first inequality follows from line 5 and line 6 of Algorithm 36, the second inequality

follows from Equation (6.7), the third inequality follows from Lemma 6.2.10, the forth inequality

follows from bi > b0 · 2i.

The only two differences between Algorithm 35 and Algorithm 36 are as follows. The first

difference is that we remove line 7 and line 11 from Algorithm 35. This change does not affect

distG′(u, v) for any u, v ∈ V because of Observation 6.2.17. The second difference is that we

contract v(0), v(1), · · · , to vertex v. We can do this operation because we have w′(v(i−1), v(i)) = 0 for

any v(i−1), v(i) in Algorithm 35. Then the statement follows directly from Lemma 6.2.13

6.3 Uncapacitated minimum cost flow

Given an undirected graph G = (V,E,w) with |V | = n vertices and |E | = m edges, the vertex-

edge incidence matrix A ∈ Rn×m is defined as the following:

∀i ∈ [n], j ∈ [m], Ai,j =

1 {i, v} ∈ E is the j-th edge of G and i < v,

−1 {i, v} ∈ E is the j-th edge of G and i > v,

0 Otherwise.

236

The weight matrix W ∈ Rm×m is a diagonal matrix. The i-th diagonal entry of W is w(e), where

e ∈ E is the i-th edge. Given a demand vector b ∈ Rn with 1>n b = 0, i.e.,
∑n

i=1 bi = 0, the

uncapacitated minimum cost flow (transshipment) problem is to solve the following problem:

min
f ∈Rm
‖W f ‖1

s.t. A f = b.

If b only has two non-zero entries bi = 1 and b j = −1, then the optimal cost is the length of the

shortest path between vertex i and vertex j. Without loss of generality, we can suppose that each

edge has positive weight. Otherwise, we can contract the edges with weight 0, and the contraction

will not affect the value of the solution. Let x = W f , then the problem becomes

min
x∈Rm
‖x‖1 (6.8)

s.t. AW−1x = b.

In this section, we will focus on finding a (1 + ε)-approximation to problem (6.8).

6.3.1 Sherman’s framework

Before we present our algorithm, let us review Sherman’s algorithm [46], and completely open

his black box.

Definition 6.3.1 (`1 Non-linear condition number). Given a matrix B ∈ Rr×m, the `1 non-linear

condition number of B is defined as

κ(B) = inf
S
‖B‖1→1 · sup

x∈Rm:Bx,0

‖S(Bx)‖1
‖Bx‖1

,

where the range of S : Rr → Rm is over all maps such that ∀x ∈ Rm, B · S(Bx) = Bx.

237

By above definition, an alternative way to define κ(B) is as the following:

κ(B) = ‖B‖1→1 · max
g∈{y∈Rr |y=Bx,x∈Rm}\{0}

min
x:Bx=g

‖x‖1
‖g‖1

.

Definition 6.3.2 ((α, β)-Solution). Given a matrix B ∈ Rr×m and a vector g ∈ {y ∈ Rr | y =

Bx, x ∈ Rm}, let x∗ = arg minx:Bx=g ‖x‖1. If ‖x‖1 ≤ α‖x∗‖1 and ‖Bx−g‖1 ≤ β‖B‖1→1‖x∗‖1, then

x is called an (α, β)-solution with respect to (B,g). Given a matrix B ∈ Rr×m, if an algorithm can

output an (α, β)-solution with respect to (B,g) for any vector g ∈ {y ∈ Rr | y = Bx, x ∈ Rm}, then

the algorithm is called an (α, β)-solver for B.

Definition 6.3.3 (Composition of the solvers). Suppose F1 is an (α1, β1)-solver for B ∈ Rr×m and

F2 is an (α2, β2)-solver for B. For any input vector g ∈ {y ∈ Rr | y = Bx, x ∈ Rm}, the composition

F2 ◦ F1 firstly runs F1 to obtain an (α1, β1)-solution x ∈ Rm with respect to (B,g), then runs F2 to

obtain an (α2, β2)-solution x′ ∈ Rm with respect to (B,g − Bx), and finally outputs x + x′.

Lemma 6.3.4 ([46]). Suppose F1 is an (α1, β1/κ)-solver for B ∈ Rr×m and F2 is an (α2, β2/κ)-

solver for B, where κ is the `1 non-linear condition number of B, i.e., κ = κ(B). Then F2 ◦ F1 is an

(α1 + α2β1, β1β2/κ)-solver for B.

Corollary 6.3.5 ([46]). Let ε ∈ (0,0.5). Suppose F is an (1 + ε, ε/κ) solver for B ∈ Rr×m, where

κ is the `1 non-linear condition number of B, i.e., κ = κ(B). Define F1 = F, and F t = F t−1 ◦ F.

Then F t is an (1 + 4ε, ε t/κ) solver.

Corollary 6.3.6 ([46]). Let ε ∈ (0,0.5), t,M ∈ R≥0. Suppose F1 is an (1 + 4ε, ε t/κ)-solver for

B ∈ Rr×m, and F2 is an (M,0)-solver for B, where κ = κ(B). Then F2 ◦ F1 is an (1 + 4ε + Mε t,0)-

solver for B.

Let us come back to the minimum cost flow problem, problem (6.8). One observation is that

if a matrix P ∈ Rr×m has full column rank, then PAW−1x = Pb ⇔ AW−1x = b. So, instead of

solving Equation (6.8) directly, we can design a matrix P ∈ Rr×m with full column rank, and try to

238

solve

min
x∈Rm
‖x‖1 (6.9)

s.t. PAW−1x = Pb.

Notice that since P has full column rank, problem (6.9) is exactly the same as problem (6.8).

Although an (α,0)-solver for PAW−1 is also an (α,0)-solver for AW−1, an (α, β)-solver for PAW−1

may not be an (α, β)-solver for AW−1 for β > 0. As shown in [46], if κ(PAW−1) is smaller, then

it is much easier to design a (1 + ε, ε/κ(PAW−1))-solver for PAW−1. If κ(PAW−1) is small, then

we say P is a good preconditioner for AW−1. Before we discuss how to construct P, let us assume

κ(PAW−1) ≤ κ, and review how to solve problem (6.9).

As introduced by [46], there is a simple (n,0)-solver to problem (6.9).

Algorithm 37 An (n,0)-Solver
1: procedure MSTROUTING(G = (V,E,w), b ∈ Rn)
2: Output: f ∈ R |E |

3: Compute a minimum spanning tree T = (V,E ′,w) of G.
4: Choose an arbitrary vertex as the root of T . Initialize f ∈ Rm.
5: Consider the i-th edge {u, v} ∈ E (u < v). If {u, v} < E ′, set fi ← 0. Otherwise, if u is the parent of

v, set fi ← −
∑

z is in the subtree of v bz ; otherwise, set fi ←
∑

z is in the subtree of u bz .
6: Return f .
7: end procedure

Lemma 6.3.7 ([46]). Given a connected undirected weighted graph G = (V,E,w), let A ∈ Rn×m

be the corresponding vertex-edge incidence matrix, and let W ∈ Rm×m be the corresponding di-

agonal weight matrix, where n = |V |,m = |E |. For any demand vector b ∈ Rn with 1>n b = 0,

the output f ∈ Rm of MSTROUTING(G, b) (Algorithm 37) satisfies A f = b and ‖W f ‖1 ≤

n ·min f ′:A f ′=b ‖W f ′‖1.

By above lemma, if we set x = W f , we have PAW−1x = Pb, and ‖x‖1 ≤ n·minx′:PAW−1 x′=Pb ‖x′‖1.

Thus, x is an (n,0)-solution to problem (6.9). Suppose ε < 0.5. By Corollary 6.3.6, if we have a

(1+ 4ε, ε1+log n/κ) solver for PAW−1, then together with Lemma 6.3.7, we can obtain a (1+ 5ε,0)-

solver for PAW−1, and thus we can finally find a (1 + 5ε) approximation to problem (6.8). If we

239

have a (1+ ε, ε/κ)-solver for PAW−1, then according to Corollary 6.3.5, we can apply (1+ ε, ε/κ)-

solver 1+ log n times to obtain a (1+4ε, ε1+log n/κ)-solver. It suffices to design a (1+ ε, ε/κ) solver

for PAW−1.

A (1 + ε, ε/κ)-solver

In this section, we will have a detailed discussion of how [46, 67] used multiplicative weights

update algorithm [95] to find a (1 + ε, ε/κ)-solution with respect to (PAW−1,Pb), where κ ≥

κ(PAW−1) is an upper bound of the condition number (see Definition 6.3.1) of PAW−1, and ε ∈

(0,0.5) is an arbitrary real number.

Let x∗ = arg minx:PAW−1 x=Pb ‖x‖1. We have

‖Pb‖1
‖PAW−1‖1→1

≤ ‖x∗‖1 ≤ κ ·
‖Pb‖1

‖PAW−1‖1→1
,

where the lower bound of ‖x∗‖1 follows from that PAW−1x∗ = Pb and the definition of the operator

`1 norm, and the upper bound of ‖x∗‖1 follows from the definition of condition number (see Defini-

tion 6.3.1) and thus ‖PAW−1‖1→1 ·
‖x∗‖1
‖Pb‖1

≤ κ(PAW−1) ≤ κ. Then, we can reduce the optimization

problem to a feasibility problem. We want to binary search s ∈ {1,1+ε, (1+ε)2, · · · , (1+ε)dlog1+ε κe},

and want to find s such that s · ‖Pb‖1
‖PAW−1‖1→1

≤ (1 + ε)‖x∗‖1 and find x ∈ Rm which satisfies

‖x‖1 ≤ s · ‖Pb‖1
‖PAW−1‖1→1

and ‖PAW−1x−Pb‖1 ≤ ε
2κ · ‖PAW−1‖1→1 · s ·

‖Pb‖1
‖PAW−1‖1→1

. The binary search

will takes O(log(log1+ε κ)) rounds.

Now the problem becomes the following feasibility problem: given s ≥ 1, either find x ∈ Rm

such that

‖x‖1 ≤ s · ‖Pb‖1
‖PAW−1‖1→1

and ‖PAW−1x − Pb‖1 ≤ ε
2κ · ‖PAW−1‖1→1 · s ·

‖Pb‖1
‖PAW−1‖1→1

,

or find a certificate such that

‖x‖1 ≤ s · ‖Pb‖1
‖PAW−1‖1→1

and PAW−1x = Pb

240

is not feasible. Let x′ = x · ‖PAW−1‖1→1
‖Pb‖1

· 1
s . Then we have the following equivalent feasibility

problem: given s ≥ 1, either find x′ ∈ Rm such that

‖x′‖1 ≤ 1 and
 PAW−1

‖PAW−1‖1→1
x′ − 1

s ·
Pb
‖Pb‖1

1
≤ ε

2κ (6.10)

or find a certificate such that

‖x′‖1 ≤ 1 and PAW−1

‖PAW−1‖1→1
x′ = 1

s ·
Pb
‖Pb‖1

(6.11)

is not feasible.

Next, we will show how to use multiplicative weights update algorithm [95, 46, 67] to solve

problem (6.10)-(6.11).

Algorithm 38 Solving the Feasibility Problem
1: procedure MWU(P ∈ Rr×n, A ∈ Rn×m,W ∈ Rm×m, b ∈ Rn, s ≥ 1, ε ∈ (0,0.5), κ ≥ 1)
2: Output: x ′ ∈ Rm

3: Initialize weights: ∀i ∈ [m],ψ+1 (i) ← 1,ψ−1 (i) ← 1.

4: Initialize T ← 64κ2 ln(2m)
ε2 , η← ε

8κ , B ∈ Rn×2m :

B←
(

AW−1

‖PAW−1 ‖1→1
− 1

s ·
b ·1>m
‖Pb ‖1

− AW−1

‖PAW−1 ‖1→1
− 1

s ·
b ·1>m
‖Pb ‖1

)
.

5: for t = 1→ T do
6: Ψt ←

∑m
i=1 ψ

+
t (i) +

∑m
i=1 ψ

−
t (i).

7: For i ∈ [m], p+t (i) ← ψ+t (i)/Ψt, p−t (i) ← ψ−t (i)/Ψt .
8: Set pt ∈ R2m s.t. ∀i ∈ [m], the i-th entry of pt is p+t (i), and the (i + m)-th entry of pt is p−t (i).
9: If ‖PBpt ‖1 ≤

ε
2κ , return x ′ ∈ Rm such that ∀i ∈ [m], x ′i = p+t (i) − p−t (i).

10: Otherwise, set yt ∈ {+1,−1}r such that ∀i ∈ [r], (yt)i = sgn
(
(PBpt)i

)
.

11: For i ∈ [m], φ+t (i) ← y>t PBi/2, φ−t (i) ← y>t PBi+m/2.
12: For i ∈ [m], ψ+

t+1(i) ← ψ+t (i) ·
(
1 − ηφ+t (i)

)
,ψ−

t+1(i) ← ψ−t (i) ·
(
1 − ηφ−t (i)

)
.

13: end for
14: Return FAIL.
15: end procedure

Lemma 6.3.8 ([46, 67]). Consider P ∈ Rr×n, A ∈ Rn×m,W ∈ Rm×m, b ∈ Rn, s ≥ 1, ε ∈ (0,0.5), κ ≥

1. MWU(P, A,W, b, s, ε, κ) (Algorithm 38) takes T = O(κ2ε−2 log m) iterations. If MWU(P, A,W, b, s, ε, κ)

does not return FAIL, the output x′ ∈ Rm satisfies Equation (6.10). Otherwise, ȳ = 1
T
∑T

t=1 yt is a

241

certificate that Equation (6.11) is not feasible. In particular,

∀ j ∈ [m], 1
s ·

ȳ>Pb
‖Pb‖1

<
ȳ>(PAW−1)j
‖PAW−1‖1→1

, 1
s ·

ȳ>Pb
‖Pb‖1

< −
ȳ>(PAW−1)j
‖PAW−1‖1→1

.

For completeness, we put the proof here.

Proof. Let us firstly consider the case that MWU(P, A,W, b, s, ε, κ) does not return FAIL. By line 9,

we have ‖PBpt ‖1 ≤
ε

2κ , i.e., m∑
i=1

(
(PAW−1)i

‖PAW−1‖1→1
· (p+t (i) − p−t (i)) −

1
s
·

Pb
‖Pb‖1

· (p+t (i) + p−t (i))
)

1

≤
ε

2κ
.

Since
∑m

i=1(p
+
t (i) + p−t (i)) = 1 and x′i = p+t (i) − p−t (i), we have: PAW−1

‖PAW ‖1→1
x′ −

1
s
·

Pb
‖Pb‖1

1
≤

ε

2κ
.

Furthermore, because ∀i ∈ [m], p+t (i), p
−
t (i) ≥ 0, we have ‖x′‖1 ≤ 1. Thus, x′ satisfies Equa-

tion (6.10).

Let us consider the case when MWU(P, A,W, b, s, ε, κ) outputs FAIL. For i ∈ [m], t ∈ [T], we

have

|φ+t (i)| ≤ ‖yt ‖∞‖PBi‖1/2

=

 (PAW−1)i

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

·

1
/2

≤

 (PAW−1)i

‖PAW−1‖1→1

1
/2 +

1
s
·

Pb
‖Pb‖1

·

1
/2

≤ 1,

where the first step follows from Höder’s inequality, the second step follows from the construction

of B, the third step follows from triangle inequality, and the last step follows from ‖(PAW−1)i‖1 ≤

‖PAW−1‖1→1, ‖Pb/‖Pb‖1‖1 = 1 and s ≥ 1. Similarly, we also have |φ−t (i)| ≤ 1. By Theorem 2.1

242

of [95]:

∀ j ∈ [m],
T∑

t=1

m∑
i=1
(p+t (i)φ

+
t (i) + p−t (i)φ

−
t (i)) ≤

T∑
t=1

φ+t (j) + η
T∑

t=1
|φ+t (j)| +

ln(2m)
η

,

∀ j ∈ [m],
T∑

t=1

m∑
i=1
(p+t (i)φ

+
t (i) + p−t (i)φ

−
t (i)) ≤

T∑
t=1

φ−t (j) + η
T∑

t=1
|φ−t (j)| +

ln(2m)
η

.

By the construction of p+t , p
−
t , φ
+
t , φ
−
t ,

T∑
t=1

m∑
i=1
(p+t (i)φ

+
t (i) + p−t (i)φ

−
t (i)) =

T∑
t=1

y>t PBpt/2 > T ·
ε

4κ
,

where the inequality follows from ∀l ∈ [r], (yt)l = sgn ((PBpt)i) and thus y>t PBpt = ‖PBpt ‖1 >

ε
2κ . Thus,

∀ j ∈ [m],T ·
ε

4κ
<

T∑
t=1

φ+t (j) + ηT +
ln(2m)
η

, (6.12)

∀ j ∈ [m],T ·
ε

4κ
<

T∑
t=1

φ−t (j) + ηT +
ln(2m)
η

. (6.13)

Let ȳ = 1
T
∑T

t=1 yt , then

∀ j ∈ [m],
T∑

t=1
φ+t (j) = T · ȳ>

(
(PAW−1) j

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

)
,

∀ j ∈ [m],
T∑

t=1
φ−t (j) = T · ȳ>

(
−
(PAW−1) j

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

)
.

Recall that η = ε
8κ ,T =

64κ2 ln(2m)
ε2 . Thus, together with Equation (6.12) and Equation (6.13), we

have:

∀ j ∈ [m],0 < ȳ>

(
(PAW−1) j

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

)
,

243

∀ j ∈ [m],0 < ȳ>

(
−
(PAW−1) j

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

)
.

For any x′ ∈ Rm with ‖x′‖1 ≤ 1, we can always find x′+, x′− ∈ Rm such that x′+, x′− ≥ 0, x′ =

x′+ − x′−, and
∑m

i=1(x
′+
i + x′−i) = 1. If x′ satisfies Equation (6.11), then

0 = ȳ>
(

PAW−1

‖PAW−1‖1→1
(x′+ − x′−) −

1
s
·

Pb
‖Pb‖1

)
=

m∑
j=1

(
ȳ>

(
(PAW−1) j

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

)
· x′+j + ȳ>

(
−
(PAW−1) j

‖PAW−1‖1→1
−

1
s
·

Pb
‖Pb‖1

)
· x′−j

)
> 0

which leads to a contradiction.

6.3.2 Preconditioner construction

As discussed in the previous section, if we can find a good preconditioner such that κ(PAW−1)

is small, then we can use a small number of iterations to compute a good solution. Before we

describe how to choose a good preconditioner, let us introduce the following Lemma.

Lemma 6.3.9 ([46, 67]). Given P ∈ Rr×n with full column rank, A ∈ Rn×m,W ∈ Rm×m, if ∀b ∈

{y ∈ Rn | y = AW−1x, x ∈ Rm},

‖x∗‖1 ≤ ‖Pb‖1 ≤ γ‖x∗‖1,

where x∗ = arg minx∈Rm:AW−1 x=b ‖x‖1, then κ(PAW−1) ≤ γ.

Proof. For any x ∈ Rm, ‖PAW−1x‖1 ≤ γ‖x‖1. Thus, ‖PAW−1‖1→1 ≤ γ. By Definition 6.3.1, we

have:

κ(PAW−1) = ‖PAW−1‖1→1 · max
b∈{y∈Rn |y=AW−1 x,x∈Rm}:Pb,0

min
x∈Rm:PAW−1 x=Pb

‖x‖1
‖Pb‖1

≤ γ,

244

where the inequality follows from ‖PAW−1‖1→1 ≤ γ, P has full column rank and ∀b ∈ {y ∈ Rn |

y = AW−1x, x ∈ Rm},

min
x∈Rm:AW−1 x=b

‖x‖1 ≤ ‖Pb‖1.

By above lemma, our goal is to find a linear operator P such that for any demand vector

b, ‖Pb‖1 can approximate the minimum cost flow with demand vector b very well. Instead of

using Sherman’s original lattice algorithm, we propose to use randomly shifted grids based algo-

rithm [96].

Embedding minimum cost flow into `1 via randomly shifted grids

In this section, we review the embedding method of [96] and describe how to construct the

preconditioner. Suppose we have a mapping ϕ : V → [∆]d such that ∀u, v ∈ V ,

distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ α · distG(u, v).

We can reduce estimating the minimum cost flow on G to approximating the cost of the geomet-

ric transportation problem. The geometric transportation problem is also called Earth Mover’s

Distance (EMD) problem. In particular, it is the following minimization problem:

min
π:V×V→R≥0

∑
(u,v)∈V×V

π(u, v) · ‖ϕ(u) − ϕ(v)‖1 (6.14)

s.t. ∀u ∈ V,
∑
v∈V

π(u, v) −
∑
v∈V

π(v,u) = bu.

It is obvious that if we can obtain a β-approximation to the optimal cost of (6.14), we can obtain

an αβ-approximation to the cost of original minimum cost flow problem on G.

For a sequential algorithm, the such embedding ϕ can be obtained by Bourgain’s Embedding.

245

Lemma 6.3.10 (Bourgain’s Embedding [55]). Given an undirected graph G = (V,E,w) with |V | =

n vertices and |E | = m edges, there is a randomized algorithm which can output a mapping

ϕ : V → [∆]d for d = O(log2 n) with probability 0.99 in O(m log2 n) time, such that

∀u, v ∈ V,distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ O(log n) · distG(u, v),

where ∆ ≤
∑

e∈E w(e).

In the remaining of this section, we focus on approximating (6.14). Without loss of generality,

we suppose ∆ is a power of 2. Let L = 1+ log∆. We create L levels grids G0,G1, · · · ,GL−1, where

Gi partitions [2∆]d into disjoint cells with side length 2i. In particular, ∀i ∈ {0,1 · · · , L − 1}, the

i-th level grid Gi is:

{
C

�� C = {a1, · · · ,a1 + 2i − 1} × · · · × {ad, · · · ,ad + 2i − 1},∀ j ∈ [d],a j mod 2i = 1,a j ∈ [2∆]
}
.

Instead of shifting the gird, we shift the points. For each dimension, we can use the same shift

value τ [97]. Let τ be a random variable with uniform distribution over [∆]. We can construct a

vector h ∈ R
∑L−1

i=0 |Gi | with one entry per cell in G0 ∪ G1 ∪ · · · ∪ GL−1. Let h(i,C) correspond to the

cell C ∈ Gi. For each i ∈ {0,1, · · · , L − 1} and each cell C ∈ Gi, we set h(i,C) as:

h(i,C) = d · 2i ·
∑

v∈V :ϕ(v)+τ·1d∈C
bv .

Let OPTEMD(b) denote the optimal solution of the EMD problem (6.14). As shown by [96], ‖h‖1

is a good approximation to OPTEMD(b).

Lemma 6.3.11. Let h ∈ R
∑L−1

i=0 |Gi | be constructed as above. Then,

1. Eτ[‖h‖1] ≤ 2Ld · OPTE MD,

2. ‖h‖1 ≥ OPTEMD(b).

246

Proof. Consider the upper bound. Let π∗ : V×V → R≥0 be the optimal solution of problem (6.14).

E
τ
[‖h‖1] ≤

L−1∑
i=0

∑
(u,v)∈V×V

2 · d · 2i · π∗(u, v) · Pr
τ
[ϕ(u) + τ · 1d and ϕ(v) + τ · 1d are in different cells of Gi]

≤

L−1∑
i=0

∑
(u,v)∈V×V

2 · d · 2i · π∗(u, v) ·
d∑

j=1

|ϕ(u) j − ϕ(v) j |
2i

≤ 2Ld ·
∑

(u,v)∈V×V

π∗(u, v)‖ϕ(u) − ϕ(v)‖1

= 2Ld · OPTEMD(b),

where the second step follows from union bound on all dimensions.

Consider the lower bound. We can build a tree with one node per cell in G0 ∪G1 ∪ · · · ∪GL−1.

For a cell C ∈ Gi, there is a unique cell C′ ∈ Gi+1 such that C ⊂ C′. We connect the nodes

corresponding to C and C′ with an edge of which weight is d · 2i. For u, v ∈ V , there are two cells

C1,C2 ∈ G0 such that ϕ(u) + τ · 1d ∈ C1 and ϕ(v) + τ · 1d ∈ C2. The distance between two nodes

corresponding to C1,C2 on the tree is at least ‖ϕ(u) − ϕ(v)‖1. The cost of the minimum cost flow

on the such tree is

L−1∑
i=0

∑
C∈Gi

d · 2i ·

������ ∑
v∈V :ϕ(v)+τ·1d∈C

bv

������ = ‖h‖1.
Thus, ‖h‖1 ≥ OPTEMD(b).

An observation is that since each cell in Gi has side length 2i, shifting each point by τ · 1d

is equivalent to shifting each point by (τ mod 2i) · 1d for the cells in Gi. Thus, if we modify the

construction of h as the following:

∀i ∈ {0,1, · · · , L − 1},C ∈ Gi, h(i,C) = d · 2i ·
∑

v∈V :ϕ(v)+(τ mod 2i)·1d∈C

bv,

Lemma 6.3.11 still holds. Next, we describe how to construct h′ ∈ R
∑L−1

i=0 2i |Gi |. The entry h′
(i,C,τ)

247

corresponds to the cell C ∈ Gi and the shift value τ. For each i ∈ {0,1, · · · , L−1}, each cell C ∈ Gi

and each shift value τ ∈ [2i], we set h′
(i,C,τ) as:

h′
(i,C,τ) =

1
2i · d · 2

i ·
∑

v∈V :ϕ(v)+τ·1d∈C
bv = d ·

∑
v∈V :ϕ(v)+τ·1d∈C

bv .

It is clear that ‖h′‖1 = E[‖h‖1]. By Lemma 6.3.11, we have

OPTEMD(b) ≤ ‖h′‖1 ≤ 2Ld · OPTEMD(b).

Observe that h′ can be written as a linear map of b, i.e., h′ = P′b, where P′ ∈ R(
∑L−1

i=0 2i |Gi |)×n. Each

row of P′ is indexed by a tuple (i,C, τ) for i ∈ {0,1, · · · , L − 1},C ∈ Gi and τ ∈ [2i], and each

column of P′ is indexed by a vertex v ∈ V . For i ∈ {0,1, · · · , L − 1},C ∈ Gi, τ ∈ [2i], v ∈ V ,

P′
(i,C,τ),v =

d ϕ(v) + τ · 1d ∈ C,

0 Otherwise.

Consider i = 0, τ = 1, ∀v ∈ V , there is a unique cell C ∈ G0 which contains ϕ(v) + 1d . Thus, P′

has full column rank. According to Lemma 6.3.9, since ∀b ∈ {y ∈ Rn | y = AW−1x, x ∈ Rm},

min
x∈Rm:AW−1 x=b

‖x‖1 ≤ OPTEMD(b) ≤ ‖P′b‖1 ≤ 2Ld · OPTEMD(b) ≤ 2Ldα · min
x∈Rm:AW−1 x=b

‖x‖1,

we have κ(P′AW−1) ≤ 2Ldα. However, since the size of P′ is too large, we cannot apply P′

directly in Algorithm 38, and thus it is unclear how to construct a (1 + ε, ε/κ(P′AW−1))-solver for

P′AW−1.

6.3.3 Fast operations for the preconditioner

One of our main contributions is to develop several fast operations for P′ such that we can

implement Algorithm 38 efficiently.

248

Preconditioner compression

Removing useless cells. The first observation is that though P′ has a large number of rows, most

rows of P′ are zero. Thus, we can remove them. Precisely, for each i ∈ {0,1, · · · , L − 1}, let

Ci = {C ∈ Gi | ∃v ∈ V, τ ∈ [2i], s.t. ϕ(v) + τ · 1d ∈ C}. Then we can set P ∈ R(
∑L−1

i=0 2i |Ci |)×n such

that ∀i ∈ {0,1, · · · , L − 1},C ∈ Ci, τ ∈ [2i], v ∈ V ,

P(i,C,τ),v =

d ϕ(v) + τ · 1d ∈ C,

0 Otherwise.

Lemma 6.3.12. ∀i ∈ {0,1, · · · , L − 1}, |Ci | ≤ n · (d + 1).

Proof. Since each cell has side length 2i, for a dimension j ∈ [d] and a vertex v ∈ V , ϕ(v) +

1d, ϕ(v) + 2 · 1d, · · · , ϕ(v) + 2i · 1d can cross the boundary in the j-th dimension at most once.

Therefore, ϕ(v) + 1d, ϕ(v) + 2 · 1d, · · · , ϕ(v) + 2i · 1d can be in at most d + 1 different cells in Gi.

Because V has size n, we can conclude |Ci | ≤ n · (d + 1).

By Lemma 6.3.12, we know that P has at most 2∆ · n(d + 1) rows. This is still too large.

Compressed representation. Another observation is that, P may have many identical rows.

Thus, we want to handle these rows simultaneously. To achieve this goal, we introduce a con-

cept called compressed representation.

Definition 6.3.13 (Compressed representation of a vector). Let I = {([a1, b1], c1), · · · , ([as, bs], cs)},

where ci ∈ R, [ai, bi] ⊆ [1,r] for some r ∈ Z≥1, and ∀i , j ∈ [s], [ai, bi] ∩ [a j, c j] = ∅. Let x ∈ Rr .

If ∀i ∈ [s], j ∈ [ai, bi], x j = ci and ∀ j ∈ [1,r] \
⋃

i∈[s][ai, bi], x j = 0, then I is an compressed

representation of x. The size of the compressed representation I is |I | = s.

By above definition, the compressed representation of x is not unique.

Definition 6.3.14 (Compressed representation of a matrix). Let I = (I1, I2, · · · , In). Given a matrix

P ∈ Rr×n, if ∀i ∈ [n], Ii is an compressed representation of Pi, then I is called an compressed rep-

resentation of P. Furthermore, the size of the compressed representation I is defined as
∑n

i=1 |Ii |.

249

Algorithm 39 Computing an compressed representation of P

1: procedure IMPLICITP(ϕ : V → [∆]d)
2: Output: I
3: n← |V |, L ← 1 + log∆,∀i ∈ {0,1, · · · , L − 1},Ci ← ∅, and create grids G0,G1, · · · ,GL−1.
4: ∀i ∈ {0,1, · · · , L − 1}, v ∈ V,Ci ← Ci ∪ {C ∈ Gi | ∃τ ∈ [2i], ϕ(v) + τ · 1d ∈ C}.
5: for the i-th vertex v ∈ V do
6: Ii ← ∅.
7: for l ∈ {0,1, · · · , L − 1} do
8: For each C ∈ Cl with ∃τ ∈ [2l], ϕ(v) + τ · 1d ∈ C, find τ1, τ2 ∈ [2l] such that

τ1 = minτ∈[2l]:ϕ(v)+τ ·1d ∈C τ, τ2 = maxτ∈[2l]:ϕ(v)+τ ·1d ∈C τ.

9: Suppose C is the k-th cell in Cl. a← (k − 1)2l +
∑l−1

j=0 2j |Cj |.

Ii ← Ii ∪ {([a + τ1,a + τ2] , d)} .

10: end for
11: end for
12: Return I = (I1, I2, · · · , In).
13: end procedure

Lemma 6.3.15 (Computing an compressed representation of P). Given an undirected graph G =

(V,E,w) with |V | = n, |E | = m and a mapping ϕ : V → [∆]d for some ∆, d, such that

∀u, v ∈ V,distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ α · distG(u, v),

the output I = (I1, I2, · · · , In) of IMPLICITP(ϕ) (Algorithm 39) is an compressed representation of

a matrix P with full column rank and κ(PAW−1) ≤ O(αLd), where L = 1+ log∆, A ∈ Rn×m is the

vertex-incidence matrix, and W ∈ Rm×m is the diagonal weight matrix. Furthermore, for i ∈ [n],

the size of Ii is at most (d + 1)L. The running time of IMPLICITP(ϕ) is n · poly(dL log n).

Proof. As discussed previously, P has full column rank and κ(PAW−1) ≤ O(αLd) by our con-

struction. As discussed in the proof of Lemma 6.3.12, ∀l ∈ {0,1, · · · , L − 1}, v ∈ V , we know

that ϕ(v) + 1d, ϕ(v) + 2 · 1d, · · · , ϕ(v) + 2i · 1d can be in at most d + 1 different cells in Gi. Thus,

∀i ∈ [n], |Ii | ≤ (d + 1)L. Notice that ∀v ∈ V, ϕ(v) has dimension d, we only need to handle

L levels, and sorting will only induce additional log n factors, the running time will be at most

250

n · poly(dL log n).

Operations under compressed representations

In this section, we introduce how to implement some important operations under compressed

representations.

Fact 6.3.16. Let I = {([a1, b1], c1), ([a2, b2], c2), · · · , ([as, bs], cs)} be an compressed representation

of a vector x ∈ Rr . Then, ‖x‖1 =
∑s

i=1(bi − ai + 1) · |ci |. Let y ∈ Rr be the vector satisfying

∀i ∈ [r], yi = sgn(xi). Then I′ = {([a1, b1], sgn(c1)), · · · , ([as, bs], sgn(cs))} is an compressed

representation of y. Let z = t · x, where t is a scalar. Then I′′ = {([a1, b1], tc1), · · · , ([as, bs], tcs)}

is an compressed representation of a vector z. Furthermore, both ‖x‖1, I′ and I′′ can be computed

in O(s) time.

Algorithm 40 Compressed Matrix-Vector Multiplication
1: procedure MATRIXVEC(I = (I1, I2, · · · , In),g ∈ Rn)
2: Output: Î
3: S ← ∅, Î ← ∅.
4: for i ∈ [n] : gi , 0 do
5: For each ([a, b], c) ∈ Ii, S ← S ∪ {(a, cgi), (b + 1,−cgi)}.
6: end for
7: Sort S = {(q1, z1), (q2, z2), · · · , (qk, zk)} such that q1 ≤ q2 ≤ · · · ≤ qk .
8: For each j ∈ {2,3, · · · , k} : qj > qj−1, Î ← Î ∪ {([qj−1,qj − 1],

∑
t:qt<qj

zt)}.
9: Return Î.

10: end procedure

Lemma 6.3.17 (Compressed matrix-vector multiplication). Given an compressed representation

I = (I1, I2, · · · , In) of a matrix P ∈ Rr×n with ∀i ∈ [n], |Ii | ≤ s, and a vector g ∈ Rn, the output Î

of MATRIXVEC(I,g) (Algorithm 40) is an compressed representation of Pg. Furthermore, | Î | ≤

2s · nnz(g), and the running time is at most O(s nnz(g) · log(s nnz(g))).

Proof. Consider j ∈ [r] such that (Pg) j , 0.

(Pg) j =
∑

i∈[n]:gi,0
Pj,igi =

∑
i∈[n]:gi,0,∃([a,b],c)∈Ii,j∈[a,b]

cgi .

251

Notice that ∀h ∈ [k],
∑

t:qt<qh zt =
∑

i∈[n]:gi,0,∃([a,b],c)∈Ii,a≤qt,b≥qh cgi. Since we can always find

h ∈ {2,3, · · · , k} such that j ∈ [qh−1,qh − 1], then for such h we have (Pg) j =
∑

t:qt<qh zt . Thus, Î

is an compressed representation of Pg.

For i ∈ [n] : gi , 0, we will add at most 2 elements in S for each tuple in Ii. Since each

element in S can correspond to at most 1 tuple in Î, we have | Î | ≤ 2s nnz(g). Sorting takes

O(|S | log |S |) time, and maintaining prefix sum takes O(|S |) time. Thus, total running time is at

most O(|S | log |S |) = O(s nnz(g) log(s nnz(g))).

Algorithm 41 Compressed Vector-Matrix Multiplication
1: procedure VECTORMAT(I, I ′ = (I1, I2, · · · , In))
2: Output: g> ∈ Rn

3: g ← (0,0, · · · ,0).
4: Fill I such that ∀ j ∈ [r], ∃([a, b], c) ∈ I, j ∈ [a, b].
5: Sort I = {([a1, b1], c1), ([a2, b2], c2), · · · , ([as, bs], cs)} such that a1 < a2 < · · · < as.
6: ∀ j ∈ [s], compute the prefix sum pj =

∑j
t=1(bt − at + 1) · ct .

7: for i ∈ [n] do
8: for ([a, b], c) ∈ Ii do
9: Run binary search to find j1 ≤ j2 such that a ∈ [aj1, bj1], b ∈ [aj2, bj2].

10: If j1 = j2, gi ← gi + c · cj1 · (b − a + 1).
11: If j1 < j2, gi ← gi + c · (cj1 · (bj1 − a + 1) + cj2 · (b − aj2 + 1) + (pj2−1 − pj1)).
12: end for
13: end for
14: Return g>.
15: end procedure

Lemma 6.3.18 (Compressed vector-matrix multiplication). Given an compressed representation I

of a vector y ∈ Rr with |I | ≤ s and an compressed representation I′ = (I1, I2, · · · , In) of a matrix

P ∈ Rr×n with ∀i ∈ [n], |Ii | ≤ s′, the output g> ∈ Rn of VECTORMAT(I, I′) (Algorithm 41) is P>y.

Furthermore, the running time is O((s + ns′) log s).

Proof. Consider the i-th entry of y>P,

(y>P)i = y>Pi =
∑

([a,b],c)∈Ii

c ·
∑

a≤t≤b

yt .

By our algorithm, it is easy to show that (y>P)i = gi. Sorting I takes O(s log s) time. For each

252

i ∈ [n], we need to take O(s′ log s) time for s′ times binary search. Thus, the total running time is

O((s + s′n) log s).

6.3.4 Uncapacitated minimum cost flow algorithm

Theorem 6.3.19. Given an ε ∈ (0,0.5), a connected n-vertex m-edge undirected graph G =

(V,E,w) with w : E → Z≥0, and a demand vector b ∈ Rn with 1>n b = 0, there is a randomized

algorithm which can output an (1 + ε)-approximate solution to the uncapacitated minimum cost

flow problem in ε−2m · (log n logΛ)O(1) time with probability at least 0.99, where Λ =
∑

e∈E w(e).

Proof. Let Λ =
∑

e∈E w(e). Let A ∈ Rn×m be the vertex-edge incidence matrix of G, and let

W ∈ Rm×m be the weight matrix. By Lemma 6.3.10, with 0.99 probability, we can compute a

mapping ϕ : V → [∆]d with ∆ ≤ Λ, d ≤ O(log2 n) in O(m log2 n) time such that

∀u, v ∈ V,distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ O(log n) · distG(u, v).

By Lemma 6.3.15, we can compute an compressed representation I = {I1, I2, · · · , In} of P with∀i ∈

[n], |Ii | ≤ O(d log∆) = O(log2 n logΛ). Furthermore, κ(PAW−1) ≤ O(log3 n logΛ). The running

time is n · (log n logΛ)O(1). Now, we are able to implement Algorithm 38. To compute matrix B,

we need to compute ‖PAW−1‖1→1 and ‖Pb‖1. Notice that ‖PAW−1‖1→1 = maxi∈[m] ‖P(AW−1)i‖1

and (AW−1)i only has two non-zero entries. By Lemma 6.3.17, an compressed representation

of P(AW−1)i can be computed in O(log2 n logΛ · (log log n + log logΛ)) time, and the size of

the compressed representation is at most O(log2 n logΛ). By Fact 6.3.16, ‖P(AW−1)i‖1 can be

computed in O(log2 n logΛ(log log n + log logΛ)) time. Thus, ‖PAW−1‖1→1 can be computed

in m · (log n logΛ)O(1) time. By Lemma 6.3.17 again, an compressed representation of Pb can

be computed in n · (log n logΛ)O(1) time. Follows from Fact 6.3.16, ‖Pb‖1 can be computed

in n · (log n logΛ)O(1) time. Bpt can be computed in O(n + m) time. By Lemma 6.3.17, an

compressed representation Î of PBpt can be computed in n · (log n logΛ)O(1) time, and we have

| Î | ≤ n · (log n logΛ)O(1). By Fact 6.3.16, ‖PBpt ‖1 can be computed in n · (log n logΛ)O(1) time. By

253

Fact 6.3.16 again, an compressed representation I′ of yt can also be computed in n ·(log n logΛ)O(1)

time, and we have |I′| ≤ n · (log n logΛ)O(1). By Lemma 6.3.18, y>t P can be computed in

n · (log n logΛ)O(1) time. To compute (y>t P)Bi, we need to compute (y>t P)Ai and (y>t P)b. Thus, the

running time to compute all φ+t (i), φ
−
t (i) is n · (log n logΛ)O(1)+O(m+n). Thus, one iteration of Al-

gorithm 38 takes m·(log n logΛ)O(1) time. By Lemma 6.3.8, Algorithm 38 takes 1
ε2 ·(log n logΛ)O(1)

iterations. To construct a (1 + ε, ε/κ)-solver, we need to call Algorithm 38 log(ε−1 log κ) times.

Thus, to find an (1 + ε, ε/κ)-solution, the running time is m
ε2 · (log n logΛ)O(1) · log(1/ε). Since

ε ≥ 1/Λ, the running time is m
ε2 · (log n logΛ)O(1). Together with Corollary 6.3.5, Corollary 6.3.6

and Lemma 6.3.7, we complete the proof.

6.4 Implementation in parallel setting

In this section, we will have a detailed discussion of how to implement our algorithms in PRAM

model. For convenience, we will describe our algorithms in the PRIORITY CRCW PRAM [73].

In this model, if multiple processors write to the same memory cell, the cell will take the minimum

written value. According to [72, 73], algorithms in the PRIORITY CRCW PRAM model can be

easily simulated in other PRAM models (including the weakest EREW PRAM model) with at most

polylogarithmic factors blow-up in the depth.

6.4.1 Parallel subemulator construction

Theorem 6.4.1 (Parallel construction of subemulator). Given a connected n-vertex m-edge undi-

rected weighted graph G = (V,E,w) and a parameter b ∈ [n], there is a PRAM algorithm (Al-

gorithm 33) which outputs an undirected graph H = (V ′,E′,w′) and q : V → V ′ such that H is

a strong (8, b,22)-subemulator of G, and q is a corresponding leader mapping (Definition 6.2.1).

Furthermore, E[|V ′|] ≤ min(75 log(n)/b,3/4)n, |E′| ≤ nb + m. The depth of the algorithm is

logO(1) n and the work is Õ(nb2 + m).

Proof. The correctness and the size of H is already shown by Theorem 6.2.9. Next, let us analyze

the depth and the work of Algorithm 33.

254

Consider the depth and the work of Algorithm 31 and Algorithm 32. In Algorithm 31, sampling

procedure (line 4) can be done in O(1) depth and O(n) work. For line 5 of Algorithm 31, the

implementation is described as the following:

1. For each v ∈ V , compute rb(v), Ballb(v) and dist(v,u) for u ∈ Ballb(v).

2. For u ∈ V , initialize l(u) ← ∞.

3. If v is sampled to be in S by line 4, let l(v) ← 0 and for each edge {v,u} ∈ E , mark

l(u) ← w(u, v). If l(u) is marked multiple times, only keep the minimum one.

4. For v ∈ V , if ∀u ∈ Ballb(v),dist(v,u) + l(u) > rb(v), mark v to be in V ′.

Due to Lemma 3.1.3, rb(v),Ballb(v) and dist(v,u) for u ∈ Ballb(v) can be computed in logO(1) n

depth and Õ(nb2 + m) work for all v ∈ V . The last three steps of the above procedure only takes

O(1) depth and O(nb + m) work. Thus, Algorithm 31 only uses logO(1) n depth and Õ(nb2 + m)

work.

In Algorithm 32, the implementation of line 3 is similar as line 5 of Algorithm 31:

1. For each v ∈ V , compute rb(v), Ballb(v) and dist(v,u) for u ∈ Ballb(v).

2. For u ∈ V , initialize l(u) ← ∞.

3. If v ∈ V ′, let l(v) ← 0,q(v) ← v and for each edge {v,u} ∈ E , mark l(u) ← w(u, v),q(u) ←

v. If l(u) is marked multiple times, only keep the minimum one and keep q(u) to be the

corresponding v which minimizes l(u) (if there is a tie, let q(u) have the smallest label).

4. For v ∈ V , set q(v) ← q(u) where u ∈ Ballb(v) and l(u) + dist(v,u) is minimized. Set

dist(v,q(v)) ← l(u) + dist(v,u).

By applying Lemma 3.1.3 again, the above steps only take logO(1) n depth and Õ(nb2 + m) work.

Notice that ∀v ∈ V,u ∈ Ballb(v),dist(v,u) is computed, and ∀v ∈ V,dist(v,q(v)) is also computed.

Line 5 of Algorithm 32 has O(1) depth and O(m) work. Line 6 of Algorithm 32 has O(1) depth and

255

O(nb) work. Line 8 of Algorithm 32 has O(1) depth and O(m) work. Line 9 of Algorithm 32 has

O(1) depth and O(nb) work. Overall, Algorithm 32 takes logO(1) depth and Õ(nb2 + m) work.

6.4.2 Parallel construction of low hop emulator

Our emulator construction depends on a subroutine PREPROC(G, k) (Algorithm 34). In the

following lemma, we analyze the depth and the work of PREPROC(G, k).

Lemma 6.4.2 (Depth and work of PREPROC(G, k)). Given a connected n-vertex m-edge undi-

rected weighted graph G = (V,E,w) with w : E → Z≥0 and a parameter k ∈ [0.5,0.5 log n],

PREPROC(G, k) (Algorithm 34) has logO(1)(n) depth and Õ(m + n1+1/k) expected work.

Proof. Let t be the value at the end of PREPROC(G, k). According to Theorem 6.4.1, for i ∈

{0,1, · · · , t − 1}, SUBEMULATOR(Hi, bi) in line 6 of Algorithm 34 takes logO(1) ni depth and

Õ(nib2
i + mi) work. Since ni ≤ n, the depth is at most logO(1) n. According to Lemma 6.2.10,

E[nib2
i +mi] ≤ max(n1+1/k,n · (75 log n)4)+m + 2 ·max(n1+1/(2k),n · (75 log n)2) = Õ(m + n1+1/k).

Notice that all the information needed in line 7 of Algorithm 34 can be obtained during SUBEM-

ULATOR(Hi, bi) (see Lemma 3.1.3 and the proof of Theorem 6.4.1). Since t is at most O(log k),

the overall depth of PREPROC(G, k) is at most logO(1) n and the overall expected work is at most

Õ(m + n1+1/k).

Theorem 6.4.3 (Parallel construction of low hop emulator). Given a connected n-vertex m-edge

undirected weighted graph G = (V,E,w) with w : E → Z≥0 and a parameter k ∈ [0.5,0.5 log n],

there is a PRAM algorithm (Algorithm 36) which outputs an undirected weighted graph G′ =

(V,E′,w′) with E[|E′|] ≤ O(n1+1/(2k) + n log2 n),w′ : E′ → Z≥0 and hop diameter at most

16dlog(k) + 1e such that ∀u, v ∈ V ,

distG(u, v) ≤ distG′(u, v) ≤ 274dlog(k)+1e · distG(u, v).

The depth of the algorithm is at most logO(1) n and the expected work is at most Õ(m + n1+1/k).

256

Proof. The correctness and the size of E′ is already analyzed by Theorem 6.2.18. Let us consider

the depth and the work of implementing Algorithm 36.

According to Lemma 6.4.2, line 3 of Algorithm 36 has depth logO(1) n and expected work

Õ(m + n1+1/k). The information needed in line 8 and line 9 of Algorithm 36 can be obtained

during PREPROC(G, k) in line 3 of Algorithm 36 (see Algorithm 34, Lemma 3.1.3 and the proof

of Theorem 6.4.1). Thus, the remaining steps of Algorithm 36 have O(1) depth and work at most

O(|E′|). The overall depth of Algorithm 36 is at most logO(1) n. Since E[|E′|] ≤ O(n1+1/(2k) +

n log2 n), the expected work of Algorithm 36 is at most Õ(m + n1+1/k).

A byproduct of the parallel implementation of PREPROC(G, k) (Algorithm 34) is a parallel

distance oracle.

Theorem 6.4.4 (Parallel distance oracle). Given a connected n-vertex m-edge undirected weighted

graph G = (V,E,w) with w : E → Z≥0 and a parameter k ∈ [0.5,0.5 log n], there is a PRAM

algorithm (Algorithm 34) which outputs a data structure with expected size Õ
(
n1+1/(2k)

)
in depth

logO(1)(n) and expected work Õ(m + n1+1/k) such that for any pair of vertices u, v ∈ V , a value d

satisfying distG(u, v) ≤ d ≤ 264dlog(k)+1e distG(u, v) can be computed in O(log(4k)) time given the

outputted data structure.

Proof. The correctness and the query time is shown by Lemma 6.2.11. By Lemma 6.4.2, PRE-

PROC(G, k) has depth logO(1)(n) and Õ(m + n1/k) expected work. Consider QUERY(u, v) (Algo-

rithm 34). Let t be the value at the end of PREPROC(G, k) (Algorithm 34). For l ∈ {0,1, . . . , t} and

u ∈ Vl , we only need the information Bl(u), ql(u) and distHl
(u, v) for v ∈ Bl(u). By Lemma 6.2.10,

we have t ≤ 4dlog(k) + 1e and E[
∑t

l=0
∑

v∈Vl |Bl(v)|] ≤ t · max(n1+1/k,n · (75 log n)4)/b0 ≤

Õ(n1+1/(2k)). Thus the space to store all required information is at most Õ
(
n1+1/(2k)

)
.

6.4.3 Direct applications of parallel low hop emulator

poly(log n)-Approximate single source shortest paths (SSSP). A direct application is to com-

pute a poly(log n)-approximate distance from a given vertex s to every other vertex v. We just

257

need to compute a low hop emulator, and run O(log log n) Bellman-Ford iterations starting from

the source vertex s.

Corollary 6.4.5 (Parallel poly(log n)-approximate SSSP). Given a connected n-vertex m-edge

undirected weighted graph G = (V,E,w) with w : E → Z≥0 and a source vertex s ∈ V , there is

a PRAM algorithm which can output an poly(log n)-approximation to distG(s, v) for every v ∈ V .

Furthermore, the depth of the algorithm is logO(1)(n) and the expected work is Õ(m).

Embedding the graph metric into `1. The second application of our low hop emulator is an

efficient parallel algorithm which can embed the graph metric into `1 space. In particular, given

a connected n-vertex m-edge undirected weighted graph G = (V,E,w), we can in parallel find a

mapping ϕ : V → `d
1 for d = O(log2 n) such that

∀u, v ∈ V,distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ logO(1)(n) · distG(u, v).

This can be done by applying Bourgain’s embedding [55] on our low hop emulator. For complete-

ness, the detailed algorithm is described in the following.

Consider a connected n-vertex m-edge undirected weighted graph G = (V,E,w) with w : E →

Z≥0. By Theorem 6.4.3, we can use expected Õ(m) work and logO(1)(n) depth to compute a low

hop emulator G′ = (V,E′,w′), i.e., ∀u, v ∈ V ,

distG(u, v) ≤ distG′(u, v) ≤ logO(1)(n) · distG(u, v),

and the hop diameter of G′ is O(log log n). Obviously, the diameter of G′ is at most the diameter

of G times logO(1)(n). Furthermore, E[|E′|] ≤ Õ(n). According to our construction of G′, since all

weights in G are integers, weights in G′ are also integers.

It suffices to embed G′ into `1. We apply Bourgain’s embedding:

1. t ← Θ(log n).

258

2. For i = 1→ dlog ne, j = 1→ t:

(a) Choose a set Si,j by sampling each v ∈ V with probability 2−i.

(b) ∀v ∈ V , set the ((i − 1) · t + j)-th coordinate of ϕ(v) as distG′(Si,j, v), i.e.,

ϕ(v)(i−1)·t+ j ← distG′(Si,j, v).

.

It is easy to see that for every v ∈ V the coordinates of ϕ(v) are non-negative integers and

‖ϕ(v)‖∞ ≤ the diameter of G′ ≤ (the diameter of G) · logO(1)(n). The dimension of ϕ(v) is t ·

dlog ne ≤ O(log2 n). By Bourgain’s theorem [55], with probability at least 0.999, ∀u, v ∈ V ,

distG′(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ logO(1)(n) · distG′(u, v),

which implies that ∀u, v ∈ V ,

distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ logO(1)(n) · distG(u, v).

Now consider the depth and the work of the above procedure. Step 2b can be implemented by

Bellman-Ford algorithm. In particular, we add a super node which connects to every vertex in Si,j

with weight zero. By h Bellman-Ford iterations, we can compute dist(h)G′ (Si,j, v) for every v ∈ V .

Since the hop diameter of G′ is O(log log n), we only need O(log log n) Bellman-Ford iterations

in step 2b. Thus, the depth of the above procedure is at most logO(1)(n), and the work is at most

Õ(|E′|). Together with the computation of G′, the overall depth is logO(1) n, and the total work is

at most Õ(m).

Corollary 6.4.6 (Parallel embedding into `1). Given a connected n-vertex m-edge undirected

weighted graph G = (V,E,w) with w : E → Z≥0, there is a PRAM algorithm which can out-

put a mapping ϕ : V → [∆]d for ∆ = (the diameter of G) · logO(1)(n), d = O(log2 n) such that with

259

probability at least 0.99,

∀u, v ∈ V,distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ logO(1)(n) · distG(u, v).

Furthermore, the depth of the algorithm is logO(1)(n) and the expected work is Õ(m).

Low diameter decomposition. Another application is low diameter decomposition. This can be

done by applying algorithm of [58] on our low hop emulator. The detailed algorithm is described

in the following.

By Theorem 6.4.3, we can use expected Õ(m) work and logO(1)(n) depth to compute a low hop

emulator G′ = (V,E′,w′), i.e., ∀u, v ∈ V ,

distG(u, v) ≤ distG′(u, v) ≤ logO(1)(n) · distG(u, v),

and the hop diameter of G′ is O(log log n). Furthermore, E[|E′|] ≤ Õ(n).

It suffices to run low diameter decomposition [58] on G′:

1. For v ∈ V , draw δv independently from the exponential distribution with CDF 1 − e−βx .

2. Compute the subset Cu by assigning each v to u which minimizes distG′(v,u) − δu.

3. Remove empty subsets Cu and return the remaining subsets {Cu}.

By [58], V will be partitioned into clusters such that

• for any two vertices u, v from the same cluster, distG′(u, v) ≤ O(β−1 log n),

• for any two vertices u, v, the probability that u, v are not in the same cluster is at most O(β ·

distG′(u, v)).

Thus, it implies that the partition is also good for G:

• for any two vertices u, v from the same cluster, distG(u, v) ≤ β−1 logO(1)(n),

260

• for any two vertices u, v, the probability that u, v are not in the same cluster is at most β ·

distG(u, v) · logO(1)(n).

To implement the second step of the algorithm, we can add a super node which connects to every

vertex v with weight maxu∈V δu − δv. Then we can use Bellman-Ford to compute the single source

shortest path from the super node. Since the hop diameter of G′ is at most O(log log n), the number

of Bellman-Ford iterations is at most O(log log n). Thus, the overall work is at most Õ(m) and the

depth is at most logO(1)(n).

Corollary 6.4.7 (Low diameter decomposition). Given a connected n-vertex m-edge undirected

weighted graph G = (V,E,w) with w : E → Z≥0 and a parameter β ∈ (0,1], there is a PRAM

algorithm which can partition V into subsets C1,C2, · · · ,Ck such that

1. ∀i ∈ [k], ∀u, v ∈ Ci, distG(u, v) ≤ logO(1) n
β ,

2. ∀u, v ∈ V, Pr[u, v are not in the same subset] ≤ β · distG(u, v) · logO(1) n.

Furthermore, the depth of the algorithm is logO(1)(n) and the expected work is Õ(m).

Metric tree embedding. By applying the parallel FRT embedding (Theorem 7.9 of [57]) on our

low hop emulator directly, we can obtain a more work-efficient parallel metric tree embedding

algorithm.

Corollary 6.4.8 (Metric tree embedding). Given a connected n-vertex m-edge undirected weighted

graph G = (V,E,w) with w : E → Z≥0, there is a PRAM algorithm which can output a tree

T = (V ′,E′,w′) where V ′ ⊇ V such that ∀u, v ∈ V ,

1. distG(u, v) ≤ distT (u, v),

2. E[distT (u, v)] ≤ logO(1)(n) · distG(u, v).

The depth of the algorithm is logO(1)(n) and the expected work is Õ(m · log(the diameter of G)).

261

6.4.4 Parallel uncapacitated minimum cost flow

Fact 6.4.9 (Parallel (n,0)-solver). Given a connected n-vertex m-edge undirected weighted graph

G and a demand vector b ∈ Rn, MSTROUTING(G, b) (Algorithm 37) can be implemented in PRAM

with depth logO(1)(n) and Õ(m) work.

Proof. We can use Boruvka’s algorithm to compute a minimum spanning tree T of G, and it can

be implemented in PRAM with logO(1)(n) depth and Õ(m) work (see e.g., [98]). The Euler Tour

of T can be computed in logO(1)(n) depth and Õ(n) work [21]. A subtree of T should appear in a

consecutive subsequence of the Euler Tour. Thus, the sum of weights in a subtree can be computed

as a sum of weights of a subsequence of the Euler Tour. We can use logO(1)(n) depth and Õ(n)

work to preprocess a prefix sum over the Euler Tour and hence the line 5 of Algorithm 37 can be

computed in O(1) depth and Õ(n) work.

As discussed in Section 6.3, we need to find a good preconditioner.

Lemma 6.4.10 (Work and depth of parallel preconditioner construction). Given a mapping ϕ :

V → [∆]d for some ∆, d ∈ Z≥0, IMPLICITP(ϕ) (Algorithm 39) can be implemented in PRAM with

(d log(n∆))O(1) depth and n · (d log(n∆))O(1) work.

Proof. Let L = 1+log∆. Consider line 4 of Algorithm 39. We can simultaneously handle each pair

(l, v) ∈ {0,1, · · · , L−1}×V . As discussed in the proof of Lemma 6.3.12, ∀l ∈ {0,1, · · · , L−1}, v ∈

V , we know that ϕ(v)+1d, ϕ(v)+2 ·1d, · · · , ϕ(v)+2i ·1d can be in at most d+1 different cells in Gi.

Notice that each cell can be denoted by one of its corner point and the side length. Thus, the depth

of line 4 of Algorithm 39 is O(d2) and the work is O(nLd2). For the outer loop and the inner loop

started from line 5 and line 7 of Algorithm 39, we can handle each (v, l) simultaneously. Again,

there are at most d + 1 cells in line 8 will be considered, and each cell can be indicated by its side

length and one corner point which has d coordinates. In addition, for one cell C, τ1 and τ2 can be

computed in O(d) time. Thus, line 8 has depth O(d2) and work O(nLd2). To implement line 9 of

Algorithm 39, for each l ∈ {0,1, · · · , L − 1}, we need to index all cells in Cl before the loop started

262

from line 5. This can be done by sorting. Since |Cl | ≤ (d + 1) · n and each cell is represented

by size at most O(d). The sorting has depth at most logO(1)(nd) and total work nL · (d log n)O(1).

Notice that we can compute
∑l−1

j=0 2 j |Cj | for every l ∈ {0,1, · · · , L − 1} using depth O(L) and work

O(L). After preprocessing steps, the depth of line 9 is O(d) and the work is O(nLd). To conclude,

the depth of Algorithm 39 is (d log(n∆))O(1) and the total work is n · (d log(n∆))O(1).

Lemma 6.4.11 (Work and depth of parallel compressed matrix-vector multiplication). Given a

compressed representation (see Definition 6.3.14) I = (I1, I2, · · · , In) of a matrix P ∈ Rr×n with

∀i ∈ [n], |Ii | ≤ s, and a vector g ∈ Rn, MATRIXVEC(I,g) (Algorithm 40) can be implemented in

PRAM with depth logO(1)(s · nnz(g)) and work Õ(s · nnz(g)).

Proof. For the loop started from line 4 of Algorithm 40, the set S can be created in depth O(1),

and the work is O(|S |). The sorting in line 7 has depth logO(1) |S | and work |S | · logO(1) |S |. For

line 8, we need to preprocess a prefix sum
∑

t:qt<qj
zt for j ∈ {2,3, · · · , k}. This can be done in

depth logO(1) |S | and work |S | logO(1) |S |. Once we preprocess the prefix sum, we can implement

line 8 in O(1) depth and O(|S |) work. Since |S | = O(s · nnz(g)), the overall depth of Algorithm 40

is logO(1)(s · nnz(g)) and the work is Õ(s · nnz(g)).

Lemma 6.4.12 (Work and depth of parallel compressed vector-matrix multiplication). Given a

compressed representation I of a vector y ∈ Rr with |I | ≤ s and a compressed representation

I′ = (I1, I2, · · · , In) of a matrix P ∈ Rr×n with ∀i ∈ [n], |Ii | ≤ s′, VECTORMAT(I, I′) (Algorithm 41)

can be implemented in PRAM with depth logO(1)(ss′) and work Õ(s + ns′).

Proof. By sorting, we can implement line 4 and line 5 of Algorithm 41 in logO(1)(s) depth and

s logO(1) s depth. Line 6 computes the prefix sum p j for j ∈ [s]. Thus, it needs logO(1)(s) depth and

s · logO(1)(s) work. For the loop started from line 7, we can handle each i ∈ [n] and ([a, b], c) ∈ Ii

simultaneously. The binary search takes logO(1) s depth. Line 10 and line 11 compute gi which is

the sum of at most |Ii | ≤ s′ values. Thus, Line 10 and line 11 have depth logO(1)(s′). To conclude,

the overall depth of Algorithm 41 is logO(1)(ss′) and the work is Õ(s + ns′).

263

Theorem 6.4.13 (Parallel uncapacitated minimum cost flow). Given an ε ∈ (0,0.5), a connected

n-vertex m-edge undirected weighted graph G = (V,E,w) with w : E → Z≥0, and a demand vector

b ∈ Rn with 1>n b = 0, there is a PRAM algorithm which can output an (1+ε)-approximate solution

to the uncapacitated minimum cost flow problem with probability at least 0.99. Furthermore,

the depth is at most ε−2 logO(1)(nΛ) and the expected work is at most ε−2m · logO(1)(nΛ), where

Λ =
∑

e∈E w(e).

Proof. Let A ∈ Rn×m be the vertex-edge incidence matrix of G, and let W ∈ Rm×m be the weight

matrix. By Corollary 6.4.6, with probability at least 0.99, we can compute a mapping ϕ : V → [∆]d

with ∆ ≤ Λ · logO(1) n, d ≤ O(log2 n) in logO(1)(n) depth and Õ(m) expected work such that

∀u, v ∈ V,distG(u, v) ≤ ‖ϕ(u) − ϕ(v)‖1 ≤ logO(1)(n) · distG(u, v).

By Lemma 6.3.15, we can compute a compressed representation I = {I1, I2, · · · , In} of P with ∀i ∈

[n], |Ii | ≤ O(d log∆) = logO(1)(nΛ). Furthermore, κ(PAW−1) ≤ logO(1)(nΛ). By Lemma 6.4.10,

the depth of computing such compressed representation is logO(1)(nΛ) and the work is n·logO(1)(nΛ).

Now, we are able to implement Algorithm 38 in parallel. To compute matrix B, we need to com-

pute ‖PAW−1‖1→1 and ‖Pb‖1. Notice that ‖PAW−1‖1→1 = maxi∈[m] ‖P(AW−1)i‖1 and (AW−1)i

only has two non-zero entries. By Lemma 6.3.17 and Lemma 6.4.11, a compressed representation

of P(AW−1)i can be computed in logO(1)(nΛ) depth. We can compute P(AW−1)i for all i ∈ [m]

simultaneously. By Lemma 6.4.11, the total work needed is m · logO(1)(nΛ). By Lemma 6.3.17, the

size of the compressed representation of P(AW−1)i is at most logO(1)(nΛ). Thus, by Fact 6.3.16,

‖P(AW−1)i‖1 can be computed in logO(1)(nΛ) depth. Thus, ‖PAW−1‖1→1 can be computed in

logO(1)(nΛ) depth and m · logO(1)(nΛ) work. By Lemma 6.3.17 and Lemma 6.4.11 again, a com-

pressed representation of Pb can be computed in logO(1)(nΛ) depth and n · logO(1)(nΛ) work. By

Lemma 6.3.17, the size of the compressed representation of Pb is at most n · logO(1)(nΛ), thus

‖Pb‖1 can be computed by the summation of at most n · logO(1)(nΛ) values. Such summation op-

eration has at most logO(1)(nΛ) depth and n · logO(1)(nΛ) work. Algorithm 38 has O(ε−2κ2 log n) =

264

ε−2 logO(1)(nΛ) iterations. In each iteration, we firstly need to compute pt . This can be done in

logO(1)(n) depth and m logO(1)(n) work. Notice that AW−1 only has O(m) non-zero entries and

b · 1>m pt = b. We can compute Bpt in depth logO(1)(n) and work m · logO(1) n. By Lemma 6.3.17

and Lemma 6.4.11, a compressed representation Î of PBpt can be computed in depth logO(1)(nΛ)

and work n · logO(1)(nΛ). By Lemma 6.3.17, the size of Î is at most n logO(1)(nΛ). Similar as

computing ‖Pb‖1, ‖PBpt ‖1 can be computed in depth logO(1)(nΛ) and work n logO(1)(nΛ). Now,

we want to compute a compressed representation I′ of yt . To achieve this, we can look at each

([a, b], c) ∈ Î simultaneously and put ([a, b], sgn(c)) into I′. This step has depth O(1) and work

at most n logO(1)(nΛ). It is easy to see |I′| = | Î |. By Lemma 6.3.18 and Lemma 6.4.12, y>t P

can be computed in depth logO(1)(nΛ) and work n · logO(1)(nΛ). To compute (y>t P)Bi, we need

to compute (y>t P)Ai and (y>t P)b. Since Ai has at most 2 non-zero entries, we can simultaneously

compute (y>t P)Ai for all i ∈ [m] and (y>t P)b. It has depth logO(1)(nΛ) and m logO(1)(nΛ) work. To

construct a (1 + ε, ε/κ)-solver, we need to invoke Algorithm 38 log(ε−1 log κ) times. Thus, to find

an (1 + ε, ε/κ)-solution, the total depth is ε−2 logO(1)(ε−1nΛ) and the work is ε−2m logO(1)(ε−1nΛ).

Since ε ≥ 1/Λ, log(ε−1) ≤ logΛ. Together with Corollary 6.3.5, Corollary 6.3.6, Lemma 6.3.7

and Fact 6.4.9, we complete the proof.

6.4.5 Parallel s − t approximate shortest path

Given two vertices s and t, a special case of uncapacitated minimum cost flow is when the

demand vector b only has 2 non-zero entries: bs = 1 and bt = −1. In this case, the value of the

minimum cost flow is exactly the same as the distance between s and t. As shown previously, since

we can compute a (1+ ε)-approximation to the uncapacitated minimum cost flow, we can compute

a (1 + ε)-approximation to the distance between s and t. However, our flow algorithm can only

output a flow from s to t. In this section, we will show how to obtain an s − t path from the s − t

flow.

Before we present our algorithm, let us show a good property of the random walk correspond-

ing to the flow. Consider a connected n-vertex m-edge undirected weighted graph G = (V,E,w).

265

Let A ∈ Rn×m be the corresponding vertex-edge incidence matrix (see Section 6.3), and let

W ∈ Rm×m be the corresponding diagonal weight matrix. Given a valid demand vector b ∈ Rn,

i.e., 1>n b = 0, let f ∈ Rm be a feasible flow, i.e., A f = b. Suppose {u, v} ∈ E is the i-th edge. We

denote f (u, v) as the flow from u to v, i.e.,

f (u, v) =

fi u < v,

− fi u > v.

By the definition of f (u, v), we have f (u, v) = − f (v,u). For {u, v} < E , we denote f (u, v) = 0.

If f (u, v) is negative, then it means that there is − f (u, v) units of flow from v to u. Suppose the

demand vector b further satisfies bt = −1, and ∀v , t, bv ≥ 0. Notice that since 1>n b = 0, we have∑
v∈V\{t} bv = 1. We can generate a random walk by the following way:

1. Set i ← 0 and set u0 to be v ∈ V \ {t} with probability bv.

2. Set ui+1 to be v ∈ {v′ ∈ V | f (ui, v
′) > 0} with probability f (ui,v)∑

v′: f (ui ,v′)>0 f (ui,v′)
.

3. If ui+1 , t, set i ← i + 1, and repeat step 2. Otherwise, output the path p = (u0,u1, · · · ,ui+1).

We say the path p is a random walk corresponding to the flow f . If the flow f contains no cycle,

then the expected length of p is exactly the same as the cost of f (see e.g., [43]). The following

lemma shows that if f contains cycles then the expected length of p is still the cost of f .

Lemma 6.4.14 (Expected length of a random walk). Consider a connected n-vertex m-edge undi-

rected weighted graph G = (V,E,w) with w : E → Z≥0. Let A ∈ Rn×m be the corresponding

vertex-edge incidence matrix, and let W ∈ Rm×m be the corresponding diagonal weight matrix.

Given a vertex t ∈ V and a demand vector b ∈ Rn satisfying bt = −1 and ∀v , t, bv ≥ 0, let

f ∈ Rm be a feasible flow for b, i.e., A f = b. The expected length of a random walk corresponding

to the flow f is ‖W f ‖1.

Proof. For u ∈ V , let d(u) denote the expected length of a random walk starting from the vertex u.

266

Notice that d(t) = 0. For each vertex u ∈ V , we have the following equation:

d(u) =
∑

v: f (u,v)>0

f (u, v)∑
v′: f (u,v′)>0 f (u, v′)

· (d(v) + w(u, v)).

By reordering the terms, we have:

©«
∑

v′: f (u,v′)>0
f (u, v′) · d(u)ª®¬ − ©«

∑
v: f (u,v)>0

f (u, v) · d(v)ª®¬ =
∑

v: f (u,v)>0
f (u, v) · w(u, v).

By summation over all vertices u ∈ V , we have:

∑
u∈V

©«©«
∑

v′: f (u,v′)>0
f (u, v′) · d(u)ª®¬ − ©«

∑
v: f (u,v)>0

f (u, v) · d(v)ª®¬ª®¬ =
∑
u∈V

∑
v: f (u,v)>0

f (u, v) · w(u, v)

⇒
∑
u∈V

d(u) · ©«©«
∑

v′: f (u,v′)>0
f (u, v′)ª®¬ − ©«

∑
v: f (v,u)>0

f (v,u)ª®¬ª®¬ = ‖W f ‖1

⇒
∑
u∈V

d(u) · bu = ‖W f ‖1.

Since d(t) = 0, the expected length of a random walk corresponding to f is
∑

u∈V\{t} d(u) · bu =∑
u∈V d(u) · bu = ‖W f ‖1.

According to the above lemma, if f is a (1+ ε)-approximation to the optimal s− t flow, then an

s − t random walk corresponding to f is a (1 + ε)-approximate shortest path. However, simulating

a random walk in parallel may not be easy. Instead, we will show how to in parallel find a path of

which expected length is at most the expected length of a random walk (Algorithm 42).

Lemma 6.4.15 (Work and depth of parallel s− t approximate shortest path). Given an ε ∈ (0,0.5),

a connected n-vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0, and two vertices

s, t ∈ V , FINDPATH(G, s, t, ε) (Algorithm 42) can be implemented in PRAM with ε−2 poly(log(nΛ))

depth and expected ε−2m poly(log(nΛ)) work, where Λ = maxe∈E w(e).

Proof. Line 5 can be done in ε−2 poly(log(nΛ)) depth using expected ε−2m poly(log(nΛ)) work by

267

Algorithm 42 Finding an s − t Path
1: procedure FINDPATH(G = (V,E,w), s, t ∈ V, ε ∈ (0,0.5))
2: Output: p = (u0,u1,u2, · · · ,uh)
3: If s = t, return p = (s).
4: n← |V |,m← |E |. Initialize a demand vector b ∈ Rn: bs ← 1, bt ← −1,∀v , s, t, bv ← 0.
5: Compute a (1 + ε)-approximate uncapacitated minimum cost flow f satisfying b. .

Theorem 6.4.13.
6: For each vertex u ∈ V \ {t}, set the pointer par(u) ← v ∈ {v′ ∈ V | f (u, v′) > 0} with probability

f (u, v)∑
v′: f (u,v′)>0 f (u, v′)

.

7: Let G′ = (V,E ′), where E ′ = {{u,par(u)} | u ∈ V \ {t}}.
8: Compute a spanning forest of G′. For u ∈ V , if u is in the same connected component as t, set

root(u) ← t; otherwise set root(u) ← v where v is in the same connected component as u and the edge
{v,par(v)} does not appear in the spanning forest.

9: For u ∈ V , compute l(u) ← w(u,par(u)) + w(par(u),par(par(u))) + · · · + w(par(· · · par(u)), root(u)).
10: Set V ′′← {v ∈ V | root(v) = v},E ′′← {{root(u), root(v)} | {u, v} ∈ E}.
11: For each e′′ = {u′′, v′′} ∈ E ′′, set

map(e′′) ← arg min
{u,v }∈E:

root(u)=u′′ ,root(v)=v′′

l(u) + w(u, v) + l(v).

12: For each e′′ ∈ E ′′, set w′′(e′′) ← l(u) + w(u, v) + l(v), where {u, v} = map(e′′).
13: p′′ = (u′′0 ,u

′′
1 , · · · ,u

′′
h′′
) ←FINDPATH(G′′ = (V ′′,E ′′,w′′), root(s), root(t), ε). . Recursion.

14: Create p by replacing u′′0 with

(s,par(s),par(par(s)), · · · , root(s)),

and replacing each edge {u′′
i−1,u

′′
i } of p′′ with a path

(root(xi),par(· · · par(xi)), · · · ,par(xi), xi, yi,par(yi),par(par(yi)), · · · , root(yi)),

where {xi, yi} = map({u′′
i−1,u

′′
i }).

15: Shortcut all cycles of p and return p.
16: end procedure

Theorem 6.4.13. We can repeat line 5 Θ(log n) times to boost the success probability to 1 − n−10.

It only increases the work by a O(log n) factor. Line 6 can be done in poly(log n) depth using

m poly(log n) work. In line 8, computing connected components and a spanning forest can be done

in poly(log n) depth using m poly(log n) work [13]. In line 9, we can use doubling algorithm to

compute l(u) for all u ∈ V simultaneously in poly(log n) depth using n poly(log n) work. Suppose

the number of hops of p before shortcutting cycles is h. Then the path p in line 14 can be obtained

268

in poly(log(nh)) depth using (n + h) · poly(log(nh)) work by a doubling algorithm. Notice that the

path p′′ obtained by line 13 has no cycle and thus each edge e ∈ E can appear in p obtained by

line 14 at most twice. Hence, line 14 can be implemented in poly(log n) depth using m poly(log n)

work. In line 15, we use the following way to shortcut cycles of p. We construct a graph which

consists of all edges in p. We find a spanning tree of the obtained graph and output the desired

path on the tree. The total number of edges in the path before shortcutting is at most O(m) as as

discussed. We use [13] again to find a spanning tree. It takes poly(log(n)) depth and m · poly(log n)

total work. And we use doubling algorithm again to find the path, it takes poly(log(n)) depth and

n · poly(log n) total work.

Next, consider the number of recursions (line 13) needed. Except vertex t, every vertex u has an

edge {u,par(u)} ∈ E′. Thus, each connected component without t in G′ has size at most 2. Notice

that |V ′′| is exactly the same as the number of connected components in G′. Thus, |V ′′| ≤ dn/2e.

It implies that the number of recursions is at most dlog ne. Thus, the overall depth is at most

ε−2 poly(log(nΛ)) and the overall expected work is at most ε−2m poly(log(nΛ)).

Lemma 6.4.16 (Correctness of parallel approximate s − t shortest path). Given an ε ∈ (0,0.5), a

connected n-vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0, and two vertices

s, t ∈ V , let p be the output of FINDPATH(G, s, t, ε) (Algorithm 42). E[w(p)] ≤ (1 + 2ε)dlog ne ·

distG(s, t).

Proof. Our proof is by induction on the number of vertices of G. When G only has one vertex,

the statement is obviously true. Now suppose the statement is true for any graph with less than n

vertices and consider G with n vertices.

For u ∈ V , let l(u) be the same as that in line 9. Let p be the output of FINDPATH(G, s, t, ε). Let

p′′ = (u′′0 ,u
′′
1 , · · · ,u

′′
h′′) be the output of line 13. By line 13, u′′0 = root(s),u′′h′′ = root(t). By line 8,

we further have u′′h′′ = root(t) = t.

Claim 6.4.17. w(p) ≤ w′′(p′′) + l(s).

269

Proof. Notice that

w(p) ≤ w((s,par(s),par(par(s)), · · · , root(s)))

+
∑
xi,yi :

{xi ,yi }=map({u′′
i−1 ,u

′′
i
})

w((root(xi), · · · ,par(xi), xi, yi,par(yi), · · · , root(yi)))

= l(s) +
∑
xi,yi :

{xi ,yi }=map({u′′
i−1 ,u

′′
i
})

l(xi) + w(xi, yi) + l(yi)

= l(s) +
h′′∑
i=1

w′′(u′′i−1,u
′′
i)

= l(s) + w′′(p′′),

where the first inequality follows from line 15, the first equality follows from line 9, and the second

equality follows from line 12.

Claim 6.4.18. Epar:V\{t}→V [l(s) + distG′′(root(s), root(t))] ≤ (1 + 2ε) distG(s, t).

Proof. Let f be the flow obtained by line 5 satisfying
∑
{u,v}∈E w(u, v) · | f (u, v)| ≤ (1+ε) distG(s, t).

Our proof is by coupling. By Lemma 6.4.14, we only need to prove that E[l(s)+distG′′(root(s), root(t))]

is almost upper bounded by the expected length of a random walk corresponding to the flow f .

For u ∈ V , let par(u) be the same as that in Algorithm 42. We conceptually generate a random

walk p̂ corresponding to f in the following way:

1. Set i ← 0 and set û0 ← s.

2. If ∀ j ∈ {0,1, · · · , i − 1}, û j , ûi, then set ûi+1 ← par(ûi). Otherwise, set ûi+1 to be v ∈ {v′ ∈

V | f (ûi, v
′) > 0} with probability f (ûi,v)∑

v′: f (ûi ,v′)>0 f (ûi,v′)
.

3. If ûi+1 , t, set i ← i + 1, and repeat step 2. Otherwise, ĥ ← i + 1, and output the path

p̂ = (û0, û1, · · · , ûĥ) as the random walk.

It is easy to see that p̂ is a random walk corresponding to the flow f and thus E[w(p̂)] =
∑
{u,v}∈E w(u, v)·

270

| f (u, v)| by Lemma 6.4.14. Notice that p̂ may have cycles, we conceptually do the following pro-

cedure to shortcut all cycles of p̂ to obtain p̄:

1. Set i ← 0, j ← 0.

2. If @i′ > i, ûi′ = ûi, set ū j ← ûi, j ← j + 1, i ← i + 1.

3. Otherwise, find the largest i′ ∈ [ĥ] such that ûi′ = ûi. Mark all edges {ûi, ûi+1}, {ûi+1, ûi+2},

· · · , {ûi′−1, ûi′} as redundant.

4. Repeat above two steps until i > ĥ. At the end, set h̄← j − 1 and path p̄← (ū0, ū1, · · · , ūh̄).

For each edge e ∈ E which appears in p̂ but is not marked as redundant, mark e as crucial.

It is easy to see that p̄ is a simple s-t path and furthermore
∑

e∈E:e is crucial w(e) ≤ w(p̄) ≤

w(p̂) −
∑

e∈E:e is redundant w(e). By the above constructions, p̂ has several good properties.

Fact 6.4.19. If ûi is the first appearance of a vertex v in p̂, then ûi+1 must be par(v).

Fact 6.4.20. If vertex v ∈ V appears in p̂ and v , t, all edges {v,par(v)}, {par(v),par(par(v))},

{par(par(v)),par(par(par(v)))}, · · · , should be in p̂.

Proof. It directly follows from Fact 6.4.19.

Fact 6.4.21. If vertex v appears at least twice in p̂, {v,par(v)} is marked as redundant.

Proof. Suppose ûi is the first appearance of v, then ûi+1 = par(v) (Fact 6.4.19). Suppose ûi′ is the

second appearance of v, we have ûi = ûi′ and i′ > i. It is easy to verify that {ûi, ûi+1} is marked as

redundant in the procedure of constructing p̄ in any case.

Fact 6.4.22. If {v,par(v)} is a redundant edge, {par(v),par(par(v))} is a redundant edge.

Proof. If par(v) appears in p̂ at least twice, {par(v),par(par(v))} is a redundant edge due to Fact 6.4.21.

Otherwise, suppose ûi is the first appearance of v. ûi+1 must be par(v) due to Fact 6.4.19. Since

par(v) only appears once, ûi+1 is the first appearance of par(v). By Fact 6.4.19 again, ûi+2 must be

par(par(v)). Since {ûi, ûi+1} is a redundant edge and ûi+1 only appears once, by the procedure of

271

constructing p̄, {ûi+1, ûi+2} must be marked as redundant in the same step when {ûi, ûi+1} is marked

as redundant. Thus, {par(v),par(par(v))} is a redundant edge.

Fact 6.4.23.

E
p̂

[∑
e∈E:e is redundant

w(e)

]
≤ ε · distG(s, t).

Proof. Notice that

∑
e∈E:e is redundant

w(e) ≤ w(p̂) − w(p̄) ≤ w(p̂) − distG(s, t),

where the last inequality follows from that w(p̄) ≥ distG(s, t).

On the other hand, we have:

E [w(p̂)] =
∑
{u,v}∈E

w(u, v) · | f (u, v)| ≤ (1 + ε) distG(s, t),

where the first equality follows from Lemma 6.4.14 and the last inequality follows from that f is a

(1 + ε)-approximate uncapacitated minimum cost s − t flow. Thus,

E

[∑
e∈E:e is redundant

w(e)

]
≤ ε · distG(s, t).

Next, we show how to find a root(s) − root(t) path in G′′ of which cost plus l(s) is at most∑
e∈E:e is crucial w(e)+2

∑
e∈E:e is redundant w(e). Let us conceptually construct a path p̃ in G using the

following way:

1. Initialize p̃ = (s,par(s),par(par(s)), · · · , root(s)), i ← 0. Let ũ′′0 ← root(s).

2. Let ûki be the last vertex in p̂ such that ûki is in the same connected component as ũ′′i in G′

(G′ is constructed by line 7).

272

3. If ũ′′i = t, let h̃′′← i and finish the procedure.

4. Otherwise, concatenate

(root(ûki) = ũ′′i , · · · ,par(par(ûki)),par(ûki), ûki, ûki+1,par(ûki+1),par(par(ûki+1)), · · · , root(ûki+1))

to p̃ and set ũ′′i+1 ← root(ûki+1).

5. Set i ← i + 1 and go to step 3.

Fact 6.4.24. ∀i , j ∈ {0,1, · · · , h̃′′}, ũ′′i , ũ′′j .

Proof. This follows from that ûki is the last vertex in p̂ such that ûki is in the same connected

component as ũ′′i in G′ and k0 < k1 < k2 < · · · < k ĥ′′.

Fact 6.4.25. Each edge in p̃ appears in p̂.

Proof. Since û0 = s, edges {s,par(s)}, {par(s),par(par(s))}, {par(par(s)),par(par(par(s)))}, · · · must

appear in p̂ by Fact 6.4.20. By the choice of ûki and ûki+1, edge {ûki, ûki+1} appears in p̂. By

Fact 6.4.20 again, edges {ûki,par(ûki)}, {par(ûki),par(par(ûki))}, {par(par(ûki)),par(par(par(ûki)))}, · · ·

and edges {ûki+1,par(ûki+1)}, {par(ûki+1),par(par(ûki+1))}, {par(par(ûki+1)),par(par(par(ûki+1)))}, · · ·

also appear in p̂.

Fact 6.4.26. Each edge in p̃ can appear at most twice. In addition, if an edge e in p̃ appears twice,

e is a redundant edge.

Proof. Suppose e = {u, v} appears in p̃. By Fact 6.4.24, root(u), root(v) only appears once in p̃.

If u and v are not in the same connected component in G′, then either u = ûki, v = ûki+1 or v =

ûki,u = ûki+1 for some i ∈ {0,1, · · · , h̃′′}. In this case, {u, v} only appears once in p̃. If u and v are

in the same connected component, then either v = par(u) or u = par(v). Without loss of generality,

suppose v = par(u). If (u,par(u)) appears in p̃, the subpath (u,par(u),par(par(u)), · · · , root(u))

appears in p̃. If (par(u),u) appears in p̃, the subpath (root(u), · · · ,par(par(u)),par(u),u) appears in

p̃. As mentioned previously, root(u) only appears once in p̃. Thus, (u,par(u)) can appear at most

273

once in p̃ and (par(u),u) can appear at most once in p̃ which means that {u,par(u)} can appear at

most twice in p̃.

Suppose {u,par(u)} appears twice in p̃, then by the construction of p̃, the subpath

(u,par(u),par(par(u)), · · · , root(u), · · · ,par(par(u)),par(u),u) (6.15)

must appear in p̃. More precisely, the subpath (6.15) should appear in the subpath

(ûki+1,par(ûki+1), · · · ,u,par(u), · · · , root(u), · · · ,par(u),u, · · · ,par(ûki+1), ûki+1)

for some i ∈ {0,1,2, · · · , h̃′′ − 1}. If ûki+1 = ûki+1 , it means that ûki+1 appears twice in p̂. In this

case, by Fact 6.4.21, {ûki+1,par(ûki+1)} is a redundant edge. By Fact 6.4.22,

{ûki+1,par(ûki+1)}, {par(ûki+1),par(par(ûki+1))}, {par(par(ûki+1)),par(par(par(ûki+1)))}, · · ·

are redundant edges. Thus, {u,par(u)} is a redundant edge. In the case when ûki+1 , ûki+1 , we

can find two vertices x , y such that x = par(par(· · · par(ûki+1))), y = par(par(· · · par(ûki+1)))

and par(x) = par(y). By Fact 6.4.25, both {x,par(x)} and {y,par(y)} appear in p̂ which means

that par(x) appears twice in p̂. By Fact 6.4.21, {par(x),par(par(x))} is a redundant edge. Since

u = par(par(· · · par(x))), {u,par(u)} must be a redundant edge according to Fact 6.4.22.

By Fact 6.4.25 and Fact 6.4.26, we have

w(p̃) ≤
∑

e∈E:e is crucial

w(e) + 2
∑

e∈E:e is redundant

w(e). (6.16)

Let p̃′′ = (ũ′′0 , ũ
′′
1 , ũ
′′
2 , · · · , ũ

′′

h̃′′
). It is obvious that p̃′′ is a path in G′′ connecting root(s) and root(t).

In addition, we have w(p̃) = l(s) + w′′(p̃′′). Thus, to conclude,

E [l(s) + distG′′(root(s), root(t))]

274

≤E[l(s) + w′′(p̃′′)]

≤E

[∑
e∈E:e is crucial

w(e) + 2
∑

e∈E:e is redundant

w(e)

]
≤E[w(p̂)] + ε · distG(s, t)

=
©«

∑
{u,v}∈E

w(u, v) · | f (u, c)|ª®¬ + ε · distG(s, t)

≤(1 + 2ε) distG(s, t),

where the first step follows from that p̃′′ is a path in G′′ connecting root(s) and root(t), the second

step follows from Equation 6.16, the third step follows from Fact 6.4.23, the forth step follows

from Lemma 6.4.14, and the last step follows from that f is a (1 + ε)-approximate uncapacitated

minimum cost flow from s to t.

As proved in the proof of Lemma 6.4.15, |V ′′| ≤ dn/2e. By induction hypothesis, we have

E[w′′(p′′)] ≤ (1 + 2ε)dlog ne−1 · E[distG′′(root(s), root(t))]. Thus, we have

E[w(p)] ≤ E[w′′(p′′) + l(s)]

≤ (1 + 2ε)dlog ne−1 E[distG′′(root(s), root(t))] + E[l(s)]

≤ (1 + 2ε)dlog ne−1 E[distG′′(root(s), root(t)) + l(s)]

≤ (1 + 2ε)dlog ne distG(s, t),

where the first step follows from Claim 6.4.17, the second step follows from induction hypothesis,

the last step follows from Claim 6.4.18.

Theorem 6.4.27 (Parallel approximate s − t shortest path). Given an ε ∈ (0,0.5), a connected n-

vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0, and two vertices s, t ∈ V , there is

a PRAM algorithm which takes ε−2 poly(log(nΛ)) parallel time using expected ε−3m poly(log(nΛ))

work and with probability at least 0.99 outputs an s − t path satisfying w(p) ≤ (1 + ε) · distG(s, t).

275

Proof. We invoke FINDPATH(G, s, t, ε′)Θ(ε−1 log n) times, where ε′ = ε
20 log n . The depth and work

is shown by Lemma 6.4.15. As mentioned in the proof of Lemma 6.4.15, we can repeat line 5

Θ(log n) times to boost the success probability of computing the flow to 1 − n−10. By taking union

bound, all the flow computation succeed with probability at least 0.999. Condition on success

of all the flow computation, by Lemma 6.4.16, FINDPATH(G, s, t, ε′) outputs a path p satisfies

E[w(p)] ≤ (1+ 2ε′)dlog ne · distG(s, t) ≤ (1+ ε/2) · distG(s, t). By repeating Θ(ε−1 log n) times, with

probability at least 0.999, we can find an s − t path p such that w(p) ≤ (1 + ε) distG(s, t).

6.4.6 Parallel approximate single source shortest paths

In this section, we show how to extend the idea from the previous section to compute approxi-

mate single source shortest paths in parallel.

Dual solution for uncapacitated minimum cost flow

Firstly, let us introduce an additional tool, the dual solution for uncapacitated minimum cost

flow. Given an undirected graph G = (V,E,w) with |V | = n vertices and |E | = m edges, let

A ∈ Rn×m be the corresponding vertex-edge incidence matrix, and let diagonal matrix W ∈ Rm×m

be the corresponding weight matrix. Given a demand vector b ∈ Rn with 1>n b = 0, i.e.,
∑n

i=1 bi = 0,

the dual problem of the uncapacitated minimum cost flow (transshipment) problem is to solve the

following problem:

max
ζ∈Rn

ζ>b

s.t. ‖ζ>AW−1‖∞ ≤ 1.

In other words, in the dual problem, the goal is to find potentials ζ ∈ Rn of vertices that satisfies

∀e = {i, j} ∈ E, |ζi − ζ j | ≤ w(e) to maximize
∑n

i=1 bi · ζi. If a potential vector ζ ∈ Rn satisfies

‖ζ>W−1 A‖∞ ≤ 1, then we say ζ is a feasible dual solution. Notice that 0n is always a feasible dual

solution. Let ζ∗ ∈ Rn be the optimal solution for the dual. If a feasible dual solution ζ satisfies that

276

ζ>b ≥ (1 − ε) · ζ∗>b, then ζ is a (1 − ε)-approximate dual solution.

Let x∗ be the optimal primal solution of the uncapacitated minimum cost flow problem (the

optimal solution of Equation (6.8)). By duality of the uncapacitated minimum cost flow problem

(see e.g., the textbook [99]), we know that ζ∗>b = ‖x∗‖1, and thus for any feasible dual solution

ζ ∈ Rn and any feasible primal solution x ∈ Rm, we have ζ>b ≤ ‖x‖1.

By using the same multiplicative weights update algorithm [66, 67], Algorithm 38, we are able

to find an approximate solution for the dual of the transshipment problem. This is also observed

by [100].

Theorem 6.4.28 (Parallel algorithm for the dual of uncapacitated minimum cost flow). Given an

ε ∈ (0,0.5), a connected n-vertex m-edge undirected weighted graph G = (V,E,w) with w : E →

Z≥0, and a demand vector b ∈ Rn with 1>n b = 0, there is a PRAM algorithm which outputs an

(1−ε)-approximate dual solution to the uncapacitated minimum cost flow problem with probability

at least 0.99. Furthermore, the depth is at most ε−2 logO(1)(nΛ) and the expected work is at most

ε−2m · logO(1)(nΛ), where Λ =
∑

e∈E w(e).

Proof. Let A ∈ Rn×m be the vertex-edge incidence matrix of G, and let W ∈ Rm×m be the weight

matrix. As shown in the proof of Theorem 6.4.13, with probability at least 0.99, we can use

logO(1)(nΛ) depth and Õ(m) work to compute a compressed representation I = {I1, I2, · · · , In} of

a matrix P such that κ(PAW−1) ≤ logO(1)(nΛ) and ∀i ∈ [n], |Ii | ≤ logO(1)(nΛ) and thus we can

implement Algorithm 38 in parallel. In particular, for any s ≥ 1 and any κ = logO(1)(nΛ) ≥

κ(PAW−1), MWU(P, A,W, b, s, ε, κ) (see Algorithm 38) can be done in ε−2 · logO(1)(nΛ) depth and

ε−2 · m logO(1)(nΛ) work.

Consider the procedure MWU(P, A,W, b, s, ε, κ) and let y1, y2, · · · , yT ∈ R
r be the same vectors

described in Algorithm 38. Let ȳ = 1
T ·

∑T
t=1 yt . According to Lemma 6.3.8, if MWU(P, A,W, b, s, ε, κ)

returns FAIL, we have

∀ j ∈ [m], 1
s ·

ȳ>Pb
‖Pb‖1

<
ȳ>(PAW−1)j
‖PAW−1‖1→1

, 1
s ·

ȳ>Pb
‖Pb‖1

< −
ȳ>(PAW−1)j
‖PAW−1‖1→1

.

277

Thus, we have:

∀ j ∈ [m],

����� ȳ>(PAW−1) j

‖PAW−1‖1→1

����� < −1
s
·
ȳ>Pb
‖Pb‖1

which implies that

(−P> ȳ)>AW−1
∞
<
(−P> ȳ)>b

s · ‖Pb‖1
‖PAW−1‖1→1

.

If we set

ζ = s ·
‖Pb‖1

‖PAW−1‖1→1
·

1
(−P> ȳ)>b

· (−P> ȳ),

we have ‖ζ>AW−1‖∞ < 1 and ζ>b = s · ‖Pb‖1
‖PAW−1‖1→1

. Thus, we can obtain a feasible dual solution ζ

with objective value s · ‖Pb‖1
‖PAW−1‖1→1

. To compute ζ , we need to compute ‖Pb‖1, ‖PAW−1‖1→1 and

P> ȳ. As discussed in the proof of Theorem 6.4.13, ‖Pb‖1 and ‖PAW−1‖1→1 can be computed in

logO(1)(nΛ) depth and m · logO(1)(nΛ) work. Notice that P> ȳ = 1
T
∑T

t=1 P>yt and ∀t ∈ [T],P>yt

can be computed in logO(1)(nΛ) depth and n · logO(1)(nΛ) work as discussed in the proof of Theo-

rem 6.4.13. Since T = O(ε−2κ2 log n) = ε−2 logO(1)(nΛ), P> ȳ can be computed in ε−2 logO(1)(nΛ)

depth and ε−2n · logO(1)(nΛ) work. Overall, ζ can be computed in ε−2 logO(1)(nΛ) depth and

ε−2m · logO(1)(nΛ) total work.

Follow the binary search procedure (see Section 6.3.1), we take log(ε−1 log κ) rounds to find

ŝ ∈ {1,1 + ε, (1 + ε)2, · · · , (1 + ε)dlog1+ε κe}, we can compute a feasible dual solution ζ satisfying

ζ>b ≥ ŝ · ‖Pb‖1
‖PAW−1‖1→1

and according to Lemma 6.3.8, we can also obtain x ∈ Rm such that ‖x‖1 ≤

(1+ ε) · ŝ · ‖Pb‖1
‖PAW−1‖1→1

and ‖PAW−1x−Pb‖1 ≤ ε
κ · ‖PAW−1‖1→1 · (1+ ε) · ŝ · ‖Pb‖1

‖PAW−1‖1→1
. The overall

depth is O(ε−2 logO(1)(nΛ)) and the overall work is O(ε−2m logO(1)(nΛ)). The remaining thing is

to show that ζ>b is nearly optimal.

Consider x̃ ∈ Rm with PAW−1 x̃ = Pb − PAW−1x that ‖ x̃‖1 is minimized. We have ‖ x̃‖1 ≤

κ(PAW−1) · ‖PAW−1x − Pb‖1/‖PAW−1‖1→1 ≤ κ · ‖PAW−1x − Pb‖1/‖PAW−1‖1→1 ≤ ε · (1 +

278

ε) · ŝ · ‖Pb‖1
‖PAW−1‖1→1

. Let x∗ ∈ Rm be the optimal primal solution of the original problem, i.e.,

PAW−1x∗ = Pb and ‖x∗‖1 is minimized. We have ‖x∗‖1 ≤ ‖x‖1+ ‖ x̃‖1 ≤ (1+ε)· ŝ · ‖Pb‖1
‖PAW−1‖1→1

+ε ·

(1+ε)·̂s· ‖Pb‖1
‖PAW−1‖1→1

≤ (1+ε)2 ·̂s· ‖Pb‖1
‖PAW−1‖1→1

. It implies that ζ>b ≥ ‖x∗‖1/(1+ε)2 ≥ (1−O(ε))·‖x∗‖1.

Thus ζ is a (1 − O(ε)) approximate dual solution. By adjusting ε by a constant, we complete the

proof.

Expected single source shortest path tree

In this section, we show how to extend the recursive path construction method described in

Section 6.4.5 to the recursive tree construction method for computing an expected single source

shortest path tree. To adapt the same presentation as Section 6.4.5, instead of discussing the single

source shortest path tree, we discuss the single sink/target shortest path tree in this section. Notice

that the single sink shortest path tree is exactly the same problem as the single source shortest path

tree in the undirected graph.

Given a vertex t ∈ V , a special case of uncapacitated minimum cost flow is when the demand

b ∈ Rn satisfies that bt ≤ 0, and ∀u ∈ V \ {t}, bu ≥ 0 and
∑

u∈V\{t} bu = −bt . In this case, the

value of the minimum cost flow is exactly the same as
∑

u∈V\{t} bu · distG(u, t). If b = 0n, then

the optimal flow is a zero flow. Otherwise, we can without loss of generality assume bt = −1,

since we can always scale the demand vector b to make bt = −1 and scale back the the solution.

In the case of bt = −1, the optimal cost can be seen as Eu∈V\{t}[distG(u, t)] where each vertex

u ∈ V \ {t} is drawn with probability bu. The optimal flow should route exactly on the shortest

path tree with sink vertex t. As shown previously, since we can compute a (1 + ε)-approximation

to the uncapacitated minimum cost flow, we can compute a (1 + ε)-approximation to the expected

distance Eu∈V\{t}[distG(u, t)] where each vertex u ∈ V \ {t} is drawn with probability bu. Again,

since our flow algorithm can only output a flow which satisfies the demand, it is not necessary to

be a tree. We show how to obtain a tree such that the cost of routing demands on the tree is a

(1 + ε)-approximation to the expected distance. The algorithm is shown in Algorithm 43, which is

a natural extension of Algorithm 42.

279

Algorithm 43 Finding an Expected Shortest Path Tree

1: procedure FINDEXPECTEDTREE(G = (V,E,w), t ∈ V, ε ∈ (0,0.5), b̂ ∈ R |V | : 1>n b̂ = 0, b̂t ≤ 0,∀u ∈
V \ {t}, b̂u ≥ 0)

2: Output: GT = (V,T,wT) . Return the edges of the tree.
3: If b̂ = 0n, return GT = (V,T,wT) which is an arbitrary spanning tree of G. ∀e ∈ T,wT (e) = w(e).
4: n← |V |,m← |E |. Initialize the demand vector b← b̂/(−b̂t).
5: Compute a (1 + ε)-approximate uncapacitated minimum cost flow f satisfying b. .

Theorem 6.4.13.
6: For each vertex u ∈ V \ {t}, set the pointer par(u) ← v ∈ {v′ ∈ V | f (u, v′) > 0} with probability

f (u, v)∑
v′: f (u,v′)>0 f (u, v′)

.

7: Let G′ = (V,E ′), where E ′ = {{u,par(u)} | u ∈ V \ {t}}.
8: Compute a spanning forest of G′. For u ∈ V , if u is in the same connected component as t, set

root(u) ← t; otherwise set root(u) ← v where v is in the same connected component as u and the edge
{v,par(v)} does not appear in the spanning forest.

9: For u ∈ V , compute l(u) ← w(u,par(u)) + w(par(u),par(par(u))) + · · · + w(par(· · · par(u)), root(u)).
10: Set V ′′← {v ∈ V | root(v) = v},E ′′← {{root(u), root(v)} | {u, v} ∈ E}.
11: For each e′′ = {u′′, v′′} ∈ E ′′, set

map(e′′) ← arg min
{u,v }∈E:

root(u)=u′′ ,root(v)=v′′

l(u) + w(u, v) + l(v).

12: For each e′′ ∈ E ′′, set w′′(e′′) ← l(u) + w(u, v) + l(v), where {u, v} = map(e′′).
13: Set demand vector b′′ ∈ R |V

′′ |: for u ∈ V ′′, b′′u ←
∑

v∈V :root(v)=u bv.
14: G′′T ′′ = (V

′′,T ′′,w′′T ′′) ← FINDEXPECTEDTREE(G′′ = (V ′′,E ′′,w′′), t, ε, b′′). . Recursion.
15: T ← {{u,par(u)} | u ∈ V \ {t}, root(u) , u} ∪ {map(e′′) | e′′ ∈ T ′′}.
16: For each e ∈ T , set wT (e) ← w(e). Return GT = (V,T,wT).
17: end procedure

Lemma 6.4.29 (Work and depth of parallel expected shortest path tree). Given an ε ∈ (0,0.5),

a connected n-vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0, a vertex

t ∈ V , and a demand vector b̂ ∈ Rn satisfying 1>n b̂ = 0, b̂t ≤ 0,∀u ∈ V \ {t}, b̂u ≥ 0,

FINDEXPECTEDTREE(G, t, ε, b̂) (Algorithm 43) can be implemented in PRAM with ε−2 logO(1)(nΛ)

depth and expected ε−2m logO(1)(nΛ) work, where Λ = maxe∈E w(e).

Proof. The proof is similar to the proof of Lemma 6.4.15. Line 3 can be done in logO(1) n depth and

m · logO(1) n work (see, e.g., [13]). Line 5 can be done in ε−2 poly(log(nΛ)) depth using expected

ε−2m poly(log(nΛ)) work by Theorem 6.4.13. We can repeat line 5 Θ(log n) times to boost the

success probability to 1− n−10. It only increases the work by a O(log n) factor. Line 6 can be done

280

in poly(log n) depth using m poly(log n) work. In line 8, computing connected components and a

spanning forest can be done in poly(log n) depth using m poly(log n) work [13]. In line 9, we can

use doubling algorithm to compute l(u) for all u ∈ V simultaneously in poly(log n) depth using

n poly(log n) work.

Next, consider the number of recursions (line 14) needed. Except vertex t, every vertex u has an

edge {u,par(u)} ∈ E′. Thus, each connected component without t in G′ has size at most 2. Notice

that |V ′′| is exactly the same as the number of connected components in G′. Thus, |V ′′| ≤ dn/2e.

It implies that the number of recursions is at most dlog ne. Thus, the overall depth is at most

ε−2 poly(log(nΛ)) and the overall expected work is at most ε−2m poly(log(nΛ)).

Lemma 6.4.30 (Correctness of parallel approximate expected single sink shortest path tree). Given

an ε ∈ (0,0.5), a connected n-vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0,

a vertex t ∈ V and a demand vector b̂ ∈ Rn satisfying 1>n b̂ = 0, b̂t ≤ 0,∀u ∈ V \ {t}, b̂u ≥ 0, let

GT = (V,T,wT) be the output of FINDEXPECTEDTREE(G, t, ε, b̂). Then GT is a spanning tree of

G and E
[∑

u∈V\{t} b̂u · distGT (u, t)
]
≤ (1 + 2ε)dlog ne ·

∑
u∈V\{t} b̂u · distG(u, t).

Proof. The proof is similar to the proof of Lemma 6.4.16. Our proof is by induction on the number

of vertices of G. When G only has one vertex, the statement is obviously true. Now suppose the

statement is true for any graph with less than n vertices and consider G = (V,E,w) with |V | = n

vertices and |E | = m edges.

For u ∈ V , let l(u) be the same as that in line 9. Let GT = (V,T,wT) be the output of FINDEX-

PECTEDTREE(G, t, ε, b̂). Let G′′T ′′ be the output of line 14. Let root(u) be the same as in line 8 for

u ∈ V . By line 8, we know that root(t) = t and thus t ∈ V ′′.

Firstly, we show that GT is a spanning tree of G. By line 8, we know that {{u,par(u)} | u ∈

V \ {t}, root(u) , u} forms a forest. Each tree in the forest has exactly one root. Thus, the number

of edges in the forest is n − |{u ∈ V | u = root(u)}|. By induction hypothesis, G′′T ′′ is a spanning

tree of G′′. By line 15, if root(u) and root(v) is connected in G′′T ′′, we will add an edge to connect

the tree containing root(u) with the tree containing root(v) in GT . Since G′′T ′′ is a spanning tree of

G′′, any two roots are in the same connected component in G′′ which implies that any two vertices

281

in G are in the same connected component in GT . Since |T ′′| = |{u ∈ V | u = root(u)}| − 1, we

have |T | = n− |{u ∈ V | u = root(u)}| + |{u ∈ V | u = root(u)}| − 1. Thus, T has n− 1 edges which

implies that GT is a spanning tree.

In the remaining of the proof, let us prove that the routing cost on GT is small.

Claim 6.4.31 (Analogue of Claim 6.4.17).

∑
u∈V\{t}

b̂u · distGT (u, t) ≤
∑

u∈V\{t}

b̂u ·

(
l(u) + distG′′

T ′′
(root(u), t)

)
Proof. It suffices to show that ∀u ∈ V \ {t},distGT (u, t) ≤ l(u) + distG′′

T ′′
(root(u), t). Consider

the shortest path p′′ from root(u) to t in the tree G′′T ′′. Suppose p′′ = (u′′0 ,u
′′
1 , · · · ,u

′′
h′′), where

u′′0 = u,u′′h′′ = t. According to line 15, we know that ∀e′′ ∈ T ′′,map(e′′) ∈ T and ∀v ∈ V, if

v , root(v), the edge {v,par(v)} is also in T .

Thus, we have

distGT (u, t)

≤w(u,par(u),par(par(u)), · · · , root(u))

+
∑
xi,yi :

{xi ,yi }=map({u′′
i−1 ,u

′′
i
})

w((root(xi), · · · ,par(xi), xi, yi,par(yi), · · · , root(yi)))

= l(u) +
∑
xi,yi :

{xi ,yi }=map({u′′
i−1 ,u

′′
i
})

l(xi) + w(xi, yi) + l(yi)

= l(u) +
h′′∑
i=1

w′′(u′′i−1,u
′′
i)

= l(u) + distG′′
T ′′
(root(u), t),

where the first equality follows from line 9 and the second inequality follows from line 12.

Let demand vector b be the same as in line 4. Let demand vector b′′ be the same as in line 13.

282

Claim 6.4.32.

∑
u∈V\{t}

b̂u ·

(
l(u) + distG′′

T ′′
(root(u), t)

)
= (−b̂t) ·

©«
∑

u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′\{t}

b′′u′′ · distG′′
T ′′
(u′′, t)ª®¬ .

Proof.

∑
u∈V\{t}

b̂u ·

(
l(u) + distG′′

T ′′
(root(u), t)

)
=(−b̂t) ·

©«
∑

u∈V\{t}

bu · l(u) +
∑

u∈V\{t}

bu · distG′′
T ′′
(root(u), t)ª®¬

=(−b̂t) ·
©«

∑
u∈V\{t}

bu · l(u) +
∑
u∈V

bu · distG′′
T ′′
(root(u), t)ª®¬

=(−b̂t) ·
©«

∑
u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′

∑
u∈V :root(u)=u′′

bu · distG′′
T ′′
(u′′, t)ª®¬

=(−b̂t) ·
©«

∑
u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′
b′′u′′ · distG′′

T ′′
(u′′, t)ª®¬ ,

where the first step follows from that bu = b̂u/(−b̂t), the second step follows from that root(t) = t,

the third step follows from that V ′′ = {root(u) | u ∈ V} and distG′′
T ′′
(t, t) = 0 and the last step

follows from that b′′u′′ =
∑

u∈V :root(u)=u′′ bu (see line 13).

Claim 6.4.33 (Analogue of Claim 6.4.18).

E
par:V\{t}→V

∑

u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′\{t}

b′′u′′ · distG′′(u′′, t)
 ≤ (1 + 2ε) ·

∑
u∈V\{t}

bu · distG(u, t).

Proof. The proof is similar to the proof of Claim 6.4.18. Let f be the flow obtained by line 5

satisfying
∑
{u,v}∈E w(u, v) · | f (u, v)| ≤ (1 + ε)

∑
u∈V\{t} bu · distG(u, t). Our proof is by coupling.

Notice that bt = −1 and ∀u ∈ V \ {t}, bu ≥ 0. By Lemma 6.4.14, we only need to prove that

Epar:V\{t}→V
[∑

u∈V\{t} bu · l(u) +
∑

u′′∈V ′′\{t} b′′u′′ · distG′′(u′′, t)
]

is almost bounded by the expected

283

length of a random walk corresponding to the flow f .

For u ∈ V , let par(u) be the same as that in Algorithm 43. We conceptually generate a random

walk p̂ corresponding to f in the following way:

1. Set i ← 0, and set û0 to be v ∈ V \ {t} with probability bv.

2. If ∀ j ∈ {0,1, · · · , i − 1}, û j , ûi, then set ûi+1 ← par(ûi). Otherwise, set ûi+1 to be v ∈ {v′ ∈

V | f (ûi, v
′) > 0} with probability f (ûi,v)∑

v′: f (ûi ,v′)>0 f (ûi,v′)
.

3. If ûi+1 , t, set i ← i + 1, and repeat step 2 . Otherwise, ĥ ← i + 1, and output the path

p̂ = (û0, û1, · · · , ûĥ) as the random walk.

It is easy to see that p̂ is a random walk corresponding to the flow f and thus E[w(p̂)] =
∑
{u,v}∈E w(u, v)·

| f (u, v)| by Lemma 6.4.14. Notice that p̂ may have cycles, we conceptually do the following pro-

cedure to shortcut all cycles of p̂ to obtain p̄:

1. Set i ← 0, j ← 0.

2. If @i′ > i, ûi′ = ûi, set ū j ← ûi, j ← j + 1, i ← i + 1.

3. Otherwise, find the largest i′ ∈ [ĥ] such that ûi′ = ûi. Mark all edges {ûi, ûi+1}, {ûi+1, ûi+2},

· · · , {ûi′−1, ûi′} as redundant.

4. Repeat above two steps until i > ĥ. At the end, set h̄← j − 1 and path p̄← (ū0, ū1, · · · , ūh̄).

For each edge e ∈ E which appears in p̂ but is not marked as redundant, mark e as crucial.

It is easy to see that p̄ is a simple s-t path and furthermore
∑

e∈E:e is crucial w(e) ≤ w(p̄) ≤

w(p̂) −
∑

e∈E:e is redundant w(e).

By the above constructions, p̂ has several good properties.

Fact 6.4.34 (The same as Fact 6.4.19). If ûi is the first appearance of a vertex v, then ûi+1 must be

par(v).

Fact 6.4.35 (The same as Fact 6.4.20). If vertex v ∈ V appears in p̂ and v , t, all edges {v,par(v)},

{par(v),par(par(v))}, {par(par(v)),par(par(par(v)))}, · · · should be in p̂.

284

Proof. It follows from Fact 6.4.34.

Fact 6.4.36 (The same as Fact 6.4.21). If vertex v appears at least twice in p̂, {v,par(v)} is a

redundant edge.

Proof. The proof is exactly the same as the proof of Fact 6.4.21.

Fact 6.4.37 (The same as Fact 6.4.22). If {v,par(v)} is a redundant edge, {par(v),par(par(v))} is a

redundant edge.

Proof. The proof is exactly the same as the proof of Fact 6.4.22.

Fact 6.4.38 (Analogue of Fact 6.4.23).

E
p̂

[∑
e∈E:e is redundant

w(e)

]
≤ ε ·

∑
u∈V\{t}

bu · distG(u, t).

Proof. Condition on that the starting vertex û0 = u, we have

∑
e∈E:e is redundant

w(e) ≤ w(p̂) − w(p̄) ≤ w(p̂) − distG(u, t), (6.17)

where the last inequality follows from that w(p̄) ≥ distG(u, t). On the other hand, we have:

E[w(p̂)] =
∑
{v,v′}∈E

w(v, v′) · | f (v, v′)| ≤ (1 + ε)
∑

u∈V\{t}

bu · distG(u, t), (6.18)

where the first equality follows from Lemma 6.4.14 and the last inequality follows from that f is a

(1 + ε)-approximate uncapacitated minimum cost flow satisfying demands b. Thus,

E
p̂

[∑
e∈E:e is redundant

w(e)

]
=

∑
u∈V\{t}

E
p̂

[∑
e∈E:e is redundant

w(e)
��� û0 = u

]
· Pr[û0 = u]

285

=
∑

u∈V\{t}

E
p̂

[∑
e∈E:e is redundant

w(e)
��� û0 = u

]
· bu

≤
∑

u∈V\{t}

bu ·

(
E
p̂
[w(p̂) | û0 = u] − distG(u, t)

)
=

∑
u∈V\{t}

Pr[û0 = u] · E
p̂
[w(p̂) | û0 = u] −

∑
u∈V\{t}

bu · distG(u, t)

=E
p̂
[w(p̂)] −

∑
u∈V\{t}

bu · distG(u, t)

≤ε ·
∑

u∈V\{t}

bu · distG(u, t),

where the second equality follows from that the probability that the start vertex of p̂ is u is bu,

the first inequality follows from Equation (6.17), the third equality again follows from that the

probability that the start vertex of p̂ is u is bu, and the last inequality follows from Equation (6.18).

Next we show how to find a path p̃′′ in G′′ between root(û0) and t such that l(û0) + w′′(p̃′′) is

at most
∑

e∈E:e is crucial w(e) + 2
∑

e∈E:e is redundant w(e). Let us conceptually construct a path p̃ in G

between û0 and t using the following way:

1. Initialize p̃ = (û0,par(û0),par(par(û0)), · · · , root(û0)), i ← 0. Let ũ′′0 ← root(û0).

2. Let ûki be the last vertex in p̂ such that ûki is in the same connected component as ũ′′i in G′

(G′ is constructed by line 7).

3. If ũ′′i = t, let h̃′′← i and finish the procedure.

4. Otherwise, concatenate

(root(ûki) = ũ′′i , · · · ,par(par(ûki)),par(ûki), ûki, ûki+1,par(ûki+1),par(par(ûki+1)), · · · , root(ûki+1))

to p̃ and set ũ′′i+1 ← root(ûki+1).

5. Set i ← i + 1 and go to step 3.

286

Fact 6.4.39 (The same as Fact 6.4.24). ∀i , j ∈ {0,1, · · · , h̃′′}, ũ′′i , ũ′′j .

Proof. The proof is exactly the same as Fact 6.4.24.

Fact 6.4.40 (Analogue of Fact 6.4.25). Each edge in p̃ appears in p̂.

Proof. Edges {û0,par(û0)}, {par(û0),par(par(û0))}, {par(par(û0)),par(par(par(û0)))}, · · · must appear

in p̂ by Fact 6.4.35. By the choice of ûki and ûki+1, edge {ûki, ûki+1} appears in p̂. By Fact 6.4.35

again, edges {ûki,par(ûki)}, {par(ûki),par(par(ûki))}, {par(par(ûki)),par(par(par(ûki)))}, · · · and edges

{ûki+1,par(ûki+1)}, {par(ûki+1),par(par(ûki+1))}, {par(par(ûki+1)),par(par(par(ûki+1)))}, · · · also ap-

pear in p̂.

Fact 6.4.41 (The same as Fact 6.4.26). Each edge in p̃ can appear at most twice. In addition, if an

edge e in p̃ appears twice, e is a redundant edge.

Proof. The proof is exactly the same as the proof of Fact 6.4.26.

By Fact 6.4.40 and Fact 6.4.41, we have:

w(p̃) ≤
∑

e∈E:e is crucial

w(e) + 2 ·
∑

e∈E:e is redundant

w(e) ≤ w(p̂) +
∑

e∈E:e is redundant

w(e). (6.19)

Let p̃′′ = (ũ′′0 , ũ
′′
1 , ũ
′′
2 , · · · , ũ

′′

h̃′′
). By the choice of ũ′′0 , ũ

′′
1 , ũ
′′
2 , · · · , ũ

′′

h̃′′
, it is obvious that p̃′′ is a path in

G′′ connecting root û0 and t. In addition, we have w(p̃) = l(û0) + w′′(p̃′′). Thus, to conclude, we

have:

E
par

∑

u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′\{t}

b′′u′′ · distG′′(u′′, t)

= E
par

∑

u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′
b′′u′′ · distG′′(u′′, t)

= E

par

∑

u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′

∑
u∈V :root(u)=u′′

bu · distG′′(u′′, t)

287

= E
par

∑

u∈V\{t}

bu · (l(u) + distG′′(root(u), t))

=
∑

u∈V\{t}

bu · E
par
[l(u) + distG′′(root(u), t)]

=
∑

u∈V\{t}

bu · E
par,̂u0
[l(u) + distG′′(root(u), t)]

=
∑

u∈V\{t}

Pr
û0
[û0 = u] · E

par,̂u0
[l(û0) + distG′′(root(û0), t) | û0 = u]

= E
par,̂u0
[l(û0) + distG′′(root(û0), t)]

≤ E
par,̂u0,p̂

[l(û0) + w
′′(p̃′′)]

= E
par,̂u0,p̂

[w(p̃)]

≤ E
par,̂u0,p̂

[w(p̂)] + E
par,̂u0,p̂

[∑
e∈E:e is redundant

w(e)

]
≤ E

par,̂u0,p̂
[w(p̂)] + ε ·

∑
u∈V\{t}

bu · distG(u, t)

≤(1 + 2ε) ·
∑

u∈V\{t}

bu · distG(u, t),

where the first step follows from distG′′(t, t) = 0, the second step follows from ∀u′′ ∈ V ′′, b′′u′′ =∑
u∈V :root(u)=u′′ bu, the third step follows from V ′′ = {root(u) | u ∈ V}, the fourth step follows from

the linearity of expectation, the fifth step follows from that the choice of û0 does not influence

l(u) + distG′′(root(u), t), the sixth step follows from that Pr[û0 = u] = bu, the seventh step follows

from conditional expectation, the eighth step follows from that p̃′′ is a path between root û0 and t in

G′′, the ninth step follows from w(p̃) = l(û0)+w
′′(p̃′′), the tenth step follows from Equation (6.19),

the eleventh step follows from Fact 6.4.38 and the last step follows from Lemma 6.4.14.

As proved in the proof of Lemma 6.4.29, |V ′′| ≤ dn/2e. By induction hypothesis, we have

E[
∑

u′′∈V ′′\{t} b′′u′′ · distG′′
T ′′
(u′′, t)] ≤ (1 + 2ε)dlog ne−1 · Epar[

∑
u∈V\{t} b′′u′′ distG′′(u′′, t)]. Thus, we

288

have:

E

∑
u∈V\{t}

b̂u · distGT (u, t)

≤E

∑
u∈V\{t}

b̂u ·

(
l(u) + distG′′

T ′′
(root(u), t)

)
=(−b̂t) · E

∑

u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′\{t}

b′′u′′ · distG′′
T ′′
(u′′, t)

≤(−b̂t) · E

∑

u∈V\{t}

bu · l(u)
 + (1 + 2ε)dlog ne−1 · (−b̂t) · E

∑

u′′∈V ′′\{t}

b′′u′′ · distG′′(u′′, t)

≤(1 + 2ε)dlog ne−1 · (−b̂t) · E

∑
u∈V\{t}

bu · l(u) +
∑

u′′∈V ′′\{t}

b′′u′′ · distG′′(u′′, t)

≤(1 + 2ε)dlog ne−1 · (−b̂t) · (1 + 2ε) ·
∑

u∈V\{t}

bu · distG(u, t)

≤(1 + 2ε)dlog ne ·
∑

u∈V\{t}

b̂u · distG(u, t),

where the first step follows from Claim 6.4.31, the second step follows from Claim 6.4.32, the

third step follows from induction hypothesis, the fourth step follows from (1 + 2ε) > 1, the fifth

step follows from Claim 6.4.33, and the last step follows from b̂ = b · (−b̂t).

Theorem 6.4.42 (Parallel approximate expected single source (sink) shortest path tree). Given an

ε ∈ (0,0.5), a connected n-vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0, a

vertex s, and a demand vector b ∈ Rn satisfying 1>n b = 0, bs ≤ 0,∀u ∈ V \ {s}, bu ≥ 0, there is a

PRAM algorithm which takes ε−2 poly(log(nΛ)) parallel time using expected ε−3m poly(log(nΛ))

work and with probability at least 0.99 outputs a spanning tree GT = (V,T,wT) of G satisfying∑
u∈V\{s} bu · distGT (s,u) ≤ (1 + ε) ·

∑
u∈V\{s} bu · distG(s,u).

Proof. We invoke FINDEXPECTEDTREE(G, s, ε′, b) (Algorithm 43) Θ(ε−1 log n) times, where ε′ =

ε
20 log n . The depth and work is shown by Lemma 6.4.29. As mentioned in the proof of Lemma 6.4.29,

we can repeat line 5 Θ(log n) times to boost the success probability of computing the flow to

289

1 − n−10. By taking union bound, all the flow computation succeed with probability at least 0.999.

Condition on success of all the flow computation, by Lemma 6.4.30, FINDEXPECTEDTREE(G, s, ε′, b)

outputs a spanning tree GT = (V,T,wT) of G and E[
∑

u∈V\{s} bu · GT (s,u)] ≤ (1 + 2ε′)dlog ne ·∑
u∈V\{s} bu · distG(s,u) ≤ (1 + ε/2) ·

∑
u∈V\{s} bu · distG(s,u). By repeating Θ(ε−1 log n) times in

parallel, with probability at least 0.999, we can find a spanning tree GT such that
∑

u∈V\{s} bu ·

distGT (s,u) ≤ (1 + ε) ·
∑

u∈V\{s} bu · distG(s,u).

Parallel approximate single source shortest path tree and potentials

We can use Theorem 6.4.28 to compute an approximate dual solution for expected single source

shortest path problem. We can use Theorem 6.4.42 to compute an approximate (primal) solution

for expected single source shortest path problem. In [43], they show how to use primal and dual

expected solution to compute approximate single source shortest paths. [100] also adapted and

extended these ideas to compute approximate single source shortest path tree and approximate

single source shortest path potentials in parallel setting. In this section, we present this method for

completeness.

The following lemma shows how to implement line 11.

Lemma 6.4.43 (Merge two spanning trees in parallel). Given two trees GT = (V,T,wT) with

weights wT : T → Z≥0, GT ′ = (V,T ′,wT ′) with weights wT ′ : T ′ → Z≥0 on the same set

of n vertices V and a vertex s ∈ V , there is a PRAM algorithm which outputs a tree GT ′′ =

(V,T ′′,wT ′′) on V in poly(log n) depth and n · poly(log n) work such that ∀u ∈ V,distGT ′′
(s,u) ≤

min(distGT (s,u),distGT ′
(s,u)). Furthermore, T ′′ ⊆ T ∪ T ′ and ∀e ∈ T ′′, either wT ′′(e) = wT (e) or

wT ′′(e) = wT ′(e).

Proof. Firstly, we can without loss of generality assume that all weights are positive. Otherwise,

let Λ = max(maxe∈T wT (e),maxe∈T ′ wT ′(e′)), and scale the weights: ∀e ∈ T,wT (e) ← wT (e) · n ·

(Λ + 1) + 1,∀e ∈ T ′,wT ′(e) ← wT ′(e) · n · (Λ + 1) + 1. Then all weights become positive, and it is

easy to see that ∀u ∈ V \ {s}, bdistGT (s,u)/(n · (Λ+ 1))c, bdistGT ′
(s,u)/(n · (Λ+ 1))c are exactly the

same as before scaling up the weights.

290

Algorithm 44 Approximate Single Source Shortest Path Tree and Potentials
1: procedure SSSP(G = (V,E,w), s ∈ V, ε ∈ (0,0.5))
2: Output: GT = (V,T,wT), ζ ∈ R

n . Return a spanning tree and distance potentials of vertices.
3: Initialize ζ ← 0n, let GT = (V,T,wT) be an arbitrary spanning tree of G. Set ε ′← ε/100.
4: Set bs ← −(n − 1) and ∀u ∈ V \ {s}, bu ← 1.
5: while bs < 0 do
6: Compute a potential vector ζ ′ ∈ Rn which is a (1 − ε ′)-approximate dual solution to the unca-

pacitated minimum cost flow problem on G with demand b.
7: . Use Theorem 6.4.28.
8: Modify the obtained potentials ζ ′← ζ ′ − 1n ·ζ ′s to make ζ ′s = 0.
9: Compute a spanning tree GT ′ = (V,T ′) of G such that

∑
u∈V\{s} bu · distGT ′

(s,u) ≤ (1 + ε ′) ·∑
u∈V\{s} bu · distG(s,u).

10: . Use Theorem 6.4.42.
11: Compute a spanning tree GT ′′ = (V,T ′′,wT ′′) of G such that T ′′ ⊆ T ∪ T ′,∀e ∈ T ′′,wT ′′(e) ←

w(e) and ∀u ∈ V,distGT ′′
(s,u) ≤ min(distGT ′

(s,u),distGT (s,u)).
12: Update GT ← GT ′′, i.e., T ← T ′′,wT ← wT ′′.
13: For each u ∈ V \ {s}, update ζu ← max(ζu, ζ ′u).
14: for u ∈ V : bu = 1 do
15: If distGT ′

(s,u) ≤ (1 + ε)ζ ′u, bu ← 0, bs ← bs + 1.
16: end for
17: end while
18: Return GT = (V,T,wT) and ζ .
19: end procedure

We use the following procedure to compute T ′′:

1. Compute parent pointers par : V \ {s} → V for GT and parent pointers par′ : V \ {s} → V

for GT ′, i.e., {{u,par(u)} | u ∈ V \ {s}} = T , {{u,par′(u)} | u ∈ V \ {s}} = T ′.

2. For each vertex u ∈ V ∈ {s}, if distGT (s,u) < distGT ′
(s,u), set par′′(u) ← par(u),T ′′ ←

T ′′ ∪ {u,par(u)}, wT ′′(u,par′′(u)) ← wT (u,par(u)), otherwise set par′′(u) ← par′(u),T ′′ ←

T ′′ ∪ {u,par′(u)},wT ′′(u,par′′(u)) ← wT ′(u,par′(u)).

For the first step, we can use poly(log n) depth and m poly(log n) work to find parent pointers [13].

In the second step, we can use the doubling algorithm to compute distGT (s,u) and distGT ′
(s,u) for

each u ∈ V in n poly(log n)work and poly(log n) depth. Thus, the whole algorithm takes poly(log n)

depth and n · poly(log n) work.

Now let us consider the correctness of the procedure. Firstly, we show that GT ′′ is indeed a

tree. Notice that for each vertex u ∈ V \ {s}, par′′(u) is either par(u) or par′(u). If par′′(u) =

291

par(u), then by the construction, we know that min(distGT (s,u),distGT ′
(s,u)) > distGT (s,par′′(u)) ≥

min(distGT (s,par′′(u)),distGT ′
(s,par′′(u))). Similarly, if par′′(u) = par′(u), then by the construc-

tion, we know that min(distGT (s,u),distGT ′
(s,u)) > distGT ′

(s,par′′(u)) ≥ min(distGT (s,par′′(u)),

distGT ′
(s,par′′(u))). In either case, we have

min
(
distGT (s,u),distGT ′

(s,u)
)
> min

(
distGT (s,par′′(u)),distGT ′

(s,par′′(u))
)
.

Thus, par′′ does not create any cycle which implies that T ′′ is a tree.

We claim that ∀u ∈ V, distGT ′′
(s,u) ≤ min(distGT (s,u),distGT ′

(s,u)). The proof is by induc-

tion on min(distGT (s,u),distGT ′
(s,u)). The base case is when u = s, the claim is obviously true.

Suppose any v ∈ V with min(distGT (s, v),distGT ′
(s, v)) < min(distGT (s,u),distGT ′

(s,u)) satisfies

distGT ′′
(s, v) ≤ min(distGT (s, v),distGT ′

(s, v)). Consider vertex u. In the case par′′(u) = par(u),

we have distGT (s,u) ≤ distGT ′
(s,u). We have distG′′T (s,u) ≤ distGT ′′

(s,par(u)) + wT (u,par(u)) ≤

distGT (s,par(u))+wT (par(u),u) = distGT (s,u) = min(distGT (s,u),distGT ′
(s,u)). In the case par′′(u) =

par′(u),we have distGT ′
(s,u) ≤ distGT (s,u). We have distG′′T (s,u) ≤ distGT ′′

(s,par′(u))+wT ′(u,par′(u)) ≤

distGT ′
(s,par′(u)) + wT ′(par′(u),u) = distGT ′

(s,u) = min(distGT (s,u),distGT ′
(s,u)). Thus, the claim

holds.

Lemma 6.4.44 (Correctness of Algorithm 44). Given an ε ∈ (0,0.5), a connected n-vertex m-edge

undirected graph G = (V,E,w) with w : E → Z≥0 and a vertex s, if SSSP(G, s, ε) (Algorithm 44)

terminates, the output GT = (V,T,wT) and ζ satisfy:

1. ∀u ∈ V,distGT (s,u) ≤ (1 + ε) · distG(s,u).

2. ∀u ∈ V, ζu ≥ (1 − ε) · distG(s,u) and ∀{u, v} ∈ E, |ζu − ζv | ≤ w(u, v).

Proof. Consider an arbitrary vertex u. If SSSP(G, s, ε) (Algorithm 44) terminates, it implies that

bs = 0 at the end of the algorithm and thus there is an iteration that the condition of line 15 is

satisfied: distGT ′
(s,u) ≤ (1 + ε)ζ ′u. Notice that ζ ′ is a dual solution obtained by line 6. After

the modification of line 8, ζ ′ is still a dual solution. Thus, ∀{x, y} ∈ E, |ζ ′x − ζ
′
y | ≤ w(x, y) which

292

implies that ζ ′u = ζ
′
u−ζ

′
s ≤ distG(s,u). Since distGT ′

(s,u) ≤ (1+ε)ζ ′u, we have ζ ′u ≥ (1−ε) distG(s,u)

and distGT ′
(s,u) ≤ (1 + ε) distG(s,u).

According to line 11 and line 12, we have distGT (s,u) ≤ distGT ′
(s,u) ≤ (1 + ε) distG(s,u) at the

end of the algorithm. According to line 13, we have ζu ≥ ζ
′
u ≥ (1 − ε) distG(s,u).

Now we prove that ∀{x, y} ∈ E, |ζx−ζy | ≤ w(u, v) at the end of the algorithm. ζ is initialized as

0n which satisfies the property. The only place updates ζ is in line 13. Consider an arbitrary edge

{x, y} ∈ E . Since ζ ′ is a feasible dual solution, we have both |ζ ′x − ζ
′
y | ≤ w(x, y) and |ζx − ζy | ≤

w(x, y) before line 13. Notice that |max(ζx, ζ
′
x) −max(ζy, ζ ′y)| ≤ max(|ζx − ζy |, |ζ

′
x − ζ

′
y |) ≤ w(x, y).

Thus, ζ must hold the property at the end of the algorithm.

Lemma 6.4.45 (Number of iterations of Algorithm 44). Given an ε ∈ (0,0.5), a connected n-vertex

m-edge undirected graph G = (V,E,w) with w : E → Z≥0 and a vertex s, the number of iterations

of the while loop from line 5 to line 17 of SSSP(G, s, ε) (Algorithm 44) is at most O(log nΛ) where

Λ = maxe∈E w(e).

Proof. Consider one iteration. Let cost =
∑

u∈V\{s} bs · distG(s,u) at the beginning of the it-

eration. Let cost′ =
∑

u∈V\{s} bs · distG(s,u) at the end of the iteration. Notice that cost ≤∑
u∈V\{s} distG(s,u) ≤ n2Λ. It suffices to show that cost ≥ cost′ ·2.

Now we fix b ∈ Rn to be the demand vector at the beginning of the iteration. By line 6, line 8

and line 9, we have:

∑
u∈V\{s}

bu · (distGT ′
(s,u) − distG(s,u)) +

∑
u∈V\{s}

bu · (distG(s,u) − ζ ′u) ≤ 2ε′ ·
∑

u∈V\{s}

bu · distG(s,u).

It implies that

∑
u∈V\{s}

bu · (distGT ′
(s,u) − ζ ′u) ≤

ε

50
·

∑
u∈V\{s}

bu · distG(s,u). (6.20)

For a vertex u ∈ V \ {s}, if bu is still 1 at the end of the iteration, we call it bad. If u is bad, then

293

by the condition of line 15, we have distGT ′
(s,u) > (1 + ε)ζ ′u which implies that

ε/2 · distG(s,u) ≤ ε/2 · distGT ′
(s,u) ≤ distGT ′

(s,u) − ζ ′u. (6.21)

where the last step follows from 1/(1 + ε) ≤ 1 − ε/2 for ε ∈ (0,0.5). Thus, we have:

cost′ =
∑

u∈V\{s}:u is bad

bu · distG(s,u)

≤
2
ε
·

∑
u∈V\{s}:u is bad

bu · (distGT ′
(s,u) − ζ ′u)

≤
2
ε
·

∑
u∈V\{s}

bu · (distGT ′
(s,u) − ζ ′u)

≤
2
ε
·
ε

50
·

∑
u∈V\{s}

bu · distG(s,u)

=
1

25
· cost,

where the first step follows from the definition of cost′, the second step follows from Equa-

tion (6.21), the fourth step follows from Equation (6.20), and the last step follows from the defini-

tion of cost.

Theorem 6.4.46 (Parallel single source shortest path tree and potentials). Given an ε ∈ (0,0.5),

a connected n-vertex m-edge undirected graph G = (V,E,w) with w : E → Z≥0 and a ver-

tex s, there is a PRAM algorithm which takes ε−2 poly(log(nΛ)) parallel time using expected

ε−3m poly(log(nΛ))work and with probability at least 0.99 outputs a spanning tree GT = (V,T,wT)

and a vector ζ ∈ Rn satisfying following properties:

1. ∀u ∈ V,distGT (s,u) ≤ (1 + ε) · distG(s,u).

2. ∀u ∈ V, ζu ≥ (1 − ε) · distG(s,u) and ∀{u, v} ∈ E, |ζu − ζv | ≤ w(u, v).

Proof. We invoke SSSP(G, s, ε) (Algorithm 44). By Lemma 6.4.45, SSSP(G, s, ε) terminates. If

line 6 and line 9 succeed, the correctness follows from Lemma 6.4.44. According to Lemma 6.4.45,

294

the while loop from line 5 to line 17 takes O(log n) iterations. We invoke Theorem 6.4.28 for line 6

and invoke Theorem 6.4.42 for line 9. We can repeat line 6 and line 9 Θ(log n) times to boost the

success probability to 1−n−10. Since the while loop only has O(log n) iterations, we can take union

bound over all iterations, the probability that we successfully compute ζ ′ and GT ′ in all iterations

is at least 0.999.

Now consider the overall depth and work. We need poly(log n) depth and m poly(log n) work

to compute an arbitrary spanning tree of G in line 3. According to Lemma 6.4.45, the while loop

from line 5 to line 17 takes O(log n) iterations. In each iteration, we invoke algorithm described in

Theorem 6.4.28 Θ(log n) times for line 6. According to Theorem 6.4.28, the overall depth of line 6

is at most ε−2 ·poly(log(nΛ)) and the overall expected work is at most ε−2 ·m·poly(log(nΛ)). In each

iteration, we invoke algorithm described in Theorem 6.4.42 Θ(log n) times for line 9. According to

Theorem 6.4.42, the overall depth of line 9 is at most ε−2 · poly(log(nΛ)) and the overall expected

work is at most ε−3 · m · poly(log(nΛ)). According to lemma 6.4.43, the overall depth of line 11

is poly(log n) and the overall work is n poly(log n). As discussed in the proof of Lemma 6.4.43,

we can compute distGT ′
(s,u) for all u ∈ V simultaneously. Thus, the overall depth of line 15 is

poly(log n) and the overall work is n poly(log n). To conclude, the overall depth of SSSP(G, s, ε) is

ε−2 poly(log(nΛ)) and the overall expected work is ε−3m poly(log(nΛ)).

6.4.7 Massive parallel computing (MPC)

Although we present our parallel algorithms in the PRAM model, they can also be implemented

in the Massive Parallel Computing (MPC) model [8, 1, 9, 2, 10] which is an abstract of massively

parallel computing systems such as MapReduce [3], Hadoop [4], Dryad [101], Spark [102], and

others. See Section 2.3 for a detailed description of the MPC model.

By applying the simulation methods [1, 9], our PRAM algorithm can be directly simulated in

MPC. The obtained MPC algorithm has poly(log n) rounds and only needs m · poly(log n) total

space. Furthermore, it is also fully scalable, i.e., the memory size per machine can be allowed to

be mδ for any constant δ ∈ (0,1). To the best of our knowledge, this is the first MPC algorithm

295

which computes (1+ ε)-approximate shortest path using poly(log n) rounds and m poly(log n) total

space when the memory of each machine is upper bounded by n1−Ω(1). Previous work on shortest

paths in the MPC model include [39] when the memory size per machine is o(n), and simulations

of shortest path algorithms from the Congested Clique model [40, 41, 42, 43, 44, 45] when the

memory size per machine is Ω(n) [17].

296

Chapter 7: Hardness Results

In this chapter, we will see several hardness results for algorithms under parallel computing

models.

7.1 Directed reachability vs. boolean matrix multiplication

In this section, we discuss the directed graph reachability problem which is a directed graph

problem highly related to the undirected graph connectivity. In the all-pair directed graph reach-

ability problem, we are given a directed graph G = (V,E), the goal is to answer for every pair

(u, v) ∈ V × V whether there is a directed path from u to v. There is a simple standard way to re-

duce Boolean Matrix Multiplication to all-pair directed graph reachability problem. In the Boolean

Matrix Multiplication problem, we are given two boolean matrices A,B ∈ {0,1}n×n, the goal is to

compute C = A ·B,where ∀i, j ∈ [n],Ci,j =
∨

k∈[n] Ai,k∧Bk,j . The reduction is as the following. We

create 3n vertices u1,u2, · · · ,un, v1, v2, · · · , vn,w1,w2, · · · ,wn. For every i, j ∈ [n], if Ai,j = 1, then

we add an edge from ui to v j, and if Bi,j = 1, then we add an edge from vi to w j . Thus, Ci,j = 1 is

equivalent to there is a path from ui to w j . Thus, if we can solve all-pair directed graph reachability

problem in O(T) sequential time, then we can solve Boolean Matrix Multiplication in O(T) time.

For the current status of sequential running time of Boolean Matrix Multiplication problem, we

refer readers to [103] and the references therein.

Now, consider the multi-query directed graph reachability problem. In this problem, we are

given a directed graph G = (V,E) together with |V | + |E | queries where each query queries the

reachability from vertex u to vertex v. The goal is to answer all these queries. A similar problem in

the undirected graph is called multi-query undirected graph connectivity problem. In this problem,

we are given an undirected graph G = (V,E) together with |V | + |E | queries where each query

297

queries the connectivity between vertex u and vertex v.

According to Theorem 4.4.4 and Lemma 2.3.6, there is a polynomial local running time fully

scalable ∼ log D parallel time (0, δ)−MPC algorithm for multi-query undirected graph connectivity

problem. Here polynomial local running time means that there is a constant c > 0 (independent

from δ) such that every machine in one round can only have O((nδ)c) local computation.

For multi-query directed graph reachability problem, we show that if there is a polynomial

local running time fully scalable (γ, δ) −MPC algorithm which can solve multi-query reachability

problem in O(nα) parallel time, then we can solve all-pair directed graph reachability problem

in O(n2 · n2γ+α+ε) sequential running time for any arbitrarily small constant ε > 0. Especially,

if the algorithm is in (0, δ) − MPC model, and the parallel time is no(1), then we will have an

O(n2+ε+o(1)) sequential running time algorithm for Boolean Matrix Multiplication which implies a

break through in this field.

Suppose we have a such MPC algorithm. Let the input size beΘ(m), i.e. the number of edges is

Θ(m), and the number of queries is also Θ(m). Then the total space is Θ(m1+γ). Let δ = ε/(c − 2).

Then the number of machines is Θ(m1+γ−δ). Now we just simulate this (γ, δ) − MPC algorithm

sequentially, the total running time is O(m1+γ−δ ·mcδ ·nα) = O(m ·n2γ+ε+α). To answer reachability

for all pairs, we need total O(n2 · m · n2γ+ε+α/m) = O(n2 · n2γ+α+ε) time. Therefore, we can use

this algorithm to solve Boolean Matrix Multiplication in O(n2 · n2γ+α+ε) time.

Theorem 7.1.1. If there is a polynomial local running time fully scalable (γ, δ) −MPC algorithm

which can answer |V | + |E | pairs of reachability queries simultaneously for any directed graph

G = (V,E) in O(|V |α) parallel time, then there is a sequential algorithm which can compute the

multiplication of two n × n boolean matrices in O(n2 · n2γ+α+ε) time, where ε > 0 is a constant

which can be arbitrarily small.

Proof. See above discussions.

298

7.2 Discussion on a previous conjectured fast algorithm

In this section, we discuss the hard example for the algorithm described by [76]. In [76],

they conjectured that their Hash-to-Min connectivity algorithm can finish in O(log D) rounds. The

description of their algorithm is as the following:

1. The input graph is G = (V,E).

2. For each vertex v ∈ V, initialize a set S(0)v = v.

3. in round i:

(a) Each vertex v find u ∈ S(i−1)
v which has the minimum label, i.e. u = minx∈S(i−1)

v
x.

(b) v sends u the all the vertices in S(i−1)
v .

(c) v sends every x ∈ S((i−1))
v \ {u} the vertex u.

(d) Let S(i)v be {v} union the set of all the vertices received.

(e) If for all v, S(i)v is the same as S(i−1)
v , then finish the procedure.

The above procedure can be seen as the modification of the graph: in each round, all the vertices

together create a new graph. For each vertex v, let u be the neighbor of v with the minimum label,

and if x is a neighbor of v, then add an edge between x and u in the new graph. So in each round,

each vertex just communicates with its neighbors to update the new minimum neighbor it learned.

At the end of the algorithm, it is obvious that the minimum vertex in each component will have all

the other vertices in that component, and for each non minimum vertex, it will have the minimum

vertex in the same component.

A hard example for this algorithm is shown by Figure 7.1. The example is a thin and tall grid

graph with a vertex connected to all the vertices in the first column. The total number of vertices

is n. The grid graph has D = 1
2 log n columns and n/D rows. We index each column from left

to right by 1 to D. We index each row from top to down by 1 to n/D. The single large degree

vertex has label 0. The ith row has the vertices with label (i − 1) · D + 1 to i · D from the first

299

1 2 3 4 D-3 D-2 D-1 D

D + 1 D + 2 D + 3 D + 4 2D − 3 2D − 2 2D − 1 2D

n-2D+1 n-2D+2 n-2D+3 n-2D+4 n-D-3 n-D-2 n-D-1 n-D

n-D+1 n-D+2 n-D+3 n-D+4 n-3 n-2 n-1 n

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

...0

Figure 7.1: A hard example for [76]. For each i ∈ {2,3, · · · ,n/D − 1} and j ∈ {1,2, · · · ,D − 1},
node (i − 1) · D + j has degree 4. For node D and n, they have degree 2. Node 0 has degree D. All
the other nodes have degree 3.

column to the Dth column. We claim that if vertex v is the ith row and j th column, then before

round k for 2k < i, k < j, the neighbors of v will only in column j − 1, column j and column

j + 1. Furthermore, the minimum neighbor of v in column j − 1 will be v − (2k−1 − 1) · D − 1. The

minimum neighbor of v in column j will be v − 2k−1 · D. The minimum neighbor of v in column

j + 1 will be v −D · (2k−1 − 1)+ 1. This claim is true when k = 1. Then by induction, we can prove

the claim. Thus, it will take at least Θ(D) rounds to finish the procedure where D = Θ(log n).

If we randomly label the vertices at the beginning, then consider the case we copy that hard

structure at least nn+2 times, then with high probability, there is a component which has the labels

with the order as the same as described above. In this case, the procedure needs Ω(log log N)

rounds, where N = nn+3 is the total number of the vertices.

Also notice that, even we give more total space to this algorithm, this algorithm will not preform

300

better. In our connectivity algorithm, if we have Ω(n1+ε) total space for some arbitrary constant

ε > 0, then our parallel running time is O(log D).

7.3 Hardness of biconnectivity in MPC

There is a conjectured hardness result which is widely used in the MPC literature [1, 2, 47, 48,

49].

Conjecture 7.3.1 (One cycle vs. two cycles). For any γ ≥ 0 and any constant δ ∈ (0,1), dis-

tinguishing the following two graph instances in the (γ, δ)-MPC model requires Ω(log n) parallel

time:

1. a single cycle contains n vertices,

2. two disjoint cycles, each contains n/2 vertices.

Under the above conjecture, we show thatΩ(log bi-diam(G)) parallel time is necessary to com-

pute the biconnected components of G. This claim is true even for the constant diameter graph G,

i.e., diam(G) = O(1).

Theorem 7.3.2 (Hardness of biconnectivity in MPC). For any γ ≥ 0 and any constant δ ∈ (0,1),

unless the one cycle vs. two cycles conjecture (Conjecture 7.3.1) is false, any (γ, δ)-MPC algorithm

requires Ω(log bi-diam(G)) parallel time for testing whether a graph G with a constant diameter

is biconnected.

Proof. For γ ≥ 0 and an arbitrary constant δ ∈ (0,1), suppose there is a (γ, δ)-MPC algo-

rithm A which can determine whether an arbitrary constant diameter graph G is biconnected in

o(log bi-diam(G)) parallel time. Then we give a (γ, δ)-MPC algorithm for solving one cycle vs.

two cycles problem as the following:

1. For a one cycle vs. two cycles instance n-vertex graph G′ = (V ′,E′), construct a new graph

G = (V,E): V = V ′ ∪ {v∗},E = E′ ∪ {(v, v∗) | v ∈ V ′}.

301

2. RunA on G. If G is not biconnected, G′ contains two cycles. Otherwise G′ is a single cycle.

It is easy to see that the diameter of G is 2. If G′ is a single cycle, then G is biconnected and

bi-diam(G) = Θ(n). If G′ contains two cycles, then G contains two biconnected components and

bi-diam(G) = Θ(n).

The first step of the above algorithm takes O(1) parallel time and only requires linear total

space. The graph G has n + 1 vertices and 2n edges. Thus, the above algorithm is also a (γ, δ)-

MPC algorithm. The parallel time of the above algorithm is the same as the time needed for

running A on G which is o(log bi-diam(G)) = o(log n). Thus the existence of the algorithm A

implies that the one cycle vs. two cycles conjecture (Conjecture 7.3.1) is false.

7.4 The necessity of 2 types of edges in the subemulator

We show that both types of edges constructed by line 5 and line 6 in Algorithm 32 are necessary

for the construction of subemulator. If we only contain the edges constructed by line 5 and miss

the edges constructed by line 6, Figure 7.2 gives an example that the constructed graph can not be

a subemulator.

If we only contain the edges constructed by line 6 and miss the edges constructed by line 5,

Figure 7.3 gives an example that the constructed graph can not be a subemulator.

7.5 Connectivity in CREW PRAM

In this section we show that any deterministic CREW PRAM algorithm which solves connec-

tivity must take Ω(log n) parallel time even when the input graph has diameter at most 2. We also

show that any randomized CREW PRAM algorithm which solves connectivity using linear num-

ber of processors with probability at least 2/3 must take Ω(log log n) parallel time even when the

input graph has diameter at most 2. The proof is by reduction from computing OR on n-bits.

Theorem 7.5.1 ([104]). Any deterministic CREW PRAM algorithm which computes OR on n-bits

must take Ω(log n) parallel time even when the number of processors and the number of shared

302

)(1.0nl

)(9.0nb

)(1.0nr

Figure 7.2: The graph is unweighted and is a tree constructed by following steps. We first create a path
with length l = Θ(n0.1). For each vertex on the path, we create a brunch starting with a path with length
r = Θ(n0.1) and ending with a star with b = Θ(n0.9) vertices. If we sample each vertex (solid red vertex)
to be in the subemulator with probability log(n)/b, with high probability, sampled vertices can only appear
in stars and each brunch must have at least one sampled vertex. We condition on this event. It is clear that
each vertex has at least one (b + r)-closest neighbor which is a sampled vertex, and that sampled vertex
must be in the same dashed green box. If we only contain the edges constructed by line 5 of Algorithm 32,
the result graph must be a length-l path (represented by blue arcs) where each edge corresponds to an edge
crossing two dashed green box above and has weight 2r + 1. Thus the diameter of the result graph is
l(2r + 1) = Θ(n0.2). However, the diameter of the original graph is 2r + l = Θ(n0.1) which implies that the
result graph is not a good subemulator.

memory cells are unlimited.

Theorem 7.5.2 ([105]). Any randomized CREW PRAM algorithm which computes OR on n-bits

using n processors with successful probability at least 2/3 must take Ω(log log n) parallel time.

We show that computing OR on n-bits can be reduced to determine whether two fixed vertices

in the input graph with diameter at most 2 is connected or not. The reduction is shown as the

following: For each bit we create a vertex xi. We also create two vertices s and t. We create an

edge between every xi and s. We create an edge between xi and t only if xi = 1. Notice that these

steps can be done deterministically in CREW PRAM using O(1) parallel time and O(n) processors.

Notice that the outcome of OR on x1, x2, · · · , xn is 1 if and only if s and t are in the same connected

component. Furthermore, the constructed graph has diameter at most 2. Thus, we can conclude

303

u v2w

Figure 7.3: The graph contains two stars connecting by an edge with weight 2. Each star has n/2 vertices.
One star has center u and another has center v. Except the edge between u, v, all other edges have weights
1. For b < n/2, neither v is a b-closest neighbor of any vertex in the star with center u nor u is a b-closest
neighbor of any vertex in the star with center v. Thus, if we only contain the edges constructed by line 6 of
Algorithm 32, the result graph is disconnected which cannot be a subemulator.

the following two theorem.

Theorem 7.5.3. Any deterministic CREW PRAM algorithm which solves connectivity for an n-

vertex graph with diameter at most 2 needs Ω(log n) parallel time even when the number of pro-

cessors and the number of shared memory cells are unlimited.

Theorem 7.5.4. Any randomized CREW PRAM algorithm which uses O(n) processors to solve

connectivity for an n-vertex graph with diameter 2 with successful probability at least 2/3 needs

Ω(log log n) parallel time.

304

References

[1] H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation for mapreduce”, in Pro-
ceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, Society
for Industrial and Applied Mathematics, 2010, pp. 938–948.

[2] P. Beame, P. Koutris, and D. Suciu, “Communication steps for parallel query processing”,
in Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI symposium on Principles of
database systems, ACM, 2013, pp. 273–284.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”,
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[4] T. White, Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel pro-
grams from sequential building blocks”, ACM SIGOPS Operating Systems Review, vol. 41,
no. 3, pp. 59–72, 2007.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets.”, HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[7] A. Gibbons and W. Rytter, Efficient parallel algorithms. Cambridge University Press, 1989.

[8] J. Feldman, S. Muthukrishnan, A. Sidiropoulos, C. Stein, and Z. Svitkina, “On distributing
symmetric streaming computations”, ACM Transactions on Algorithms, vol. 6, no. 4, 2010,
Previously in SODA’08.

[9] M. T. Goodrich, N. Sitchinava, and Q. Zhang, “Sorting, searching, and simulation in the
mapreduce framework”, in ISAAC, Springer, vol. 7074, 2011, pp. 374–383.

[10] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev, “Parallel algorithms for geometric
graph problems”, in Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, 2014, pp. 574–583.

[11] L. G. Valiant, “A bridging model for parallel computation”, Commun. ACM, vol. 33, no. 8,
pp. 103–111, 1990.

[12] P. Beame and J. Håstad, “Optimal bounds for decision problems on the CRCW PRAM”, J.
ACM, vol. 36, no. 3, pp. 643–670, 1989.

305

[13] Y. Shiloach and U. Vishkin, “An o (logn) parallel connectivity algorithm”, Journal of Al-
gorithms, vol. 3, no. 1, pp. 57–67, 1982.

[14] S. Halperin and U. Zwick, “An optimal randomised logarithmic time connectivity al-
gorithm for the erew pram”, Journal of Computer and System Sciences, vol. 53, no. 3,
pp. 395–416, 1996.

[15] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii, “Filtering: A method for solving graph
problems in MapReduce”, in Proceedings of the 23rd ACM symposium on Parallelism in
algorithms and architectures, ACM, 2011, pp. 85–94.

[16] T. Jurdziński and K. Nowicki, “Mst in o (1) rounds of congested clique”, in Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2018,
pp. 2620–2632.

[17] S. Behnezhad, M. Derakhshan, and M. Hajiaghayi, “Brief announcement: Semi-mapreduce
meets congested clique. corr, abs/1802.10297, 2018”, arXiv preprint arXiv:1802.10297,
2018.

[18] S. Behnezhad, L. Dhulipala, H. Esfandiari, J. Lacki, and V. Mirrokni, “Near-optimal mas-
sively parallel graph connectivity”, in 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 2019, pp. 1615–1636.

[19] S. C. Liu, R. E. Tarjan, and P. Zhong, “Connected components on a pram in log diame-
ter time”, in Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2020, pp. 359–369.

[20] S. Pettie and V. Ramachandran, “A randomized time-work optimal parallel algorithm for
finding a minimum spanning forest”, SIAM Journal on Computing, vol. 31, no. 6, pp. 1879–
1895, 2002.

[21] R. E. Tarjan and U. Vishkin, “Finding biconnected componemts and computing tree func-
tions in logarithmic parallel time”, in 25th Annual Symposium onFoundations of Computer
Science, 1984., IEEE, 1984, pp. 12–20.

[22] G. Ausiello, D. Firmani, L. Laura, and E. Paracone, “Large-scale graph biconnectivity
in mapreduce”, Department of Computer and System Sciences Antonio Ruberti Technical
Reports, vol. 4, no. 4, 2012.

[23] R. Diestel, Graph theory. Springer Publishing Company, Incorporated, 2018.

[24] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms”, Journal of the ACM (JACM), vol. 34, no. 3, pp. 596–615, 1987.

306

[25] M. Thorup, “Undirected single-source shortest paths with positive integer weights in linear
time”, Journal of the ACM (JACM), vol. 46, no. 3, pp. 362–394, 1999.

[26] T. D. Hansen, H. Kaplan, R. E. Tarjan, and U. Zwick, “Hollow heaps”, in International
Colloquium on Automata, Languages, and Programming, Springer, 2015, pp. 689–700.

[27] T. H. Spencer, “Time-work tradeoffs for parallel algorithms”, Journal of the ACM (JACM),
vol. 44, no. 5, pp. 742–778, 1997.

[28] P. N. Klein and S. Subramanian, “A randomized parallel algorithm for single-source short-
est paths”, Journal of Algorithms, vol. 25, no. 2, pp. 205–220, 1997.

[29] E. Cohen, “Using selective path-doubling for parallel shortest-path computations”, Journal
of Algorithms, vol. 22, no. 1, pp. 30–56, 1997.

[30] G. S. Brodal, J. L. Träff, and C. D. Zaroliagis, “A parallel priority queue with constant time
operations”, Journal of Parallel and Distributed Computing, vol. 49, no. 1, pp. 4–21, 1998.

[31] H. Shi and T. H. Spencer, “Time–work tradeoffs of the single-source shortest paths prob-
lem”, Journal of algorithms, vol. 30, no. 1, pp. 19–32, 1999.

[32] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan, “Parallel shortest paths using radius
stepping”, in Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, ACM, 2016, pp. 443–454.

[33] S. Forster and D. Nanongkai, “A faster distributed single-source shortest paths algorithm”,
in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
IEEE, 2018, pp. 686–697.

[34] E. Cohen, “Polylog-time and near-linear work approximation scheme for undirected short-
est paths”, in Proceedings of the 26th Annual ACM SIGACT Symposium on Theory of
Computing, vol. 26, 1994, pp. 16–26.

[35] P. N. Klein and S. Sairam, “A parallel randomized approximation scheme for shortest
paths”, in Proceedings of the 24th Annual ACM SIGACT Symposium on Theory of Com-
puting, vol. 92, 1992, pp. 750–758.

[36] E. Cohen, “Polylog-time and near-linear work approximation scheme for undirected short-
est paths”, Journal of the ACM (JACM), vol. 47, no. 1, pp. 132–166, 2000.

[37] G. L. Miller, R. Peng, A. Vladu, and S. C. Xu, “Improved parallel algorithms for spanners
and hopsets”, in Proceedings of the 27th ACM symposium on Parallelism in Algorithms
and Architectures, ACM, 2015, pp. 192–201.

307

[38] M. Elkin and O. Neiman, “Hopsets with constant hopbound, and applications to approxi-
mate shortest paths”, in 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2016, pp. 128–137.

[39] M. Dinitz and Y. Nazari, “Brief announcement: Massively parallel approximate distance
sketches”, in 33rd International Symposium on Distributed Computing (DISC 2019), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[40] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg, “Minimum-weight spanning tree con-
struction in o (log log n) communication rounds”, SIAM Journal on Computing, vol. 35,
no. 1, pp. 120–131, 2005.

[41] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson, “Distributed computation of
large-scale graph problems”, in Proceedings of the twenty-sixth annual ACM-SIAM sym-
posium on Discrete algorithms, Society for Industrial and Applied Mathematics, 2015,
pp. 391–410.

[42] M. Henzinger, S. Krinninger, and D. Nanongkai, “An almost-tight distributed algorithm
for computing single-source shortest paths. 2016”, STOC, 2016.

[43] R. Becker, A. Karrenbauer, S. Krinninger, and C. Lenzen, “Near-optimal approximate
shortest paths and transshipment in distributed and streaming models”, in 31st Interna-
tional Symposium on Distributed Computing (DISC 2017), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[44] K. Censor-Hillel, M. Dory, J. H. Korhonen, and D. Leitersdorf, “Fast approximate shortest
paths in the congested clique”, in Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing, ser. PODC ’19, Toronto ON, Canada: ACM, 2019, pp. 74–83,
ISBN: 978-1-4503-6217-7.

[45] M. Henzinger, S. Krinninger, and D. Nanongkai, “A deterministic almost-tight distributed
algorithm for approximating single-source shortest paths”, SIAM Journal on Computing,
no. 0, STOC16–98, 2019.

[46] J. Sherman, “Generalized preconditioning and undirected minimum-cost flow”, in Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, 2017, pp. 772–780.

[47] R. Kiveris, S. Lattanzi, V. Mirrokni, V. Rastogi, and S. Vassilvitskii, “Connected compo-
nents in mapreduce and beyond”, in Proceedings of the ACM Symposium on Cloud Com-
puting, ACM, 2014, pp. 1–13.

[48] T. Roughgarden, S. Vassilvitskii, and J. R. Wang, “Shuffles and circuits:(on lower bounds
for modern parallel computation)”, in Proceedings of the 28th ACM Symposium on Paral-
lelism in Algorithms and Architectures, ACM, 2016, pp. 1–12.

308

[49] G. Yaroslavtsev and A. Vadapalli, “Massively parallel algorithms and hardness for single-
linkage clustering under lp distances”, in International Conference on Machine Learning,
2018, pp. 5596–5605.

[50] R. E. Tarjan and U. Vishkin, “An efficient parallel biconnectivity algorithm”, SIAM Journal
on Computing, vol. 14, no. 4, pp. 862–874, 1985.

[51] O. O’Malley, “Terabyte sort on apache hadoop”, Yahoo Tech. Rep, 2008.

[52] M. Thorup and U. Zwick, “Spanners and emulators with sublinear distance errors”, in Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, Society
for Industrial and Applied Mathematics, 2006, pp. 802–809.

[53] S.-E. Huang and S. Pettie, “Thorup–zwick emulators are universally optimal hopsets”,
Information Processing Letters, vol. 142, pp. 9–13, 2019.

[54] A. Abboud, G. Bodwin, and S. Pettie, “A hierarchy of lower bounds for sublinear additive
spanners”, SIAM Journal on Computing, vol. 47, no. 6, pp. 2203–2236, 2018.

[55] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert space”, Israel Jour-
nal of Mathematics, vol. 52, no. 1-2, pp. 46–52, 1985.

[56] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approximating arbitrary met-
rics by tree metrics”, Journal of Computer and System Sciences, vol. 69, no. 3, pp. 485–
497, 2004.

[57] S. Friedrichs and C. Lenzen, “Parallel metric tree embedding based on an algebraic view
on moore-bellman-ford”, Journal of the ACM (JACM), vol. 65, no. 6, p. 43, 2018.

[58] G. L. Miller, R. Peng, and S. C. Xu, “Parallel graph decompositions using random shifts”,
in Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms
and architectures, ACM, 2013, pp. 196–203.

[59] S. I. Daitch and D. A. Spielman, “Faster approximate lossy generalized flow via interior
point algorithms”, in Proceedings of the fortieth annual ACM symposium on Theory of
computing, ACM, 2008, pp. 451–460.

[60] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng, “Electrical flows,
laplacian systems, and faster approximation of maximum flow in undirected graphs”, in
Proceedings of the forty-third annual ACM symposium on Theory of computing, ACM,
2011, pp. 273–282.

[61] J. Sherman, “Nearly maximum flows in nearly linear time”, in 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, IEEE, 2013, pp. 263–269.

309

[62] A. Madry, “Navigating central path with electrical flows: From flows to matchings, and
back”, in 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, IEEE,
2013, pp. 253–262.

[63] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An almost-linear-time algorithm
for approximate max flow in undirected graphs, and its multicommodity generalizations”,
in Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
SIAM, 2014, pp. 217–226.

[64] Y. T. Lee and A. Sidford, “Path finding methods for linear programming: Solving linear
programs in Õ (sqrt(rank)) iterations and faster algorithms for maximum flow”, in 2014
IEEE 55th Annual Symposium on Foundations of Computer Science, IEEE, 2014, pp. 424–
433.

[65] M. B. Cohen, A. Mądry, P. Sankowski, and A. Vladu, “Negative-weight shortest paths and
unit capacity minimum cost flow in Õ (m 10/7 log w) time*”, in Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2017, pp. 752–771.

[66] J. Sherman, “Area-convexity, l∞ regularization, and undirected multicommodity flow”, in
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM,
2017, pp. 452–460.

[67] A. B. Khesin, A. Nikolov, and D. Paramonov, “Preconditioning for the geometric trans-
portation problem”, arXiv preprint arXiv:1902.08384, 2019.

[68] A. Andoni, Z. Song, C. Stein, Z. Wang, and P. Zhong, “Parallel graph connectivity in log
diameter rounds”, in 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, 2018, pp. 674–685.

[69] A. Andoni, C. Stein, and P. Zhong, “Log diameter rounds algorithms for 2-vertex and 2-
edge connectivity”, in 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[70] ——, “Parallel approximate undirected shortest paths via low hop emulators”, in Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020,
pp. 322–335.

[71] F. E. Fich, P. Ragde, and A. Wigderson, “Relations between concurrent-write models of
parallel computation”, SIAM Journal on Computing, vol. 17, no. 3, pp. 606–627, 1988.

[72] U. Vishkin, “Implementation of simultaneous memory address access in models that forbid
it”, Journal of algorithms, vol. 4, no. 1, pp. 45–50, 1983.

[73] F. E. Fich, P. Ragde, and A. Wigderson, “Relations between concurrent-write models of
parallel computation”, SIAM Journal on Computing, vol. 17, no. 3, pp. 606–627, 1988.

310

[74] R. M. Karp and V. Ramachandran, “A survey of parallel algorithms for shared-memory
machines”, 1989.

[75] M. T. Goodrich, “Communication-efficient parallel sorting”, SIAM Journal on Computing,
vol. 29, no. 2, pp. 416–432, 1999.

[76] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. D. Sarma, “Finding connected compo-
nents in map-reduce in logarithmic rounds”, in Data Engineering (ICDE), 2013 IEEE 29th
International Conference on, IEEE, 2013, pp. 50–61.

[77] H. Gazit, “An optimal randomized parallel algorithm for finding connected components in
a graph”, SIAM J. Comput., vol. 20, no. 6, pp. 1046–1067, 1991.

[78] S. Halperin and U. Zwick, “An optimal randomised logarithmic time connectivity algo-
rithm for the EREW PRAM”, J. Comput. Syst. Sci., vol. 53, no. 3, pp. 395–416, 1996.

[79] ——, “Optimal randomized erew pram algorithms for finding spanning forests”, Journal
of Algorithms, vol. 39, no. 1, pp. 1–46, 2001.

[80] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing connected components
on parallel computers”, Commun. ACM, vol. 22, no. 8, pp. 461–464, 1979.

[81] G. L. Miller and J. H. Reif, “Parallel tree contraction and its application”, in 26th Annual
Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October
1985, 1985, pp. 478–489.

[82] R. E. Tarjan and J. van Leeuwen, “Worst-case analysis of set union algorithms”, J. ACM,
vol. 31, no. 2, pp. 245–281, 1984.

[83] S. C. Liu and R. E. Tarjan, “Simple concurrent labeling algorithms for connected compo-
nents”, in 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9,
2019 - San Diego, CA, USA, 2019, 3:1–3:20.

[84] S. G. Akl, Design and analysis of parallel algorithms. Prentice Hall, 1989.

[85] J. H. Reif, “Optimal parallel algorithms for graph connectivity.”, HARVARD UNIV CAM-
BRIDGE MA AIKEN COMPUTATION LAB, Tech. Rep., 1984.

[86] F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson, “One, two, three \dots
infinity: Lower bounds for parallel computation”, in Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
1985, pp. 48–58.

[87] H. Whitney, “Non-separable and planar graphs”, Transactions of the American Mathemat-
ical Society, vol. 34, no. 2, pp. 339–362, 1932.

311

[88] V. Ramachandran, Parallel open ear decomposition with applications to graph biconnec-
tivity and triconnectivity. Citeseer, 1992.

[89] M. Thorup and U. Zwick, “Approximate distance oracles”, Journal of the ACM (JACM),
vol. 52, no. 1, pp. 1–24, 2005.

[90] A. Bernstein, “Fully dynamic (2+eps) approximate all-pairs shortest paths with fast query
and close to linear update time”, in 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, IEEE, 2009, pp. 693–702.

[91] M. Henzinger, S. Krinninger, and D. Nanongkai, “Decremental single-source shortest paths
on undirected graphs in near-linear total update time”, in 2014 IEEE 55th Annual Sympo-
sium on Foundations of Computer Science, 2014.

[92] A. Moitra, “Approximation algorithms for multicommodity-type problems with guarantees
independent of the graph size”, in 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, IEEE, 2009, pp. 3–12.

[93] F. T. Leighton and A. Moitra, “Extensions and limits to vertex sparsification”, in Proceed-
ings of the forty-second ACM symposium on Theory of computing, ACM, 2010, pp. 47–
56.

[94] R. Krauthgamer, H. Nguyen, and T. Zondiner, “Preserving terminal distances using mi-
nors”, SIAM Journal on Discrete Mathematics, vol. 28, no. 1, pp. 127–141, 2014.

[95] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update method: A meta-
algorithm and applications”, Theory of Computing, vol. 8, no. 1, pp. 121–164, 2012.

[96] P. Indyk and N. Thaper, “Fast image retrieval via embeddings”, in Workshop on Statistical
and Computational Theories of Vision (at ICCV), 2003.

[97] A. Bačkurs and P. Indyk, “Better embeddings for planar earth-mover distance over sparse
sets”, in Proceedings of the thirtieth annual symposium on Computational geometry, ACM,
2014, p. 280.

[98] S. Chung and A. Condon, “Parallel implementation of bouvka’s minimum spanning tree al-
gorithm”, in Proceedings of International Conference on Parallel Processing, IEEE, 1996,
pp. 302–308.

[99] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT
press, 2009.

[100] J. Li, “Faster parallel algorithm for approximate shortest path”, in Proceedings of the ACM
SIGACT Symposium on Theory of Computing, First appeared as arXiv:1911.01626, 2020.

312

[101] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-parallel
programs from sequential building blocks”, in ACM SIGOPS operating systems review,
ACM, vol. 41, 2007, pp. 59–72.

[102] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets.”, HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[103] F. Le Gall, “Powers of tensors and fast matrix multiplication”, in Proceedings of the 39th
international symposium on symbolic and algebraic computation, ACM, 2014, pp. 296–
303.

[104] S. Cook, C. Dwork, and R. Reischuk, “Upper and lower time bounds for parallel random
access machines without simultaneous writes”, SIAM Journal on Computing, vol. 15, no. 1,
pp. 87–97, 1986.

[105] P. D. MacKenzie, “Lower bounds for randomized exclusive write prams”, Theory of Com-
puting Systems, vol. 30, no. 6, pp. 599–626, 1997.

313

	List of Figures
	Acknowledgments
	Dedication
	Introduction
	MPC vs. PRAM
	Problems, our results and comparison to prior results
	Graph connectivity
	Spanning forest
	Minimum spanning forest
	2-Edge connectivity
	Biconnectivity
	Shortest path and uncapacitated minimum cost flow
	Hardness results

	New primitives for tackling graph problems
	Truncated broadcasting and double-exponential speed problem size reduction
	Recursive DFS sequence construction via leaf sampling
	New tools for shortest path and comparison to prior approaches

	Summary of techniques and algorithms
	Related papers

	Preliminaries and Parallel Computing Models
	Notation
	The PRAM models
	The MPC model
	Basic `39`42`"613A``45`47`"603AMPC operations
	Data organization
	Set operations
	Mapping operations
	Sequence operations
	Multiple tasks

	Some General Techniques
	Truncated broadcasting
	Implementation in parallel computing models

	Double-exponential speed problem size reduction

	Graph Connectivity and Spanning Forest
	Overview of techniques
	Graph connectivity
	Neighbor increment operation
	Random leader selection
	Tree contraction operation
	Connectivity algorithm

	Spanning forest
	Multiple local shortest path trees
	Path generation and root changing
	Spanning forest expansion
	Spanning forest algorithm

	Implementations in MPC model
	Neighbor increment operation
	Tree contraction operation
	Graph connectivity
	Algorithms for local shortest path trees
	Path generation and root changing
	Spanning forest algorithm

	Minimum spanning forest
	Connectivity and spanning forest in PRAM
	Framework
	Building blocks
	Connectivity in ARBITRARY CRCW PRAM
	Spanning forest in ARBITRARY CRCW PRAM
	Connectivity in COLLISION CRCW PRAM

	2-Edge and 2-Vertex Connectivity
	Overview of techniques
	DFS sequence of a tree
	Compressed rooted tree
	Lowest common ancestor
	Multi-paths generation
	Leaf sampling
	DFS subsequence
	DFS sequence

	Implementation of DFS sequence in the MPC model
	Compressed rooted tree
	Lowest common ancestor and multi-paths generation
	Leaf sampling
	DFS sequence

	2-Edge connectivity and biconnectivity
	2-Edge connectivity
	Biconnectivity

	2-Edge connectivity and biconnectivity in MPC
	Parallel range minimum query
	MPC implementation of 2-edge connectivity and biconnectivity

	Open ear decomposition
	Open ear decomposition via a proper ordering of non-tree edges
	Segment coloring over trees
	Open ear decomposition

	Open ear decomposition in MPC
	Find a proper ordering of non-tree edges in MPC
	Segment coloring in MPC

	Shortest Path and Uncapacitated Minimum Cost Flow
	Overview of techniques
	Low hop emulator
	Minimum cost flow and shortest path

	Low hop emulator
	Subemulator
	A warm-up algorithm: distance oracle via subemulator
	Low hop emulator

	Uncapacitated minimum cost flow
	Sherman's framework
	Preconditioner construction
	Fast operations for the preconditioner
	Uncapacitated minimum cost flow algorithm

	Implementation in parallel setting
	Parallel subemulator construction
	Parallel construction of low hop emulator
	Direct applications of parallel low hop emulator
	Parallel uncapacitated minimum cost flow
	Parallel s-t approximate shortest path
	Parallel approximate single source shortest paths
	Massive parallel computing (MPC)

	Hardness Results
	Directed reachability vs. boolean matrix multiplication
	Discussion on a previous conjectured fast algorithm
	Hardness of biconnectivity in MPC
	The necessity of 2 types of edges in the subemulator
	Connectivity in CREW PRAM

	References

