
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/153544

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/153544
mailto:wrap@warwick.ac.uk

On the Complexity of Verifying
Differential Privacy

by

David Purser

Thesis

for the degree of

Doctor of Philosophy in Computer Science

The University of Warwick

Department of Computer Science

June 2020

Contents

Contents i

List of Figures iv

Acknowledgments v

Declarations vi

Abstract vii

Acronyms viii

Symbols ix

Chapter 1 Introduction 1
1.1 Contributions . 6

Chapter 2 Background 9
2.1 Differential privacy . 9

2.1.1 Laplacian and exponential mechanisms 10
2.1.2 Composition . 11
2.1.3 The relation to quantitative information flow 12

2.2 Programming language based verification 12
2.3 Relational logic based verification 14
2.4 Verification on probabilistic transition systems 17

2.4.1 Bisimilarity pseudometrics for ε-differential privacy . . . 21
2.4.2 Other techniques . 23

Chapter 3 Common Definitions 25
3.1 Basic notation . 25

3.1.1 Set operations . 25
3.1.2 Representations of numbers 25
3.1.3 Approximation and computation of numbers 26

3.2 Models of automata and Markov chains 27
3.2.1 Weighted automata . 28
3.2.2 Finite word labelled Markov chains 28
3.2.3 Infinite word labelled Markov chains 30

i

3.2.4 Transition labelled vs state labelled LMCs 31
3.2.5 Relation between models 33
3.2.6 Comparison of labelled Markov chains 33

3.3 Differential privacy in LMCs . 34

Chapter 4 Symmetric Bisimilarity Distances for δ 36
4.1 Preliminaries . 37
4.2 Skewed bisimilarity distance, bdα 39
4.3 Proving Theorem 4.11 . 42
4.4 Skewed Kantorovich distances 53
4.5 Computing bdα . 57
4.6 Examples . 61
4.7 Conclusion . 65

Chapter 5 Asymmetric Distances for δ 66
5.1 Defining lvα to capture δ . 67
5.2 lvα is not computable . 69
5.3 Approximation of lvα . 70
5.4 A least fixed point bound ldα 74

5.4.1 Comparison with bdα from Chapter 4 77
5.4.2 Computing ldα . 78

5.5 A greatest fixed point bound lgdα 80
5.5.1 A unique fixed point? 86

5.6 Examples . 86
5.7 Future work: extended models 90
5.8 Conclusion . 93

Chapter 6 Distances for ε 94
6.1 The big-O problem . 95

6.1.1 The relation to differential privacy 97
6.1.2 The big-Θ problem . 97

6.2 Big-O, threshold and approximation problems are undecidable . 98
6.3 The relation to the Value-1 problem 104
6.4 The language containment condition 110

6.4.1 Unambiguous weighted automata 111
6.5 The big-O problem is coNP-complete 112

6.5.1 Preliminaries . 113
6.5.2 Eventual inclusion . 117
6.5.3 The big-O problem is in coNP 119
6.5.4 Tv-Bounded is coNP-hard for unary LMCs 123

6.6 Decidability for weighted automata with bounded languages . . 128
6.6.1 Detector automata . 129

ii

6.6.2 The plus-letter-bounded case 132
6.6.3 The letter-bounded case 139
6.6.4 The bounded case . 140

6.7 Bisimilarity distances for ε . 142
6.7.1 Dual form and simplification 142
6.7.2 Computing bd ln . 145
6.7.3 A direct approach bd⊗ 145
6.7.4 Computing bd⊗ . 148
6.7.5 Looking for a unique fixed point 148

6.8 Conclusion . 151

Chapter 7 Verifying Differential Privacy in Circuits 152
7.1 Preliminaries . 153

7.1.1 Randomised circuits . 153
7.1.2 Differential privacy in randomised circuits 154
7.1.3 Problems of deciding and approximating DP 155
7.1.4 The class coNP#P . 155

7.2 The complexity of deciding pure differential privacy 156
7.2.1 Decide-ε-DP ∈ coNP#P: 156
7.2.2 coNP#P-hardness of Decide-ε-DP 157

7.3 The complexity of deciding approximate differential privacy . . 161
7.3.1 Direct proof that Decide-ε, δ-DP is coNP#P-hard . . 162
7.3.2 Decide-ε, δ-DP ∈ coNP#P#P

. 166
7.4 Inapproximability of the privacy parameters ε and δ 167
7.5 Conclusion . 170

Chapter 8 Conclusions and Future Work 171
8.1 Open problems and future work 173

Bibliography 175

iii

List of Figures

2.1 States are language equivalent but not bisimilar. 19

3.1 Partial order of automata. 32

4.1 States s0 and s1 are not bisimilar, but tv1.5(s0, s1) = 0. 38
4.2 Logical formulation of least pre-fixed point bdα. 58
4.3 NP formula for BDα-Threshold. 59
4.4 Simulation of dining cryptographers protocol 62
4.5 Markov chain for dining cryptographers. 62
4.6 Alternative Markov chain for dining cryptographers. 63
4.7 Plot of δ against α for the model in Figure 4.6. 63
4.8 Simple Markov chain. 64

5.1 Partial order of distances. 67
5.2 Markov chain in the reduction from tv (q, q′) to lvα(s, s′). 69
5.3 NP formula for LDα-Threshold. 79
5.4 PIN checker example. 88
5.5 Approximations of δ given ε for Figure 5.4. 88
5.6 Randomised response example. 89

6.1 Reductions between big-O and big-Θ. 98
6.2 Reduction from emptiness of probabilistic automata to big-O. . 101
6.3 Reduction from the big-O problem to Value-1. 107
6.4 Language equivalent but not big-O. 111
6.5 Different rates for different phases. 116
6.6 Reduction from NFA universality to the big-O problem. 124
6.7 Example unary labelled Markov chain. 127
6.8 Same relative orderings, but different big-O status. 129
6.9 Logical formulation for BDlnThreshold. 146
6.10 Logical formulation for BD⊗Threshold. 149

7.1 Example randomised circuit. 154

iv

Acknowledgments

Firstly, I would like to thank my supervisors Andrzej Murawski, Dmitry

Chistikov and Graham Cormode who have provided excellent supervision,

guidance and encouragement throughout my research.

I would also like to thank my external collaborators, Petr Jančar, Marco

Gaboardi, Kobbi Nissim and Stefan Kiefer, who have helped make my

research better—as have the many more people at Warwick and in the com-

munity who have taken the time to discuss my work. Thank you to the thesis

examiners Marcin Jurdzinski and Franck van Breugel for their positive

and constructive feedback.

Those I have shared the experience as part of the CDT have made my

time at Warwick thoroughly enjoyable, in particular: Alex Dixon, Caroline

Player, Corinne Muir, Greg Watson, Helen McKay, Ian Tu, James

Van Hinsbergh, John Rahilly, Katherine Ascott, Liam Steadman,

Matthew Bradbury, Melissa Kenny, Richard Kirk, Vikki Houlden,

Zakiyya Adam and Zhenyu Li. Thank you also to the administrators who

have made everything run smoothly, particularly Yvonne Colmer and Katie

Martin.

Finally, thank you to my parents who have supported me throughout this

PhD.

Sponsorships and Grants

The work in this thesis was supported by funding form the UK Engineering

and Physical Sciences Research Council (EP/L016400/1), the EPSRC Centre

for Doctoral Training in Urban Science.

v

Declarations

Parts of this work in this thesis is from joint collaborations and much of it is
published, or being prepared for publication, in related conferences.

The following articles published by the author form parts of this thesis:

[CMP18] Bisimilarity Distances for Approximate Differential Privacy. Dmitry
Chistikov, Andrzej S. Murawski, and David Purser. Appeared at
ATVA 2018.
This work forms the majority of Chapter 4.

[CMP19] Asymmetric Distances for Approximate Differential Privacy. Dmitry
Chistikov, Andrzej S. Murawski, and David Purser. Appeared at
CONCUR 2019.
This work forms the majority of Chapter 5.

[GNP20] The Complexity of Verifying Loop-Free Programs as Differentially
Private. Marco Gaboardi, Kobbi Nissim, and David Purser. To
appear at ICALP 2020.
This work forms the majority of Chapter 7.

Parts of this thesis are currently under submission and review for potential
future publication:

[CKMP20] The Big-O Problem for Labelled Markov Chains and Weighted
Automata. Dmitry Chistikov, Stefan Kiefer, Andrzej S Murawski,
and David Purser.
This work forms the majority of Chapter 6.

The following research was performed in collaborations during the development
of this thesis, but does not form part of the thesis:

[JP19] Structural liveness of Petri nets is ExpSpace-hard and decidable.
Petr Jančar and David Purser. In Acta Inf 56.6 (2019).

[Gup+18] Twitter Usage Across Industry: A Spatiotemporal Analysis. Neha
Gupta, Henry Crosby, David Purser, Stephen A. Jarvis, and Weisi
Guo. Appeared at BigDataService 2018.

vi

Abstract

This thesis contributes to the understanding of the computational complexity
of verifying differential privacy. The problem is considered in two constrained,
but expressive, models; namely labelled Markov chains and randomised circuits.

In the setting of labelled Markov chains (LMC) it is shown that most relevant
decision problems are undecidable when considered directly and exactly. Given
an LMC, and an ε, consider the problem of finding the least value of δ such
that the chain is (ε, δ)-differentially private. Finding this value of δ can be
expressed as a variant of the total variation distance. Whilst finding the exact
value is not possible, it can be approximated, with a complexity between #P

and PSPACE. Instead, bisimilarity distances are studied as over-estimate of
δ, which can be computed in polynomial time assuming access to an NP oracle
and a slightly weaker distance can be computed in polynomial time.

One may also wish to estimate the minimal value of ε such that the LMC is
ε-differentially private. The question of whether such an ε even exists is studied
through the big-O problem. That is, does there exist a constant C such that
the probability of each word in one system is at most C times the probability
in the other machine. However in general this problem is undecidable but can
be decided on unary chains (and is coNP-complete). On chains with bounded
language (that is, when there exists w1, . . . , wm ∈ Σ∗ such that all words are of
the form w∗1 . . . w

∗
m) the problem is decidable subject to Schanuel’s conjecture

by invoking the first order theory of the reals with exponential function. The
minimal such constant C corresponds exactly to exp(ε) and approximating this
value is not possible, even when the value is known to exist. A bisimilarity
distance to over-estimate exp(ε) can be computed in PSPACE.

In the setting of randomised circuits, the complexity of verifying pure differen-
tial privacy is fully captured as coNP#P-complete; formalising the intuition
that differential privacy is universal quantification followed by a condition on
probabilities. However verifying approximate differential privacy is between
coNP#P and coNP#P#P

, and coNP#P-complete when the number of output
bits is small (poly-logarithmic) relative to the total size of the circuit. Further,
each parameter cannot be approximated given the other in polynomial time
(assuming P 6= NP).

vii

Acronyms

DFA Deterministic Finite Automaton

DP Differential Privacy

LMC Labelled Markov Chain

LP Linear Programming

LRA Linear Real Arithmetic

NFA Non-deterministic Finite Automaton

PA Probabilistic Automata

w.l.o.g. Without loss of generality

w.r.t. With respect to

viii

Symbols

N,Q,R The sets of natural (including zero), rational and real numbers

ε Usually denotes the main parameter for differential privacy

δ Usually denotes the second parameter for differential privacy

α Usually denotes eε

γ Usually denotes the accuracy of approximation

∆α The skewed distance

tv The total variation distance

µ, ν Usually denotes a generic distribution or measure

µs Usually denotes the transition distribution from state s

νs Usually denotes the measure on traces from state s

M Usually denotes a labelled Markov chain

W Usually denotes a weighted automaton

A Usually denotes a probabilistic automaton

N Usually denotes a non-deterministic finite automaton

Σ Usually denotes a finite alphabet

w, u Usually denotes a word

a Usually denotes an alphabet character

Q Usually denotes a finite set of states

s, q Usually denotes a state in Q

F Usually denotes a σ-algebra, usually on Σω

ϕ Usually denotes a strongly connected component

ψ Usually denotes a randomised circuit

φ Usually denotes a Boolean formula

x,y Usually denotes an assignment to the inputs of a Boolean formula or
circuit

r Usually denotes an assignment to the probabilistically chosen bits

o Usually denotes an assignment to the output of a circuit

Denotes the end of a main proof

� Denotes the end of a proof of claim, usually inside another proof

J Denotes the end of a definition, remark or example

ix

Chapter 1

Introduction

There is a great deal of data continually collected; much of this data is of
a personal nature and an individual is likely to want their data to remain
private. However there is benefit to be had by analysing such data; one could
consider medical records which could be used to understand disease patterns in
epidemiology. However each individual record is extremely personal, sensitive
and could have real and lasting consequences should it be released. The natural
approach is to take great care to “sanitise” the data for release, so that the
data can be analysed in such a way that it cannot be linked back to its original
subject. However this can go wrong, incorrect assumptions can be made, the
data can be re-linked and privacy lost.

Differential privacy, introduced by Dwork, McSherry, Nissim, and
Smith [DMNS06], is a definition of privacy typically formulated in the context
of data analysis. It was originally formulated as a technique to conduct ran-
domised computations over statistical databases, usually by returning noisy
results in a mechanism to preserve the privacy of the subjects of the database
entries. Differential privacy captures the intuition that information specific to
an individual is protected if every single user’s input has a bounded influence
on the computation’s outcome distribution. Unlike many privacy techniques
such as data anonymisation, it is robust to attacks for which the attacker has
additional information and post-processing so that the results of differentially
private computations can be analysed further with no additional loss to privacy
to build more interesting analyses. This bounded influence is specified by two
parameters, usually denoted by ε and δ. Intuitively, these parameters set an
upper-bound on privacy loss, where the parameter ε limits the loss and the
parameter δ limits the probability with which the loss may exceed ε.

Differential privacy is currently making significant strides towards being used
in large scale real-world applications. Prominent examples include the use of
differentially private computations by the US Census’ OnTheMap project [US
19; Mac+08], applications by companies such as Google and Apple [EPK14;
Pap+17; App; Dif17], and the US Census’ plan to deploy differentially private

1

releases in the upcoming 2020 Decennial Census [Abo18].

There have been numerous high-profile failures of attempts to anonymise data
by supposedly stripping out identifying information. Despite assurances that
personal identifiers had been removed by then Governor Weld of Massachusetts,
the release of hospital insurance records led to the identification of a hospital
visit by the governor [Bar12]; this attack relied on the uniqueness of a certain
combinations of demographic attributes (such as age, gender, zip code, etc.).
Another such attack was performed by “re-linking” a Netflix viewing database
with publicly available IMDb reviews, thus revealing what else these reviewers
had watched in the “private” Netflix data [NS06]. AOL released the search
history of 600,000 users, although they had replaced the AOL username with a
random number, one could determine who they were by what they searched
for [Arr06]. In another, the destination locations of celebrities’ taxi journeys
were discovered by matching paparazzi photos (with known start time/location)
to a list of journeys [Tro14]. Attempts to use more sophisticated methods to
maintain the privacy of the data subjects, such as the addition of noise, but short
of differential privacy, have also been shown to be vulnerable to attack [Gad+19].

A large body of literature has generated many algorithms intended to release
data in a differentially private way. A standard collection of algorithms enables
the release of counting queries, histograms, (noisy) maximums, proportional
selection and more. These are presented in various forms, and composed together
in various ways to produce new and more useful algorithms. Composition allows
the construction of complex differentially private mechanisms from simpler ones,
using the latter as building blocks. This, however, comes with a degradation
in the privacy guarantee, and a collection of composition theorems provide a
calculus for bounding the privacy loss of a differentially private analysis as a
function of the privacy loss of each of its components. While the existence of
such a calculus is a major benefit of differential privacy, it leads in practice to
conservative estimates, and an exact calculation of privacy loss parameters is
generally out of reach.

However, not all mechanisms rely upon this compositionality, there are a range
of more sophisticated mechanisms, which can answer more specialised queries;
and have analysis independent of this compositionality. The sparse vector
algorithm [Dwo+09] is such an example; for which a much tighter analysis can
be provided than a standard compositionality approach may derive.

There are three main models of differential privacy. The original curator model
requires all of the data to be held by a trusted party, and for this party to
conduct queries on the data, adding noise in a suitable way and then release
the data publicly. The second local model applies when each data subject

2

randomises their data before handing it over, so that the party collecting the
data can essentially do what they like with the data. This local model requires
significantly more noise to be added to each data point to obtain the same
level of privacy, but can assume a lower level of trust. This model has been
gaining traction amongst the large technology companies, who have started
to employ such methods in their products and devices as it is usually simple
to implement. Increasingly gaining traction, as an intermediate model, is the
shuffle model [Che+19; Erl+19], which allows each data subject to add some
noise locally, and then a trusted party will shuffle data so that it is not clear
who sent each message; after which the data can be released in full. This third
model requires less noise, but also less trust than the curator model as the
shuffler only needs to do this relatively easy permutation and then can delete
the data, rather than trusting the curator indefinitely.

More often than not, algorithms and their implementations are analysed “on
paper” to show that they provide differential privacy. This analysis—a proof
that the outcome distribution of the algorithm is stable under the change in
any single individual’s information—is often intricate and may contain errors
(see [LSL17] for a discussion about several wrong versions of the sparse vector
algorithm that appeared in the literature). Moreover, even if it is actually
differentially private, an algorithm may be incorrectly implemented when used
in practice, e.g. due to coding errors, or because the analysis makes assumptions
which do not hold in finite computers, such as the ability to sample from
continuous distributions (see [Mir12] for a discussion about privacy attacks on
naive implementations of continuous distributions). Verification tools may help
validate, given the code of an implementation, that it would indeed provide the
privacy guarantees it is intended to provide.

Extensive work has occurred in the computer-assisted or automated verification
of differential privacy. Early work includes, PINQ [McS09] and Airavat [Roy+10]
which are systems that keep track of the privacy budgets (ε and δ) using trusted
privacy primitives in SQL-like and MapReduce-like paradigms respectively.
In other work, programming languages were developed, that use the type
system to keep track of the sensitivity and ensure the correct level of noise is
added [RP10; BKOB12; DAn+13; BGHP16]. Another line of work uses proof
assistants to help prove that an algorithm is differentially private [Bar+16b];
although much of this work is not automated, recent work has gone in this
direction [AH18; ZK17]. Recent works have focused on developing techniques
for finding violations of differential privacy [Din+18; Bic+18; GM18], although
these can be seen as forms of testing, rather than verification.

3

However, despite the many verification efforts that have targeted differential
privacy, based on automated or interactive techniques, little is known about
the complexity of some of the basic problems in this area. The aim of this
thesis is to complement these verification efforts with a greater understanding
of the feasibility of automated verification of differential privacy, and clarify
the complexity of some of these problems.

It is understood that verifying differential privacy is a too complex task to be
approached through a brute force procedure. Clearly by Rice’s theorem it is
undecidable in full generality, although if the language is sufficiently expressive it
is already undecidable on models with a single input and single output [Bar+20].
Hence, tools that have been developed for this task [BGHP16; FJ14; ZK17;
AH18] focus typically on “soundness”, rather than “completeness”, that is, they
work only on a subclass of programs for which they are optimised, or focus
on interactive verification where the support of a human verifier is required to
simplify the verification steps. Nevertheless, the clear understanding of what
“too complex” means, in this setting, is still missing; in targeting constrained
models this thesis helps clarify this. To this end, this thesis will conduct
complexity analysis on the computational complexity of verification on labelled
Markov chains and randomised circuits as abstractions of programs.

The computational complexity approach focuses on classifying problems accord-
ing to the resources required to solve the problem, regardless of the algorithm
used to solve the problem. Problems are usually shown to be in the class by
exhibiting an algorithm using the resources allowed by the class. Problems are
complete for some class when any other problem in the class reduces to it. This
indicates that both require the same level of resource, up to some factor, and
thus a breakthrough for any one of the problem would entail a breakthrough for
all of them. There are many problems which are classified, it is well known that
SAT is NP-complete for example, and its generalisation to arbitrary quantifier
alternation is PSPACE-complete; yet there are many more that are not yet
known to be complete for any class. Whilst there is a large taxonomy of classes,
there are many examples where it is not known whether they are the same or
different. The most well known such question is whether P = NP, but it is
not even known whether P is different from PSPACE. This thesis will focus
on understanding how the verification of differential privacy fits in the wider
picture of computational problems.

Despite its initial definition in the context of private query answering on
statistical databases, differential privacy is a widely studied notion of privacy
for various models of computation. It is not limited to statistical queries, and
its principles can be adapted to a range of scenarios in which something should

4

be kept hidden from a (possibly malicious) observer of the outcomes of the
program, system or device. For example, consider a protocol which should
not, by virtue of its sequence of actions, reveal (much) information about the
information it is exchanging to those observing it. Differential privacy allows
one to quantify the privacy loss between two scenarios one would like to be
indistinguishable.

From a verification perspective, a natural question is how to analyse systems
with respect to (ε, δ)-differential privacy. This thesis contributed to the un-
derstanding of the computational complexity of verifying differential privacy.
Since such decision problems would be undecidable for a full programming
language, the problem is considered in two constrained, but expressive, models,
namely labelled Markov chains (LMCs) and randomised circuits. Many of the
traditional verification techniques are not amenable to complexity analysis as
they are either not automated, or incomplete (not guaranteed to terminate or
find a solution).

LMCs are abstractions of autonomous systems with probabilistic behaviour
with partial observability. States of an LMCM can be thought of as generating
probability distributions on sets of traces, and these traces are taken to corre-
spond to observable events. An LMC will be (ε, δ)-differentially private between
two states (configurations) s and s′ if, the distributions on traces from these
states are sufficiently close. From this perspective, this thesis will build upon
total variation based [Kie18; CK14] and bisimulation based techniques [TKD11;
CGPX14], for which there is scope for studying the complexity and furthering
the development of such distances.

Randomised circuits are an abstraction of straight line programs, that is,
programs without branches or loops, operating at the level of individual bits
and Boolean operations. Such models have a finite state space and thus almost
all questions are likely to be decidable, if necessary by total exhaustion of the
possible inputs, outputs and probabilistic behaviour. However, these models
can admit a more concise representation of the state space. This thesis studies
the tractability of verifying such models as differentially private and the extent
to which such total exhaustion is, in the worst case, necessary.

5

1.1 Contributions

Verification of labelled Markov chains: Markov chains are a standard for-
malism for studying probabilistic programs, protocols and control flows.
A probabilistic program can be converted to a labelled Markov chain by
expanding its control state; and in general possibly resulting in an infinite
system. However for a constrained class of programs the resulting Markov
chain is finite. Labelled Markov chains are considered here, covering
programs which provide output throughout their computation.

The problem of automatically verifying both pure and approximate dif-
ferential privacy in labelled Markov chains is studied and the decidability
and complexity of the relevant problems is classified. That is, given a
labelled Markov chain, one would like to find the relevant parameters
ε and/or δ which the labelled Markov chain minimally achieves so that
one can assess whether it attains an acceptable level of privacy. These
parameters can be captured by distances between states. This thesis
addresses the extent to which these distances can be computed within
the framework of labelled Markov chains, and where direct consideration
is not feasible or possible, proposes new distances to overestimate the
parameters and studies the complexity of computing these new distances.

Symmetric Distances for δ: The relevant distance to compute δ in a
labelled Markov chain is considered from two perspectives. Firstly
a symmetric variant is considered, for which a particular distance
forms a sound upper bound on δ. This distance is based on bisimi-
larity pseudometrics, which are a way to quantify the behavioural
differences between states of labelled Markov chains. This particular
variant of the bisimilarity distance is shown to be always rational,
the associated threshold problem is in NP, and the distance can be
computed exactly with polynomially many calls to an NP oracle.

Asymmetric Distances for δ: The distance is improved by separating
the distance into an asymmetric variant, in the sense the correspond-
ing bisimilarity distance produces a better approximation, which is
simpler to express and can also be computed in polynomial time
with an NP oracle. A further distance which can be computed in
polynomial time is also presented.

Considering the distance of direct interest for δ, it is shown that
the relevant threshold problem is undecidable; thus entailing that
it cannot be computed exactly. However, it is shown that approx-
imating the distance is #P-hard and in PSPACE, matching the

6

complexity results for the more specialised, but well-known, total
variation distance.

The full lattice of relevant distances for δ can be seen in Figure 5.1
on page 67.

Distances for ε: Towards studying ε, the big-O problem for labelled
Markov chains is considered; this condition specifies there exists a
constant C, such that probability of every word from one state must
be no greater than C times the corresponding probability from the
other state.

This minimal such constant C corresponds exactly with computing
the minimal value of exp(ε) such that ε-differential privacy is sat-
isfied. This can also be seen through the lens of a ratio variant of
the total variation distance to capture exp(ε). Deciding the big-O
problem will turn out to be undecidable, corresponding to deciding
whether ε is bounded. Whilst the exact answer for δ is not com-
putable exactly, it can be approximated. However, unlike for δ, the
distance for ε (or the optimal constant of the big-O problem) cannot
be approximated.

These undecidability results rely on reasonably general chains, leav-
ing the question open for more specialised machines; to this end it is
shown that the big-O problem is coNP-complete for unary chains
and for chains with bounded language the problem is decidable
subject to a well-known conjecture.

A bisimilarity distance to overestimate ε exists [CGPX14], and
it is shown that by slight modification a bisimilarity distance to
overestimate exp(ε) can be approximated in PSPACE.

Verification of randomised circuits: Circuits are another standard formal-
ism of programs. Here, a probabilistic variant is considered, which in
addition to having access to the input bits of the program also have access
to a further set of bits which are determined randomly. Directly, circuits
cover the class of straight line programs, although more generally algo-
rithms with a bound on the length of their computation can be unrolled
to become straight line programs.

The problem of automatically verifying both pure and approximate dif-
ferential privacy in randomised circuits is studied and the complexity of
the relevant problems is classified.

This gives rise to the problem of checking whether such circuits are

7

differentially private. Two variants of the problem are considered, the
decision problem of checking, given ε or (ε, δ), whether the circuit meets
the given level of differential privacy; and the problem of approximating
the minimal ε or δ. The complexity of these questions are considered.

Verifying pure differential privacy: It is shown that determining
whether a randomised circuit is ε-differentially private is coNP#P-
complete. Hardness is shown by the complement to the problem
E-Maj-Sat [LGM98], which is complete for NP#P [CDM17]. In
the complementary problem, All-Min-Sat, given a formula φ over
n + m variables the task is to determine if for all allocations x ∈
{0, 1}n, φ(x,y) evaluates to true on no more than 1

2 of allocations
to y ∈ {0, 1}m.

Verifying approximate differential privacy: For the case where δ >
0, it is shown that determining whether a randomised circuit is
(ε, δ)-differentially private is coNP#P-complete when the number
of output bits is small (poly-logarithmic) relative to the total size of
the circuit and otherwise between coNP#P and coNP#P#P

.

Approximating the parameters ε and δ: Efficient approximation al-
gorithms exist for optimal composition [MV16], and one might expect
the existence of polynomial time algorithms to approximate ε or
δ. It is shown this is NP-hard and coNP-hard, and therefore an
efficient algorithm does not exist (unless P = NP).

8

Chapter 2

Background

2.1 Differential privacy

Technically, differential privacy is based on measuring differences between
probability distributions. The following definition sets out the formal definition
in the context of statistical databases.

Definition 2.1. Let M : D → Dist(E) be a randomised mechanism, where D
is the set of possible inputs (datasets) and E is the set of possible outcomes.
Then M is (ε, δ)-differentially private if for any two neighbouring databases
D1, D2 ∈ D and for any output subsets (event E ⊆ E) it is the case that:

P[M(D1) ∈ E] ≤ eε · P[M(D2) ∈ E] + δ. J

The notion that a database is neighbouring means the database differs in one
record. This usually means one record could be removed from one of the
databases to obtain the other; although in some works it can mean one record is
altered or replaced by another record. By composition properties of differential
privacy (see Section 2.1.2), the privacy parameters change by a factor of two
between the two definitions, by considering replacement as one removal and
one subsequent addition.

Differential privacy ensures that a small perturbation of the input leads to
only a small perturbation in the output, so that observing the output makes it
difficult to determine whether a particular piece of information was present in
the input.

The above formulation is often called approximate differential privacy. For
δ = 0, one talks about (pure) ε-differential privacy. Note that then the
above definition boils down to measuring the ratio between the probabilities
of possible outcomes and can be simplified to quantification over any output
r ∈ E : P[M(D1) = r] ≤ eε · P[M(D2) = r]. It is often the case that one cannot
expect to achieve pure ε-differential privacy, for which the relaxed approximate
differential privacy is then used [Mei18].

9

The parameters ε and δ are used to control the level of leakage which is
acceptable. There is much debate as to what is an appropriate level of these
parameters [Hsu+14], however that is not the topic of this thesis. Intuitively,
one could interpret δ as an indicator of the extent to which ε-differential privacy
holds for the given states; (ε, δ)-differential privacy as “ε-differential privacy
with probability at least 1− δ” [Vad17]. This, perhaps, remains a useful way to
think of the relative importance of ε and δ, but it is not strictly correct. Indeed
this “probabilistic differential privacy” (ε-differential privacy with probability
1− δ) is considerably weaker than approximate differential privacy [Mei18].

There are great deal of extensions to differential privacy, aimed at overcoming
various shortcomings of pure and approximate definitions of privacy. However,
this thesis focuses on these two “standard” definitions which are the most used
in the literature. Examples of these extended definitions are Renyi differential
privacy [Mir17] and concentrated differential privacy [DR16].

2.1.1 Laplacian and exponential mechanisms

There are many differential privacy techniques and algorithms, two fundamental
mechanisms can be used in simple cases: the Laplacian mechanism in continuous
space and the exponential mechanism in discrete space.

The Laplacian mechanism M is defined by taking M(D1) = f(D1) +N where
f : D → R is the function to compute the true answer, and N is random noise
drawn from the Laplace distribution with mean 0 and variance S

ε . Here S
is the sensitivity of f , the largest difference to the true answer which can be
caused by a change to a single record. In a counting query the sensitivity is 1,
a record’s presence can contribute at most one by being present or not. In a
summation query the sensitivity is the largest absolute value of the items to be
added.

Theorem 2.2. [DMNS06] The Laplacian mechanism is ε-differentially private.

Whilst the Laplacian obscures continuous valued outputs, it is not appropriate
when the output is from a discrete set; in these cases the exponential mechanism
can be used. This uses a score function s : D × E → R, where D is the dataset
and E is the set of possible outcomes. The score function should return the
suitability of that output to that dataset. The exponential mechanism returns
by choosing a response r ∈ E with probability proportional to exp

(
ε

2S s(D, r)
)
,

where S is the analogue of sensitivity: S = max {s(D1, r)− s(D2, r)}, where
the maximum ranges over neighbouring D1, D2 ∈ D. This results in an ε-
differentially private mechanism.

10

Computational Issues When implementing these methods on finite computers
it is not possible to truly sample from the continuous distributions, thus it is
necessary to make some rounding assumptions due to representation, which
leads to a slightly different mechanism for which the initial analysis may not
apply.

Further, sampling the exponential mechanism is computationally difficult. It
can also be problematic because one must ensure every possible answer has
non-zero probability, and so all possible outputs must be known [SY13]. As a
result of these issues, when implemented in practice it is sometimes the case that
simplifications have to be made. For example, in practice the distribution may
be sampled from a Markov chain, such that if the Markov chain is fully mixed
it will satisfy ε-differential privacy, but otherwise may satisfy (ε′, δ′)-differential
privacy for some ε′, δ′.

2.1.2 Composition

A fundamental concept of differential privacy is composition. This allows the
composition of two differentially private mechanisms to be the sum of their
differential privacy parameters. That is, given mechanisms M1 : D → R,M2 :

D × R → R which are (ε1, δ1) and (ε2, δ2)-differentially private respectively
then we have M2(D,M1(D)) is (ε1 + ε2, δ1 + δ2)-differentially private.

In the case where δ1 = δ2 = 0, the composition is optimal, however this basic
composition fact is an overestimate of the parameters for δ1, δ2 > 0. Thus
advanced composition theorems have been considered [DRV10; MV16], for
example if M is composed from M1, . . . ,Mk, each (ε, δ)-differentially private
and k < 1

ε2
, then M is (O(

√
k log(1

δ′)) · ε, kδ + δ′)-differentially private for all
δ, δ′ > 0.

Parallel composition allows the combination of results from independent subsets
of the database to be applied, taking only the maximum of the privacy losses
of the components. Suppose M1 is ε1 differentially private and M2 is ε2

differentially private then, on dataset D, any function g(M1(D \A),M2(A)) is
max(ε1, ε2)-differentially private.

Using a combination of the Laplacian and exponential mechanisms, with compo-
sition theorems it is possible to build up larger differentially private mechanisms,
knowing that each application of a query can be used by adding the parameters.
These theorems form the basis of many more advanced differentially private
algorithms.

11

Complexity of Composition

Murtagh and Vadhan [MV16] showed that finding the optimal values for
the privacy parameters when composing different algorithms in a black-box
way is #P-complete. That is, consider the composition of k differentially
private algorithms with privacy parameters (ε1, δ1), . . . , (εk, δk). The resulting
program is (εg, δg)-differentially private for a multitude of possible (εg, δg)

pairs. Murtagh and Vadhan showed that determining the minimal εg given δg
is #P-complete [MV16]. Despite the theoretically poor complexity of finding
the exact answer, it is possible to approximate the optimal value efficiently.

However, the resulting answer is not necessarily optimal; it could be the initial
analysis was not tight for each sub-mechanism and then it is possible that
a better answer is possible. Further some mechanisms (e.g. in the case of
the sparse vector technique [Dwo+09]), due to the specific make up of their
composition, can have a better privacy guarantee than a naïve composition
argument of this form would provide. Thus it is desirable to consider general
purpose verification systems which can handle more complex mechanisms.

Relation to this thesis This thesis will, in Chapter 7, consider the problem of
computing the optimal ε or δ in a white-box setting, in particular where the
mechanisms are specified as circuits. This generalises the work of [MV16] by
allowing the composed mechanisms by to be specified as circuits.

2.1.3 The relation to quantitative information flow

Differential privacy has similarities with quantitative probabilistic information
flow [AACP11], which is an entropy-based theory measuring how secure a
program is. Checking that a program does not have probabilistic information
flow is equivalent to checking that a program is 0-differentially private. For
loop free Boolean programs with probabilistic choice, this problem is coNP-
complete [YT10]. Comparing the quantitative information flow of two programs
on inputs coming from the uniform distribution is #P-hard [YT10]. However,
when quantifying over all distributions the question is coNP-complete [YT10].
Checking whether the quantitative information flow of a program is less than a
threshold has been shown to be PP-hard [YT11] and in PSPACE for loop-free
Boolean programs and to be PSPACE-complete for Boolean programs with
loops [CKV14b].

2.2 Programming language based verification

The purpose of a verification routine to verify differential privacy is to ensure
that a mechanism attains its claimed level of privacy. A naïve “verification

12

algorithm” can check the compositions of several Laplacian mechanisms by
appropriately tracking the parameters of each application. Naturally, various
levels of sophistication may be used to keep track of the level of privacy and
give tighter guarantees.

A common verification technique involves using the programming code to keep
track of more information than simply the commands. A common example of
this is to specify “types”, which may be useful as a verification procedure but
not always strictly necessary for the execution. Another example is annotations
in Java. Similar techniques can be used to keep track of relevant parameters
for privacy; either through an extended type system directly or through further
annotations. This can then keep better track of the level of privacy attained,
for instance one may track the sensitivity of each function call.

Airavat [Roy+10], PINQ [McS09], ProPer [ESS15], Fuzz [RP10] and
DFuzz [Gab+13] are all programming language techniques, with built in lan-
guage features to ensure differential privacy.

PINQ [McS09] is one of the first attempts to create a system which promises
to maintain differential privacy. It uses a SQL like query language to define
queries, but extends the SQL programming language with additional query
keywords such as NoisySum (instead of sum) and NoisyCount (instead of
count), which in addition to performing the standard sum or count also applies
additional noise from the Laplacian distribution. By supporting sequential
and parallel composition, more advanced queries can be built. Whilst an
interesting early example, it is a reasonably basic system with limited expressive
power, for example it does not cover approximate differential privacy (δ > 0).
Recently, DPella, a new Haskell implementation for PINQ-like queries has been
introduced [VRG20].

On a similar vein Airavat [Roy+10] is another environment to keep track of
the privacy budget and decide whether a given query is suitable. It uses a
MapReduce framework, with built-in primitives which apply the correct level
of noise to the output of each computation. It is mainly built on compositional
techniques from differential privacy and requires that any new components or
more complex algorithms are checked and trusted before being incorporated
into the system.

Both PINQ and Airavat maintain an environment to automatically decide
whether to run a query, which can be vulnerable to security attacks. Haeberlen,
Pierce and Narayan [HPN11] show that these systems are vulnerable to timing
attacks by observing how soon the system decided not to run the query. Another
possibility is an attack on the privacy budget, by watching the effect of a query
on the privacy budget, or even the decision to let the query run at all. One of

13

their proposals to overcome the problems is to use default values, which are
used when the true value is not allowed to be released. This covers up the fact
that the true value was not returned and avoids terminating early.

Fuzz and DFuzz extend the type system by introducing privacy parameters into
the types, this allows the algorithms to be statically checked, as part of the type
check during compiling, before running. The program is then deemed to satisfy
differential privacy if a successful type check is accomplished. DFuzz extends
this further by allowing dependent types, so that these privacy parameters can
depend on the inputs and program state, such as the loop counter, or number
of queries. Both systems can be used to verify a differentially private version of
the k-means clustering algorithm. However, in Fuzz the number of iterations of
the k-Means algorithm would need to be specified up front, whereas in DFuzz
this could be a parameter, which would then effect the amount of noise added
to maintain the privacy guarantee.

All of these techniques require additional work by the program writer to
ensure that the additional annotations/types are correctly inserted to enable
a successful verification. These programming language based techniques do
not go much beyond the composition theorem, and more complex differential
privacy proofs may need more powerful tools. Relational logic techniques can
help with this.

2.3 Relational logic based verification

A long line of research [BGB09; BKOB12; BO13; BKOB13; Bar+14; Bar+15b;
Bar+15a; Bar+16a; BGHP16; Bar+16b] studies the relational verification of
differential privacy, using techniques to relate program memories in such a way
that guarantees privacy. These tools are generally less automated than other
techniques, but may have more expressive power; pushing the boundaries of
machine checked proofs rather than machine generated proofs. In particular,
significant level of annotations are required, for which the author must have a
full understanding of the algorithm’s privacy proof. Following a series of papers
and tools it was determined that the work had a very close relationship with
couplings, a notion of probability that allows two distributions to be related.

Of particular interest is the introduction of a skewed distance ∆α, with α = eε,
which will feature heavily throughout this thesis.

Definition 2.3 (Skewed Distance [BKOB12]). For α ≥ 1, let ∆α : R≥0×R≥0 →
R≥0 be defined by ∆α(x, y) = max {x− αy, y − αx, 0}. J

This distance can be used to reformulate differential privacy: a mechanism

14

M is (ε, δ)-differentially private, if for every D1, D2 neighbouring and every
possible output E we have ∆eε(P[M(D1) = E],P[M(D2) = E]) ≤ δ.

The starting point is to use Hoare logic [Hoa69] as a formalism to prove the
correctness of computer programs using pre-conditions and post-conditions
to reason about each statement of the program. This can be extended with
probabilistic reasoning and relational logic to prove properties between two
programs, or for the case of differential privacy, two runs of the same program.

Initial work in this line starts with CertiCrypt, a relational verification tool
for cryptographic protocols [BGB09]. This uses pRHL, probabilistic relational
Hoare logic, which uses judgements of the form ` G1 ∼ G2 : Ψ =⇒ Φ;
representing that executions of programs G1 and G2 are related when the pre-
condition Ψ is satisfied and will also satisfy post-condition Φ. This is combined
with suitable proof rules, such as for composition, if-then-else statements, etc.
to build up larger programs or protocols to reason about.

Barthe, Köpf, Olmedo and Zanella-Béguelin [BKOB12; BKOB13] then extended
the pRHL logic to approximate probabilistic Hoare logic (apRHL), which
supports approximate differential privacy. Here the judgements are annotated
with differential privacy parameters α = eε and δ such as ` µ1 ∼(α,δ)

R µ2 :

Ψ =⇒ Φ, where µ1, µ2 are distributions over outputs. This requires that for
the relation R ∈ A × B, there exists an appropriate “approximate” coupling
which corresponds to, or lifts, the relation R. This coupling µ must relate
µ1, µ2 using the appropriate distance controlled by differential privacy.

A coupling of a pair of distributions is a probability distribution over a pair
of sets (a joint distribution) whose marginals on each side are the same as the
original distributions. Formally µ ∈ D(A×B) is a coupling of µ1 ∈ D(A) and
µ2 ∈ D(B) if

∑
b∈B µ(a, b) = µ1(a) for every a ∈ A and

∑
a∈A µ(a, b) = µ2(b)

for every b ∈ B. Couplings can be used to relate two runs of probabilistic
programs. This means that both the first and second programs act exactly
as they were defined, since the relevant part of the distribution acts exactly
as before. However, now reasoning can be performed on just one program,
over the joint distribution [Bar+15a]. This notion must be generalised for
approximate differential privacy, whereas in a standard coupling one ensures
that the distributions behave the same, in an approximate lifting there is a
bound on the distance. One such notion requires two witnesses µL and µR, such
that given µ1 ∈ Dist(A) and µ2 ∈ Dist(B) there exists a coupling if there are
µL and µR in Dist(A×B) such that µ1(a) =

∑
b∈B µL(a, b) for all a ∈ A and

µ2(b) =
∑

a∈A µR(a, b) for all b ∈ B with supE⊆A×B ∆α(µL(E), µR(E)) ≤ δ.

The logic apRHL is included in the tool EasyCrypt, which can be used to verify
differential privacy proofs. The tool relies upon a series of proof rules—most of

15

these are routine, such as sequential composition and if statements. The most
complicated rules deal with while loops, which may need to cope with different
invariant for different parts of the procedure (before and after the one different
record), or cope with running one fewer or greater times than the other run
(since the database size may vary by exactly one record).

These techniques are used in a tool called HOARe2 using higher order relational
refinement types [Bar+15b; Bar+14] and implemented using SMT-solvers. The
tool combines the techniques from apRHL and DFuzz and completely covers
all examples that are provable with DFuzz. Examples in this work show the
differential privacy of the dual query release mechanism and the private counter
mechanism.

The sparse vector mechanism is a particularly interesting algorithm for which
there was a long running attempt to formally verify as differentially private.
This is because it does not use purely compositional reasoning about differential
privacy; that is, it allows more queries to be answered than a naïve analysis of
the privacy budget would suggest it pays for. It does this by refusing to answer
queries whose answer falls below a threshold and answering a limited number
which fall above the threshold. The privacy budget is only used on the queries
falling above the threshold, despite information being learnt about the ones
below the threshold. Both the threshold and query answers have noise added
to allow the information release. Many incorrect versions of the algorithm have
been presented in literature; a common fault is to use the same noise when
deciding whether to release, as the noise in the release, yet in reality the noise
should be sampled again.

In 2016, using the couplings techniques of [Bar+15a], the correctness of the
sparse vector mechanism was verified [Bar+16b], a task that had previously
not been possible under existing techniques. They furthered this work by
verifying the between thresholds algorithm, a generalisation of the sparse vector
mechanism [Bar+16a] as well as the exponential mechanism and the above
threshold mechanism.

Automation The primary drawback with each of these methods is the lack of
automation. Significant effort is required to come up with the relevant relations,
couplings and annotations to the program. To that end, Albarghouthi and
Hsu [AH18] provided techniques to synthesise proofs in the framework of cou-
plings, automating some parts of the process by using SMT solvers to generate
the couplings required and was successfully applied to the noisy max and the
sparse vector mechanisms. On a related line, Smith and Albarghouthi [SA19]
try to automatically synthesise queries which satisfy differential privacy by
design and within the query budget.

16

The tool LightDP [ZK17] provides another custom language for showing differ-
ential privacy, with an aim at requiring less annotation than other relational
methods; whilst being powerful enough to work with techniques that use more
than simple compositional theorems (as is the case of PINQ, Fuzz etc.). They
also claim it is more powerful than bisimulation based techniques and finds
the lowest cost differential privacy proof amongst all proofs by invoking SMT
solvers. However, Barthe et al. [Bar+16a] claims that the system is in effect also
using couplings but limited to simple bijection based couplings, thus limiting
the expressiveness. The method remains far from a plug and play system, and
relies upon programmers to carefully annotate the code with invariants.

Relation to this thesis This thesis complements this line of research by taking an
algorithmic verification-centred approach; that is, a fully automated approach,
albeit on a more formalised representation of the programmes (namely labelled
Markov chains and circuits) rather than working at the level of program code
directly. The distances defined in the relational verification work, in particular
Definition 2.3, will be heavily be relied upon. There will be further links to
couplings, of a slightly different form, used in the development of distances for
approximate differential privacy.

2.4 Verification on probabilistic transition systems

Tschantz, Kaynar and Datta [TKD11] first studied differential privacy using
a notion similar to bisimulation, which was extended to a more general class
of bisimulation relations by Xu, Chatzikokolakis and Lin [XCL14]. Both
consider only ε-differential privacy and are approached from a proof technique
perspective, thus do not examine how these could be computed. Chatzikokolakis,
Gebler, Palamidessi and Xu [CGPX14] have advocated the development of
Kantorovich pseudometrics, instantiated with any metric distance function
(rather than absolute value) in the context of differential privacy. Like the
earlier bisimulation based distances of Tschantz et al. and Xu et al. [TKD11;
XCL14] the pseudometric of Chatzikokolakis et al. [CGPX14] was presented as
proof technique, rather than automated methods for computation; and hence
these papers did not discuss the complexity of calculating these relations and
pseudometrics. Moreover, it was left open whether it was possible to extend
the pseudometric techniques to (ε, δ)-differential privacy [Xu15]; a question
which is answered by this thesis.

Early relational techniques The first paper to appear to use bisimulation for
differential privacy, described as a non-interference property, is that of Tschantz
et al. [TKD11], however they do not describe it as bisimulation. Instead they

17

define a parameterised relation Rε, where for each ε two states of an automaton
are related if all computation from that point on only use ε of their privacy
budget. Starting at Rε each time some privacy is lost the ε parameter decreases,
the goal is to verify this cannot decrease below R0, to satisfy ε-differential
privacy. Each transition of the automaton may therefore use some of the privacy
budget. This is somewhat similar to the notion of probabilistic bisimulation,
which is formalised in later work of Xu et al. [XCL14].

Tschantz’s [TKD11] goal is not to verify that an individual mechanism is
differential private, for example the Laplacian mechanism, but to consider if
an online algorithm obtains a certain level of privacy by invoking black box
ε-differentially private mechanisms. For example is the overall system n · ε-
differentially private for some n. The automaton operates by taking inputs,
which could consist of either new data or a query, and returning an output
for each query asked. Their example shows that the Truncated Geometric
mechanism is differentially private. A problem with this approach forces each
use of the privacy budget to increase by the same amount, losing accuracy.
Methods are provided to verify that a proposed bisimulation relation is valid
and thus satisfies ε-differential non-interference. However, it does not provide
a method to find such a relation automatically—it is instead considered a
proof technique, for which the person constructing the proof must come up
with the relation. The work has been extended by Xu [XCL14] to amortised
bisimulations, where the privacy parameter can be incremented or decremented
at each stage, allowing greater expressivity.

Bisimulations Bisimulations, introduced by Park and Milner [Mil89], are a
common technique in the verification literature to ensure a program is consistent
with its specification. Bisimulations verify that two programs behave the
same, by allowing transitions only with the same actions (formal definition to
follow). In differential privacy the idea is to show that two programs (actually
neighbouring runs of the same program) are nearly the same and relaxations of
bisimulation techniques can be used to show this.

Definition 2.4. A relation R is a bisimulation relation if and only if (s, s′) ∈ R
implies that for all transitions s x−→ q there exists s′ x−→ q′ such that (q, q′) ∈ R
and for all transitions s′ x−→ q′ there exists s x−→ q such that (q, q′) ∈ R. J

Two states s, s′ are said to be bisimilar, denoted s ∼ s′, if there exists a
bisimulation relation R such that (s, s′) ∈ R. Usually the largest bisimulation
relation is considered as ∼=

⋃ {R : R is a bisimulation relation}, for which
any bisimilar pair must be in.

18

A more intuitive definition of bisimulation proceeds as a two player game, with
an attacker and defender. At each round the attacker can pick a transition in
either machine, and the defender must match it by picking a transition with
the same label in the other machine. The next round of play continues from the
new states of the two machines, where the attacker can then again pick from
either machine. The attacker wins by making a transition which the defender
cannot match. The defender wins by reaching a state in which the attacker
has no transitions to make, or infinitely matching the attacker’s moves. The
system is bisimilar if the defender always has a winning strategy.

Bisimulation is a stronger notion than language equivalence, that is, two states
s, s′ are capable of producing the same words. All bisimilar pairs of states
are language equivalent, but language equivalent pairs of states need not
be bisimilar. One can consider bisimilarity to be a behavioural equivalence,
where as language equivalent pairs may be able to produce the same language
but require different behaviours to produce the same words. Bisimilarity is
sometimes used in place of language equivalence, particularly when there are
efficient techniques to decide bisimilarity but language equivalence is intractable.
In deterministic systems (e.g. a deterministic finite automaton), the two notions
coincide, as there is exactly one transition available for each action, and thus
one behaviour. Figure 2.1 demonstrates a non-deterministic finite automaton
that is language equivalent but not bisimilar.

s

s′

a

a

b

c

a

b

c

Figure 2.1: States s, s′ are language equivalent but not bisimilar. The choice
of b, c as the second action is brought forward in the first system, so that an
attacker may move in the second machine choosing the action that is disabled
in the first.

19

Probabilistic Bisimulation Probabilistic bisimulations generalise the standard
deterministic notion by additionally requiring that the probabilities match
when transitions are taken.

Definition 2.5. [LS89] A probabilistic bisimulation is an equivalence relation
R such that for (s, t) ∈ R and each equivalence class E of R it is the case that
P[s

a−→ E] = P[t
a−→ E], where P[s

a−→ E] is the probability of transitioning to a
state in class E from state s with action a. J

Probabilistic bisimulations are also closed under union and hence there exists
a largest one. Two states are called bisimilar, written s ∼ s′, if the pair
(s, s′) belongs to some probabilistic bisimulation, or equivalently the largest
probabilistic bisimulation.

There is considerable literature on the computation of probabilistic bisimula-
tions, culminating in Chen, van Breugel and Worrell [CBW12] showing that
deciding probabilistic bisimulation on Markov chains is P-complete.

Behavioural Pseudometrics Research into behavioural pseudometrics has a
long history going back to Giacalone, Jou and Smolka [GJS90]. Bisimulation
pseudometrics based on the Kantorovich distance were started by Desharnais,
Jagadeesan, Gupta and Panangaden [DJGP02; DGJP04], as a metric analogue
of classic probabilistic bisimulation [LS91]. The original motivation was to
overcome the problem that bisimilarity is too sensitive to minor changes in
probabilities. Such robustness is highly desirable, because probabilistic systems
arising in practice may often be based on approximate probability values,
extracted or learnt from real world data. Such distances are pseudometrics
have the property that d(s, t) = 0 if and only if s ∼ t [BW14].

The standard bisimilarity distance has been the subject of intense efforts to find
techniques to compute it [Bre17]. van Breugel, Sharma and Worrell [BSW07;
BSW08] identified that it could be approximated using the existential fragment
of the first order theory of the real numbers. That is, by reducing to deciding
the truth status of a sentence of first order logic with existential quantifiers and
logical combinations of inequalities of arithmetic expressions of real variables.

On probabilistic automata the bisimilarity distance can be computed in the
complexity class PPAD [BW14]. In the quest to pin down the complexity for
labelled Markov chains Chen, van Breugel and Worrell [CBW12] finally showed
that the distance is P-hard and could be computed in polynomial time using
the ellipsoid method. However the algorithm is not suited to implementation
and there are ongoing efforts to improve the speed of realistic algorithms using
iterative methods and speed-ups [Bac+19; TB18; TB17; BBLM17; TB16;

20

BBLM13].

The bisimilarity pseudometric can be used as an upper bound on the total vari-
ation distance [CBW12] defined as tv (ν, ν ′) = supE⊆Σ∗ ν(E)− ν ′(E). Recall,
one can think of bisimilarity as defining behavioural equivalence, a stronger
condition than language equivalence. This lifts to quantitative measures, where
total variation is an analogue of language equivalence and the stronger bisimi-
larity distance quantifies behavioural similarity. Since language equivalence is
more likely to consider states equal than behavioural equivalence, total variation
is never a larger value than the bisimilarity distance.

2.4.1 Bisimilarity pseudometrics for ε-differential privacy

When studying Markov chains, the value of ε (to achieve ε-differential privacy)
can be captured by a variant of the total variation

tv ln(ν, ν ′) = sup
E∈Σ∗

max
{

ln(ν(E))− ln(ν ′(E)), ln(ν ′(E))− ln(ν(E))
}
,

where ν, ν ′ are the measures on traces produced from two neighbouring states.
This can be seen as a generalisation of the total variation distance, with the
absolute value function replaced with the distance dln(x, x′) = |ln(x)− ln(x′)|.
Chatzikokolakis et al. [CGPX14] generalised bisimulation distances to arbitrary
metrics, in the sense that the absolute value function is replaced by any metric.
A metric between objects in X is defined as follows:

Definition 2.6. A metric d : X ×X → R satisfies the following conditions:

• (zero between self) for all x d(x, x) = 0,

• (non-negative) for all x, x′ d(x, x′) ≥ 0,

• (indistinguishable at zero) for all x, x′ d(x, x′) = 0 =⇒ x = x′,

• (symmetric) for all x, x′ d(x, x′) = d(x′, x),

• (triangle inequality) for all x, x′, x′′ d(x, x′′) ≤ d(x, x′) + d(x′, x′′). J

A pseudometric is a distance which satisfies all of the above, except indis-
tinguishable at zero; meaning that two different objects can have distance
zero.

One may wish to compare the difference between two measures on X; to do
this one uses the distance between the ground objects in X and lifts this to a
distance on measures. One such lifting is the Kantorovich lifting

K(d)(µ, µ′) = sup
f :X→[0,1]

|f(x)−f(x′)|≤d(x,x′)

∣∣∣∣∫
X
f(µ)d(µ)−

∫
X
f(µ′)d(µ′)

∣∣∣∣ .
21

The standard bisimilarity distance uses the Kantorovich lifting and is defined
as a distance m : S × S → [0, 1] as the least fixed point of the function
F : [0, 1]S×S → [0, 1]S×S defined as:

F (m)(s, t) = max
a∈A

 sup
s
a−→µ

inf
t
a−→ν

K(m)(µ, ν), sup
t
a−→ν

inf
s
a−→µ

K(m)(µ, ν)

 .

Here S refers to the set of states, A refers to the set of actions and s a−→ µ refers
to all of the transitions labelled with action a, defining a distribution µ over
the next state.

In the classical Kantorovich lifting, the absolute value function is used in two
positions; first to quantify the difference in expectation and secondly to quantify
the difference in any two positions as a Lipschitz condition. Chatzikokolakis et
al. [CGPX14] replaces both applications of this absolute value function with
any metric distance function dV : S × S → R. This can then define a new
bisimilarity distance as the least fixed point bmV of

FV (m)(s, t) = max
a∈A

 sup
s
a−→µ

inf
t
a−→ν

KV (m)(µ, ν), sup
t
a−→ν

inf
s
a−→µ

KV (m)(µ, ν)


on the Kantorovich distance

KV (m)(µ, µ′) = sup
f :X→Y

dV (f(x),f(x′))≤m(x,x′)

dV

(∫
X
f(µ)d(µ),

∫
X
f(µ′)d(µ′)

)
.

They then go on to show that this bisimilarity distance bmV is a bound on
the analogous total variation distance supE⊆Σ∗ dV (ν(E), ν ′(E)) [CGPX14]. In
particular, applying this to the distance dln(x, x′) = |ln(x)− ln(x′)| gives that
the corresponding bisimilarity distance bd ln is an upper bound on tv ln and thus
the privacy parameter ε. This then needs to be considered over all pairs of
states representing neighbouring databases.

The distances considered are summarised in Table 2.1.

Name Metric
Distance

Total Varia-
tion

Bisimilarity
Distance

Functor Kantorovich

Standard |. . .| tv bm F K

Generic dV tvV bmV FV KV

Multiplicative
Variant

dln tv ln bmln Fln Kln

Table 2.1: Table of total variation distances and bisimilarity distances induced
by different metrics.

22

Relation to this thesis There exist linear programming techniques to compute
the multiplicative variant of the Kantorovich function [CGPX14], but there
the complexity of computing bm ln is not known. This, along with the direct
consideration of tv ln, are open questions addressed in Chapter 6.

In their line of work, significant emphasis is placed on the resulting distance
bm ln being a pseudometric [CGPX14; Xu15]. Further, the zero points are
stressed to correspond with bisimilarity; that is s ∼ s′ ⇐⇒ bd ln(s, s′) = 0. It
was hypothesised that by using ∆α (of Definition 2.3) the distance could be
extended to approximate differential privacy to capture δ [Xu15]. However this
was not developed further, and it should be noted that ∆α is not a metric and
so does not fit in the framework applicable to all metrics. This is a further
compelling direction which this thesis will develop in Chapter 4 and Chapter 5.
In this work the distances will not be pseudometrics, as they will not satisfy
the triangle inequality, and in Chapter 5 will not satisfy symmetry either.

2.4.2 Other techniques

Fully automated methods Very recently Barthe, Chadha, Jagannath, Sistla
and Viswanathan [Bar+20; Rav19] show that, in general, differential privacy is,
unsurprisingly, undecidable. However their proof shows that this is the case even
for programs with a single input and a single output. Further, they show that
differential privacy can be decided for the programming language DiPWhile in an
automated way. This language is a restricted class of programs supporting while
operations and the Laplacian, discrete Laplacian and Exponential mechanisms,
with a syntactic restriction ensuring each loop is bounded. Such programs
are then converted to parameterised discrete time Markov chains; which allow
some of the transitions to be parameterised so that they depend on the value
of the privacy parameter ε. A tool DiPC is provided which can verify such
programs and demonstrated on several compelling examples such as noisy max,
randomised response and the sparse vector technique. The tool also provides a
counter example when it finds a violation to differential privacy.

Property Testing In the line of property testing, Gilbert and McMillan [GM18]
consider the problem of testing whether a system satisfies differential privacy
in a “black-box” setting. That is when access to the source code is not provided
and the application can only be understood by trying various combinations
and observing their outcomes. They provide bounds on the number of queries
that need to be tested to determine whether the system is differentially private.
This work supports four versions of differential privacy; pure and approximate-
differential privacy and their randomised variation (ε-differentially private
with probability γ or (ε, δ)-differentially private with probability γ). The work

23

suggests that the bounds obtained are infeasible for “usual” choices of parameter.

Model checking Liu, Wang and Zhang [LWZ18] show another technique by
defining a temporal logic dpCTL∗, operating on Markov chains and Markov
decision processes. The system allows the specification of temporal properties for
which paths satisfying these temporal properties must satisfy (ε, δ)-differential
privacy; in the sense the probability of observing a path with this property must
be similar to the probability of a path with this property from a neighbouring
state.

The full definition requires quantification over all possible events, however
this work requires each event that should enjoy privacy to be specified as a
temporal path formula. This limits both the expressiveness (as not all events are
expressible), and the completeness (since only the specified events are verified).

Markov chains can be verified against a dpCTL∗ formula with the same com-
plexity as CTL∗ which is well-known to be PSPACE-complete [BK08, Theorem
6.89]. However, dpCTL∗ is undecidable for Markov decision processes. The
techniques of Liu et al. [LWZ18] are demonstrated on a range of differential
privacy mechanisms including randomised response, the truncated geometric
mechanism, sub-sampling majority and the above threshold mechanism.

Relation to this thesis Since the general problem is undecidable, it is required
that any (terminating) decision procedure have some limitation; the system
will not be complete in some sense. In the case of Liu et al. [LWZ18] this is
quantifying over all events, since this would entail a general purpose technique for
the verification of differential privacy, something which Barthe et al. [Bar+20],
and the work in this thesis, indicates is undecidable in the context of Markov
chains. The work of this thesis will complement the work of Liu et al. [LWZ18]
by being able to quantify over all events and the work of Barthe et al. [Bar+20]
by not restricting the class of Markov chains, however accuracy will be lost.
That is, Chapters 4 and 5 will develop methods to confirm (ε, δ′)-differential
privacy for some δ′ > δ, where δ is the minimal satisfying (ε, δ)-differentially
privacy.

24

Chapter 3

Common Definitions

This chapter introduces definitions required across several chapters; more
specialised definitions are delayed until their use.

3.1 Basic notation

3.1.1 Set operations

Given sets X1, . . . , Xn, their Cartesian product is

X1 × · · · ×Xn = {(x1, . . . , xn) | xi ∈ Xi for i ∈ {1, . . . , n}} .

As a shorthand Xi is used to mean the Cartesian product of X with itself
i times. For example {0, 1}2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. If X is a set of
symbols then X∗ is the set of all finite sequences of symbols from X, X+ all
finite sequences of length at least one, and Xω all infinite sequences.

When X is finite, the cardinality of a set X is denoted by |X|, that is the
number of elements in the set. For example

∣∣{0, 1}2∣∣ = 4. XY denotes X |Y |

with elements of x ∈ XY indexed by elements of Y , rather than {1, . . . , |Y |};
or used as a function f : Y → X. Elements of XY×Y are viewed as matrices,
or functions f : Y × Y → X.

A vector is stochastic if its elements are non-negative and sum to 1, then given
a finite set X, let Dist(X) be the set of all stochastic vectors in [0, 1]X . A
matrix is stochastic if every row, viewed as a vector, is stochastic.

The symmetric difference of a set is denoted by X 	X ′, that is the elements
in either X or X ′, but not both. Let P(X) denote the power set of X, that is
the set of all subsets of X.

3.1.2 Representations of numbers

The set of integers {. . . ,−2,−1, 0, 1, 2, . . . }, is denoted by Z. The natural
numbers are the non-negative integers {0, 1, 2, . . . } , denoted by N.

25

Integers are usually assumed to be given in binary, or where explicitly stated
may be in unary.

A number given in binary means a number of the form x
2y for x, y integers,

where x is given in binary and y is indicated by the position of the ‘.’. For
example 1.1562510 = 1.001012 = 1001012

25 = 37
25 .

A number given as a rational means a number of the form x
y where x, y are

given as binary integers. Such numbers are denoted by Q.

An algebraic number is a complex number that is a root of a non-zero polynomial
in one variable with rational coefficients. Such numbers are assumed to be
represented by the polynomial and a sufficiently close rational representation in
both the real and complex space, such that no other root of the polynomial could
be confused with it. Formally, an algebraic number z can be represented by a
tuple (pz, a, b, r) ∈ Q[x]×Q3. Here pz is a polynomial with rational coefficients
over x and a, b, r form an approximation to disambiguate between all other
roots: more precisely z is the only root of pz(x) with |z − (a+ bi)| ≤ r. This
representation admits standard operations (addition, multiplication, absolute
value, (in)equality testing) in polynomial time [BPR05; Coh13; Pan96] (see
e.g. [OW14, Section 3] for a succinct summary).

3.1.3 Approximation and computation of numbers

In this thesis, an approximation problem means, given an error γ > 0, find any
value x̂ such that |x̂− x| ≤ γ, where x is the target value; that is, the error is
additive. One can also consider approximation problems where the error is a
multiplicative, that is, to find any value x̂ where 1

γ ≤ x̂
x ≤ γ; where this notion

is intended it will be stated explicitly.

A number, typically the solution of a problem, is approximable if there exists an
approximation algorithm to find it. Note that a number which is only approx-
imable does not admit inequality testing. For example, if the approximation
results in 0.0000. . . , how long should a procedure wait before deciding whether
the value is or is not strictly positive?

The notion of approximation here requires a sufficiently close representation
with no uncertainty in the closeness of the estimate. This is in contrast to the
following notion, given two error parameters γ, λ > 0 which should find any x̂
satisfying |x̂− x| ≤ γ with probability at least 1 − λ, and can be arbitrarily
bad with probability at most λ. This notion of approximation is not considered
in this thesis.

A number being computable refers to there being a terminating procedure to
find a finite, “sensible” representation of the exact value. Indeed the problem

26

definition and input could be used to refer to the exact value, but this would not
admit several key properties one would expect from a representation; namely
equality testing, inequality testing and the ability to write out an arbitrary
number of digits. One would also expect to be able to perform basic arithmetic,
such as addition, subtraction, multiplication, (possibly division), and result
in another number of the same representation. Whilst other representations
would fit these conditions, in this thesis, when a number is claimed to be
computable this will mean that one can find a representation of the exact
number in binary, as a rational or as an algebraic number. When it is claimed
to be not computable, one of these properties will be missing (usually inequality
testing).

Some authors, notably Turing [Tur37], use computable to refer only to approx-
imation i.e. an arbitrary number of digits can be found by the procedure on
request. However this does not (necessarily) admit (in)equality testing, and
this thesis considers this to be only approximable.

Hence the solution to a problem can be computable (and thus also approximable),
approximable (but not necessarily computable), or inapproximable.

3.2 Models of automata and Markov chains

One of the main models of study in this thesis are labelled Markov chains.
Labelled Markov chains come in many different varieties, they can operate
over finite or infinite words and they can be labelled on the state or on the
transition. This thesis will present different results on different variants of
the model. At their core, labelled Markov chains assign measure to words; by
generating words from their states, transitioning from one state to the next in
a Markovian manner, that is the choice of the next state depends only on the
current state, and emitting a character at each step.

Labelled Markov chains can be seen as a restriction on weighted automata;
so that the weightings behave in a probabilistic manner. In this section the
definition of weighted automata will be introduced, enabling the definition of
labelled Markov chains in the context of finite words on labelled transitions.
For the treatment of infinite words, the heavier machinery of measure theory
is required and introduced next. Finally the treatment of labelled states and
labelled transitions will be shown to be unimportant as such systems can be
effectively translated in polynomial time; thus not affecting the complexity of
decision questions. Hence each problem to be addressed in the thesis will use
the most convenient formulation.

27

3.2.1 Weighted automata

Definition 3.1 (Weighted Automata). A weighted automaton W over the
(S,⊕,⊗) semi-ring is tuple 〈Q,Σ,M, F 〉 where Q is a finite set of states, Σ is a
finite alphabet, M : Σ→ SQ×Q is a transition weighting function and F ⊆ Q
is a set of final states. W defines a weighting function νs : Σ∗ → S for every
state s ∈ Q, where for a word w = a1 . . . an ∈ Σ∗:

νs(a1 . . . an) =
⊕
t∈F

(M(a1)⊗M(a2)⊗ · · · ⊗M(an))(s, t)

and (A ⊗ B)(i, j) =
⊕

k∈QA(i, k) ⊗ B(k, j) is matrix multiplication over
(S,⊕,⊗). J

In this thesis only non-negative (Q,+,×) weighted automata are considered,
i.e. for all q, q′ ∈ Q, a ∈ Σ: M(a)(q, q′) ≥ 0. In this case, A×B is the standard
matrix multiplication. All transition probabilities are assumed to be rational
(recall these are represented as a pair of binary integers). For a machine W,
size(W) is the number of bits required to represent each component, including
the bit size of the weights or probabilities.

Note that the definition does not specify an initial state, rather defines the
weighting function νs from every state. Transitions will typically be described
by q p−→

a
q′ to mean M(a)(q, q′) = p, with the assumption that any unspecified

transition has weight zero.

Without loss of generality, a weighted automaton can have a single final state.
If the final state is not unique, one can introduce a new unique final state t s.t.
M(a)(q, t) =

∑
q′∈F M(a)(q, q′) for all q ∈ Q,a ∈ Σ.

A unary weighted automaton is a non-negative (Q,+,×) weighted automaton
with |Σ| = 1. Without loss of generality it is assumed that Σ = {a} and Σ

is omitted from the description. Further the transitions are described with a
single matrix A = M(a) and q p−→ q′ is written to mean A(q, q′) = p. Then the
weight of the word an from state s is νs(an) = Ans,t where t is the unique final
state. Here, and throughout the thesis, when Ans,t is written it means (An)(s, t)

and not (A(s, t))n.

3.2.2 Finite word labelled Markov chains

Labelled Markov chains be described using non-negative (Q,+,×) weighted
automata with additional properties such that the transition weights rather
become probabilities.

28

Definition 3.2. A labelled Markov chain (LMC) M = 〈Q,Σ,M, F 〉 is non-
negative (Q,+,×) weighted automaton such that

∑
q′∈Q

∑
a∈ΣM(a)(q, q′) = 1

for all q ∈ Q. J

In this definition it is not possible to assume a unique final state, as the
construction above would destroy the stochasticity constraint. However the
construction can be performed and the chain interpreted only as a weighted
automaton.

A Markov chain can be seen as a generator of words, where the configuration
moves from one state to the next by observing the probability on the last
state. Using νs(w) inherited from weighted automata one can refer to the
probabilities of words. If all of the states are accepting, then one can refer to
the probability of observing a word w. If some are accepting, then one can refer
to the probability of being in an accepting state whilst observing a word w. In
this general definition the Markov chain continues operating after visiting an
accepting state; however one can also consider the case that the Markov chain
“announces” the end of the word, and one can only refer to the probability of
“ended” words. This is achieved by the Markov chain moving to a designated
final state.

Definition 3.3. A word terminating labelled Markov chain is a non-negative
(Q,+,×) weighted automaton with the restriction that:

•
∑

q′∈Q
∑

a∈ΣM(a)(q, q′) = 1 for all q ∈ Q \ F , and

• M(a)(q, q′) = 0 for all q ∈ F, q′ ∈ Q, a ∈ Σ (i.e. final states have no
outgoing transitions).

In addition to the measure on finite words νs(w), the measure can be extended
to measure sets of finite words (E ⊆ Σ∗) so that νs(E) =

∑
w∈E νs(w). J

Any word terminating labelled Markov chain has the property that the measure
is a sub-distribution over words, i.e.

∑
w∈Σ∗ νs(w) ≤ 1. Note that for these

models one can again assume, without loss of generality, that there is a unique
final state. A word terminating labelled Markov chain can be embedded into a
labelled Markov chain; the missing probability at sink states can be used by
transitioning to a new sink state which is not accepting and loops on itself with
probability 1 on any character (so cannot reach any accepting state).

In the same way as for weighted automata, one can define a unary Markov
chain or unary word terminating labelled Markov chain with |Σ| = 1, where
the transition probabilities are described by a single matrix, say A. Note
that a unary Markov chain is syntactically equivalent to a unary probabilistic

29

automaton (probabilistic automata are defined next), or what one may simply
call a Markov chain.

Probabilistic Automata

Weighted automata can also be used to define probabilistic automata. Proba-
bilistic automata are similar to labelled Markov chains, except that M(a) is
stochastic for every a, rather than

∑
a∈ΣM(a) being stochastic.

Definition 3.4. A probabilistic automaton A = 〈Q,Σ,M, F 〉 is a non-negative
(Q,+,×) weighted automaton, with the restriction that

∑
q′∈QM(a)(q, q′) = 1

for all q ∈ Q and a ∈ Σ. J

When a probabilistic automaton is combined with a dedicated starting state
qs ∈ Q, then PA(w) is written to denote the weighting function νqs(w), or
where the choice of probabilistic automaton is clear, simply P(w) is written.

3.2.3 Infinite word labelled Markov chains

In the previous subsections labelled Markov chains were introduced as weighted
automata on finite words. Such a formulation does not extend in the context of
infinite words (over non-singleton alphabets), as it is not appropriate to ask the
probability of a single infinite word; every individual word may have measure
zero, hence it is necessary to consider what is meant by “measurable” sets.

Infinite word labelled Markov chains are introduced using labelled states as
this is the formulation convenient for Chapters 4 and 5, however in the next
section it will become clear that the distinction is unimportant.

Definition 3.5. An infinite word labelled Markov chain (LMC)M is a tuple
〈Q,Σ, µ, `〉, where Q is a finite set of states, Σ is a finite alphabet, µ : Q →
Dist(Q) is the transition function and ` : Q→ Σ is the labelling function. For
a state s ∈ Q, µs is written for µ(s). J

The relevant probability spaces are specified next using standard measure
theory [Bil86; BK08]. First the general definitions of measures are introduced
and these are then used to associate the relevant probabilities associated with
sets of infinite sequences of labels generated by a labelled Markov chain.

Given a set X, a measure is used to associate a value to its subsets. To do this a
measurable space (X,F) is used, where F is a σ-algebra, that is, the measurable
subsets of X. A set F is a σ-algebra on set X if it includes X, is closed under
complement and closed under countable unions. This is an extension of an
algebra, which also requires X and closure under complement, but only need to

30

be closed under finite unions (instead of countable unions). Then a function
µ : F → [0,∞] is a measure if ν(∅) = 0 and the for any countable collection
of pairwise disjoint sets E1, E2, · · · ∈ F we have ν(

⋃∞
i=1Ei) =

∑∞
i=1 ν(Ei). A

probability measure is a measure with ν(X) = 1.

Definition 3.6. A subset C ⊆ Σω is a cylinder set if there exists u ∈ Σ∗ such
that C consists of all infinite sequences from Σω whose prefix is u. Then Cu is
written to refer to this cylinder C. J

Cylinder sets play a prominent role in measure theory in that their finite unions
can be used as a generating family (an algebra) for the set FΣ of measurable
subsets of Σω (the cylindrical σ-algebra). Where clear from context, Σ is
omitted in the subscript of F . It is important here that any measure ν on
(Σω,FΣ) is uniquely determined by its values on cylinder sets (see [Bil86,
Chapter 1, Section 2] or [BK08, Section 10.1]). Definitions 3.7 and 3.8 describe
how to assign a measure νs on (Σω,FΣ) to an arbitrary state of an LMCM.

Definition 3.7. Given M = 〈Q,Σ, µ, `〉, let µ+ : Q+ → [0, 1] and `+ :

Q+ → Σ+ be the natural extensions of the functions µ and ` to Q+, i.e.
µ+(s0 · · · sk) =

∏k−1
i=0 µsi(si+1) and `+(s0 · · · sk) = `(s0) · · · `(sk), where k ≥ 0

and si ∈ Q (0 ≤ i ≤ k). Note that, for any s ∈ Q, we have µ+(s) = 1, by
assuming the product over the empty set is 1. Given s ∈ Q, let Pathss(M) be
the subset of Q+ consisting of all sequences that start with s. J

Definition 3.8. Let M = 〈Q,Σ, µ, `〉 and s ∈ Q. Define νs : FΣ → [0, 1] to
be the unique measure on (Σω,FΣ) such that for any cylinder Cu we have
νs(Cu) =

∑
µ+(p) where the summation is over all p ∈ Pathss(M) such that

`+(p) = u. J

3.2.4 Transition labelled vs state labelled LMCs

The presentation of finite word machines involves the use of labelled transitions
(where one considers the label to be emitted as the transition is taken) like
in [CK14; Kie18] and the presentation of infinite word machines uses labelled
states (where one considers the label to be emitted on arrival to the state) like
in [Bre17; CBW12; BBLM13; TB16]. However there is a polynomial translation
between the two notations, such that the most convenient for the result at hand
can be used.

In particular, consider a transition labelledM of the form 〈Q,Σ,M, F 〉 with
transition described by q p−→

b
q′. One can construct an equivalent state labelled

Markov chain M′. For each state and each label, add new state (q, a) la-
belled with a, such that, when q p−→

b
q′, let µ(q,a)((q

′, b)) = p for every a ∈ Σ.

31

weighted automata

substochastic PA

PA substochastic LMCs

LMCs

infinite word LMCs

unary PA = unary LMCs word terminating LMCs

unary word terminating LMCs

unary weighted automata

Figure 3.1: Partial order of automata, such that A → B if A can be defined
as a restriction of B. The abbreviations PA denote probabilistic automata
and LMC denote labelled Markov chains. A substochastic PA requires that∑

q′∈QM(a)(q, q′) ≤ 1 for every q ∈ Q and a ∈ Σ and a substochastic LMC
requires that

∑
a∈Σ,q′∈QM(a)(q, q′) ≤ 1 for every q ∈ Q.

Technically, this delays reading of the first character until the second state is
visited. To account for this, introduce an additional character, say `, so that
νs(Cw) = ν ′(s,`)(C`w), where ν and ν ′ refer to the measures associated withM
andM′ respectively (Definition 3.8).

The reverse construction from state labelled to transition labelled is even
simpler: for a state q labelled with a, create a transitions of the form q

p−→
a
q′

where µq(q′) = p.

Finite word LMCs as infinite word LMCs

Finite word labelled Markov chains can also be represented by infinite word
Markov chains. To embed a word terminating finite word Markov chain in
an infinite word Markov chain, the end of the word can be simulated by an
additional character, say $ such that, for qF ∈ F , µq(q) = 1 and `(q) = $,
so that the only trace that can be observed from qF is $ω. Then, for a word
w ∈ Σ∗, the word w$$$. . . can be studied instead, corresponding to the cylinder
Cw$. In the translated infinite word model, the event Cu corresponds to the
set of traces {w ∈ Σ∗ | u is a prefix of w} in the original finite word model.

32

3.2.5 Relation between models

There is a relation between many of the models introduced, some can be
embedded into another and some are defined directly as a restricted variant of
another. The relevant relations between models are summarised in Figure 3.1.
When the hardness of a problem is shown using word terminating labelled
Markov chains it also applies to labelled Markov chains, infinite word Markov
chains and weighted automata. When computability results are shown on
weighted automata, they apply to labelled Markov chains and probabilistic
automata and when a computability result is carried out in the infinite word
setting it also applies to finite word chains.

Where possible, the arguments in this thesis are carried out in the strongest
setting; that is, using word terminating labelled Markov chains for hardness
and for computability results using infinite word Markov chains (particularly in
Chapters 4 and 5) or weighted automata (particularly in Chapter 6). However,
some results may apply only to the more specialised models.

3.2.6 Comparison of labelled Markov chains

The aim of the next chapters will be to compare the states of labelled Markov
chains from the point of view of differential privacy. Any two states s, s′ can be
viewed as indistinguishable if they induce identical measures, i.e. νs(E) = νs′(E)

for every E ∈ F ; this is decidable in polynomial time [Sch61; Tze92; Kie+13].
More generally, the difference between them can be quantified using the total
variation distance, see e.g. [GS02].

Definition 3.9 (Total Variation Distance). Let ν, ν ′ be measures on (X,F),
then:

tv (ν, ν ′) = sup
E∈F

∣∣ν(E)− ν ′(E)
∣∣ . J

Remark. The total variation distance is equivalent without using the absolute
value, i.e.

tv (ν, ν ′) = sup
E∈F

ν(E)− ν ′(E). J

Given a Markov chain with states Q and measure ν then for s, s′ ∈ Q, tv (s, s′)

is written to refer to tv (νs, νs′). Ensuring such pairs of measures (νs, νs′) are
“similar” is essential for privacy, so that it is difficult to observe which of
the states was the originating position. To measure probabilities relevant to
differential privacy, a more general variant of the above distance will be studied,
which is introduced in Chapters 4 and 5.

33

tv (s, s′) turns out surprisingly difficult to compute: it is undecidable whether
the distance is strictly greater than a given threshold, and the non-strict variant
of the problem (“greater or equal”) is not known to be decidable [Kie18].

Definition 3.10 (TV-Threshold).

input An LMCM, states s, s′ ∈ Q and a threshold θ ∈ [0, 1] ∩ Q

output is tv (s, s′) ≤ θ? J

Theorem 3.11. [Kie18, Theorem 3] TV-Threshold is undecidable.

Remark. TV-Threshold is decidable for θ = 1, the answer is always yes.
Note also that for θ = 0 it asks if the states have the same measures; recall this
is decidable in polynomial time. J

The presentation of chains here considers the weight (or probability) of a word
from an initial state rather than an initial distribution over states; leading to
the presentation of distances between states rather than distributions. The
problems are equivalent because the given initial distribution can be embedded
into the labelled Markov chain. For this, new initial states are added, whose only
operation is to simulate the initial distributions on some designated character.

3.3 Differential privacy in LMCs

Differential privacy in the context of labelled Markov chains requires that for
two related states there only ever be a small change in output probabilities,
and therefore discerning the two is difficult, which maintains the privacy of
the states. In the typical database scenario, one would relate database states
that differ by exactly one entry. In the context of labelled Markov chains
the difference is between states of a machine, for which it is desired to be
indiscernible as to which was the start state, assuming that the states are
hidden and the traces are observable.

Below the definition of differential privacy is recast formally in the setting of
labelled Markov chains.

Reformulation 3.12. Let M = 〈Q,Σ, µ, `〉 be a labelled Markov chain and
let R ⊆ Q ×Q be a symmetric relation. Given ε ≥ 0 and δ ∈ [0, 1], thenM
is (ε, δ)-differentially private with respect to R if, for any s, s′ ∈ Q such that
(s, s′) ∈ R, we have

νs(E) ≤ eε · νs′(E) + δ

for any measurable set E ∈ F . J

34

Remark. Note that each state s ∈ Q can be viewed as defining a random variable
Xs with outcomes from Σω such that P[Xs ∈ E] = νs(E). Then the above can
be rewritten as P[Xs ∈ E] ≤ eε P[Xs′ ∈ E] + δ, which matches the standard
definition of differential privacy (Definition 2.1), where one would consider
Xs, Xs′ neighbouring in some natural sense. J

What it means for two states to be related, as specified by R, is to a large
extent domain-specific. In general, R makes it possible to spell out which states
should not appear too different and, consequently, should enjoy a quantitative
amount of privacy.

When ε = 0, the smallest value of δ between two states s, s′ is captured exactly
by the total variation distance tv (s, s′).

35

Chapter 4

Symmetric Bisimilarity Distances for δ

This chapter considers the verification of (ε, δ)-differential privacy, also referred
to as approximate differential privacy, and designs a version of bisimilarity
distance which will constitute a sound upper bound on δ, thus providing a
reliable measure of privacy.

While the exact differences relevant to (ε, δ)-differential privacy are not com-
putable in the framework of labelled Markov chains, this chapter presents a
computable bisimilarity distance that yields a sound technique for measuring
δ, the parameter that quantifies deviation from pure differential privacy. This
bisimilarity distance is always rational, the associated threshold problem is in
NP, and the distance can be computed exactly with polynomially many calls
to an NP oracle.

The explicit problem is defined as follows: given an LMCM, states s and s′,
and a value of ε, determine the smallest δ such that s and s′ satisfy (ε, δ)-
differential privacy. Unfortunately, the smallest of such δ is not computable,
which motivates the search for upper bounds.

In the spirit of generalised bisimilarity pseudometrics [CGPX14], the distance,
denoted bdα, is based on the Kantorovich-style lifting of distance between states
to distance between distributions. However, because the underpinning distances
turn out not to be metrics, the setting does not quite fit into the standard
picture, which presents a technical challenge. How the proposed distance may
be computed is discussed, using techniques from linear programming, linear
real arithmetic, and computational logic. The first result is that the distance
always takes on rational values of polynomial size with respect to the size of
the LMC and the bit size of the probability values associated with transitions
(Theorem 4.29).

This is then used to show that the associated threshold problem (“is bdα

upper-bounded by a given threshold value for two given states?”) is in NP

(Theorem 4.31). Note that the distance can be approximated to arbitrary
precision by solving polynomially many instances of the threshold problem.

36

Finally, it is shown that the distance can be computed exactly in polynomial
time, given an NP oracle (Theorem 4.32). This places it in the search version
of NP and leaves the possibility of polynomial-time computation open. In the
subsequent chapter, the distance will be improved upon.

4.1 Preliminaries

To rephrase the inequality underpinning differential privacy in a more succinct
form, it will be convenient to work with the skewed distance ∆α, first introduced
by Barthe et al. [BKOB12] in the context of Hoare logics and (ε, δ)-differential
privacy. As a fundamental part of this chapter, Definition 2.3 is recalled here:

Definition 4.1 (Skewed Distance). For α ≥ 1, let ∆α : R≥0 × R≥0 → R≥0 be
defined by ∆α(x, y) = max {x− αy, y − αx, 0}. J

Remark. It is easy to see that ∆α is anti-monotone with respect to α. In
particular, because α ≥ 1, we have ∆α(x, y) ≤ ∆1(x, y) = |x− y|. Observe
that ∆2(9, 3) = 9 − 2 × 3 = 3, ∆2(9, 6) = 0 and ∆2(6, 3) = 0. Recall the
definition of a metric and pseudometric defined in Definition 2.6. Note that
∆2(x, y) = 0 need not imply x = y, so ∆2 is not a metric. Note also that
the triangle inequality may fail: ∆2(9, 3) > ∆2(9, 6) + ∆2(6, 3), so ∆2 is not a
pseudometric. This complicates the technical development, because ∆α does
not fall into the framework of Chatzikokolakis et al. [CGPX14] directly. J

A skewed variant of the total variation distance can be used to capture differ-
ential privacy, which will be shown in Reformulation 4.3. This skewed total
variation distance called tvα, uses ∆α, rather than the absolute value function,
for which the standard total variation distance (tv) is a special case (α = 1).

Definition 4.2 (Skewed Total Variation Distance). Let α ≥ 1. Given two
measures ν, ν ′ on (Σω,F), let

tvα(ν, ν ′) = sup
E∈F

∆α(ν(E), ν ′(E)). J

Following the convention for tv , tvα(s, s′) will stand for tvα(νs, νs′). Defini-
tions 3.12, 4.1, and 4.2 leads to the following reformulation:

Reformulation 4.3. M is (ε, δ)-differentially private wrt R if and only if, for
all s, s′ ∈ Q such that (s, s′) ∈ R, we have tvα(s, s′) ≤ δ, where α = eε. J

Some values of tvα are readily known. Recall the definition of a probabilistic
bisimulation defined in Reformulation 4.4, the distance between any bisimilar

37

a
s1

b
s2

a
s0

c
s3

3
5

2
5

2
5

3
5

Figure 4.1: States s0 and s1 are not bisimilar, but tv1.5(s0, s1) = 0.

states turns out to be zero. The definition is reformulated here in the context
of state labelled chains:

Reformulation 4.4. A probabilistic bisimulation on an LMCM = 〈Q,Σ, µ, `〉
is an equivalence relation R ⊆ Q×Q such that if (s, s′) ∈ R then `(s) = `(s′)

and for all equivalence classes X of R,
∑

u∈X µ(s)(u) =
∑

u∈X µ(s′)(u), i.e.
related states have the same label and probability of transitioning into any
given equivalence class. J

It follows from [CBW12, Proposition 9, Lemma 10], that for bisimilar s, s′, we
have tv1(s, s′) = 0. Then tvα(s, s′) ≤ tv1(s, s′) entails the following:

Lemma 4.5. If s ∼ s′ then tvα(s, s′) = 0, for all α ≥ 1.

Note however that the converse does not hold, as shown in the following
example.

Example 4.6. In the LMC shown in Figure 4.1, states s0 and s1 are not bisimilar.
To see this, observe first that s2 must be the only state in its equivalence class
with respect ∼, because other states have different labels. Now note that the
probabilities of reaching s2 from s0 and s1 respectively are different (0.4 vs
0.6).

However, for α = 1.5, we have tvα(s0, s1) = 0, because ∆α(0.6, 0.4) = max(0.6−
1.5 · 0.4, 0.4− 1.5 · 0.6, 0) = 0. J

In an “acyclic” system, tvα can be calculated by exhaustive search in expo-
nential time. It is convenient to note that in the case of finite words, as
will be the case from an acyclic systems, we have supE⊆Σ∗ νs(E)− ανs′(E) =∑

w∈Σ∗ max(νs(w)−ανs′(w), 0). Hence, because there are finitely many words,
in fact exponentially many, this sum and

∑
w∈Σ∗ max(νs′(w)−ανs(w), 0) can be

38

computed. However, in general, tvα is not computable, because, in particular,
tv1 is not computable (Theorem 3.11).

Thus, in the next section another distance will be introduced and studied,
called bdα. It will turn out possible to compute it and it will provide a sound
method for bounding δ for (ln(α), δ)-differential privacy. The main result
is Theorem 4.32: the new distance can be calculated in polynomial time,
assuming an NP oracle. Pragmatically, this means that this new distance
can be computed efficiently, assuming access to an appropriate satisfiability or
theory solver.

4.2 Skewed bisimilarity distance, bdα

The distance bdα will be defined in the spirit of bisimilarity distances [DJGP02;
DGJP04; CBW12; CGPX14] through a fixed point definition based on a
variation of the Kantorovich lifting. Its shape is motivated by first considering
how one would go about calculating tvα recursively.

Note that between two states with different labels, it is possible to immediately
conclude that the distance should be one. That is, if `(s) 6= `(s′) then νs(C`(s)) =

1, νs′(C`(s)) = 0, therefore tvα(s, s′) = 1.

So, assume `(s) = `(s′). Given E ⊆ Σω and a ∈ Σ, let Ea = {w ∈ Σω | aw ∈ E}.
Then:

tvα(νs, νs′) = sup
E∈F

∆α (νs(E), νs′(E))

= sup
E`(s)∈F

∆α

∑
u∈Q

µs(u) νu(E`(s)),
∑
u∈Q

µs′(u) νu(E`(s))

 .

Define f : Q→ [0, 1] by f(u) = νu(E`(s)), then tvα(νs, νs′) can be rewritten as

sup
E`(s)∈F

∆α

∑
u∈Q

µs(u) f(u),
∑
u∈Q

µs′(u) f(u)

 .

Given exact knowledge of f , it would be possible to compute tvα. But from
the definition of tvα, it is required that ∆α(f(v), f(v′)) ≤ tvα(v, v′) for any
v, v′ ∈ Q. Consequently, the following inequality holds.

tvα(s, s′) ≤ sup
f :Q→[0,1]

∀v,v′∈Q∆α(f(v),f(v′))≤tvα(v,v′)

∆α

∑
u∈Q

µs(u)f(u),
∑
u∈Q

µs′(u)f(u)


The expression on the right is an instance of the Kantorovich lifting [Kan42;
DD09], which uses (“lifts”) the distance tvα between states s, s′ to define a

39

distance between the distributions µs, µs′ associated with the states. Now recall
the standard definition of the Kantorovich distance between distributions.

Definition 4.7 (Kantorovich lifting [Kan42]). Given µ, µ′ ∈ Dist(X) and a
pseudometric m : X ×X → [0, 1], the Kantorovich distance between µ and µ′

is defined to be

K(m)(µ, µ′) = sup
f :X→[0,1]

∀v,v′∈X|f(v)−f(v′)|≤m(v,v′)

∣∣∣∣∫ fdµ−
∫
fdµ′

∣∣∣∣ . J

Remark. Here, and throughout the thesis, the integral is sometimes specified
without limits, in which it means the integral over the whole space, i.e.

∫
X fdµ,

which indicates the expectation of f on the distribution µ. In the discrete case,
e.g. µ ∈ Dist(Q), we have

∫
fdµ =

∑
u∈Q f(u)µ(u).

The notation f̂(µ) will be used for this integral
∫
fdµ (over the whole space).

In particular this will be used when
∫
fdµ can be treated as an object with

little need for its meaning; when the integral needs to be manipulated it will
be translated back to the integral form. J

For the purposes of this chapter, a new variant of the Kantoroivch lifting is
considered here, where the absolute value function |. . .| is replaced by ∆α.

Definition 4.8 (Skewed Kantorovich). Given µ, µ′ measures on (X,F) and
a symmetric distance d : X × X → [0, 1], the skewed Kantorovich distance
between µ and µ′ is defined to be

Kα(d)(µ, µ′) = sup
f :X→[0,1]

∀x,x′∈X∆α(f(x),f(x′))≤d(x,x′)

∆α

(∫
fdµ,

∫
fdµ′

)
. J

It is assumed that whenever f is written, it is restricted only to those which
are measurable in the space (X,F). Note that whilst a symmetric distance
is not necessarily required, the use of ∆α in both places ensures it would
be equivalent to instead using the symmetric distance d′ where d′(s, s′) =

min {d(s, s′), d(s′, s)}. Hence, w.l.o.g. d is assumed to be symmetric. The next
chapter will explore the case where ∆α is not symmetric and so d is also will
not necessarily be symmetric.

Further note that in the general case of ∆α(a, b), both a−αb and b−αa could
be negative, so the maximum with 0 is taken. However, when taken inside
the supremum ∆α(a, b) can be assumed to be max {a− αb, b− αa}, dropping
the maximum with zero. This is because the choice of f(x) = 0 for all x ∈ X
entails that the first and second component of the maximum is at least zero.

40

Remark. The Kantorovich distance is also known under other names (e.g.
Hutchinson, Wasserstein distance), having been rediscovered several times in
history [DD09]. Chatzikokolakis et al. [CGPX14] studied the Kantorovich
distance and related bisimulation distances when the absolute value distance
above is replaced with another metric. Note that whilst here ∆α is considered,
∆α is not a metric and d need not be a pseudometric.

Note that the choice of α = 1 gives the standard Kantorovich distance (Defini-
tion 4.7). J

Now define a function operator, which will be used to define the distance bdα,
using Kα over measures on states, that is X = Q.

Definition 4.9. Let Γα : [0, 1]Q×Q → [0, 1]Q×Q be defined as follows.

Γα(d)(s, s′) =

Kα(d)(µs, µs′) if `(s) = `(t)

1 if `(s) 6= `(t)
J

Note that [0, 1]Q×Q equipped with the pointwise order, written v, is a complete
lattice and that Γα is monotone with respect that order (larger d permit
more functions, thus larger supremum). Consequently, Γα has a least fixed
point [Tar55]. bdα is defined to be exactly that point.

Remark. In this work, the ordering on the lattice is such that d v d′ if and only
if d(s, s′) ≤ d′(s, s′) for all s, s′ ∈ Q; so that a least fixed point corresponds
to “smaller” numbers than any other fixed point. This is in contrast to some
authors who use d v d′ to indicate d(s, s′) ≥ d′(s, s′) for all s, s′ ∈ Q and then
study greatest fixed points. J

Definition 4.10 (Skewed Bisimilarity Distance). Let bdα : Q × Q → [0, 1] be
the least fixed point of Γα. J

Remark. Recall that the least fixed point is equal to the least pre-fixed point
(min

{
d ∈ [0, 1]Q×Q |Γα(d) v d

}
). J

Recall the initial remarks about the Kantorovich distance Kα(tvα)(µs, µs′)

over-approximating tvα(s, s′). This can be summarised by tvα v Kα(tvα), i.e.
tvα is a post-fixed point of Kα. Since the intention is to bound tvα as closely
as possible, using more technical analysis it is shown that the least fixed point
bdα also bounds tvα from above.

Theorem 4.11. tvα v bdα.

41

Remark. The theorem is an analogue of Theorem 2 in [CGPX14]. Its proof
in [Xu15] relied on the fact that the counterpart of ∆α was a metric, which is
not true here (unless α = 1). J

Just like ∆α, tvα is anti-monotone with respect to α, so is bdα. This means
that bdα v bd1. The definition of bd1 coincides with the definition of the classic
bisimilarity pseudometric bm (see e.g. [CBW12]), which satisfies bm(s, s′) = 0

if and only if s and s′ are bisimilar. Consequently, entailing the following
corollary.

Corollary 4.12. For any α ≥ 1, if s ∼ s′ then bdα(s, s′) = 0.

As in the case of tvα, and in contrast to [CGPX14], the converse does not
hold in the setting here. Example 4.6 shows that s0 6∼ s1 but observe that
bd1.5(s0, s1) = 0.

bd1.5(s0, s1) ≤

max
f

(∑
s∈Q

f(s)(µs0(s)− 1.5 · µs1(s)),
∑
s∈Q

f(s)(µs1(s)− 1.5 · µs0(s)), 0
)

= max
f

(
f(s2)(0.6− 1.5 · 0.4) + f(s3)(0.4− 1.5 · 0.6),

f(s2)(0.4− 1.5 · 0.6) + f(s3)(0.6− 1.5 · 0.4), 0
)

= 0.

Notice the coefficients of f(s) are all non-positive. Consequently, regardless
of the restrictions on f , the maximising allocation will be f(s) = 0 and, thus,
bd1.5(s0, s1) = 0.

4.3 Proving Theorem 4.11

Recall Theorem 4.11 states that tvα v bdα. To prove the theorem, a new
distance will be introduced, the skewed Kantorovich distance Kα(16=) over
measures on traces, which can be planted in between tvα and bdα, using the
following lemmas, which together entail Theorem 4.11.

Lemma 4.13. tvα(s, s′) = Kα(16=)(νs, νs′).

Lemma 4.14. Kα(16=)(νs, νs′) ≤ bdα(s, s′).

Definition and properties of Kα(1 6=)(νs, νs′)

Recall Definition 4.7 is defined over any object X, thus consider the lifting
instantiated on traces, i.e. X = Σω, to measure the difference between measures

42

on traces, e.g. the measures defined from states νs, νs′ . It is assumed that
whenever f is written, it is restricted only to those which are measurable in
the space (Σω,F).

Definition 4.15. Let 16=(t, t′) : Σω × Σω → {0, 1} be the inequality indicator
function. This function is one if the arguments are not the same and zero if
they are. Also define 1h6= as a restriction considering only the prefix of length
h, where th is the prefix of length h of trace t.

16=(t, t′) =

1 if t 6= t′

0 otherwise
and 1h6=(t, t′) =

1 if th 6= t′h

0 otherwise
J

The consider Kα(16=)(νs, νs′). The use of 16= is so that ∆α(f(t), f(t′)) ≤
16=(t, t) is rather no restriction at all, since either a trace is the same, thus
∆α(f(t), f(t′)) = 0 or the traces are different and 16=(t, t′) = 1. So Kα(16=)

takes supremum over all measurable f .

Proof of Lemma 4.13. tvα(s, s′) = Kα(16=)(νs, νs′)

Note that only tvα(s, s′) ≤ Kα(16=)(νs, νs′) is actually required for Theo-
rem 4.11. However equality is shown, giving an alternative representation of
tvα.

Lemma 4.16. tvα(s, s′) = supf :Σω→{0,1}∆α

(
f̂(νs), f̂(νs′)

)
.

Proof. Note that each measurable f : Σω → {0, 1, } is of the form 1E for some
E ∈ F . Then consider E ∈ F then 1E is a measurable function in the argument
of the supremum of Kα(16=) with

∫
1Edνs = νs(E) thus ∆α(νs(E), νs′(E)) =

∆α

(
f̂(νs), f̂(νs′)

)
.

Lemma 4.17. The following are equivalent:

• T (µ, µ′) = supf :X→[0,1] f̂(µ)− αf̂(µ′)

• T (µ, µ′) = supf :X→{0,1} f̂(µ)− αf̂(µ′).

Proof. The proof proceeds by first considering simple functions, and then
extending this to other functions with the Monotone convergence theorem. The
proof closely follows the technique of [Xu15].

A simple function f can be described by a finite sum
∑

i ai1Ai , where 1Ai is
the characteristic function on Ai ∈ F . This ensures f takes on finitely many
values in its range.

43

Then it is necessary to show that if f(a) ∈ (0, 1) then value of f̂(µ)− αf̂(µ′)

can only be increased by changing f(a) to 0 or 1. Note this will maintain that
f is valid in the restriction of the supremum, since the only restriction is to
stay measurable.

Since f is simple then img(f) is finite. Let n = |img(f) \ {0, 1}| and f0 = f .

An indicator function fn is constructed by induction. Consider v ∈ img(fi) \
{0, 1}. Let Ai = {x : fi(x) = v} ∈ F .

Then define fi+1 = fi + gi with gi = t · 1Ai where t is defined as follows: if
µ(Ai)− αµ′(Ai) ≥ 0 set t = 1− v, this ensures that fi+1(x) = 1 for all x ∈ Ai.
Otherwise t = −v which ensures that fi+1(x) = 0 for all x ∈ Ai.

Then fi+1 gives no smaller value in the supremum:

f̂i+1(µ)− αf̂i+1(µ′) =

∫
fi+1dµ− α

∫
fi+1dµ

′

=

∫
(fi + gi)dµ− α

∫
(fi + gi)dµ

′

=

∫
fidµ− α

∫
fidµ

′ +
∫
gidµ− α

∫
gidµ

′

= f̂i(µ)− αf̂i(µ′) + tµ(Ai)− αtµ′(Ai)
≥ f̂i(µ)− αf̂i(µ′),

where the last inequality holds because, either t > 0 and µ(Ai)− αµ′(Ai) ≥ 0

or t < 0 and µ(Ai)− αµ′(Ai) < 0.

In particular, the indicator fn is not worse than the simple function f , that is,

f̂n(µ)− αf̂n(µ′) ≥ f̂(µ)− αf̂(µ′).

Consider a function f which is not simple. This can be approximated a sequence
of simple functions h1, h2, . . . which are simple, converging point-wise to f .
Then by monotone convergence principle [Che08, Theorems 2.4.10 and 3.1.1],
with d(a, b) = a− αb continuous the following limit exists:

lim
n→∞

ĥn(µ)− αĥn(µ′) = f̂(µ)− αf̂(µ′).

For every simple function h in the sequence, the difference is no smaller when
replaced by an indicator function, thus the difference in the limit is no smaller as
limit of indicator functions. Note that this limit exists as all functions considered
are valid under the in the supremum of supf :X→[0,1] f̂(µ)− αf̂(µ′), hence the
new limit is sandwiched between ĥn(µ)−αĥn(µ′) and supf :X→[0,1] f̂(µ)− αf̂(µ′)

at every point.

44

Therefore indicator functions, which have 1-1 correspondence with events are
sufficient in the supremum.

Using Lemma 4.16 and Lemma 4.17 one can derive the desired result tvα(s, s′) =

Kα(16=)(νs, νs′), Lemma 4.13.

Proof of Lemma 4.13. Let νs = µ and νs′ = µ′. In Lemma 4.16 it is observed
that there is a 1–1 correspondence between indicator functions and events.
Hence tvα(s, s′) = supf :X→{0,1}∆α

(
f̂(µ), f̂(µ′)

)
.

By Lemma 4.17 observe that extending f to non-indicator functions f : X →
[0, 1] does not obtain a larger supremum.

Kα(16=)(µ, µ′) = max

{
sup

f :X→[0,1]
f̂(µ)− αf̂(µ′), sup

f :X→[0,1]
f̂(µ′)− αf̂(µ)

}
= max

{
T (µ, µ′), T (µ′, µ)

}
= max

{
sup

f :X→{0,1}
f̂(µ)− αf̂(µ′), sup

f :X→{0,1}
f̂(µ′)− αf̂(µ)

}
= sup

f :X→{0,1}
max

{
f̂(µ)− αf̂(µ′), f̂(µ′)− αf̂(µ)

}
= sup

f :X→{0,1}
∆α

(
f̂(µ), f̂(µ′)

)
= tvα(s, s′).

Corollary 4.18. When using 16= on traces it is necessary only to consider the
supremum over indicator functions with no restrictions:

Kα(16=)(µ, µ′) = sup
f :X→{0,1}

∆α

(
f̂(µ), f̂(µ′)

)
.

Proving Lemma 4.14. Kα(16=)(νs, νs′) ≤ bdα

The proof strategy generally follows the strategy of [Xu15]. For all prefixes
of a trace up to length h, it is shown restricting 16= to this prefix will provide
the required bound. The main change in this argument compared to [Xu15]
is a difference in the base case, where an additional result (Lemma 4.19) is
needed to compensate for the fact that ∆α is not a metric. The induction step
is similar, changing only the distance function to ∆α.

The proof is then extend from 1h6= to the supremum over h, i.e. Kα(16=). To
do this, the events in Kα(16=) will be approximated by cylinders and it will be
shown that for some h, Kα(1h6=) is ε close to Kα(16=). An additional lemma
to support this is provided in Lemma 4.20 and the extension is shown in
Lemma 4.22.

45

This extension from Kα(1h6=) to K(16=) differs from the strategy of [Xu15] who
argue it is enough to show continuity of KV (m) with respect to m. Continuity
does hold in here, but it is unclear to the author that this actually shows the
result. Since 1h6= are discrete the ε, δ formulation of continuity says at 16= there
exists m such that maxa,b |16=(a, b)−m(a, b)| ≤ δ, however no such m = 1h6=
satisfies this because if it differs in any point, the difference is 1. That is, as∥∥∥16= − 1h6=

∥∥∥ = 1 for all h, the sequence 1h6= does not converge to 16=.

Auxiliary Lemmas for proving Lemma 4.14

Note that in this case, ∆α (f(x), f(x′)) = 0 cannot be used to conclude f(x) =

f(x′), because ∆α is not a metric. To compensate for this, a weaker result is
shown that will turn out to be sufficient.

Lemma 4.19. Consider f : X → [0, 1] such that ∀x, x′ : ∆α (f(x), f(x′)) = 0.
Then ∀µ, µ′ measures on (X,F) we have ∆α

(
f̂(µ), f̂(µ′)

)
= 0.

Proof. Consider the range of values f could take, and let a = infx {f(x)}.
Thus, by definition, f(x) ≥ a. It is known for all x, ∆α(f(x), a) ≤ 0. So, in
particular, f(x)− αa ≤ 0. Therefore f(x) ∈ [a, αa] for all x.

Now consider
∫
X fdµ where f(x) ∈ [a, αa] and

∫
X dµ = 1.

f̂(µ) =

∫
X
fdµ ≥

∫
X
adµ = a

∫
X
dµ = a

f̂(µ) =

∫
X
fdµ ≤

∫
X
αadµ = αa

∫
X
dµ = αa

So for all x and µ then f̂(µ) =
∫
X fdµ ∈ [a, αa], hence the expectation must

also lie in this range. Next notice that any two numbers in this range give
distance zero, in particular the expectations. Consider f̂(µ), f̂(µ′) ∈ [a, αa]:

0 ≤ ∆α

(
f̂(µ), f̂(µ′)

)
= max

{
f̂(µ)− αf̂(µ′), f̂(µ′)− αf̂(µ), 0

}
≤ max {αa− αa, αa− αa, 0}
= max {0, 0, 0} = 0.

The following lemma generalises the classic result [Hal74, Page 56. Theorem
D.] that measure on any measurable event can be approximated by events from
the generating set. In this case, the generating set (algebra) corresponds to
finite unions of cylinders, which are themselves determined by sequences from
Σ∗. Here it is shown that simultaneous approximation to the same degree of
accuracy is possible for two different measures.

46

Lemma 4.20. Let (B,B, µ) and (B,B, µ′) be measure spaces over the σ-algebra
(B,B). Let A ⊂ B be an algebra generating B. Then

S =
{
X ∈ B | ∀ε ∃A ∈ A such that µ(A	X) < ε and µ′(A	X) < ε

}
also forms a σ-algebra.

Proof. The following proof is adapted from a proof for the classical single
measure case [Gir12].

To show that a set S is a σ-algebra requires the inclusion of the empty set,
closure under complement, and closure under countable unions. Case 1 shows
the full set rather than the empty set, which shows the empty set by complement
in Case 2. Case 3 shows finite unions and extends to countable union in Case 4.

Case 1. Since B ∈ A, B ∈ S.

Case 2. Complement: If X ∈ S and ε > 0 then there ∃A ∈ A such that µ(A	
X) < ε and µ′(A	X) < ε

Then Ac ∈ A and µ(Ac 	Xc) = µ(A	X) < ε, so Xc ∈ S

Case 3. Finite Union: Let X1, X2 ∈ S then ∃Ai ∈ A such that µ(Ai 	Xi) <
ε
2 and µ′(Ai 	Xi) <

ε
2 .

µ(X1 ∪X2 	 A1 ∪ A2) ≤ µ(X1 ∪ A1 	X2 ∪ A2) ≤ ε
2 + ε

2 = ε, similarly for µ′

and A1 ∪A2 ∈ A so X1 ∪X2 ∈ S.

Case 4. Countable Union. Let {Xk} ⊂ S, pairwise disjoint and ε > 0. For
each k, let Ak ∈ A such that µ(Ak 	Xk) ≤ ε

2k
and µ′(Ak 	Xk) ≤ ε

2k

TakeN such that µ(
⋃
j>N Xj) ≤ ε

2 and µ′(
⋃
j>N Xj) ≤ ε

2 . (Make µ(
⋃
j>N Xj) ≤∑

j>N µ(Xj) arbitrarily small due to finite measure, take N big enough so both
are µ and µ′ sufficiently small).

Let A =
N⋃
j=1

Aj ∈ A.

Then (
⋃
kXk)	A ⊂

N⋃
j=1

(Xj 	Aj) ∪
⋃
j>N Xj

Then µ(
⋃
kXk) 	 A) ≤ µ(

N⋃
j=1

(Xj 	 Aj) ∪
⋃
j>N Xj) ≤

∑N
j=1

ε
2j

+ ε
2 ≤ ε and

also for µ′.

Then
⋃
kXk ∈ S

The strategy will be to prove Lemma 4.14 by induction. The following lemma

47

shows that with the induction in place, the result will be complete as results
on Kα(1h6=) extends to Kα(16=), by invoking Lemma 4.20.

Lemma 4.21. ∀ε > 0 ∃h ∈ N such that
∥∥∥Kα(16=)−Kα(1h6=)

∥∥∥ ≤ ε.
Proof. First observe that Kα(16=) ≥ Kα(1h6=) and let V = Kα(16=)(νs, νs′), then
either:

V = sup
f :Σω→{0,1}

∫
fdνs − α

∫
fdνs′

or
V = sup

f :Σω→{0,1}

∫
fdνs′ − α

∫
fdνs.

Assume w.l.o.g. the first case and recall by Corollary 4.18, f : Σω → {0, 1}
are indicator functions. Let ε ≥ 0. Consider such an f with V − (

∫
fdνs −

α
∫
fdνs′) ≤ ε/2 (made possible by supremum).

If it is shown that there exists h such that
∫
fdνs−α

∫
fdνs′−K(1h6=)(νs, νs′) ≤

ε/2 then V −K(1h6=)(νs, νs′) ≤ ε as required.

Let A = {x ∈ Aω | f(x) = 1}. Since f measurable then A ∈ F then:∫
fdνs − α

∫
fdνs′ = νs(A)− ανs′(A)

By Lemma 4.20, it is known νs(A) and νs′(A) can be approximated by cylinder
sets since F ⊆ S as F is the smallest σ-algebra generated by combinations of
cylinders, so contained in S approximable by cylinders. Let C be a cylinder set
such that

νs(A)− νs(C) ≤ ε

4α
and νs′(A)− νs′(C) ≤ ε

4α

Let h be the length of the longest prefix c ∈ C. Assume without loss of
generality that all prefixes in C are of length h. If not generalise all prefixes
shorter than the maximum length h by adding all possible suffixes to make
length h. Let

g(c) =

1 if νs(c)− ανs′(c) > 0

0 otherwise

Note that for all c, c′ ∈ C since |c| ≤ h then if c 6= c′ we have 1h6=(c, c′) = 1, so

48

g is a valid function in Kα(1h6=)(νs, νs′). Thus observe that:

νs(C)− ανs′(C) =
∑
c∈C

νs(c)− α
∑
c∈C

νs′(c)

≤
∑
c∈C

g(c)(νs(c)− ανs′(c))

≤ Kα(1h6=)(νs, νs′).

If Kα(1h6=)(νs, νs′) > νs(A)−ανs′(A) then as Kα(16=)(νs, νs′) ≥ Kα(1h6=)(νs, νs′)

so Kα(16=)(νs, νs′)−Kα(1h6=)(νs, νs′) ≤ ε
2 ≤ ε already.

Otherwise

νs(A)− ανs′(A)−Kα(1h6=)(νs, νs′)

≤ νs(A)− ανs′(A)− (νs(C)− ανs′(C))

≤ (νs(A)− νs(C)+α(νs′(A)− νs′(C))

≤ ε

4α
+ α

ε

4α
≤ ε

2

This implies the following lemma:

Lemma 4.22. If Kα(1h6=) ≤ bdα for all h then Kα(16=) ≤ bdα.

In the next chapter ∆α will be replaced with another function. Thus the
following is proven in full generality for a function F , here playing the role of
∆α.

Lemma 4.23. Let F : [0, 1]× [0, 1]→ [0, 1] be a function such that if f : X →
[0, 1] is such that ∀x, x′ : F (f(x), f(x′)) = 0, then ∀µ, µ′ : F

(
f̂(µ), f̂(µ′)

)
= 0.

Let KF be such that

KF (d)(µ, µ′) = sup
f :X→[0,1]

∀x,x′∈X F (f(x),f(x′))≤d(x,x′)

F
(
f̂(µ), f̂(µ′)

)

Let d be the least fixed point of an operator ΓF : [0, 1]S×S → [0, 1]S×S such that

ΓF (d)(s, s′) =

K
F (d)(µs, µs′) if `(s) = `(t)

1 if `(s) 6= `(t)

Recall the function is monotone on the lattice [0, 1]X×X , thus has a least fixed
point.

49

Then for all h ∈ N:

KF (1h6=)(νs, νs′) ≤ d(s, s)

Proof. The proof proceeds by induction on h.

Base Case: h = 0 The base case shows that KF (10
6=) = 0. Thus it is necessarily

smaller or equal to any value of d.

KF (1h6=)(νs, νs′) = sup
f :Aω→[0,1]

∀t,t′∈Aω F (f(t),f(t′))≤1h6=(t,t)

F
(
f̂(νs), f̂(νs′)

)

But since 1h6= = 0, then

KF (1h6=)(νs, νs′) = sup
f :Aω→[0,1]

∀t,t′∈Aω F (f(t),f(t′))≤0

F
(
f̂(νs), f̂(νs′)

)

Hence F (f(t), f(t′)) ≤ 0 for all t, t′ ∈ Aω then F
(
f̂(νs), f̂(νs′)

)
= 0, resulting

in:
KF (1h6=)(νs, νs′) = sup

f :Aω→[0,1] | F (f(t),f(t′))≤0
0 = 0

Therefore KF (1h6=)(νs, νs′) = 0 ≤ d(s, s′).

Induction Case: For the induction, it is assumed that KF (1h6=)(νs, νs′) ≤ d(s, s′)

in order to show that KF (1h+1
6=)(νs, νs′) ≤ d(s, s′).

Case 1. `(s) 6= `(s′)

This case is trivial as d(s, s′) = 1 ≥ KF (1h+1
6=)(νs, νs′).

Case 2. `(s) = `(s′) = a ∈ Σ.

The strategy is to consider a function f : Σω → [0, 1] valid in the supremum
of KF (1h+1

6=). A function g : S → [0, 1] is constructed which is valid under the
expansion of d with the same difference of expectations. This will lead to the
conclusion that the sumpremum in KF (1h+1

6=) ≤ d

First consider a function that is valid under 1h+1
6= to find a function valid under

1h6=. Consider an f such that F (f(t), f(t′)) ≤ 1h+1
6= (t, t′) for all t, t′ ∈ Aω and

hence valid under 1h+1
6= and let fa(t) = f(at).

Claim 4.24. F (fa(t), fa(t
′)) ≤ 1h6=(t, t′).

50

F (fa(t), fa(t
′)) = F

(
f(at), f(at′)

)
(by defn of fa)

≤ 1h+1
6= (at, at′) =

0 (at)h+1 = (at′)h+1

1 otherwise

(by assumption on f)

= 1h6=(t, t′) =

0 th = t′h

1 otherwise

This function is used to define a function g which is valid in the restrictions in
KF (d) = d thus the difference of expectations of g is below d.

Let
g(s) = f̂a(νs) =

∫
Aω
fadνs.

Claim 4.25. For all s, s′: F (g(s), g(s′)) ≤ d(s, s′)

F (g(s), g(s′)) = F (f̂a(νs), f̂a(ν
′
s) (by definition of g)

≤ sup
f :Aω→[0,1]

∀t,t′∈Aω F (f(t),f(t′))≤1h6=(t,t′)

F
(
f̂(νs), f̂(νs′)

)
(fa is one such f , Claim 4.24)

= KF (1h6=)(νs, νs′)

≤ d(s, s′) (induction assumption)

Then the difference of expectation of g is equal to the difference of expectation
of f :

Claim 4.26. f̂(νs) = ĝ(µs)

Note that by expanding a single step, when `(s) = a,

νs(at) =
∑
si∈Q

µs(si)νsi(t). (4.1)

51

Thus,

f̂(νs) =

∫
Aω
fdνs (by definition)

=

∫
a.Aω

fdνs (since `(s) = a, the first character is a)

=

∫
Aω
fa
∑
si∈S

µs(si)dνsi (Expanding a single step by (4.1))

=
∑
si∈S

µs(si)

∫
Aω
fadνsi (Exchanging sum and integral.)

=
∑
si∈S

µs(si)g(si) (definition of g)

= ĝ(µs) (expectation of g)

Hence the difference of expectation of g (and thus f) can be planted below the
supremum defining the fixed point and thus below the fixed point.

Claim 4.27. F
(
f̂(νs), f̂(νs′)

)
≤ d(s, s′)

F
(
f̂(νs), f̂(νs′)

)
= F (ĝ(µs), ĝ(µs′)) (Claim 4.26)

≤ KF (d)(µs, µs′) = sup
f :S→[0,1]

∀s,s′∈S F (f(s),f(s′))≤d(s,s′)

F
(
f̂(µs), f̂(µs′)

)
(g is such an f , by Claim 4.25)

≤ d(s, s′) (ΓF (d) ≤ d by definition)

Since by Claim 4.27 F
(
f̂(νs), f̂(νs′)

)
≤ d(s, s′) for all f valid for 1h+1

6= then
this also holds in the supremum.

Thus:

KF (1h+1
6=)(νs, νs′) = sup

f :Aω→[0,1]

∀t,t′∈Aω F (f(t),f(t′))≤1h+1
6= (t,t′)

F
(
f̂(νs), f̂(νs′)

)

≤ d(s, s′).

Proof of Lemma 4.14

Proof. Lemma 4.19 and Definitions 4.8 and 4.10 show that ∆α, Kα and bdα
satisfy the restrictions in Lemma 4.23 giving

K(1h6=)(νs, νs′) ≤ bdα(s, s′) for all s, s′ ∈ Q

for all h and the result follows from Lemma 4.22.

52

4.4 Skewed Kantorovich distances

This section discusses how to calculate the skewed variant of the Kantorovich
distance. This will inform the next section, which looks into computing bdα.

Recall that in the definition of Kα(d)(µ, µ′) from Definition 4.8, the definition
of ∆α can be simplified to omit the 0 case when used inside Kα.

If α = 1 then ∆α is the absolute value function and it is known that the distance
corresponds to a single instance of a linear programming problem [BW01].
However, this is no longer true here due to the shape of ∆α(x, y) = max(x−
αy, y − αx). Still, the calculation can be presented taking the maximum of
a pair of linear programs. This formulation will be referred to as the “primal
form” of Kα(d). The first program is given below, the other is its symmetric
variant with µ, µ′ reversed. Below fi is written for f(i) and it is assumed that
d is symmetric.

max
f∈[0,1]Q

(∑
i∈Q

fiµ(i)−α
∑
i∈Q

fiµ
′(i)
)

subject to ∀i, j ∈ Q fi−αfj ≤ di,j

Whilst Definition 4.8 is presented using the supremum, here the objective and
constrains are finite (because the set of states Q is finite), and the constraints
are linear, hence the objective is attained and maximum can be used.

The standard Kantorovich distance (α = 1) is often presented in the following
dual form when m is a pseudometric, based on the minimum coupling between
the two distributions µ and µ′, weighted by the distance function.

K(m)(µ, µ′) = min
ω∈[0,1]Q×Q

∑
i,j∈Q

ωi,j ·mi,j subject to

∀i ∈ Q
∑
j∈Q

ωi,j = µ(i)

∀j ∈ Q
∑
i∈Q

ωi,j = µ′(j)

Remark. The dual form can be viewed as an optimal transportation problem
in which an arbitrarily divisible cargo must be transferred from one set of
locations (represented by a copy QL of Q) to another (represented by a different
copy QR of Q). Each state sR ∈ QR must receive µ(s), while each state
sL ∈ QL must send µ′(s). If ωi,j is taken to represent the amount that gets
sent from jL to iR then the above conditions restrict ω in accordance with
the sending and receiving budgets. If di,j represents the cost of sending from
jL to iR then the objective function

∑
i,j ωi,j · di,j corresponds to the overall

cost of transport. Consequently, the problem is often referred to as a mass
transportation problem [Kan42]. J

To achieve a similar “dual form” in the skewed case, the dual form of each of the

53

linear programs can be found. Then the distance can be calculated by taking
the maximum of the two minima. The shape of the dual is given below on the
right.

Lemma 4.28.

max
f∈[0,1]Q

∑
i∈Q

fiµ(i)− αfiµ′(i) = min
ω∈[0,1]Q×Q

τ,γ,η∈[0,1]Q

∑
i,j∈Q

ωi,j · di,j +
∑
i∈Q

ηi

subject to subject to

∀i, j ∈ Q fi − αfj ≤ di,j ∀i ∈ Q :
∑
j∈Q

ωi,j + τi − γi + ηi = µ(i)

∀j ∈ Q :
∑
i∈Q

ωi,j +
τj−γj
α ≤ µ′(j)

The dual form presented above is a simplified (but equivalent) form of the
immediate dual obtained via the standard linear programming recipe. The dual
of the other linear program is obtained by swapping µ, µ′. In the skewed case,
the optimisation is over the polytope, Ωµ,µ′ =

(ω, η) ∈ [0, 1]Q×Q × [0, 1]Q |

∃γ, τ ∈ [0, 1]Q

∀i ∈ Q :
∑
j∈Q

ωi,j + τi − γi + ηi = µ(i)

∀j ∈ Q :
∑
i∈Q

ωi,j +
τj−γj
α ≤ µ′(j)


.

Note that this polytope being optimised over is independent of d, which appears
only in the objective function.

Proof of Lemma 4.28. Since Q is assumed to be finite, relabel the elements Q
in the form {1, . . . , n}. Then the primal form can be expressed as the following
linear program:

max~f∈[0,1]n
~f · (µ− αµ′) subject to fi − αfj ≤ di,j for all i, j.

So that the result is in the desired presentation, split ~f into two vectors ~a and
~b, both intended to be equal to ~f , resulting in the following formulation:

max
~a,~b∈[0,1]n

~a · µ−~b · (αµ′) subject to ai − αbj ≤ di,j for all i, j and ~a = ~b

This is then translated in representation to the following standard matrix form:

max
~a,~b∈Rn≥0

(
µ −αµ′

)~a
~b

 subject to


A A′

I −I
−I I

I 0


~a
~b

 ≤

~d

~0

~0

~1


54

where I is the standard identity matrix, 0 is the zero matrix and A,A′ are
(n× n)× n matrices where for all i, j, k ∈ [n], i 6= j, j 6= k, k 6= i :

• A(i,j),i = 1

• A′(i,j),j = −α

• A(i,j),j = 0, A′(i,j),i = 0 and A(i,j),k = A′(i,j),k = 0.

These matrices A,A′ are visualised as follows (interpreting blank spaces to be
zeros):

A A′

1

1
. . .

1

1

1
. . .

1
...

1

1
. . .

1





−α
−α
...

−α
−α
−α
...

−α
. . .

−α
−α
...

−α


The constraints can be interpreted as follows:

•
(
A A′

)~a
~b

 ≤ ~d specify the skewed distance must be less than d.

•
(
I −I

)~a
~b

 ≤ ~0 and
(
−I I

)~a
~b

 ≤ ~0 specify ~a = ~b.

•
(
I 0

)~a
~b

 ≤ ~1 specifies ~a ≤ ~1 (from the condition ~f ∈ [0, 1]).

Through the standard dualisation recipe, the following dual form is obtained,
where A> is the transpose of the matrix A:

min
ω∈Rn×n≥0 ,γ,τ,η∈Rn≥0

(
d ~1

)ω
η



55

subject to

A> I −I I

A′> −I I 0



ω

τ

γ

η

 ≥
 µ

−αµ′

 .

Finally, through routine manipulations the following presentation is obtained.

min
ω∈[0,1]n×n,γ,τ,η∈[0,1]n

∑
i,j

ωi,j · di,j +
∑
i

ηi

Subject to:

∀i :
∑
j

ωi,j + τi − γi + ηi = µ(i)

∀j :
∑
i

ωi,j +
τj − γj
α

≤ ν(j)

Note the first equation is equality, rather than ≥, since an equivalent (or better)
solution can always be found by not over-satisfying it: reduce ωi,j , τi, ηi or
increase γi with no violation of other constraints.

This formulation would be equivalent to a standard coupling were γ, τ, η to be
removed. It would be possible to merge τi, γi ∈ [0, 1] into a single variable in
[−1, 1], but for consistency with the standard requirement of linear programs
and the following transportation problem intuition they are kept separate.

As before, cargo can be transferred through the standard routes with ω at a
cost d; and additionally new resource η can be obtained from an extra location
at a cost of 1.

There are also additional, cost-free routes between corresponding pairs sL and
sR (represented by τs) and back (represented by γs). These extra routes are
quite peculiar. En route from sL to sR the cargo “grows”: when τs

α is sent
from sL, a larger amount of τs is received at sR. Overall, the total amount of
cargo sent may be less than that received, so the sending constraints are now
inequalities. From sR to sL the cargo “shrinks”: when γs is sent from sR, only
γs
α is received by sL.

It is immediate that τ routes can be useful. The γ routes may be useful for
optimisation under two conditions. Firstly the shrinkage of the cargo must
be made up elsewhere, i.e., through “growing” τ routes. Additionally the cost
α× d(sL1 , s

R) + d(sL, sR2) is lower than d(sL1 , s
R
2), which may well be the case

due to the lack of triangle inequality.

56

This results in the following formulation, the “dual form”, Kα(d)(µ, µ′) =

max

 min
ω,η∈Ωµ,µ′

∑
i,j

ωi,j · di,j +
∑
i

ηi, min
ω,η∈Ωµ′,µ

∑
i,j

ωi,j · di,j +
∑
i

ηi

 .

Note that Kα(d)(µ, µ′) can be computed in polynomial time as a pair of linear
programs in either primal or dual form, and taking the maximum (in either
case). In the calculations related to bdα, the distributions µ, µ′ will always
be taken to be µs, µs′ respectively, for some s, s′ ∈ Q. The ability to switch
between primal and dual form will play a useful role in the complexity-theoretic
arguments of the next section.

4.5 Computing bdα

This section will show the computability of bdα(s, s′) by exhibiting a logical
formulation of the distance. By suitably exploiting these formulations, Theo-
rem 4.32 shows that the distance can be computed exactly in polynomial time
using an NP oracle.

The first order theory of the reals are the true sentences of first order logic with
universal and existential quantifiers and logical combinations of inequalities
of arithmetic expressions of real variables. The decision question asks given
a sentence whether it is in the theory. The first order fragment of linear real
arithmetic (LRA) is when these arithmetic expressions are restricted to the
form c1x1 + · · · + cmxm where ci’s are constant and xi’s are real variables.
Sontag [Son85] relates the alternation hierarchy within LRA to the polyno-
mial hierarchy PH: formulae of the form ∃x1∀x2 . . . QxkF (x1 . . . xk) (with
quantifier-free F) correspond to ΣP

k (and formulae starting with ∀ to ΠP
k).

Recall that ΣP
1 = NP.

The first result will be to observe that all distances bdα(s, s′) are rational
and can be expressed in polynomial size with respect to M. To that end,
a result by Sontag [Son85] is exploited, which states that, without affecting
satisfiability, quantification in the first order fragment of linear real arithmetic
can be restricted to rationals of polynomial size with respect to formula length
(as long as all coefficients present in the formula are rational). Consequently,
expressing “there exists a least fixed point d of Γα” in this fragment (with a
polynomial increase in size), enables the intended conclusion.

The relevant LRA formula is given in Figure 4.2. The formula asserts the
existence of a distance d, which is a pre-fixed point of Γα (∀f.φ(d, f)) such
that any other pre-fixed point d′ of Γα is greater than or equal to d. Note
that ∀f.φ(f, d) exploits the fact that maxf A(f) ≤ d(s, s′) is equivalent to

57

∃d ∈[0, 1]Q×Q s.t.

(∀f ∈ [0, 1]Qφ(d, f)

∧ ∀d′ ∈ [0, 1]Q×Q

∀f ∈ [0, 1]Qφ(d′, f) =⇒
∧

s,s′∈Q
ds,s′ ≤ d′s,s′)



φ(d, f) =
∧
s,s′


ds,s′ = 1 `(s) 6= `(s′)

(
∧
i,j fi − αfj ≤ di,j ∧ fj − αfi ≤ di,j) `(s) = `(s′)

=⇒ (
∑

i fiµs(i)− α
∑

i fiµs′(i) ≤ ds,s′
∧∑i fiµs′(i)− α

∑
i fiµs(i) ≤ ds,s′)

Figure 4.2: Logical formulation of least pre-fixed point bdα.

∀f(A(f) ≤ d(s, s′)). Sontag’s result then implies the following.

Theorem 4.29. Values of bdα are rational. There exists a polynomial p such
that for any LMC M and s, s′ ∈ Q, the size of bdα (in binary) can be bounded
from above by a polynomial in |M|.

The second result focuses on the following decision problem for bdα.

Definition 4.30 (BDα-Threshold).

input An LMCM, states s, s′ ∈ Q and a threshold θ ∈ Q ∩ [0, 1]

output is bdα(s, s′) ≤ θ? J

Recall that the analogous problem for tvα is undecidable (Theorem 3.11). In
the case of bdα, the problem turns out to be decidable and the argument does
not depend on whether < or ≤ is used. To establish decidability observe that
bdα(s, s′) ≤ θ can be expressed in LRA simply by adding d(s, s′) ≤ θ to the
formula from Figure 4.2.

The formula can, however, be simplified, using bdα = min {d |Γα(d) v d}.
Then bdα(s, s′) ≤ θ can be specified as the existence of a pre-fixed point d such
that d(s, s′) ≤ θ. This can be done as follows, using φ(d, f) from Figure 4.2.

∃d ∈ [0, 1]Q×Q (∀f ∈ [0, 1]Qφ(d, f) ∧ d(s, s′) ≤ θ)

By Sontag’s results, this not only yields decidability but also membership in
ΣP

2 . Recall that NP ⊆ ΣP
2 ⊆ PH ⊆ PSPACE.

Note that the universal quantification over f remains, i.e. this only concludes
that the problem is in ΣP

2 . To overcome this, the dual form is used instead

58

BDα-Threshold(s, s′, θ) =

∃(di,j)i,j∈Q
∧
i,j∈Q

(0 ≤ di.j ≤ 1)

∧ labelConstraint(d) ∧ ds,s′ ≤ θ

labelConstraint(d) =

∧
q,q′∈Q


dq,q′ = 1 `(q) 6= `(q′)

couplingConstraint(d, dq,q′ , q, q
′) `(q) = `(q′)

∧ couplingConstraint(d, dq,q′ , q
′, q)

couplingConstraint(d, x, q, q′) =

∃(ωi,j)i,j∈Q ∃(γi)i∈Q ∃(τi)i∈Q ∃(ηi)i∈Q∑
i,j∈Q

ωi,j · di,j +
∑
i

ηi ≤ x

∧
∧
i,j∈Q

0 ≤ ωi,j ≤ 1

∧
∧
i∈Q

0 ≤ γi ≤ 1 ∧ 0 ≤ τi ≤ 1 ∧ 0 ≤ ηi ≤ 1

∧
∧
i∈Q

∑
j∈Q

ωi,j − γi + τi + ηi = µq(i)

∧
∧
j∈Q

∑
i∈Q

ωi,j +
τj − γj
α

≤ µq′(j)

Figure 4.3: NP formula for BDα-Threshold.

(Lemma 4.28). This will enable the elimination of the universal quantification
by replacing it with existential quantifiers using the fact that minω A(ω) ≤ B
is equivalent to ∃ω(A(ω) ≤ B). The resultant formula is shown in Figure 4.3,
presented in a form similar to a formula used by van Breugel, Sharma and
Worrell [BSW07] who used it to show the approximation standard bisimilarity
distance is in PSPACE.

Note the formula is not linear due to ωi,j · di,j . However, it is known, by
Theorem 4.29, that bdα corresponds to an assignment of poly-sized rationals.
Supposing that these values of bdα are known consider the formula again, but
with the references to d replaced with the value in bdα. Then it does become
an LRA formula (of polynomially bounded length with respect to |M|) and
again the conclusion can be drawn that the assignments of ω, γ, τ must also
involve rationals whose size is polynomially bounded. Consequently, the formula
implies membership of the BDα-Threshold problem in ΣP

1 = NP: it suffices

59

to guess the satisfying assignment, guaranteed to be rational and of polynomial
size.

Theorem 4.31. BDα-Threshold is in NP.

The decidability of BDα-Threshold makes it possible to approximate bdα(s, s′)

to arbitrary (rational) precision γ by binary search. This will involve O(|γ|) calls
to the oracle for BDα-Threshold (where |γ| is the number of bits required
to represent γ in binary).

What’s more, assuming the oracle, one can actually find the exact value of
bdα(s, s′) in polynomial time (wrtM). This exploits the fact that the value
of bdα is rational and its size is polynomially bounded, so one can find it by
approximation to a carefully chosen level of precision and then finding the
relevant rational with the continued fraction algorithm (see e.g. [GLS88, Section
5.1] or [EY10]).

Theorem 4.32. bdα can be calculated in polynomial time with an NP oracle.

As a consequence, the problem of computing bdα reduces to propositional
satisfiability, i.e., can be encoded in SAT. This justifies, for instance, the
following approach: treat every variable as a ratio of two integers from an
exponential range, and give the system of resulting constraints to an Integer
Arithmetic or SAT solver. While this might look like resorting to a general-
purpose “hammer”, Theorem 4.32 is necessary for this method to work: it is not,
in fact, possible to solve general polynomial constraint systems relying just on
SAT. More precisely, the existence of such a procedure would be a breakthrough
in the computational complexity theory, showing that the existential fragment
of the first order theory of the reals is complete for NP. This would imply that
a multitude of problems in computational geometry could be solved using SAT
solvers [SS17; Car15]. Unlike for bdα, variable assignments in these problems
may need to be irrational, even if all numbers in the input data are integer or
rational.

This directed approach is, however, expected to be inferior to the following
observation. Theorem 4.29 reveals that the variables in the relevant constraint
system need not assume irrational values or have large bit representations. Thus,
one can give the system to a more powerful theory solver, or an optimisation
tool, but to expect that the existence of simple and small models (solutions)
will help the SMT heuristics (resp. optimisation engines) to find them quickly.

60

4.6 Examples

Example 4.33 (Dining Cryptographers). In the dining cryptographer model [Cha88],
a ring of diners want to determine whether one of the diners paid or an outside
body. If it was one of the diners that paid, it is undesirable to reveal which of
them it was. The protocol proceeds with each adjacent pair privately flipping
a coin, each diner then reports the XOR of the two coin flips they observe,
however if the diner paid he would report the negation of this.

Whether one of the diners paid, or an outside body, can be determined by
observing the XOR of the announcements. With perfectly fair coins, the
protocol guarantees total privacy of the paying diner, but it is differentially
private if the coins are biased. If an outside body paid, there is no privacy to
maintain so it is only necessary to simulate the scenarios in which one of the
diners did pay.

In the following two-diner scenario, the diners would know which of them had
paid but an external observer of the output would only learn that one of them
paid, not which. Thus the problem is considered from the perspective of an
outside observer.

The protocol is formalised in the code in Figure 4.4. This is translated in to the
labelled Markov chain in Figure 4.5 instantiated for the 2-person case, using
weighted coins with p = 49

100 . This is achieved by states capturing the five
variables required by the algorithm in a tuple:

(previousFlip, thisFlip, firstFlip, cryptographer, payingCryptographer).

Once the announcement has been made thisFlip becomes previousFlip and
thisFlip is temporarily not used, so in the state where the next flip is ready to
be performed the state stores the following:

(previousFlip, firstFlip, cryptographer, payingCryptographer).

The scenario where cryptographer 0 paid must have similar output distribution
to cryptographer 1 paying, so that it can be determined that one of them did
pay (with 100% accuracy), but not which. The internal configuration of the
machine is always assumed to be hidden, but the announcements are made
public whilst maintaining the privacy of the participating cryptographer (and
the internal states).

The states of the machine encode the 5 variables that need to be tracked. To
achieve (ε, δ)-differential privacy with α = eε = 1.0002 the minimal (true)
value of δ is 0.00030004. The methods of this chapter generate a correct upper

61

bound bdα(s0, s1) = 0.0004, showing (ln(1.0002), 0.0004)-differential privacy.
The protocol could be played with n players, requiring O(n2) states, for all
possible assignments of paying cryptographer and current cryptographer. J

diningCrypto (payingCryptographer) :
f i r s t F l i p = f l i p (p , 1−p)
p r ev i ou sF l i p = f i r s t F l i p
for cryptographer = 0 → n−1:

i f cryptographer == n−1:
t h i s F l i p = f i r s t F l i p

else :
t h i s F l i p = f l i p (p , 1−p)

i f (cryptographer == payingCryptographer) :
announce (p r ev i ou sF l i p == th i sF l i p)

else :
announce (p r ev i ou sF l i p != t h i s F l i p)

p r ev i ou sF l i p = th i sF l i p

Figure 4.4: Simulation of dining cryptographers protocol

0
flip

(1, 1, 0, 0)
flip

51/100

(0, 0, 0, 0)
flip

49/100

1
flip

(1, 1, 0, 1)
flip

51/100

(0, 0, 0, 1)
flip

49/100

(1, 1, 1, 0, 1)
F

(1, 1, 1, 1)
T

1

end

1

(0, 0, 1, 1)
T

1

(0, 0, 0, 0, 1)
F

1

(1, 0, 1, 0, 0)
F

(0, 1, 1, 0)
T

1

(1, 0, 1, 1)
F

1

(0, 1, 1, 1)
F

1

(0, 1, 0, 0, 0)
F

(1, 0, 1, 0)
T

1

(1, 1, 1, 0, 0)
T

(1, 1, 1, 0)
F

1

51/100

(1, 0, 1, 0, 1)
T

49/100

1

49/100

(0, 1, 0, 0, 1)
T

51/100

1

1

(0, 0, 0, 0, 0)
T

(0, 0, 1, 0)
F

1

1

49/100 51/100

1

51/100 49/100

1

Figure 4.5: Markov chain for 2 dining cryptographers: state 0 (resp. 1) denotes
cryptographer 0 (resp. 1) paid. The first line of a node is the state name, the
second line is the label of the state.

62

Example 4.34 (Simplified Dining Cryptographers). It is possible to describe the
dining cryptographers example using a Markov chain with lower depth, but
in principal more states (O(2n)) and larger alphabet. In this version the
announcements are determined and announced together. One can consider this
as the sequence of labels on each possible trace, or branch, of the Markov chain
in Figure 4.5 as having been combined into a single state.

The model is demonstrated in Figure 4.6. In this case the results are much
more accurate because in a single step tvα = bdα, thus bdα(0, 1) = tvα(0, 1),
the values for which are shown in Figure 4.7. J

0
step

(False, False, True)
(False, False, True)

21/100

(True, False, False)
(True, False, False)

37/100

(True, True, True)
(True, True, True)

21/100

(False, True, False)
(False, True, False)

21/100

2
step

37/100 21/100 21/10021/100

1
step

21/100 21/100 21/10037/100

-1

1 1 11

Figure 4.6: Three person dining cryptographers, with p = 3
10 . The first line of

a node is the state name, the second line is the label of the state.

1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

α = eε

δ

Figure 4.7: Plot of δ against α for the model in Figure 4.6, between states 0

and 1, 0 and 2, and 1 and 2.

63

a

s

a

s′

b

1− p

1− p′

p

p′

bdα =

0 v 1

0 1

0



Figure 4.8: Simple Markov chain.

Example 4.35 (bdα can be unresponsive to α). Consider the Markov chain depicted
in Figure 4.8 instantiated with p = 0.8, p′ = 0.9. Whilst bdα provides a sound
upper bound on tvα, no guarantees have been provided on how good the
distance can be. Whilst it is true that bdα is anti-monotone with respect to α
(larger α, cannot give larger value), one would expect this to be the case in
a strong sense. Naturally, by the structure of the system this may only hold
up to a point, that there is a minimum value of δ. The following example
demonstrates that anti-monotonicity is not always the case for bdα; it produces
the value bdα(s, s′) = 0.5 for all values of α ≥ 1, despite tv1(s, s′) ≈ 0.269297

(and thus tvα(s, s′) ≤ 0.269297 for all α ≥ 1).

Consider bdα of Figure 4.8, since bdα is symmetric consider only the upper
triangle. Any state is distance zero to itself, thus the diagonals are fixed to zero.
The difference between the third state and s or s′ is always 1, due to different
labels. Thus only the difference between states s, s′ needs to be considered, let
bdα(s, s′) = v.

By the fixed point definition, bdα(s, s′) = v satisfies the following:

v = maximisex,y,z 0.9x− 0.8αy + (0.1− 0.2α)z

subject to
x ≤ 1 y ≤ 1 z ≤ 1

x− αy ≤ v x− αz ≤ 1 y − αz ≤ 1

y − αx ≤ v z − αx ≤ 1 z − αy ≤ 1

Note the conditions between x, z and y, z are redundant. Then by choice of
x = 1, z = 0, it can be guaranteed that v = 1

2 , i.e. when α = 2 let y = 1/4 and
get v = 1/2 and when α = 4 let y = 1/8 and get v = 1/2. The first condition
x− αy ≤ v is equivalent to 1− αy ≤ 0.5, or 0.5 ≤ αy. So set y = 0.5/α and

64

v = 0.5 can always be achieved.

This example in part motivates the further study, leading to ldα in the next
chapter, which is more robust to this phenomena (as demonstrated in Exam-
ple 5.28), although not in the example. J

4.7 Conclusion

This chapter has demonstrated that bisimilarity distances can be used to
determine differential privacy parameters, despite their non-metric properties.
The complexity of finding these values has been established to be polynomial,
relative to an NP oracle. Yet, it may still be possible to obtain a polynomial
algorithm—although much like in the case of the classical bisimilarity distances
and linear programming, it may not necessarily outperform theoretically slower
procedures.

The standard bisimilarity distance is characterised by the unique fixed point
of an operator and it’s possible this applies to bdα also. That is bdα, which is
defined as the least fixed point of the operator Γα, may in fact be characterised
as the unique fixed point of a similar operator. By the results of Etessami
and Yannakakis [EY10], it would then follow that bdα can be computed in
PPAD, a smaller complexity class, improving upon the NP upper bound and
matching the complexity of a bisimilarity distances on probabilistic systems
with non-deterministic choice. The reason is the continuity of Γα, which follows
from the properties of the polytope over which f ranges (in the definition of
Kα(d)). Whether bdα can in fact be computed in polynomial time or is hard
for some class above polynomial time is challenging open question.

The next chapter will revisit the total variation distance tvα and its corre-
sponding bisimilarity distances bdα and develop a new variant which performs
better in practice (in the sense of a more accurate answer) and no worse in
theory (in the sense that the value is never less accurate and the complexity of
computing the values is the same).

65

Chapter 5

Asymmetric Distances for δ

This chapter further the studies of bounds on δ by defining new bisimilar-
ity distances. The bisimilarity distance of Chapter 4, inspired by the work
of Chatzikokolakis et al. [CGPX14; Xu15], transpired to be computable in
polynomial time with an NP oracle. There, the distance was defined using
the Kantorovich lifting, the associated bisimilarity distance based on a fixed
point and the effect of replacing the absolute value function with the skewed
distance ∆α considered. For the purposes of (ε, δ)-differential privacy the
distance required is not a metric, nor even a pseudometric, so the methods of
Chatzikokolakis et al. are adapted in Chapter 4 to account for this; resulting
in a distance function bdα which can be used to bound the δ parameter in
differential privacy from above. The function, however, retained the symmetry
property, that is, bdα(s, s′) = bdα(s′, s). This chapter further studies distances
to bound differential privacy in labelled Markov chains, but drops this symme-
try property to discover a tighter bound, which can be computed at the same
computational complexity. A weaker bisimilarity distance, lgdα, is also defined
for bounding δ that can be computed in polynomial time.

The privacy parameter in question, δ, can be expressed as a variant of the total
variation distance tvα. In particular lvα will be defined as a single component
of tvα (which is a maximum over two functions). This distance is a way of
measuring the maximum difference of probabilities between any two states.
Total variation distance is usually expressed using absolute difference, but
for differential privacy a skew is introduced into this distance. These exact
distances transpire to be very difficult to compute: it will be confirmed that the
threshold distance problem for lvα, which asks whether the distance is below a
given threshold, is undecidable (Corollary 5.4). Further it is also shown that
approximating it is #P-hard, but for finite words it can be approximated in
PSPACE (Theorem 5.5). These results match the results of Kiefer [Kie18] for
standard total variation distances.

The distance lvα will be bounded from above by a distance ldα (Theorem 5.12)
which will turn out to be computable, in a similar manner to how bdα bounds

66

tvα(s, s
′)

not computable

lvα(s, s
′) lvα(s

′, s)

ldα(s
′, s)

FPNP

ldα(s, s
′)

FPNP

max{ldα(s, s′), ldα(s′, s)}
FPNP

lgdα(s
′, s)

FP

lgdα(s, s
′)

FP

max{lgdα(s, s′), lgdα(s′, s)}
FP

bdα(s, s
′)

FPNP

Figure 5.1: Partial order of distances, such that a→ b if it is known that a ≤ b.
FP is the functional counterpart of P, where the value of the function can
be computed in polynomial time. FPNP indicates polynomial time with NP

oracle. tvα and bdα are introduced in Chapter 4 and recalled in Sections 5.1
and 5.4, respectively. The remaining distances are the contribution of this
chapter.

tvα in Chapter 4. This distance ldα can be computed in polynomial time
with an NP oracle; that is, with the same complexity as bdα (Theorem 5.15).
ldα is then generalised to a new distance lgdα, computable in polynomial
time (Theorem 5.26). Whilst this new distance is no smaller than ldα it is
conjectured that it might be equal. The distances max {ldα(s, s′), ldα(s′, s)}
and max {lgdα(s, s′), lgdα(s′, s)} can then be used as sound upper bounds on
δ. Thus defining the first non-trivial estimate of the δ parameter that can
be computed in polynomial time (trivially, always returning 1 is technically
correct).

The results in this chapter show that taking the maximum over two calls to ldα is
a better approximation than bdα from Chapter 4. This is confirmed using several
case studies, which also demonstrate, on a randomised response mechanism, that
the estimates based on ldα can beat standard differential privacy composition
theorems. The relationships between distances are summarised in Figure 5.1.

5.1 Defining lvα to capture δ

Like in Chapter 4, the aim is to capture the value of δ required to satisfy
the differential privacy property for a given ε. That is, given a LMC M, a
symmetric relation R and α = eε ≥ 1, determine the smallest δ such that

67

M is (ε, δ)-differentially private with respect to R. The value δ is captured
by the skewed total variation function between two measures ν, ν ′ on (Σω,F)

as follows: tvα(ν, ν ′) = supE∈F ∆α(ν(E), ν ′(E)). When used on νs, νs′ and
α = eε, tvα(s, s′) gives the required δ between states s, s′.

This chapter observes that significant simplification occurs by splitting the
two main parts of the maximum, taking only the ‘left variant’. Whilst ∆α is
symmetric, this property is broken to introduce a new distance function Λα

(similarly to [BO13]). An analogous total variation distance lvα is the defined,
which will be the main object of study.

Definition 5.1 (Asymmetric skewed total variation distance). Let α ≥ 1. Given
two measures ν, ν ′ on (Σω,F), let

lvα(ν, ν ′) = sup
E∈F

Λα
(
ν(E), ν ′(E)

)
,

where Λα(a, b) = max {a− αb, 0}. J

For notational simplicity lvα(s, s′) is written for lvα(νs, νs′). Note that it is not
required to take the maximum with zero, that is lvα(ν, ν ′) = supE∈F ν(E)−
αν ′(E), since there is always an event such that ν ′(E) = 0, in particular
ν(∅) = 0. Observe that ∆α and Λα are not metrics as ∆α(a, b) = 0 6=⇒ a = b,
and not a pseudometric as the triangle inequality does not hold. The new
distance Λα (and lvα) is not symmetric, while ∆α and tvα are.

If α = 1, then lv1 = tv1 = tv , since if ν, ν ′ are probability measures and we
have ν(E) = 1− ν(E) then supE∈F |ν(E)− ν ′(E)| = supE∈F ν(E)− ν ′(E) =

supE∈F ν
′(E)−ν(E), i.e., despite the use of the absolute value in the definition

of tv , it is not required.

Differential privacy can be reformulated in terms of tvα and lvα.

Proposition 5.2. Given a labelled Markov chain M and a symmetric relation
R ⊆ Q×Q, the following properties are equivalent for α = eε:

• M is (ε, δ)-differentially private w.r.t. R,

• max(s,s′)∈R tvα(s, s′) ≤ δ, and

• max(s,s′)∈R lvα(s, s′) ≤ δ.

The next sections focus on computing lvα to determine the ‘level’ of differential
privacy for a given ε. Like in Chapter 4, eε is referred to as α. For the purposes
of the complexity arguments, α is assumed to be rational with O(size(M))-bit
representation.

68

M

`(q)
q

`(q′)

q′

B
s

B
s′

C
⊥

1

1

α

α− 1

α 1

Figure 5.2: Markov chainM′ in the reduction from tv (q, q′) to lvα(s, s′).

5.2 lvα is not computable

As noted earlier (Theorem 3.11), tv (s, s′) turns out to be surprisingly difficult
to compute: the threshold distance problem (whether the distance is strictly
greater than a given threshold) is undecidable, and the non-strict variant
of the problem (“greater or equal”) is not known to be decidable [Kie18].
The undecidability result is shown by reduction from the emptiness problem
for probabilistic automata to the threshold distance problem for finite-word
transition-labelled Markov chains. Recall that such chains are a special case
of the more general definition of infinite-word state-labelled Markov chains.
Thus, the problem is undecidable in this case also.

Chapter 4 argued that tvα was not computable on the basis that the threshold
problem on tv1 = tv is undecidable. Since tv = lv1, then also lv1(s, s′) > θ is
undecidable. This is not special, that is, the problem remains undecidable for
any fixed α > 1. In other words, no value of the privacy parameter ε makes it
possible to compute the optimal δ exactly.

Theorem 5.3. Finding a value of tv reduces in polynomial time to finding a
value of lvα for any fixed α > 1.

Proof. Given a labelled Markov chain M = 〈Q,Σ, µ, `〉, and states q, q′ for
which the answer of tv (q, q′) is required, a new labelled Markov chainM′ can
be constructed containing states s, s′, for which lvα(s, s′) = tv (q, q′).

Define M′ = 〈Q ∪ {s, s′,⊥} ,Σ′, µ′, `′〉, with `′(s) = `′(s′) = B, `′(⊥) = C,
`′(x) = `(x) for all x ∈ Q, Σ′ = Σ ∪ {B,C} ,

µ′s(q) = 1, µ′s′(q
′) =

1

α
, µ′s′(⊥) =

α− 1

α
, µ′⊥(⊥) = 1, and

µ′x(y) = µx(y) for all x, y ∈ Q. The reduction, sketched in Figure 5.2, adds
three new states, so can be done in polynomial time.

69

It remains to show that lvα(s, s′) = tv (q, q′).

Consider E ∈ FΣ, observe that νq(E) = νs(E
′) and νq′(E) = ανs′(E

′), where
E′ = {Bw | w ∈ E} ∈ FΣ′ . Then νq(E) − νq′(E) = νs(E

′) − ανs′(E′) and
lvα(s, s′) ≥ tv (q, q′).

Conversely, consider an event E′ ∈ FΣ′ . Since the character C can only be
reached from s′, any word using it contributes negatively to the difference. Hence
intersecting the event with BΣω, to remove C, can only increase the difference.
The character B must occur (only) as the first character of every (useful)
word in E′. Let E = {w | Bw ∈ E′ ∩BΣω} ∈ FΣ, then νq(E) − νq′(E) ≥
νs(E

′)− ανs′(E′). Thus tv (q, q′) ≥ lvα(s, s′).

Since an oracle to solve decision problems for lvα would solve problems for tv ,
obtaining the following result.

Corollary 5.4. Given s, s′ ∈ Q and θ ∈ [0, 1], deciding if lvα(s, s′) > θ is
undecidable for all α ≥ 1.

It is not clear that lvα reduces easily to tv . Arguments along the lines of the
proof of Theorem 5.3 may not result in a Markov chain due to non-stochastic
transitions, or modifications to the s→ q branch may result in new maximising
events.

5.3 Approximation of lvα

Given that lvα cannot be computed exactly, approximation is considered; that
is, the problem, given γ > 0, of finding some x such that |x− lvα(s, s′)| ≤ γ.
For α = 1, Chen and Kiefer [CK14; Kie18] show that approximating tv = lv1

is possible in PSPACE and is #P-hard. In Theorem 5.5 it is shown that the
case α = 1 is not special and the theorems of Chen and Kiefer generalise; that
is, when α > 1, lvα can also be approximated and the same complexity bounds
apply.

Remark. Typically one might suggest being ε close (|x− lvα(s, s′)| ≤ ε). To
avoid confusion with the differential privacy parameter, γ is used to denote the
level of accuracy. J

Theorem 5.5. For finite-word Markov chains, approximation of lvα(s, s′) within
γ can be performed in PSPACE and is #P-hard.

Observe additive approximation is considered here. This is the natural approx-
imation scheme for δ, the additive error term of differential privacy. Thus, once

70

it is known that |x− lvα(s, s′)| ≤ γ, it is known that x+ γ is a sound estimate
for δ. The multiplicative variant of the approximation problem remains open.

First, the following claim of Kiefer [Kie18] is recalled as a useful component of
the proof.

Claim 5.6. [Kie18, Lemma 13] Fix θ ∈ (0, 1) and n ∈ N, for a word w ∈ Σ≤n

then a value ν̃s(w) ∈ [νs(w)(1− θ), νs(w)(1 + θ)], exists and can be computed.

Proof of Theorem 5.5. For the lower bound, note that approximating tv is #P-
hard [Kie18], by a reduction from the #NFA, a #P-complete problem [KSM95].
That is, given a non-deterministic finite automaton N and n ∈ N in unary,
determine the number of accepted words ofN up to length n, |Σn ∩ L(A)|. Since
computing tv can be reduced to computing lvα (Theorem 5.3), approximating
lvα is #P-hard as well. The hardness result applies to finite-word transition-
labelled Markov chains, thus also applies to the more general infinite word
labelled Markov chains.

The argument for the upper bound shows that the ith bit of an x such
that |x− lvα(s, s′)| ≤ γ can be found in PSPACE. The approach, inspired
by [Kie18], is to consider the maximising event of lvα(s, s′) = supE⊆Σ∗ νs(E)−
ανs′(E), which turns out to beW = {w | νs(w) ≥ ανs′(w)}, so that lvα(s, s′) =

νs(W)−ανs′(W). This choice of the maximising event only applies to finite-word
Markov chains, thus the proof does not extend in full generality to infinite-word
Markov chains. The shape of the event is the key difference between the proof
here and [Kie18], which uses events of the form {w | νs(w) ≥ νs′(w)}.

Let W denote the complement of W and let νs(W) be approximated by a
number X and νs′(W) by a number Y . Normally, one would expect X to be
close to νs(W) and Y to be close to νs′(W). Here, like in [Kie18], the trick is
to require only that νs(W) + ανs′(W) be close to X + αY . It is then argued
that, for specific X,Y with this property, one can find any bit of X + αY .

The details are formalised below:

Due to the countable nature of finite word automata, the function
lvα(s, s′) to be approximated, can be rewritten in the following form:
lvα(s, s′) = supE⊆Σ∗ νs(E) − α · νs′(E) = νs(W2) − α · νs′(W2) where W2 =

{w ∈ Σ∗| νs(w) ≥ α · νs′(w)}.

To see this, consider E ⊆ Σ∗ as E = E1 ∪ E2, where E1 = E ∩ W2 and
E2 = E \W2. Note the value of νs(E) is a (possibly infinite) sum over the
measure on individual words. Then if E1 (W2, then the event E′ = E2 ∪W2

results only in at least as large a difference since νs(w)− α · νs′(w) ≥ 0 for all

71

w ∈W2. If E2 6= ∅ then E′ = E1 results in at least as large a differences since
νs(w)− α · νs′(w) < 0 for all w ∈ E2.

Then, let W1 = Σ∗ \W2 = {w ∈ Σ∗ | νs(w) < α · νs′(w)}, then we have

lvα(s, s′) = νs(W2)− α · νs′(W2) = 1− νs(W1)− α · νs′(W2). (5.1)

It is therefore equivalent to focus on approximation of νs(W1) + α · νs′(W2).

Given λ, one can compute n such that νs(Σ>n) ≤ λ and α ·νs′(Σ>n) ≤ λ [Kie18,
Lemma 12]. Restrict setsW1,W2 only to those defined on words shorter than n,
to that end, letW ′1 = W1∩Σ≤n andW ′2 = W2∩Σ≤n. This allows approximation
as follows:

νs(W
′
1)+α ·νs′(W ′2) ≤ νs(W1)+α ·νs′(W2) ≤ νs(W ′1)+α ·νs′(W ′2)+2λ. (5.2)

It remains therefore to approximate νs(W
′
1) + α · νs′(W ′2). Fix θ,

then by Claim 5.6 ν̃s(w) can be computed as an approximation of
νs(w), using this let W̃1 =

{
w ∈ Σ≤n | ν̃s(w) < α · ν̃s′(w)

}
and W̃2 ={

w ∈ Σ≤n | ν̃s(w) ≥ α · ν̃s′(w)
}
Note that W̃1∪W̃2 = Σ≤n. It is then necessary

to estimate the measures of the events W̃1 ∩W ′2 and W̃2 ∩W ′1, which can be
interpreted as the error when words are placed in the ‘wrong’ event due to
approximation error.

Suppose w ∈ W̃1 ∩ W ′2. Since w ∈ W ′2 then α · νs′(w) ≤ νs(w), and since
w ∈ W̃1 then νs(w)(1 − θ) ≤ ν̃s(w) < α · ν̃s′(w) ≤ α · νs′(w)(1 + θ) so
νs(w) < α · νs′(w) + θα · νs′(w) + θ · νs(w).

Suppose w ∈ W̃2 ∩ W ′1. Since w ∈ W ′1 then νs(w) < α · νs′(w), and since
w ∈ W̃2 then α · νs′(w)(1− θ) ≤ αν̃s(w) ≤ ν̃s(w) ≤ νs(w)(1 + θ) so α · νs′(w) ≤
νs(w) + θ · νs(w) + θα · νs′(w).

Lifting this to sets:

α · νs′(W̃1 ∩W ′2) ≤ νs(W̃1 ∩W ′2)

≤ α · νs′(W̃1 ∩W ′2) + θα · νs′(W̃1 ∩W ′2) + θ · νs(W̃1 ∩W ′2)

≤ α · νs′(W̃1 ∩W ′2) + (1 + α)θ

and

νs(W̃2 ∩W ′1) < α · νs′(W̃2 ∩W ′1)

≤ νs(W̃2 ∩W ′1) + θ · νs(W̃2 ∩W ′1) + θα · νs′(W̃2 ∩W ′1)

≤ νs(W̃2 ∩W ′1) + (1 + α)θ.

Recall that νs(W ′1) +α · νs′(W ′2) appears twice in the inequality in (5.2), which

72

is now bounded:

νs(W
′
1) + α · νs′(W ′

2) (5.3)

= νs(W̃1 ∩W ′
1) + νs(W̃2 ∩W ′

1) + α · νs′(W̃1 ∩W ′
2) + α · νs′(W̃2 ∩W ′

2)

≤ νs(W̃1 ∩W ′
1) + α · νs′(W̃2 ∩W ′

1) + νs(W̃1 ∩W ′
2) + α · νs′(W̃2 ∩W ′

2)

= νs(W̃1 ∩W ′
1) + νs(W̃1 ∩W ′

2) + α · νs′(W̃2 ∩W ′
1) + α · νs′(W̃2 ∩W ′

2)

= νs(W̃1) + α · νs′(W̃2) (5.4)

= νs(W̃1 ∩W ′
1) + νs(W̃1 ∩W ′

2) + α · νs′(W̃2 ∩W ′
1) + α · νs′(W̃2 ∩W ′

2)

≤ νs(W̃1 ∩W ′
1) + α · νs′(W̃1 ∩W ′

2) + (1 + α)θ+

νs(W̃2 ∩W ′
1) + (1 + α)θ + α · νs′(W̃2 ∩W ′

2)

= νs(W̃1 ∩W ′
1) + νs(W̃2 ∩W ′

1) + α · νs′(W̃1 ∩W ′
2) + α · νs′(W̃2 ∩W ′

2) + 2(1 + α)θ

= νs(W
′
1) + α · νs′(W ′

2) + 2(1 + α)θ. (5.5)

In particular from (5.3), (5.4) and (5.5):

νs(W
′
1) + α · νs′(W ′2) ≤ νs(W̃1) + α · νs′(W̃2) (5.6)

≤ νs(W ′1) + α · νs′(W ′2) + 2(1 + α)θ. (5.7)

Thus:

νs(W̃1)+α · νs′(W̃2)− 2(1 + α)θ

≤ νs(W ′1) + α · νs′(W ′2) by (5.7)

≤ 1− lvα(s, s′) by (5.2) and (5.1)

≤ νs(W ′1) + α · νs′(W ′2) + 2λ by (5.2)

≤ νs(W̃1) + α · νs′(W̃2) + 2λ. by (5.6)

So to obtain a γ approximation, choose θ, λ such that 2λ ≤ γ
2 and 2(1+α)θ ≤ γ

2 .
Recall that it is also necessary to ensure that νs(Σ>n) ≤ λ and α ·νs′(Σ>n) ≤ λ,
by appropriate choice of n. This gives∣∣∣(νs(W̃1) + α · νs′(W̃2))− (1− lvα(s, s′))

∣∣∣ ≤ γ

2
. (5.8)

Then compute νs(W̃1) and νs′(W̃2) with accuracy γ
4 and γ

4α , finding x s.t.∣∣∣x− νs(W̃1)
∣∣∣ ≤ γ

4 and y s.t.
∣∣∣y − νs′(W̃2)

∣∣∣ ≤ γ
4α . Combining the two results

to obtain
∣∣∣x+ αy − (νs(W̃1) + α · νs′(W̃2))

∣∣∣ ≤ γ
2 then combining with (5.8) to

obtain∣∣x+ αy − (1− lvα(s, s′))
∣∣ ≤ γ.

It remains to show how to compute νs(W̃1) within γ′. This can be computed
similarly for νs′(W̃2). This method is analogous to [Kie18, Lemma 14]. Recall

73

W̃1 contains words that are no longer than n and for which ν̃s(w) < αν̃s′(w).
Construct a probabilistic Turing machine, to sample a word w, letter by letter,
according the transition probabilities ofM. If |w| exceeds n, then the Turing
machine rejects. Along the way compute ν̃s(w) and ν̃s′(w), which can be
maintained in polynomial space. If at the end of the word ν̃s(w) < αν̃s′(w),
then the Turing machine accepts and otherwise rejects. Overall the Turing
machine does not need more than polynomial space, as it does not need to
remember the whole word. νs(W̃1) is therefore the probability that the Turing
machine accepts, which can be computed to accuracy γ′ in polynomial space
(PSPACE) [Lad89].

Technically this process produces only a single bit of the answer, so that in
PSPACE the ith bit of either p and q can be found, where

∣∣∣pq − νs(W̃1)
∣∣∣ ≤ γ

4

and we have a procedure for the ith bit of r and t for
∣∣∣ rt − νs′(W̃2)

∣∣∣ ≤ γ
4α . In fact,

the ith bit of u or v is required, where u
v = p

q + αr
t . Such arithmetic can be done

in NC using logspace-uniform circuits [Koz92], thus the computations require
only polylogarithmically many bits at any moment of the computation. Since
there are exponentially many bits in p, q, r, t, α, accessing polylogarithmically
many of these at any one time requires only polynomially many bits overall at
any one time, for which each bit can be computed in PSPACE.

5.4 A least fixed point bound ldα

The exact computation of lvα is not possible, and the approximation of lvα
is seemingly out of reach, thus it is desirable to bound lvα from above by a
computable quantity. For this purpose a new distance function ldα will be
defined. First a new variant of the Kantorovich lifting is required, as a technique
to measure the distance between probability distributions on a set X, given a
distance function between objects of X. lvα can be reformulated using such a
distance over the (infinite) trace distributions νs, νs′ . The new distance function
ldα is then defined as the fixed point of the Kantorovich lifting of distances
from individual states using (finite) transition distributions. This distance ldα

will be computable and acts as a sound bound on lvα.

Hence this distance can be used to determine (ε, δ)-differential private w.r.t.
relation R by bounding δ with max(s,s′)∈R ldα(s, s′). This can be achieved in
polynomial time with access to an NP oracle, by computing ldα(s, s′) exactly
in this time (|R| is polynomial with respect to the size ofM). This suggests
a complexity lower than approximation (which is #P-hard by Theorem 5.5),
although formally PNP and #P are not known to be comparable.

74

Definition 5.7 (Asymmetric Skewed Kantorovich Lifting). For a set X, given
d : X ×X → [0, 1] a distance function and measures µ, µ′, define

KΛ
α (d)(µ, µ′) = sup

f :X→[0,1]
∀x,x′∈X Λα(f(x),f(x′))≤d(x,x′)

Λα

(∫
X
fdµ,

∫
X
fdµ′

)

where f ranges over functions which are measurable w.r.t. µ and µ′. J

Remark. Asymmetric Skewed Kantorovich Lifting is based on the standard
Kantorovich distance Definition 4.7, with the absolute value function replaced
with the distance function Λα. Note that KΛ

α (d) is equivalent to the standard
Kantorovich distance for α = 1 and d symmetric [Kan42; DD09]. If |X| <∞ (for
example when X is a finite set of states, Q), we have

∫
X fdµ =

∑
x∈X f(x)µ(x).

Since Λα is not a metric, it does not fit in the framework of Chatzikokolakis et
al. [CGPX14]. J

The interest in KΛ
α is that it allows the reformulation of definition of the

distance function lvα. The goal is to measure the difference between measures
over infinite traces νs, νs′ , and so distance function over infinite words is lifted
(d : Σω×Σω → [0, 1]). In particular, by lifting the discrete metric 16= as defined
in Definition 4.15.

Lemma 5.8. lvα(s, s′) = KΛ
α (16=)(νs, νs′).

Proof. The use of 16= makes it so that Λα(f(t), f(t′)) ≤ 16=(t, t) is rather no
restriction at all, since either t = t′, thus Λα(f(t), f(t′)) = 0 or t 6= t′, thus
16=(t, t′) = 1. So KΛ

α (16=) takes supremum over all measurable f : Σω → [0, 1].

Using the argument of Lemma 4.16 of Chapter 4 it is clear there is a 1–1 corre-
spondence between indicator functions and events entailing that lvα(s, s′) =

supf :Σω→{0,1} f̂(µ)− αf̂(µ′). Then by Lemma 4.17 of Chapter 4 observe that
extending f to non-indicator functions f : Σω → [0, 1] does not obtain larger
supremum.

Corollary 5.9. Let νs, νs′ be measures on (Σω,F), then

KΛ
α (16=)(νs, νs′) = sup

f :Σω→{0,1}
Λα

(∫
fdνs,

∫
fdνs′

)
.

Since computing lvα, or now KΛ
α (16=)(νs, νs′), is difficult, an an upper bound

on lvα is introduced, inspired by bisimilarity distances, called ldα. This will be
the least fixed point of ΓΛ

α , a function which measures (relative to a distance
function d) the distance between the transition distributions of s, s′ where s, s′

share a label, or 1 when they do not.

75

Definition 5.10. Let ΓΛ
α : [0, 1]Q×Q → [0, 1]Q×Q be defined as follows.

ΓΛ
α(d)(s, s′) =

K
Λ
α (d)(µs, µs′) if `(s) = `(s′)

1 otherwise
J

The utility of this function is that rather than using the Kantorovich lifting
over infinite trace distributions, it is now over finite transition distributions
(µs ∈ Dist(Q)).

As [0, 1]Q×Q is a complete lattice with the pointwise orderv, and Γα is monotone
with respect to that order, ΓΛ

α has a least fixed point [Tar55]. ldα is defined
to be exactly that point, for which it can then be shown that ldα is a sound
upper bound on lvα, entailing the desired privacy guarantee.

Definition 5.11. Let ldα : Q×Q→ [0, 1] be the least fixed point of ΓΛ
α . J

A sound upper bound on lvα is required to provide a guarantee of privacy, ldα
provides this bound.

Theorem 5.12. lvα(s, s′) ≤ ldα(s, s′) for every s, s′ ∈ Q.

The proof of Theorem 5.12 proceeds similarly to Theorem 4.11 in Chapter 4,
indeed much of the machinery developed there is reused. Firstly, note using
Lemma 5.8, it is sufficient to show KΛ

α (16=)(νs, νs′) ≤ ldα(s, s′) for every
s, s′ ∈ Q.

It is necessary to take care of the base case using an additional result (Lemma 5.13)
to compensate for the fact that Λα is not a metric (it is not possible to conclude
Λα (f(x), f(x′)) = 0 entails f(x) = f(x′)).

Lemma 5.13. Consider f : X → [0, 1] such that ∀x, x′ : Λα (f(x), f(x′)) = 0.
Then ∀ν, ν ′ : Λα

(
f̂(ν), f̂(ν ′)

)
= 0.

Proof. Consider the range of values f could take, let a = infx f(x). Since for
all x, Λα(f(x), a) ≤ 0, we have f(x)− αa ≤ 0 i.e. f(x) ≤ αa. By definition of
a we have f(x) ≥ a concluding f(x) ∈ [a, αa] for all x.

Now consider
∫
X fdν where f(x) ∈ [a, αa] and

∫
X dν = 1.

f̂(ν) =

∫
X
fdν ≥

∫
X
adν = a

∫
X
dν = a

f̂(ν) =

∫
X
fdν ≤

∫
X
αadν = αa

∫
X
dν = αa

So for all ν then f̂(ν) =
∫
X fdν ∈ [a, αa], i.e. the expectation must also lie in

76

this range. Next notice that any two numbers in this range give distance zero,
in particular the expectations.

Consider f̂(µ), f̂(µ′) ∈ [a, αa]

0 ≤ Λα(f̂(µ), f̂(µ′)) = max
{
f̂(µ)− αf̂(µ′), 0

}
≤ max {αa− αa, 0}
= max {0, 0} = 0.

Theorem 5.12 is then shown by invoking Lemma 4.23 and then relaxing the
restriction up to length h (1h6=) to the supremum over h (16=).

Proof of Theorem 5.12. By Lemma 5.13, Definition 5.7 and Definition 5.10 we
have that Λα, KΛ

α and ldα satisfy Lemma 4.23 giving

KΛ
α (1h6=)(νs, νs′) ≤ ldα(s, s) for all s, s′ ∈ Q for all h ∈ N.

Then recall the proof of Lemma 4.21, for which it is shown: ∀ε ∃h such
that Kα(16=)−Kα(1h6=) ≤ ε. Here the two sides of ∆α are already considered
separately and so it also implies that ∀ε > 0 ∃h such thatKΛ

α (16=)−KΛ
α (1h6=) ≤ ε,

implying if KΛ
α (1h6=) ≤ ldα for all h then KΛ

α (16=) ≤ ldα, entailing the result.

5.4.1 Comparison with bdα from Chapter 4

This upper bound on lvα is stronger (or at least no worse) than the bound
obtained in Chapter 4. Recall from Chapter 4 that bdα is defined as the least
fixed point of

Γ∆
α (d)(s, s′) =

K
∆
α (d)(µs, µs′) if `(s) = `(s′)

1 otherwise

where K∆
α (d) behaves as KΛ

α (d), but uses ∆α(a, b) = max {a− αb, b− αa, 0}
rather than Λα(a, b) = max {a− αb, 0}.

Remark. In Chapter 4, Γ∆
α was simply Γα and K∆

α was simply Kα. Here these
distances are annotated with ∆ to avoid confusion with similar distances defined
in this chapter. J

Theorem 5.14. max {ldα(s, s′), ldα(s′, s)} ≤ bdα(s, s′) for every s, s′ ∈ Q.

Proof. Given a matrix A, let AT be its transpose. Consider bdα and ldα as
matrices. bdα is the least fixed point of Γ∆

α so Γ∆
α (bdα)(s, s′) = bdα(s, s′). Also

notice that ΓΛ
α(bdα)(s, s′) ≤ Γ∆

α (bdα)(s, s′), since KΛ
α (bdα) v K∆

α (bdα). To see

77

this, note that, because bdα = bdT
α, the relevant set of functions is the same,

but the objective function in the supremum is smaller.

Hence ΓΛ
α(bdα) v bdα, i.e. bdα is also a pre-fixed point of ΓΛ

α . Since ldα is
the least pre-fixed point of ΓΛ

α hence ldα v bdα. By symmetry, bdα = bdT
α

giving ldα v bdT
α and then ldT

α v bdα. Entailing max {ldα(s, s′), ldα(s′, s)} ≤
bdα(s, s′) for every s, s′ ∈ Q.

Remark. Example 5.29 on page 89 demonstrates the inequality in Theorem 5.14
can be strict. J

5.4.2 Computing ldα

The standard variant of the Kantorovich metric is often presented in its dual
formulation. Recall from Lemma 4.28, in the case of finite distributions, the
asymmetric skewed Kantorovich distance exhibits a dual form. This is obtained
through the standard recipe for dualising linear programming. Interestingly,
this technique yields a linear optimisation problem over a polytope independent
of d, and that will prove useful in the computation of ldα.

Remark. Let X be finite and given d : X × X → [0, 1] a distance function,
µ, µ′ ∈ Dist(X) we have

KΛ
α (d)(µ, µ′) = min

(ω,η)∈Ωα
µ,µ′

 ∑
s,s′∈X

ωs,s′ · d(s, s′) +
∑
s∈X

ηs

 ,

where Ωα
µ,µ′ =(ω, η) ∈ [0, 1]X×X × [0, 1]X |

∃γ, τ ∈ [0, 1]X

∀i ∈ X :
∑
j∈X

ωi,j + τi − γi + ηi = µ(i)

∀j ∈ X :
∑
i∈X

ωi,j +
τj−γj
α ≤ µ′(j)

 .

J

When the distance is taken between states, i.e. X = Q, Ωα
s,s′ is written to mean

Ωα
µs,µs′

. Take V (Ωα
s,s′) to be the vertices of the polytope.

Theorem 5.15. ldα can be computed in polynomial time with access to an NP

oracle.

Definition 5.16 (LDα-Threshold).

input An LMCM, states s, s′ ∈ Q and a threshold θ ∈ [0, 1] ∩ Q

output is ldα(s, s′) ≤ θ? J

78

LDα-Threshold(s, s′, θ) =

∃(di,j)i,j∈Q
∧
i,j∈Q

(0 ≤ di.j ≤ 1) ∧ ds,s′ ≤ θ

∧
∧

q,q′∈Q

dq,q′ = 1 if `(q) 6= `(q′)

couplingConstraint(d, q, q′) if `(q) = `(q′)

couplingConstraint(d, q, q′) =

∃(ωi,j)i,j∈Q ∃(γi)i∈Q ∃(τi)i∈Q ∃(ηi)i∈Q∑
i,j∈Q

ωi,j · di,j +
∑
i

ηi ≤ dq,q′ ∧
∧
i,j∈Q

(0 ≤ ωi,j ≤ 1)

∧
∧
i∈Q


0 ≤ γi ≤ 1

0 ≤ τi ≤ 1

0 ≤ ηi ≤ 1

∧
∧
i∈Q

∑
j∈Q

ωi,j − γi + τi + ηi = µq(i)

∧
∧
j∈Q

∑
i∈Q

ωi,j +
τj − γj
α

≤ µq′(j)

Figure 5.3: NP formula for LDα-Threshold.

First note, the LDα-Threshold problem is in NP. This is achieved through
the formula shown in Figure 5.3, based on Figure 4.3 and that of van Breugel,
Sharma and Worrell [BSW07] who used a similar formula for approximating
standard bisimilarity distances. The problem can be solved in NP as each of
the variables can be shown to be satisfied in the optimal solution with rational
numbers that are of polynomial size (see Theorems 4.29 and 4.31). It suffices
to guess these numbers (non-deterministically) and verify the correctness of
the formula in polynomial time.

Like for bdα, since the threshold problem can be solved in NP, it is possible
to approximate the value using binary search with polynomial overhead to
arbitrary accuracy γ, finding a value x such that |x− ldα(s, s′)| ≤ γ. One can
then find the exact value of ldα(s, s′) in polynomial time assuming the oracle.
Using the fact that ldα is rational and its size is polynomially bounded, one can
find a sufficiently close approximation to a carefully chosen level of precision
and then finding the relevant rational with the continued fraction algorithm
(recall [GLS88, Section 5.1] or [EY10]), entailing Theorem 5.15.

79

5.5 A greatest fixed point bound lgdα

The previous section used the least fixed point of ΓΛ
α , which finds the fixed point

closest to the objective lvα. Now consider relaxing this requirement, to find a
fixed point in polynomial time. To do this lgdα will be introduced, expressing
the greatest fixed point of another operator which can be represented as a
linear program that can be solved in polynomial time. Relaxing to any fixed
point could of course be much worse than ldα, so first the fixed point function,
ΓΛ
α , is refined to reduce the potential gap. This is done by characterising the

elements which are zero in ldα and fixing these as such; so that they cannot be
larger in the greatest fixed point.

Refinement of ΓΛ
α

In the case of standard bisimulation distances the kernel of ld1, that is
{(s, s′) | ld1(s, s′) = 0}, is exactly bisimilarity. The kernel of ldα is consid-
ered next, to define a new relation ∼α, which will be called skewed bisimilarity,
which captures zero distance.

Definition 5.17. Let a relation R ⊆ Q×Q have the property

(s, s′) ∈ R ⇐⇒ `(s) = `(s′) ∧
∃ (ω, η) ∈ Ωα

s,s′ s.t. (ωu,v > 0 =⇒ (u, v) ∈ R) ∧ ∀u ηu = 0.

Arbitrary unions of such relations also maintain the property, thus a largest
such relation exists. Let ∼α be the largest relation with this property. J

Remark. When α = 1 the formulation corresponds to an alternative characteri-
sation of bisimilarity [JL91; TB16], so ∼1 = ∼. J

Lemma 5.18. ldα(s, s′) = 0 if and only if s ∼α s′.

Proof.

Only if direction: ldα(s, s′) = 0 =⇒ s ∼α s′

Let X = {(s, s′) | ldα(s, s′) = 0} and consider (s, s′) ∈ X. By definition, we
have ldα(s, s′) = infω,η∈Ωs,s′

∑
u,v ωu,vldα(u, v) +

∑
i ηi = 0. So η = ~0 and

whenever ωu,v > 0 then ldα(u, v) = 0, so (u, v) ∈ X. Hence, concluding X
satisfies the requirements of Definition 5.17, so X ⊆∼α.

80

If direction: s ∼α s′ =⇒ ldα(s, s′) = 0

For notation, recall 1!∼α(s, s′) = 0 if (s, s′) ∈∼α and 1 otherwise. Next, it is
shown that 1!∼α is a prefixed point of ΓΛ

α , i.e. ΓΛ
α(1!∼α) v 1!∼α .

Firstly, if 1!∼α(s, s′) = 1 then ΓΛ
α(1!∼α)(s, s′) ≤ 1. Conversely, suppose

1!∼α(s, s′) = 0 then ΓΛ
α(1!∼α)(s, s′) = infω,η∈Ωs,s′

∑
u,v ωu,v1!∼α(u, v) +

∑
i ηi.

By s ∼α s′, there exists ω, ηi ∈ Ωs,s′ where ωu,v > 0 implies (u, v) ∈∼α, so
1!∼α(u, v) = 0 and ηi = 0. Thus ΓΛ

α(1!∼α)(s, s′) = 0.

Therefore 1!∼α is indeed a prefixed point of ΓΛ
α . Since ldα is the least fixed

point then ldα v 1!∼α . Hence, concluding s ∼α s′ =⇒ 1!∼α(s, s′) = 0 =⇒
ldα(s, s′) = 0.

Since ldα(s, s′) = 0 implies lvα(s, s′) = 0 by Theorem 5.12, this also provides a
way to show that δ is zero, that is, to show ε-differential privacy holds. However,
note this is not a complete method to do this, and there are bisimilarity distances
focused on finding ε [CGPX14], which is explored further in the next chapter.

Lemma 5.19. If s ∼α s′ then lvα(s, s′) = 0.

The pairs of states related by ∼α need to be computed quickly and indepen-
dently. In fact this can be done in polynomial time using a closure procedure,
which will terminate after polynomially many rounds.

Proposition 5.20. ∼α can be computed in time polynomial in size(M).

Proof. The following is a standard refinement algorithm, let A0 = Q×Q and
n = |Q|. At each step compute

Ai+1 =
{

(s, s′) ∈ Ai | ∃(ω, η) ∈ Ωα
s,s′ : η = 0 ∧ (ωu,v > 0 =⇒ (u, v) ∈ Ai)

}
.

To find this, define 1!Ai , a matrix such that 1!Ai(s, s
′) = 0 if (s, s′) ∈ Ai and 1

otherwise. Apply ΓΛ
α to 1!Ai , which amounts to computing n2 linear programs.

Take Ai+1 to be indices of the matrix where ΓΛ
α(1!Ai) is zero. At each step, at

least one element is removed, or the procedure has stabilised so that the set
will not change in subsequent rounds. After n2 steps it is either stable (and
possibly empty).

An2 ⊆∼α: after convergence there is a set such that (s, s′) ∈ An2 =⇒ ∃(ω, η) ∈
Ωα
s,s′ : η = 0 ∧ (ωu,v > 0 =⇒ (u, v) ∈ An2). ∼α is the largest such set, so it

contains An2 .

∼α⊆ An2 : by induction the process starts with ∼α⊆ A0 and only removes pairs
not in ∼α.

81

Recall that ldα was defined as the least fixed point of ΓΛ
α . Next, ΓΛ

α is refined
so the gap between the least fixed point and the greatest is as small as possible.
This is done by fixing the known values of the least fixed point in the function,
in particular the zero cases. Let

Γ′Λα (d)(s, s′) =

0 if s ∼α s′

ΓΛ
α(d)(s, s′) otherwise

and observe that ldα is also the least fixed point of Γ′Λα .

Lemma 5.21. ldα is the least fixed point of Γ′Λα .

Proof. Let d′ be the least fixed point of Γ′Λα , and d be the least fixed point of
ΓΛ
α . The proof shows d = d′.

Case 1 (d′ v d).

To show d is a fixed point of Γ′Λα :

d(s, s′) = ΓΛ
α(d)(s, s′)

=

K
Λ
α (d)(µs, µs′) if `(s) = `(s′)

1 otherwise

By Lemma 5.18, d(s, s′) = 0 ⇐⇒ s ∼α s′, which is separated into its own case:

=


0 if s ∼α s′

KΛ
α (d)(µs, µs′) if `(s) = `(s′)

1 otherwise

= Γ′Λα (d)(s, s′).

So d is a fixed point of Γ′Λα , but d′ is the least fixed point of Γ′Λα , hence d′ v d.

Case 2 (d v d′).

If s ∼α s′ then

ΓΛ
α(1!∼α)(s, s′) = KΛ

α (1!∼α)(µs, µs′)

= inf
ω,η∈Ωs,s′

∑
u,v

ωu,v1!∼α(u, v) +
∑
i

ηi

= 0.

Clearly d′ v 1!∼α giving ΓΛ
α(d′)(s, s′) ≤ ΓΛ

α(1!∼α)(s, s′) = 0.

82

Concluding:

s ∼α s′ =⇒ KΛ
α (d′)(µs, µs′) = 0. (5.9)

To show d′ is a fixed point of ΓΛ
α :

d′ = Γ′Λα (d′)(s, s′)

=


0 if s ∼α s′

KΛ
α (d′)(µs, µs′) if `(s) = `(s′)

1 otherwise

By (5.9) the values at s ∼α s′ can be replaced by KΛ
α (d′)(µs, µs′):

=


KΛ
α (d′)(µs, µs′) if s ∼α s′

KΛ
α (d′)(µs, µs′) if `(s) = `(s′)

1 otherwise

Combining cases with equivalent outcomes (noting s ∼α s′ =⇒ `(s) = `(s′)):

=

K
Λ
α (d′)(µs, µs′) if `(s) = `(s′)

1 otherwise

= ΓΛ
α(d′)(s, s′).

So d′ is a fixed point of ΓΛ
α , but d is the least fixed point of ΓΛ

α , so d v d′.

Definition and Computation of lgdα

Towards a more efficiently computable function, the greatest fixed point of Γ′Λα
is now studied.

Definition 5.22. Let lgdα be the greatest fixed point of Γ′Λα . J

It is equivalent to consider the greatest post-fixed point. It turns out that when
α = 1, lgd1 = ld1 [CBW12]. It is not known if this holds for α > 1, although
it appears to do so on all tested examples, leading to the conjecture that it
might (Conjecture 5.27). Whilst it may not necessarily be as tight a bound
on lvα as ldα, lgdα can also be used to bound lvα, thus the δ parameter of
(ε, δ)-differential privacy. Because ldα(s, s′) ≤ lgdα(s, s′) for every s, s′ ∈ Q,
then Theorem 5.12 implies that lvα(s, s′) ≤ lgdα(s, s′), for every s, s′ ∈ Q.

Next, it is shown that lgdα can be computed in polynomial time using the
ellipsoid method for solving a linear program of exponential size, matching the
result of Chen, van Breugel and Worrell [CBW12] for standard bisimilarity
distances. It will not be necessary to express the entire linear program in one go

83

(which would be of exponential size), but it will be necessary to represent any
one constraint at a time, so each constraint must be expressible in polynomially
many bits. To do this the representation of vertices of Ωα

s,s′ is shown to be
small.

Lemma 5.23. Each (ω, η) ∈ V (Ωα
s,s′) are rational numbers requiring a number

of bits polynomial in size(M).

Proof. Consider the polytope Ω′αµ,µ′ =(ω, τ, γ, η) ∈ [0, 1]Q×Q × ([0, 1]Q)3 | ∀i :
∑

j ωi,j + τi − γi + ηi = µ(i)

∀j :
∑

i ωi,j +
τj−γj
α ≤ µ′(j)

 .

Each vertex is the intersection of hyperplanes defined in terms of µ, µ′

(rationals given in the input M), thus vertices of Ω′αµ,µ′ are rationals
with representation size polynomial in the input. Vertices of Ωα

µ,µ′ ={
(ω, η) | ∃τ, γ (ω, τ, γ, η) ∈ Ω′αµ,µ′

}
require only fewer bits.

The following linear program expresses the greatest post-fixed point. It has
polynomially many variables but exponentially many constraints (for each s, s′

one constraint for each ω ∈ V (Ωα
s,s′)). Since linear programs can be solved in

polynomial time, the greatest fixed point can be found in exponential time
using the exponential size linear program.

Proposition 5.24. lgdα is the optimal solution, d ∈ [0, 1]Q×Q of the following
linear program: maxd∈[0,1]Q×Q

∑
(u,v)∈Q×Q du,v subject to: for all s, s′ ∈ Q:

ds,s′ = 0 if s ∼α s′,
ds,s′ = 1 if `(s) 6= `(s′),

ds,s′ ≤
∑

(u,v)∈Q×Q
ωu,vdu,v +

∑
u∈Q

ηu for all (ω, η) ∈ V (Ωα
s,s′) otherwise.

Proof. The s ∼α s′ and `(s) 6= `(s′) cases follow by definition. Observe that
by the definition of lgdα as a post-fixed point it is required that d(s, s′) ≤
Γ′Λα (d)(s, s′) = KΛ

α (d)(s, s′) = min(ω,η)∈Ωα
s,s′

∑
(u,v)∈Q×Q ωu,vdu,v +

∑
u∈Q ηu or

equivalently, for all (ω, η) ∈ Ωα
s,s′ : d(s, s′) ≤∑(u,v)∈Q×Q ωu,vdu,v+

∑
u∈Q ηu

In the spirit of Chen et al. [CBW12], the exponential-size linear program given
in Proposition 5.24 can be solved using the ellipsoid method, in polynomial
time. Whilst the linear program has exponentially many constraints, it has
only polynomially many variables. Therefore, the ellipsoid method can be used
to solve the linear program in polynomial time, provided a polynomial-time

84

separation oracle can be given [Sch99, Chapter 14]. The separation oracle takes
as argument d ∈ [0, 1]Q×Q, a proposed solution to the linear program and must
decide whether d satisfies the constraints or not. If not then it must provide
θ ∈ Q|Q×Q| as a separating hyperplane such that, for every d′ that does satisfy
the constraints,

∑
u,v du,vθu,v <

∑
u,v d

′
u,vθu,v.

The separation oracle will perform the following: for every s, s′ ∈ Q check that
d(s, s′) ≤ min(ω,η)∈Ωα

s,s′
ω·d+η·1. This is done by solving min(ω,η)∈Ωα

s,s′
ω·d+η·1

using linear programming. If every check succeeds, return yes. If some check
fails for s, s′ return no and

θu,v =

ωu,v − 1 (u, v) = (s, s′)

ωu,v otherwise
where (ω, η) = argmin

(ω,η)∈V (Ωα
s,s′)

d·ω+η·1.

Lemma 5.25. θ is a separating hyperplane, i.e., it separates the unsatisfying d
and all satisfying d′:∑

u,v

du,vθu,v <
∑
u,v

d′u,vθu,v.

Proof. Recall each constraint is of the form

d′s,s′ ≤
∑
u,v

d′u,vωu,v +
∑
u

ηu.

Since d does not satisfy the constraint then

−
∑
u

ηu >
∑
u,v

du,vωu,v − ds,s′ =
∑
u,v

du,vθu,v.

For each d′ satisfying the constraint then

−
∑
u

ηu ≤
∑
u,v

d′u,vωu,v − d′s,s′ =
∑
u,v

d′u,vθu,v.

Thus concluding for satisfying d′:∑
u,v

du,vθu,v < −
∑
i

ηi ≤
∑
u,v

d′u,vθu,v.

Theorem 5.26. lgdα can be found in polynomial time in the size of M.

Proof. Checking d(s, s′) ≤ minω,η∈Ωα
s,s′

ω · d + η · 1 is polynomial time. The
linear program is of polynomial size, so runs in polynomial time in the size of
the encoding of the linear program. Similarly finding θ is polynomial time by
running essentially the same linear program and reading off the minimising
result.

85

Because pairs (ω, η) are in V (Ωα
s,s′), they are polynomial size in the size ofM,

independent of d, by Lemma 5.23. Note that, unlike in Chen et al. [CBW12],
the oracle procedure is not strongly polynomial, so the time to find θ may
depend on the size of d, but the output θ and d remain polynomial in the size
of the initial system.

Hence, concluding there is a procedure for computing lgdα running in polynomial
time [Sch99, Theorem 14.1, Page 173]. There exists a polynomial ψ where the
ellipsoid algorithm solves the linear program in time T · ψ(size(M)), where
T is the time the separation algorithm takes on inputs of size ψ(size(M)).
Since the T ∈ poly(ψ(size(M))) and ψ(size(M)) ∈ poly(size(M)) then T ∈
poly(size(M)). Overall we have T · ψ(size(M)) ∈ poly(size(M)).

5.5.1 A unique fixed point?

ldα has been defined as the least fixed point of Γ′Λα , whilst lgdα is defined as
the greatest fixed point.

Conjecture 5.27. ldα = lgdα, that is, Γ′Λα has a unique fixed point.

The consequences of Conjecture 5.27 would entail that ldα, thus the best known
estimate of δ, is decidable in polynomial time. This would match the knowledge
for the standard bisimilarity distance, which, defined as a unique fixed point,
is computable in polynomial time.

In all of the examples tested in the next section, and attempts to specifically
construct a counter example, the least fixed point has been equal to the greatest
fixed point. Due to the more complex nature of the coupling capturing the
distance, the proof used in the case of standard bisimilarity distances does not
translate, and a direct proof of such remains elusive.

5.6 Examples

This section considers the effectiveness of bdα and ldα indicating examples
which lead to successful verifications and examples which demonstrate their
respective limitations.

Techniques for computation

Before considering these examples note that the practicality of the algorithms
for complexity analysis is limited. Hence each of the examples was computed
using alternative techniques.

86

Iterative methods The easiest method for computing bisimilarity distances
is to use the properties of the fixed point. Starting at the bottom element
of the lattice (d(s, s′) = 0 for all s, s′), iteratively compute F (F (. . . F (d))) to
convergence. There is no guarantee of fast convergence, but in practice the
method provides an approximation quickly. In the case that the fixed point is
unique, the same can by applied from the top element of the lattice (d(s, s′) = 1

for all s, s′), and close convergence can be detected by ensuring the difference
between the two is small. Such a unique fixed point is not shown to exist,
however it is this method that leads to the conjecture that it does exist for ldα,
i.e. that ldα = lgdα.

SMT based methods The formula given in Figure 5.3 can be encoded directly
into an SMT solver, such as Z3. Further Z3 allows the specification of an
objective function, so that ldα (and bdα using the respective formula from
Chapter 2) can be found as the satisfying solution minimising

∑
s,s′ ldα(s, s′).

However in practice the non-linearities cause Z3 some issues, but surprising
success can be found on small examples by encoding in Z3 the formula akin to
Figure 4.2. However, it is not required to specify the least fixed point explicitly
as this can be expressed with an objective function. This appears to work well,
despite this employing universal quantification (and thus being a level higher in
the polynomial hierarchy), the fact that it is in linear real arithmetic appears
to help. The encoding, whilst polynomial, is in practice quite large and so the
method fails to terminate in reasonable time once the number of states exceeds
10 to 12.

Examples

This section demonstrates the methods are a sound technique for determining
the δ privacy parameter satisfying (ε, δ)-differential privacy, given eε.

Example 5.28 (PIN Checker). Take as an example, in Figure 5.4, a PIN checking
system studied by Xu et al. [XCL14; Xu15]. Intuitively, the machine accepts
or rejects a code (a or b). Instead of accepting a code deterministically, it
probabilistically decides whether to accept. The machine allows an attempt
with the other code if it is not accepted. The system is modelled to accepts
more often on the the pin-code a, from state 0, and more often the code b, from
state 1. The chain simulates attempts to gain access to the system by trying
code a then b until the system accepts (reaching the ‘end’ state). Pen-and-paper
analysis can determine that the system is (ln(2809

2209), 0)-differentially private, or
at the other extreme (0, 200

2503)-differentially private (2809
2209 ≈ 1.27, 200

2503 ≈ 0.0799).

87

a

0

a

1

no

ok

b

no

no b

no

53
100

47
100 1

47
100

53
1001

47
100

53
100

1

53
100

47
100

1

Figure 5.4: Labelled Markov chain for PIN checker example: each state denotes
its label, transition probabilities on arrows.

1 1.027 1.054 1.081 1.109 1.136 1.163 1.19 1.217 1.244 1.272
0

0.02

0.04

0.06

0.08

0.1

0.12

α = eε

E
st
im

at
e
fo
r
δ

bdα ldα lgdα lvα

Figure 5.5: Calculated approximations of δ given ε for Figure 5.4.

In Figure 5.5, the true privacy, lvα is shown along the orange line (N). In the blue
line (•) shows the estimate bdα as defined in Chapter 4; which correctly bounds
the true privacy, but is unresponsive to α. Using the methods introduced
in this chapter ldα is computed on the red line (�) and lgdα on the black
line (�), which coincide. Observe that this is an improvement and is within
approximately 1.5 times the true privacy for α ≤ 1.035. In this example observe
that ldα = lgdα; suggesting lgdα, which can be computed in polynomial time
is as good as ldα. The results do eventually suffer, as increasing α cannot find
a better δ, despite a lower value existing. J

88

sk

a

sk

b

a

b

·

2
3

1
3

1
3

2
3

1

1

(a) Single-input, single-output.

sk

(b, a)

sk

(a, a)

sk

(a, b)

sk

(b, b)

a

b

a

b

sk

sk a

b

·

2
3

1
3

1
3

2
3

1

1

2
3

1
3

1
3

2
3

1

1

2
3

1
3

1
3

2
3

1

1

(b) Two-input, two-output.

Figure 5.6: Randomised response. Every second label is the outcome of the
randomised response mechanism and alternately sk (for ‘skip’). The left most
state represents the sensitive input.

Example 5.29 (Randomised Response). The randomised response mechanism
allows a data subject to reveal a secret answer to a potentially humiliating or
sensitive question honestly with some degree of plausible deniability. This is
achieved by flipping a biased coin and providing the wrong answer with some
probability based on the coin toss. If there are two answers a or b, answering
truthfully with probability β

1+β and otherwise with 1
1+β leads to ε-differential

privacy where eε = β and such a bound is tight (there is no smaller ε′ such
that answering in this way gives ε′-differential privacy). However, it can be
(ε′, δ)-differentially private for ε′ < ε and some δ.

Consider the single-input, single-output randomised response mechanism shown
in Figure 5.6a with β = 2, hence ln(2)-differentially private, alternatively it

89

is (ln(6
5), 4

15)-differential privacy (ln(6
5) ≈ ln(2)

4). Consider the application of
composing automata to determine more complex properties automatically.

Differential privacy enjoys multiple composition theorems [DR14]. When applied
to disjoint datasets, differential privacy allows the results of (ε, δ)-differentially
private mechanism applied to each independently to be combined with no
additional loss in privacy. Consider the two-input, two-output labelled Markov
chain (Figure 5.6b), by considering each input to be from two independent
respondents, using these methods verifies that the privacy does not increase on
the partitioned data. Hence, consider the adjacency relation as the symmet-
ric closure of R = {((a, a), (a, b)), ((a, a), (b, a)), ((b, b), (a, b)), ((b, b), (b, a))}.
Computing max(s,s′)∈R ld6/5(s, s′) = 4

15 , determines (ln(6
5), 4

15)-differential pri-
vacy, verifying there is no privacy loss from composition. Because randomised
response is finite, it is possible to compute lvα for adjacent inputs in exponential
time for comparison. In this instance, the technique provides the optimal so-
lution, in the sense max(s,s′)∈R ld6/5(s, s′) = max(s,s′)∈R lv6/5(s, s′); indicating
that ldα and lgdα can provide a good approximation.

The basic composition theorems suggest that if a mechanism that is (ε, δ)-
differentially private is used k times, one achieves (kε, kδ)-differential pri-
vacy [Dwo+06]. However, this is not necessarily optimal. More advanced
composition theorems may enable tighter analysis, although this can be compu-
tationally difficult (#P-complete) [MV16]. Even this may not be exact when
allowed to look inside the composed mechanisms. Instead, if it is assumed that
the responses are from two questions answered by the same respondent and
let R′ = R ∪ {((a, a), (b, b))}, naïvely applying basic composition concludes
(ln(36

25), 8
15)-differential privacy. The methods from this chapter can find a bet-

ter bound than basic composition since max(s,s′)∈R′ ld36/25(s, s′) = 103
225 <

8
15 .

However, in this case, this technique is not optimal either. J

5.7 Future work: extended models

The work presented in Chapters 4 and 5 is limited to labelled Markov chains, or
‘fully probabilistic’ automata. Characterising programs with labelled Markov
chains, captures the semantics of programs with finite memories, because each
configuration of the program needs to be explicitly described in a state. A
natural direction is to extend to programs without this restriction.

The standard bisimulation distances can also be defined on non-deterministic
systems, where their computational complexity is PPAD [BW14]. In this
thesis so far, the privacy can only be analysed between two start states, but it
is also reasonable to allow an input in the form of a trace or sequence of actions,
the output would also be a trace, in the style of Tschantz et al. [TKD11]. Here

90

the choice of labels (at a specific state) would correspond to decisions taken
by the user/environment/input, and the output can be announced either via a
labelling of the state, or by the action being chosen fully-probabilistically (i.e.
there being no choice of action available). This setting would support a broader
range of scenarios that could be modelled and verified as differentially private.

One such direction is to extend the model to some variant of probabilistic
automata, Markov decision processes or Input-Output automata. Each of these
have their own technical distinctions, but the common theme is that the
operation of the machine is not fully probabilistic, instead some input from
the environment is required. This is usually by an action or character from a
distinct input alphabet. In such models, one induces a labelled Markov chain
by a choice of how the environment will behave, typically called a scheduler.
The exact semantics of the scheduler require careful choice, particularly with
relation to differential privacy so that the choice made by the scheduler does not
reveal information which is supposed to be private [CP10]. A common model
of scheduler could be positional, so that when in some particular state, some
particular action will always be chosen. However, such a positional schedule
could be used to distinguish the states and so is not an appropriate model for
the scheduler in the context of privacy.

Such operations could be used to describe streaming or online algorithms; for
which the input is revealed during the computation instead of being known at the
start of the computation (as assumed in the work of this thesis). Such a model
could then be used to describe differential privacy over input streams which
differ in exactly one position, in a similar fashion to Tschantz et al. [TKD11].
To ensure the available actions does not describe the possible positions, one
should ensure every action is available at every choice.

This model could be particularly susceptible to automated analysis by the
following construction. Assume the input alphabet is two characters a and b (the
construction generalises to further characters). LetM be a non-deterministic
model which takes actions and produces outputs (for example by labelled states
or labelled transitions). Take three copies of this machine. The first machine,
at every place there is a choice between a and b, there will be a further choice ?,
from which the transition will move to the third copy of the machine, mimicking
the operations as if an a was chosen. In the second machine, at every place there
is a choice between a and b, there will be a further choice ?, from which the
transition will move to the third copy of the machine, mimicking the operations
as if an b was chosen. The third copy only has the choice of a or b.

For example the operation of the machine from the first copy on aaabbaba?bababa

would operate as aaabbabaabababa, where as the second machine would behave

91

as aaabbababbababa. The input sequence could have up to one position with
? and comparing the starting from the either of the two machines compares
the difference on input sequences with one difference. It is then necessary to
compare the maximal difference between the probabilities over inputs of the
form {a, b}∗? {a, b}∗, but since these are the only accepted words, it can be
quantified over {a, b, ?}∗; that is, find

sup
d∈{a,b,?}∗

sup
E∈Σ∗

∆α(P[M1(d) ∈ E],P[M2(d) ∈ E]).

Bisimilarity distances can be used on such models, by extension with Hausdorff
distance. Assume the transition function T : Q×A→ Dist(Q), where A is a
set of actions. Then the bisimilarity distance characterised by

Γ∆
α (d)(s, s′) =

K
∆
α (d)(µs, µs′) if `(s) = `(s′)

1 otherwise

can be generalised to

Γ∆
α (d)(s, s′) =


max
a∈A

{
supµ∈T (s,a) infµ′∈T (s′,a)K

∆
α (d)(µ,µ′),

supµ′∈T (s′,a) infµ∈T (s,a)K
∆
α (d)(µ,µ′)

}
if `(s) = `(s′)

1 otherwise

A further direction of study is to determine the correct notion of scheduler for a
suitable choice of formal model and verify that such a bisimilarity distance would
bound the privacy found in such a model. Further one should understand the
computability of such a distance; note that in the classical case of bisimilarity
distance (where the absolute value function is used, not ∆α) then the distance
can be computed in PPAD; but as with labelled Markov chains, there is no
guarantee this result will transfer when complicated by ∆α or Λα.

92

5.8 Conclusion

The results for δ are summarised in Figure 5.1 on page 67. The privacy
parameter δ is captured by the value of lvα, but it is not computable and
difficult to approximate. Hence an upper bound ldα is defined and shown to be
more accurate than the previously bound bdα from Chapter 4 and just as easy
to compute (in polynomial time with an NP oracle). Further lgdα is defined,
a distance based on the greatest fixed point, which has the same flavour but
can be computed in polynomial time.

When considering lvα directly, the distance can be approximated to arbitrary
precision in PSPACE and is #P-hard (which generalises a known result on
tv). It is left open whether the least fixed point bisimilarity distance (or any
refinement smaller than lgdα) can be computed in polynomial time, or even
if lgdα = ldα. It is also open whether approximation can be resolved to be in
#P, PSPACE-hard, or complete for some intermediate class.

This thesis does not address the extension of the models further (as sketched
in Section 5.7), and leaves this open as a direction for future work. The next
chapter considers the problem of estimating the ε parameter in the context of
pure differential privacy.

93

Chapter 6

Distances for ε

In the spirit of Chapters 4 and 5, the parameter ε can be captured by the
following variant of the total variation distance defined in [Xu15; Smi08]:

tv ln(s, s′) = sup
E∈Σ∗

dln (νs(E), νs′(E)) ,

where dln(x, x′) = |ln(x)− ln(x′)|.

Then a labelled Markov chain is ε-differentially private with respect to a relation
R ⊆ Q×Q if and only if

max
(s,s′)∈R

tv ln(s, s′) ≤ ε.

This chapter studies this distance through a problem called the big-O problem,
which has analogy to the big-O notation in the analysis of algorithms; a state s
will be big-O of s′ if the probability of every finite word from s is not greater than
some constant multiple of the probability from the second (see Definition 6.1).
There is a direct connection between this concept and the distance tv ln, or rather
the exponential of this distance, which will be called tv⊗ and studied throughout
this chapter; the optimal constant of big-O will correspond directly to distances
of this form. However, in full generality, the decision questions of interest on this
distance (e.g. whether the distance is bounded or below a given threshold) will
turn out to be undecidable and the distances inapproximable (Theorem 6.12),
so further restrictions will be considered. First the big-O problem will be shown
to be coNP-complete on unary automata (Theorem 6.26). One may expect the
concatenation of multiple unary automata (with different characters, forming a
letter-bounded automaton) would be a simple generalisation of the methods.
However, evidence is provided that this is not the case, and the problem will
only be shown decidable subject to a conjecture in number theory, leaving the
decidability question partly open (Theorem 6.59).

Finally the bisimilarity distance of Chatzikokolakis et al. [CGPX14] will be
considered which bounds tv ln(s, s′), and for a slightly modified version, that is,
by studying the distance which bounds its exponent tv⊗, the threshold problem

94

for the bisimilarity distance will be shown to be in PSPACE (Theorem 6.74).

In contrast to the previous chapters the main problem here (the big-O problem)
can be defined on weighted automata, a generalisation of labelled Markov chain,
and the positive results will also apply in this setting, although this chapter
will not consider infinite word models.

6.1 The big-O problem

The problem is presented using three equivalent formulations. The first is an
analogue to the big-O notation typically used when classifying the complexity
of algorithms; and applies in full generality to weighted automata (and thus to
labelled Markov chains). The following formulations of the problem, based on
variants on the total variation distance, are defined only on labelled Markov
chains.

Definition 6.1. Given a weighted automatonW = 〈Q,Σ,M, F 〉 and s, s′ ∈ Q,
we say that s is big-O of s′ if there exists C > 0 such that for all w ∈ Σ∗:
νs(w) ≤ C · νs′(w). J

This can be used to compare two weighted automata (or Markov chains) by
notionally combining them into a single system and comparing their respective
start states.

Definition 6.2 (Big-O Problem).

input Weighted automaton 〈Q,Σ,M, F 〉 and s, s′ ∈ Q
output Is s big-O of s′? J

The second formulation is an analogue to the total variation distance (recall by
Definition 3.9 tv(s, s′) = supE∈Σ∗ νs(E)− νs′(E)), which takes the supremum
of a distance between two events. Here the distance is a ratio between the two
events. The distance is presented in its asymmetric and symmetric variants.

Definition 6.3. The asymmetric ratio variation function is

tv�(s, s′) = sup
E⊆Σ∗

νs(E)

νs′(E)
. J

In this chapter, consider 0
0 = 0, and for x > 0 consider x

0 =∞.

Definition 6.4. The symmetric ratio variation function is:

tv⊗(s, s′) = max
{
tv�(s, s′), tv�(s′, s)

}
. J

95

Remark. The distance is equivalent to the exponential of the “multiplicative
variant of the total variation distance” tv ln. J

Definition 6.5 (TV-bounded).

input LMC 〈Q,Σ,M, F 〉 and s, s′ ∈ Q
output tv�(s, s′) <∞? J

The problem is set out above in the asymmetric case; the symmetric problem
asks if tv⊗(s, s′) <∞. Clearly the symmetric problem can be solved by reduc-
tion to two instances of the asymmetric instances, but will show hardness for
variants.

Proposition 6.6. For tv�, and tv⊗, on word terminating labelled Markov chains,
is sufficient to consider the supremum over w ∈ Σ∗, rather than E ⊆ Σ∗.

Proof. The strategy of the proof is to approximate any event by a finite subset,
then observe that an event with more than one word can be simplified, and the
ratio will not decrease.

Claim 6.7. For a, b, c, d > 0 we have max(ac ,
b
d) ≥ a+b

c+d .

Proof. Suppose a+b
c+d >

a
c and a+b

c+d >
b
d .

• By the first we have ac+ bc > ac+ dc = bc > ad =⇒ b
d >

a
c .

• By the second we have ad+ bd > bc+ bd = ad > bc =⇒ a
c >

b
d .

Contradiction. �

Hence, given f, g : E → R≥0 and a finite set E for the purposes of maximisation,
such a set can always be simplified by repeated application of this concept.
That is, there exists e′ ∈ E such that,∑

e∈E f(e)∑
e∈E g(e)

≤ f(e′)
g(e′)

. (6.1)

Consider an event E ⊆ Σ∗, then for every λ > 0 there is a k such that
νs(E ∩ Σ>k) ≤ λ. Then νs(E ∩ Σ≤k) ≤ νs(E) ≤ νs(E ∩ Σ≤k) + λ [Kie18,
Lemma 12]. For any ε, by choice of sufficiently small λ there is a finite set E′

such that νs(E′)
νs′ (E

′) − ε ≤
νs(E)
νs′ (E) ≤

νs(E′)
νs′ (E

′) + ε.

Consider supE⊆Σ∗
νs(E)
νs′ (E) , this is equivalent to limk→∞ supE⊆Σ≤k

νs(E)
νs′ (E) and by

Equation (6.1) this is equivalent to limk→∞ supw∈Σ≤k
νs(w)
νs′ (w) = supw∈Σ∗

νs(w)
νs′ (w) .

96

The third analogue of the problem is using the skewed variant of the total
variation distance from Chapter 5, by asking if there exists an α such that
lvα(s, s′) = 0. This chapter will also address the question of deciding whether,
for a given α, lvα(s, s′) = 0; this done by equivalently asking if tv�(s, s′) ≤ α.

Proposition 6.8. On word terminating labelled Markov chains, the following
conditions are equivalent:

• s is big-O of s′

• Tv-Bounded(s, s′)

• ∃α : lvα(s, s′) = 0.

Further the minimal constant of the big-O problem is exactly tv�(s, s′) and the
minimal α.

6.1.1 The relation to differential privacy

Recall that, in the case of pure differential privacy, and given an LMCM and
a symmetric relation R ⊆ Q×Q thenM is ε-differentially private (wrt R) if,
for any s, s′ ∈ Q such that (s, s′) ∈ R, we have

νs(E) ≤ eε · νs′(E)

for any observable set of traces E ⊆ Σ∗.

Then note there is such an ε if and only if s is big-O of s′ for every (s, s′) ∈ R.
Further the minimal such ε is such that eε = max(s,s′)∈R tv�(s, s′).

6.1.2 The big-Θ problem

One could consider whether s is big-Θ of s′, defined as s is big-O of s′ and
s′ is big-O of s; or equivalently, whether tv⊗(s, s′) < ∞ for labelled Markov
chains. However, Lemma 6.9 notes that these two notions reduce to each other,
justifying the consideration of only the big-O problem. There is an obvious
Cook reduction from big-Θ to big-O (ask if s is big-O of s′ and s′ is big-O of
s), but this is strengthened to a Karp reduction (that is a single call to the
big-O problem, preserving the answer), although this does require at least two
characters.

Lemma 6.9. The big-O problem is inter-reducible with the big-Θ problem.

97

q

q′

s

s′

a 0.5

a 0.5

a 1

(a) Reduction to big-Θ.

q

q′

s

s′

a 0.5

b 0.5

a 0.5

b 0.
5

(b) Reduction to big-O.

Figure 6.1: Reductions between big-O and big-Θ.

Proof of Lemma 6.9.

Case 1 (big-O problem reduces to the big-Θ problem). To ask if s is big-O of s′

use the construction of Figure 6.1a then ask if q is big-Θ of q′. Then note q′ is
big-O of q in all cases, so q is big-O of q′ if and only if q is big-Θ of q′:

νq(aw)

νq′(aw)
=

0.5νs(w) + 0.5νs′(w)

νs′(w)
< C ⇐⇒ νs(w)

νs′(w)
< 2C − 1

νq′(aw)

νq(aw)
=

νs′(w)

0.5νs(w) + 0.5νs′(w)
≤ 2

Case 2 (big-Θ problem reduces to the big-O problem). To ask if s is big-Θ of s′

use the construction of Figure 6.1b then ask if q is big-O of q′. Then s is big-Θ
of s′ if and only if s is big-O of s′ and s′ is big-O of s if and only if q is big-O
of q′:

νq(aw)

νq′(aw)
=

0.5νs(w)

0.5νs′(w)
< C ⇐⇒ νs(w)

νs′(w)
< C

νq(bw)

νq′(bw)
=

0.5νs′(w)

0.5νs(w)
< C ⇐⇒ νs′(w)

νs(w)
< C

Each of the reductions adds a constant number of bits, as such operates in
logspace.

6.2 Big-O, threshold and approximation problems are undecid-

able

This section shows that the big-O problem is undecidable, by reduction from
the emptiness problem for probabilistic automata. The results in this section
are presented as results on ratio total variation distances on word terminating
labelled Markov chains, and thus apply to the big-O problem and the more
general weighted automata. In the case of distances, it is not only interesting
to consider whether distance is bounded, but also to consider its actual value.
However, the distances are inapproximable.

98

In the context of Markov chains, the problem whether tv⊗(s, s′) is 1 is equivalent
to the problem of whether lv1(s, s′) is 0 and in the case of the classical total
variation distance whether tv(s, s′) is 0; that is, whether the measures are
identical νs = νs′ . This question is decidable in polynomial time [Sch61; Tze92;
Kie+13].

The classical total variation distance threshold problem, whether tv(s, s′) ≤ θ,
is undecidable [Kie18] and the same applies to the distance here. In the
case of classical total variation distances it is not known if the strict variant
is undecidable (whether tv(s, s′) < θ); here the reductions are agnostic and
both cases are undecidable. However approximation of classical total variation
distances is possible [Kie18; CK14], but this will not be the case for the distances
tv� and tv⊗.

Definition 6.10. The asymmetric threshold problem takes s, s′, θ and asks if
tv�(s, s′) ≤ θ. The variant under the promise of boundedness; promises that
tv�(s, s′) is not infinity. The strict variant of each problem replaces ≤ with <.

The asymmetric additive approximation problem takes s, s′, γ and asks for x
such that |tv�(s, s′)− x| ≤ γ. The asymmetric multiplicative approximation
problem takes s, s′, γ and asks for x such that 1− γ ≤ x

tv�(s,s′) ≤ 1 + γ.

The symmetric variant of each problem replaces tv� with tv⊗. J

Undecidability of each of these problems is established by the is emptiness
problem for probabilistic automata, which is undecidable [Paz14; Fij17].

Definition 6.11 (Empty).

input A probabilistic automaton A
output is PA(w) ≤ 1

2 for all words w? J

The problem equivalently asks if the language
{
w ∈ Σ∗ | PA(w) > 1

2

}
is empty.

The results are summarised in the following theorem:

Theorem 6.12.

• The problem Tv-Bounded (and the big-O problem) is undecidable.

• The symmetric and asymmetric strict and non-strict threshold problems
are undecidable, and undecidable even under the promise of boundedness.

• Symmetric and asymmetric approximation problems are undecidable under
the promise of boundedness.

The following auxiliary lemma is used to show the result.

99

Lemma 6.13.

1. Given a constant c such that it is sure that tv�(s, s′) ≤ c or tv�(s, s′) =

∞, it is undecidable to distinguish between tv�(s, s′) ≤ c or tv�(s, s′) =

∞.

2. Given two numbers c and C, such that c < C and that it is sure that
tv�(s, s′) ≤ c or C ≤ tv�(s, s′) < ∞, it is undecidable to distinguish
between tv�(s, s′) ≤ c or C ≤ tv�(s, s′) <∞.

Observe that Theorem 6.12 is implied by the lemma. Tv-Bounded, or the
threshold problem could be used to distinguish between tv�(s, s′) ≤ c or
tv�(s, s′) = ∞. The question tv�(s, s′) ≤ c+C

2 or tv�(s, s′) < c+C
2 , could

distinguish between tv�(s, s′) ≤ c or C ≤ tv�(s, s′) < ∞, thus are both
undecidable. Additionally it is not possible to approximate, since finding x
such that |tv�(s, s′)− x| ≤ C−c

2 tells us which side of the gap by comparing x
and c+C

2 . Similarly finding x such that 1− C−c
2C ≤ x

tv�(s,s′) ≤ 1 + C−c
2C . All of

the results hold when tv� is replaced by tv⊗.

Proof of Lemma 6.13. The proof will reduce Empty to each of the two promise
problems. The construction will result in two branches of a Markov chain, the
first will simulate the probabilistic automaton, resolving each character with
equal weight. In the other branch, from s′, simulate every word equally, so that
its weight is proportional to the weight a word would be if it were accepted by
the probabilistic automaton with probability one half; hence if there is a word
above 1

2 the ratio between these two branches is greater than 1. The words are
then repeated so that this ratio can be pumped unboundedly.

The construction is shown for Σ = {a, b}, but the procedure can be generalised
to arbitrary alphabets. Assume a probabilistic automaton A = 〈Q,Σ,M, F 〉
with starting state s and construct the Markov chain 〈Q′,Σ′, δ, F ′〉 as follows.
Let Q′ = Q ∪ {s, s′, s′′, s0, t} and Σ′ = {a, b, acc, rej,`}. First simulate the
probabilistic automaton, with equal weight 1

4 on each character {a, b, acc, rej}:

For all q ∈ Q :

∀q′ ∈ Q : q
1
4
M(a)(q,q′)−−−−−−−→

a
q′ q

1
4
M(b)(q,q′)−−−−−−−→

b
q′

if q ∈ F : q
1
2−−→
acc

qs and if q 6∈ F : q
1
2−−→
rej

t

Then consider the part of the chain which behaves equally, rather than according
to the probabilistic automaton:

s0

1
4−→
a
s0 s0

1
4−→
b
s0 s0

1
4−−→
acc

s0 s0

1
4−−→
rej

t

100

s0 t

qs

qa

qi

q

rej 1
4

acc 1
4

a 1
4 b 1

4

rej 1
2

rej 1
2

a M(a)(qs,qa)
4b M(b)(qs,qa)

4

a M(a)(qa,qa)
4 b M(b)(qa,qa)

4

a M(a)(qi,qi)
4 b M(b)(qi,qi)

4

a M(a)(qs,qs)
4

b M(b)(qs,qs)
4

a M(a)(qs,qi)
4 b M(b)(qs,qi)

4

acc 1
2

. . .

. . .

. . .

(a) Main reduction: where qa represents accepting states of the probabilistic automaton,
qi represents rejecting states and qs represents the start state (assumed to be rejecting).

s

s′

s′′

s0

qs

` 1
2

` 1
2

` 1

` 99
100

` 1
100

(b) Linear combinations of initial states.

Figure 6.2: Reduction from the emptiness problem for probabilistic automata
to an LMC for the big-O problem.

101

The reduction can be seen in Figure 6.2a; the following states are used to argue
on the distances, depicted in Figure 6.2b:

s
1
2−→̀ s0 s

1
2−→̀ qs s′ 1−→̀ s0 s′′

99
100−−→̀ s0 s′′

1
100−−→̀ qs

The following claims on the reduction complete the lemma.

Claim 6.14 (Bounded vs Unbounded Problem).

• A 6∈ Empty =⇒ tv�(s, s′) =∞ and tv⊗(s, s′) =∞

• A ∈ Empty =⇒ tv�(s, s′) ≤ 2 and tv⊗(s, s′) ≤ 2.

Claim 6.15 (Gap Problem).

• A 6∈ Empty =⇒ 49 < tv�(s, s′′) ≤ 51 and 49 < tv⊗(s, s′′) ≤ 51

• A ∈ Empty =⇒ tv�(s, s′′) ≤ 2 and tv⊗(s, s′′) ≤ 2.

Proof of Claim 6.14. First observe that

νs(` w′)
νs′(` w′)

=
1
2νs0(w′) + 1

2νqs(w
′)

νs0(w′)
=

1

2
+

1

2

νqs(w
′)

νs0(w′)
. (6.2)

If there is a word w that is accepted by the automaton with probability > 1
2 ,

then let w′ = (w acc)i rej and we have

νqs(w
′)

νs0(w′)
=

((1
4)|w|PA(w)1

2)i

((1
4)|w| 14)i

= (2PA(w))i. (6.3)

Since PA(w) > 1
2 then 2PA(w) > 1 and we have:

lim
i→∞

νs(` (w acc)i rej)

νs′(` (w acc)i rej)
=∞ and tv�(s, s′) = tv⊗(s, s′) =∞.

If there is no such word (∀w ∈ Σ∗ : PA(w) ≤ 1
2) then probability ratio of all

words is bounded. All words start with ` and are terminated by rej, so in
general all words take the form w =` (w1 acc) . . . (wn acc)(wn+1 rej). Consider
the probability of w′ = (w1 acc) . . . (wn acc)(wn+1 rej) from s0 and qs:

νqs(w
′)

νs0(w′)
(6.4)

=
(
∏n
i=1

1
2(1

4)|wi|PA(wi))((
1
4)|wn+1|(1− PA(wn+1))1

2)

(1
4)|w1|+···+|wn|(1

4)n(1
4)|wn+1| 1

4

(6.5)

≤ ((1
4)|w1|+···+|wn|(1

2)n(1
2)n)((1

4)|wn+1| 1
2)

(1
4)|w1|+···+|wn|+n(1

4)|wn+1| 1
4

(∀i : PA(wi) ≤ 1
2)

= 2. (6.6)

102

Then using Equation (6.2) we have for every word w: 1
2 ≤

νs(w)
νs′ (w) ≤ 3

2 and
tv�(s, s′) ≤ 3

2 and tv⊗(s, s′) ≤ 2. �

Proof of Claim 6.15. First observe that the direction of νs′′ (`w)
νs(`w) is always ≤ 2:

νs′′(` w)

νs(` w)
=

99
100νs0(w) + 1

100νqs(w)
1
2νs0(w) + 1

2νqs(w)

=
99
100νs0(w)

1
2νs0(w) + 1

2νqs(w)
+

1
100νqs(w)

1
2νs0(w) + 1

2νqs(w)

≤
99
100νs0(w)
1
2νs0(w)

+
1

100νqs(w)
1
2νqs(w)

=
2 · 99

100
+

2

100
= 2

It will turn out the only interesting direction is νs(`w)
νs′′ (`w) , considered next:

Observe that for all words ` w, tv� and tv⊗ is bounded:

νs(` w)

νs′′(` w)
=

1
2νs0(w) + 1

2νqs(w)
99
100νs0(w) + 1

100νqs(w)

=
1
2νs0(w)

99
100νs0(w) + 1

100νqs(w)
+

1
2νqs(w)

99
100νs0(w) + 1

100νqs(w)

≤
1
2νs0(w)
99
100νs0(w)

+
1
2νqs(w)
1

100νqs(w)

≤ 100

2 · 99
+

100

2
≤ 51.

If there is a word w that is accepted by the automaton with probability > 1
2 ,

then consider the word ` (w acc)i rej), let w′ = (w acc)i rej).

νs(` (w acc)i rej)

νs′′(` (w acc)i rej)
=

1
2νs0(w′) + 1

2νqs(w
′)

99
100νs0(w′) + 1

100νqs(w
′)

≥
1
2νqs(w

′)
99
100νs0(w′) + 1

100νqs(w
′)
.

By Equation (6.3) of the previous proof we have νqs (w′)
νs0 (w′) −−−→i→∞ ∞, thus

νs0 (w′)
νqs (w′) −−−→i→∞ 0. Consider

99
100νs0(w′) + 1

100νqs(w
′)

1
2νqs(w

′)
=

2

100
+

2 · 99

100

[
νs0(w′)
νqs(w

′)

]
−−−→
i→∞

2

100
.

Then
1
2
νqs (w′)

99
100

νs0 (w′)+ 1
100

νqs (w′)
−−−→
i→∞

100
2 = 50. So for all ε there exists an i such

that νs(`(w acc)i rej)
νs′′ (`(w acc)i rej)

≥ 50− ε. In particular for example tv�(s, s′′) ≥ 49.

103

If there is no such word then ∀w ∈ Σ∗ : PA(w) ≤ 1
2 , then the total variation

distance will be small. All words start with ` and are terminated by rej, so in
general all words take the form w =` ((w1 acc) . . . (wn acc)(wn+1 rej). Let us
consider the probability of such words from s, s′′.

νs(w)

νs′′(w)
=

1
2νs0(w′) + 1

2νqs(w
′)

99
100νs0(w′) + 1

100νqs(w
′)
≤

1
2νs0(w′) + 1

2νqs(w
′)

99
100νs0(w′)

≤ 100

99
·
[

1

2
+

1

2

νqs(w
′)

νs0(w′)

]
≤ 100

99
· 3

2
(by Equation (6.6))

≤ 2.

This creates a significant gap between the case where there is a word with
probability greater than one half and not; in particular if ∃w : PA(w) > 1

2 then
49 < tv�(s, s′′) ≤ 51 and 49 < tv⊗(s, s′′) ≤ 51 and if not then tv�(s, s′′) ≤ 2

and tv⊗(s, s′′) ≤ 2. �

The gaps established in the claims complete the proof of Lemma 6.13.

6.3 The relation to the Value-1 problem

The previous section showed undecidability of the big-O problem via the
emptiness problem for probabilistic automata. Another undecidable problem
for probabilistic automata is the Value-1 problem. The Value-1 problem asks
whether some word of a probabilistic automaton is one, or at least arbitrarily
close to 1. This section shows that there is a close, but not complete, connection
between the Value-1 problem and big-O problem by reducing in both directions
between the two, the results are shown in Lemmas 6.17 and 6.18.

Definition 6.16 (Value-1 problem).

input A probabilistic automaton A
output for all δ > 0 is there a word w such that PA(w) > 1− δ? J

Lemma 6.17. Value-1 problem reduces to the big-O problem.

Lemma 6.18. The big-O problem reduces to Value-1 problem.

Proof of Lemma 6.17: The Value-1 problem reduces to the big-O problem.

Given a probabilistic automaton A = 〈Q,Σ,M, F 〉 and a dedicated starting
state q0 ∈ Q, which accepts words with probability PA(w), first construct A′ in

104

which words are accepted with probability PA′(w) = 1− PA(w), by inverting
accepting states.

The proof uses a two letter alphabet, Σ = {a, b}, but the procedure can
be generalised to arbitrary alphabets. Construct a Markov chain MA =

〈Q′,Σ′,M ′, F ′〉, where Q′ = Q ∪ {s, s′, s0, rej, acc}, Σ′ = {a, b, c} and F ′ =

{acc}. The probabilistic automaton will be simulated byMA. The relation
M ′ is described by the notation p−→

a
:

For all q ∈ Q :

∀q′ ∈ Q : q
1
3
M(a)(q,q′)−−−−−−−→

a
q′ q

1
3
M(b)(q,q′)−−−−−−−→

b
q′

if q ∈ F : q
1
3−→
c
acc and if q 6∈ F : q

1
3−→
c
rej

s′ 1−→
c
q0 s

1−→
c
s0 s0

1
3−→
a
s0 s0

1
3−→
b
s0 s0

1
3−→
c
acc

Note the only words with positive probability are words of the form cΣ∗c ⊆ Σ′∗.
Then given a word w ∈ Σ∗, νs(cwc) = (1

|Σ|+1)|wc| and νs′(cwc) = (1
|Σ|+1)|wc|(1−

PA(w)).

Then if there is a sequence of words for which PA(w) tends to 1 then νs(cwc)
νs′ (cwc)

is
unbounded.

However, if there exists some γ > 0 so that for all w ∈ Σ∗ PA(w) ≤ (1 − γ)

then (1− PA(w)) ≥ γ, and so νs(cwc)
νs′ (cwc)

≤ 1
γ .

Proof of Lemma 6.18: The big-O problem reduces to the Value-1 problem.

Given a labelled Markov chainM = 〈Q,Σ,M, F 〉 and s, s′ ∈ Q, construct a
probabilistic automaton A = 〈Q′,Σ′,M ′, F ′〉. Each state of Q will be dupli-
cated, once for s and once for s′; Qs = {qs | q ∈ Q}, Qs′ = {qs′ | q ∈ Q}.
Let Q′ = Qs ∪Qs′ ∪ {q0, acc, rej, sink}, Σ′ = Σ ∪ {$} and F ′ = {acc}.

Each transition of M will be simulated in each of the copies according the
probability inM. For every q, q′ ∈ Q, a ∈ Σ, letM ′(a)(qs, q

′
s) = M(a)(q, q′) and

M ′(a)(qs′ , q
′
s′) = M(a)(q, q′). A probabilistic automaton should be stochastic

for every a ∈ Σ, so there is unused probability for each character, which will
divert to a sink. For every q ∈ Q and a ∈ Σ, let

M ′(a)(qs, sink) = 1−
∑
q′∈Q

M(a)(q, q′)

and

M ′(a)(qs′ , sink) = 1−
∑
q′∈Q

M(a)(q, q′).

105

There will be an additional character $.

From q0 the machine will pick either of the two machines with equal probability;
M($)(q0, ss) = M($)(q0, s

′
s′) = 1

2 . If in the accepting or rejecting state the
system will stay there forever M ′($)(acc, acc) = 1 and M ′($)(rej, rej) = 1 .

The behaviour on $ will differ in the two copies of M. If in an s state the
system will preference the accepting state when accepting and otherwise restart.
If in an s′ state the system will preference the rejecting state when accepting
and otherwise restart. Formally,

M ′($)(qs, acc) when qs ∈ F and M ′($)(qs, q0) when qs 6∈ F

and

M ′($)(qs′ , rej) when qs′ 6∈ F and M ′($)(qs′ , q0) when qs′ ∈ F.

When in the sink state, the system restarts on $, M ′($)(sink, q0) = 1, or for
all a ∈ Σ stays there M ′(a)(sink, sink) = 1. A partial sketch of the reduction
can be seen in Figure 6.3.

The idea is that if νs(w) is much larger than νs′(w) then, by repeated reading
of the word w, nearly all of the probability mass will eventually move to acc;
otherwise a sufficiently large amount of mass will be lost to rej.

Claim 6.19. s is not big-O of s′ if and only if A ∈ Value-1.

Denote by PA(w) the probability of a word w in the probabilistic automaton,
from state q0, i.e. νq0(w). However, ν will be used to refer to the probability
in the labelled Markov chain M. Further the notation P[q

w−→ q′] is used to
denote (M ′(w1)× · · · ×M ′(w|w|)q,q′ , i.e. the probability of transitioning from
state q to q′ after reading w in A.

Case 1 (Not big-O implies Value-1). The proof shows that ∀δ∃C, i ∈ N, w ∈ Σ∗

such that νs(w) > Cνs′(w) and PA((w$)i) > 1− δ.

Hence given δ, choose C such that (1 − δ
2) C
C+1 > 1 − δ. Then by the big-O

property, choose a word such that νs(w) = C ′νs′(w), with C ′ > C. Then
(1− δ

2) C′

C′+1 > (1− δ
2) C
C+1 > 1− δ.

Given the fixed sequence (w)i, this induces a (unary) Markov chain, repre-
sented by the Matrix A, representing states q0, acc and rej in the three positions

106

q0

ss

s′s′

sink

acc

rej

qjs : qj ∈ Fqis : qi 6∈ F

qjs′ : qj ∈ F qis′ : qi 6∈ F

. . .

. . .

$ 1
2

$ 1
2

$ 1

$ 1

$ 1

$ 1

$ 1

$ 1

$ 1

Figure 6.3: Reduction from the big-O problem to Value-1. Only the effect of
transitions on the $ symbol are shown in black, with the possibility to transition
to the sink state depicted in grey (on symbols in Σ). All remaining transitions
are omitted.

respectively:

A =


0.5(1− νs(w)) + 0.5(1− νs′(w)) 0.5νs(w) 0.5νs′(w)

0 1 0

0 0 1


Then in the long run, starting from state 0, observe:

[1 0 0]Ai
i→∞−−−→ [0 Cx x] with Cx+ x = 1.

Clearly, Ai(0, 1) +Ai(0, 2) +Ai(0, 0) = 1, and choose i such that Ai(0, 0) ≤ δ
2 .

Then Ai(0, 1) + Ai(0, 2) ≥ 1 − δ
2 , using the fact that Ai(0, 1) = C ′Ai(0, 2),

obtaining Ai(0, 1) + Ai(0,1)
C′ ≥ 1− δ

2 .

107

Hence Ai(0, 1) ≥ (1− δ
2) C′

C′+1 > 1− δ, as required.

Case 2 (big-O implies Not Value-1). We have there exists C such that ∀w
νs(w) ≤ Cνs′(w) and should show there exists δ > 0 such that ∀w ∈ (Σ∪{$})∗
PA(w) ≤ 1− δ.

To move probability from q0 to acc it is necessary to use words of the form
$Σ∗$ where Σ is the alphabet ofM. Hence any word can be decomposed into
$w1$$w2$...$wm$.

After reading w1 the probability is such that

x1 = P[q0
$w1$−−−→ acc] = νs(w1)

y1 = P[q0
$w1$−−−→ rej] = νs′(w1)

P[q0
$w1$−−−→ q0] = 1− x1 − y1.

Since ∃C∀wi : νs(wi) ≤ Cνs′(wi), we have x1 ≤ Cy1. By induction, repeating
this process we have for all i: xi ≤ Cyi.

xi = P[q0
$w1$...wi−−−−−−−→ acc] = (1− νs(wi)− νs′(wi))xi−1 + νs(wi)

yi = P[q0
$w1$...wi−−−−−−−→ acc] = (1− νs(wi)− νs′(wi))yi−1 + νs′(wi)

P[q0
$w1$...wi−−−−−−−→ q0] =

i∏
j=1

(1− xj + yj).

Hence

xi = (1− νs(wi)− νs′(wi))xi−1 + νs(wi)

≤ (1− νs(wi)− νs′(wi))Cyi−1 + Cνs′(wi)

= C[(1− νs(wi)− νs′(wi))yi−1 + νs′(wi)]

≤ Cyi.

In the extreme xm+ym = 1, then xm ≤ C
C+1 < 1, so the probability of reaching

acc is bounded away from 1 for every word.

The Value-1 problem is undecidable in general, however it is decidable in
the unary case in coNP [CKV14a] and for leaktight automata [FGO12]. Note,
however, that the construction combined with these decidability results does
not entail any decidability results for the big-O problem. Firstly note that the
construction adds an additional character, and such a unary instance of the big-
O problem always has at least two characters when translated to the Value-1

problem. Further the construction does not result in a leaktight automaton,

108

to see this the definition of leaktight automata is recalled from [FGO12]. The
following, does not, of course, preclude the existence of a construction which
does maintain these properties.

Definition 6.20. A finite word u is idempotent if reading once or twice the
word u does not change qualitatively the transition probabilities. That is
PA[q

u−→ q′] > 0 ⇐⇒ PA[q
uu−→ q′] > 0.

Let un be a sequence of idempotent words. Assume that the sequence of
matrices PA(un) converges to a limit M , that this limit is idempotent and
denote M the associated Markov chain. The sequence un is a leak if there exist
r, q ∈ Q such that the following three conditions hold:

1. r and q are recurrent in M ,

2. lim PA[r
un−→ q] = 0,

3. for all n, PA[r
un−→ q] > 0.

An automaton is leaktight if there is no leak. J

If there were no leak in the probabilistic automaton then decidability would
follow. However, this is not the case, and the reduction does not solve any
cases by reduction to known decidable fragment of the Value-1 problem.

Claim 6.21. The resulting automaton from the reduction of the big-O problem
to the Value-1 problem has a leak.

Proof. Consider some infinite sequence of words wi growing in length, such
that νs(wi) > 0 for every i. Let ui = wi.

Observe that this word is idempotent. For each starting state, consider the
possible states with non-zero probability and from each of these the set of
reachable states. Observe that in all cases the set reachable after one application
is equal to the set reachable after two.

• acc
wi−−−→ acc

wi−−−→ acc

• rej
wi−−−→ rej

wi−−−→ rej

• q0
wi−−−→ q0, acc, rej

wi−−−→ q0, acc, rej

• q0
wi−−−→ q0, acc, rej

wi−−−→ q0, acc, rej

• For q accepting in Qs: q
wi−−−→ acc

wi−−−→ acc

• For q rejecting in Qs: q
wi−−−→ ∅ wi−−−→ ∅

109

• For q accepting in Qs′ : q
wi−−−→ rej

wi−−−→ rej

• For q rejecting in Qs′ : q
wi−−−→ ∅ wi−−−→ ∅.

Assume that the Markov chain M is a word terminating finite word chain,
that is the decision to terminate the word must be made by probability (for
example by transitioning to a final state). Then ∀λ > 0 there exists n such
that νs(Σ>n) < λ and νs′(Σ>n) < λ [Kie18, Lemma 12.].

Suppose limit PA(un) converges to a limit M and let r = q0 and q = acc.

Hence for longer and longer words the probability of reaching acc is diminishing.
Thus lim PA[r

un−→ q] = 0, and in M we have r and q in different SCCs. acc is
clearly recurrent as it is deterministically looping on every character. Since the
probability of reaching acc is diminishing for longer and longer words, whenever
$ is read the state returns to r, hence all words return to r with probability 1
in the limit. By the choice of words in the sequence, for every word νs(wn) > 0,
we have PA[r

un−→ q] > 0 for all n.

Hence a leak has been defined, even in the case whereM is unary.

6.4 The language containment condition

This section identifies a simple condition which is necessary but not sufficient
for s being big-O of s′. Recall that x

0 =∞ for x > 0. Hence, if there is a word
with νs(w) > 0 whilst νs′(w) = 0 then s is not big-O of s′.

Definition 6.22 (Language containment condition). A weighted automaton
W = 〈Q,Σ,M, F 〉 and s, s′ ∈ Q satisfy the language containment condition if
for all words w with νs(w) > 0 it is the case νs′(w) > 0. J

The condition can be verified by constructing a non-deterministic finite au-
tomaton which accepts the language of words with non-zero probability.

Definition 6.23. Let NFAi(W) be the NFA with the same set of states (and
final states) as W , start state i, and transitions q a−→ q′ whenever M(a)(q, q′) >

0. J

The name is due to the fact that the condition is equivalent to L(NFAs(W)) ⊆
L(NFAs′(W)). Recall that NFA language containment is NL-complete if the
automaton is in fact deterministic, in P if the NFA is unambiguous [Col15,
Theorem 3], is coNP-complete for unary NFAs and in general PSPACE-
complete (see e.g. [KMT17]); in all cases this will match, or be easier than, the
respective algorithm for the big-O problem.

110

s

s′

t

2
3

1
3

1
2

1
2

Figure 6.4: Language equivalent but not big-O. Transition labels are omitted
as the alphabet is unary.

The language containment condition will be the first step in each of the
verification routines to be presented. However, the following example shows
that the condition alone is not sufficient to solve the big-O problem, because
there may be two states that admit the same set of words with non-zero weight,
but have unbounded ratio.

Example 6.24. In Figure 6.4 the states s, s′ admit the same languages (both are
{an | n ≥ 1}) but the ratio is unbounded:

νs(a
n)

νs′(an)
=

(2
3)n 1

3

(1
2)n 1

2

=
2

3

(
4

3

)n
−−−→
n→∞ ∞. J

Remark. The classic big-O notation refers to functions f, g : N→ N, stating that
f is O(g) if ∃C > 0 : ∀n > 0 f(n) ≤ C g(n). In many formulations, another
definition is used, which excludes finitely many numbers: ∃C > 0, k > 0 : ∀n >
k f(n) ≤ C g(n). The notions are equivalent when g is bounded away from 0,
by taking a sufficiently larger C to deal with the finite prefix.

The definitions for weighted automata can thus be amended to ∃C > 0, k >

0, ∀w ∈ Σ≥k : νs(w) ≤ C · νs′(w) provided the language containment condition
holds. In the definition of big-O, s not big-O s′ if there exists even a single
word w such that νs(w) > 0 and νs(w′) = 0; however the natural extension to
allowing finitely many exceptions to this can be handled by simple modifications
to the algorithms. J

6.4.1 Unambiguous weighted automata

This section presents the first decidability result, in the case where the weighted
automaton is unambiguous (note that this also entails the deterministic case).
In this case there is polynomial-time solvability.

111

Lemma 6.25. For unambiguous weighted automata, the big-O problem is de-
cidable in polynomial time.

Proof. Let W = 〈Q,Σ,M, F 〉 be a unambiguous weighted automaton. Suppose
s, s′ ∈ Q and t is a unique final state. If W fails the language containment
condition (recall that it can be checked in polynomial time), return NO.
Otherwise, let us construct another weighted automaton, call it W ′, via the
product construction involving two copies of W: for all q1, q2, q

′
1, q
′
2 ∈ Q, add

edges (q1, q
′
1)

p−→
a

(q2, q
′
2) where p = M(a)(q1,q2)

M(a)(q′1,q
′
2)
. Now, observe that s is not big-O

of s′ (for W) if and only there is a path (using edges with positive weights)
in W ′ from (s, s′) to (t, t) which contains a cycle such that the product of the
weights in that cycle is greater than 1. Note that some edges may be ∞, but
thanks to the language containment condition, the weights are well-defined
(i.e. not ∞) on all paths from (s, s′) to (t, t). The latter can also be checked
in polynomial time, for instance, by a modified version of the Bellman-Ford
algorithm, which can be used to find negative cycles. The natural approach
would be to take the negative of the log of each edge weight so that the the
presence of a negative cycle indicates the presence of a positive cycle when
edges are multiplied together. To avoid inaccuracies from taking logs, the logs
can be represented by their exponent, using multiplication instead of addition
in the Bellman-Ford algorithm.

Remark. Observe that transitions which are taken once in any run are of very
little significance to the big-O problem. Such transitions have at most a constant
multiplicative effect on the ratio. This will hold true whether the system is
unambiguous or otherwise. The relevant behaviours are those on cycles. J

6.5 The big-O problem for unary weighted automata is coNP-

complete

This section shows that the big-O problem for unary weighted automata is
coNP-complete. The upper bound is shown for the big-O problem on unary
weighted automata and the lower bound for unary word-terminating labelled
Markov chains.

For the upper bound, the analysis will refine the analysis of the growth of
powers of non-negative matrices of Friedland and Schneider [Sch86] which gives
the asymptotic order of growth of Ans,s′+A

n+1
s,s′ +· · ·+An+q

s,s′ for some appropriate
q. The refinement is able to give an accurate answer to the asymptotic value of
Ans,s′ , without the smoothing effect of An+1

s,s′ + · · ·+An+q
s,s′ .

112

Theorem 6.26. The big-O problem for unary non-negative weighted automata
is coNP-complete.

6.5.1 Preliminaries

Let W be a unary non-negative weighted automaton with states Q, transition
matrix A and a unique final state t.

Definition 6.27. Recall the greatest common divisor, the gcd of {x1, . . . , xn}
is the largest integer c such xi

c is an integer for every i.

Recall the least common multiple, the lcm of {x1, . . . , xn} is the smallest integer
c such c

xi
is an integer for every i. J

Whenever a path of a weighted automaton is referred to, states on the path may
repeat. Formally, a path is in the NFA of W , that is, paths only use transitions
with non-zero weights. A state q can reach q′ if there is a path from q to q′. In
particular, any state q can always reach itself.

Definition 6.28. A strongly connected component (SCC) ϕ ⊆ Q is a maximal
set of states such that for each q, q′ ∈ ϕ, q can reach q′ with non-zero weight.
Denote by Aϕ, the |ϕ| × |ϕ| transition matrix of ϕ, and by SCC(q) the SCC in
which q is a member. J

Note that every state is in a SCC, even if it is a singleton.

Definition 6.29. The DAG of W is the directed acyclic graph of strongly
connected components. Components ϕ,ϕ′ are connected by an edge if there
exists q ∈ ϕ and q′ ∈ ϕ′ with A(q, q′) > 0. J

Definition 6.30. The spectral radius of an m × m matrix A is the largest
absolute value of the eigenvalues of A (the eigenvalues of A are the set
{λ ∈ C | exists vector ~x ∈ Cm, ~x 6= 0 with A~x = λ~x}). The spectral radius of
ϕ, denoted by ρϕ, is the spectral radius of Aϕ. By ρ(q) denote the spectral
radius of the SCC in which q is a member. If Aϕ = [0] then ρϕ = 0. J

The spectral radius of an SCC is an algebraic number, as the absolute value of
a root of a polynomial with rational coefficients; as such can be represented
using the tuple to record a polynomial and a sufficiently close approximation
(recall the representation described in Section 3.1.2). Henceforth, when the
spectral radius is referred to this form is meant implicitly. In this section, only
the relative ordering of the spectral radii of the SCCs are needed. However in
Section 6.6 the exact value is relied upon.

113

Lemma 6.31. Given Aϕ, a representation of the value ρϕ can be found in
polynomial time. This representation will admit polynomial time testing of
ρϕ > ρϕ′ and ρϕ = ρϕ′.

Proof. Any coefficient of the characteristic polynomial of an integer matrix can
be found in GapL [HT03]. GapL is the difference of two #L calls, each of
which can be found in NC2 ⊆ P. Here the matrix will be rational; but it can
be normalised to an integer matrix by a scaler, the least common multiple of
the denominator of each rational. Whilst the number may be exponential, its
representation will be polynomial. Once the eigenvalues of the integer matrix
have been found, they can be renormalised by this constant.

The characteristic polynomial of an n× n matrix has degree at most n, since
each coefficient can be found in polynomial time, the whole characteristic
polynomial can be found in this time. Thus by enumerating its roots (at most
n), taking the modulus of each, and sorting them with a comparison based
sort(a > b ⇐⇒ a + −1 × b > 0) it is possible to find the spectral radius in
this form (pz, a, b, r).

Algebraic numbers can be complex, but note that the spectral radius is a real
number, so that given the spectral radius in the form (pz, a, b, r) then in fact
b = 0. Then the number can be encoded exactly in the first order theory of the
reals using ∃z : pz(z) = 0 ∧ z − a ≤ r ∧ a− z ≤ r.

Definition 6.32. Denote by qϕ the period of the SCC ϕ to be the
greatest common divisor of return times for some state in the SCC, i.e.
gcd

{
t ∈ N | At(s, s) > 0

}
. It is known that any choice of state in the SCC

will give the same value (see e.g. [Ser13, Theorem 1.20]). If there is no cycle,
then the period is zero. J

Definition 6.33. Let P(s, s′) be the set of paths from the SCC of s to the
SCC of s′ in the DAG of W. Thus a path π ∈P(s, s′) is a sequence of SCCs
ϕ1, . . . , ϕm. J

Definition 6.34. Let q(s, s′) be the local period between s and s′; let

q(s, s′) = lcm
π∈P(s,s′)

gcd
ϕ∈π

qϕ. J

Definition 6.35. The spectral radius between states s and s′ is the largest
spectral radius seen of any SCC seen on a path from s to s, formally:

ρ(s, s′) = max
π∈P(s,s′)

ρ(π), where ρ(π) = max
ϕ∈π

ρϕ for π ∈P(s, s′). J

114

The following function captures the number of SCCs which attain the largest
spectral radius on the path which has the most SCCs of maximal spectral
radius.

Definition 6.36. Let k(s, s′) be the integer such that

k(s, s′) + 1 = max
π∈P(s,s′)

k(π)

where, for π ∈P(s, s′), k(π) = |{ϕ ∈ π | ρϕ = ρ(s, s′)}|. J

The asymptotic behaviours of weighted automata will be characterised using
the following key definition.

Definition 6.37. A (ρ, k)-pair is an element of R×N. The ordering on R×N

is lexicographic, i.e.

(ρ1, k1) ≤ (ρ2, k2) ⇐⇒ ρ1 < ρ2 ∨ (ρ1 = ρ2 ∧ k1 ≤ k2). J

Friedland and Schneider [FS80; Sch86] essentially use (ρ, k)-pairs to show the
asymptotic behaviour of the powers of non-negative matrices. In particular
they smooth the behaviour of the matrix over the local period and then show
the asymptotic behaviour of this.

Theorem 6.38 (Friedland and Schneider [FS80; Sch86]). Let A be an m ×m
non-negative matrix, inducing a unary weighted automaton W with states
Q = {1, . . . ,m}. Given s, t ∈ Q, let Bn

s,t = Ans,t + An+1
s,t + · · · + A

n+q(s,t)−1
s,t .

Then

lim
n→∞

Bn
s,t

ρ(s, t)nnk(s,t)
= c, 0 < c <∞.

In the case where the local period is one (q(s, t) = q(s′, t) = 1), Theorem 6.38
can already be used to solve the big-O problem (in particular if the matrix A is
aperiodic). In this case Ans,t = Bn

s,t = Θ(ρ(s, t)nnk(s,t)). Then to establish that
s is big-O of s′ verify that the language containment condition holds and

(ρ(s, t), k(s, t)) ≤ (ρ(s′, t), k(s′, t)).

However this is not sufficient if the local period if not one.

115

s

s′

t

1
2

1
2

1
2

1
2

1
16 15

16

1

1
4

3
41

Figure 6.5: Different rates for different phases.

Example 6.39. Consider chains shown in Figure 6.5 with local period 2. The
behaviour is:

Ans,t =

Θ(1
2

n
) n even

Θ(1
4

n
) n odd

and Ans′,t =

Θ(1
4

n
) n even

Θ(1
2

n
) n odd

However Theorem 6.38 tells us Bn
s,t = Θ(1

2

n
) and Bn

s′,t = Θ(1
2

n
) suggesting s is

big-O of s′, but actually

A2n
s,t

A2n
s′,t

−−−→
n→∞ ∞. J

Non-deterministic finite automata The computability arguments will rely upon
the following normalised forms of non-deterministic finite automata. In par-
ticular these will be necessary for the arguments on eventual inclusion (to be
defined in Definition 6.42) and when proving Theorem 6.26.

Definition 6.40. A unary NFA N = 〈Q,→, qs, F 〉 is in Chrobak normal
form [Chr86] if

• Q can be partitioned so that Q = S] C1] · · ·] Ck, where] denotes
disjoint union,

• S forms only a path s1
a−→ s2

a−→ . . .
a−→ sm,

• Ci forms only a cycle ci1
a−→ ci2

a−→ . . .
a−→ ci|ci|

a−→ ci1 for all i ∈ [k],

• sm
a−→ ci1 for all i ∈ [k]. J

116

Any unary NFA can be translated to this representation with at most quadratic
blow up in the size of the machine [Chr86], despite work to find efficien-
cies [SJ05], all that is needed here is that a representation can be found in
polynomial time [To09; Mar02]. Consider the following restriction on Chrobak
normal form, which will simplify the argument:

Definition 6.41. A unary NFA N is in restricted Chrobak normal form if

• it is in Chrobak normal form, and

• there is exactly one accepting state in each cycle. J

This restricted form can be found with at most a further quadratic blow up
over Chrobak normal form, by duplicating once for each accepting state in the
cycle.

6.5.2 Eventual inclusion

As part of the computability argument in the next section will require a new
relaxed notion of inclusion, called eventual inclusion. This relation requires
that one set is included in another “eventually”, that is, with finitely many
exceptions.

Definition 6.42. Given two sets A,B, A is eventually included in B, denoted
A ∼⊂ B, if and only if A \B is finite. J

The following results consider the complexity of deciding this property on NFAs,
showing that for bounded (and thus for unary NFAs) the problem is in coNP

and more generally in PSPACE.

Theorem 6.43. Given two NFA, N1,N2, deciding whether L(N1) ∼⊂ L(N2) is
in coNP if L(N1) and L(N2) are bounded and in PSPACE in the general
case.

Proof. One could construct M , a deterministic finite automaton (DFA) for
the language L(N1) ∩ L(N2), by explicitly producing the DFAs for N1 and N2

respectively and then applying a standard product construction. The size of
the resulting automaton is |M | = 2|N2|+|N1|

Then L(N1) ∼⊂ L(N2) if and only if L(M) is finite. However L(M) is infinite if
and only if there exists some word w ∈ L(D2)∩L(D2), with |M | ≤ w ≤ 2 |M |.

When the word is bounded, one can guess n1, n2, . . . , nm ∈ Nm, such that
n1 +n2 + · · ·+nm ∈ [|M | , 2 |M |] and verify the word wn1

1 , wn2
2 . . . wnmm ∈ L(N1)

117

and wn1
1 , wn2

2 . . . wnmm 6∈ L(N1). If such a word exists then L(N1) 6∼⊂ L(N2) and
if no such word exists then L(N1) ∼⊂ L(N2).

However the DFA M does not need to be constructed explicitly, the check
wn1

1 , wn2
2 . . . wnmm ∈ L(N1) can be done directly on the machine N1 without

construction of D1 by repeated squaring [IRS76].

When the word is not bounded, one cannot guess the word in this minimised
form. Instead non-deterministically simulate a word with length in this bound
and accept if accepted by N1 and rejected by N2 in NPSPACE. Recall
PSPACE = NPSPACE.

From the proof one can see that if L(N1) ∩ L(N1) is finite, it is of at most
exponential size. For unary NFAs, an alternative proof can show this size is at
most polynomial.

Lemma 6.44. if L(N1) ∩ L(N2) is finite, it is of polynomial size.

Proof. The strategy is to provide an alternative proof of that given two unary
NFA’s, N1,N2, the problem L(N1) ∼⊂ L(N2) is in coNP. However, this proof,
using Chrobak normal form will observe that the violations must occur within
the finite path.

Convert both NFA’s to Chrobak normal form. Normalise these so the finite
path is the same length in each machine. To do this make the shorter one
longer by repeatedly increasing the length by one and transitioning to one state
later in each cycle. The new state in the finite path should be accepting if any
of the first states in the cycles were accepting. Let z be length of these paths.

Assume in N1, there are n cycles, of lengths a1, . . . , an, and in N2, m cycles
of lengths b1, . . . , bm. For any word longer than z, it is either in both, one
of, or neither of L(N1) and L(N2). Then the behaviour repeats every q =

a1 · . . . · an · b1 · . . . · bm steps. So for every word at for t ∈ [z, z + q] the same
condition holds for t+ q, t+ 2q, t+ 3q.....

So if for some t in [z, z + q] there is at ∈ L(N1) but at 6∈ L(N2) then there are
infinitely many words like this. Hence it is necessary that for t ∈ [z, z + q] that
at be in both, neither or in L(N2) but not L(N1).

This test can be performed in coNP, by first guessing the violating t ∈ [z, z+q]

and checking at ∈ L(N1) but at 6∈ L(N2). Checking whether a word at ∈ L(N1)

can be checked in polynomial time by repeated squaring of the transition
matrix, and similarly for N2.

There are at most finitely many violations, and all of these exceptions occur

118

within the finite paths for at, t ∈ [0, z]. Further z is polynomially bounded; it’s
at most the number of states in the normalised Chrobak normal form, which
is polynomial in the size of N1 or N2 before conversion to Chrobak normal
form.

6.5.3 The big-O problem for unary weighted automata is in coNP

This section proves the computability result of Theorem 6.26. Further Lemma 6.46
shows a refined analysis of the growth in powers of non-negative matrices, with-
out smoothing required in Theorem 6.38. This is done by exhibiting a value of
ρ and k for every word.

Let W be a unary weighted automaton and the question whether state s is
big-O of s′. Recall, without loss of generality, it is assumed that there is a
unique final state t with no outgoing transitions. Assume, without loss of
generality, s, s′ do not appear on any cycle. If this is not the case, add two new
states ŝ, ŝ′, transitions ŝ 1−→ s, ŝ′ 1−→ s′, and consider the big-O problem for ŝ, ŝ′

instead (note that νŝ(an) = νs(a
n−1) and νŝ′(an) = νs′(a

n−1)).

The following defines a “degree function”, which captures, by way of a value ρ
and k, the asymptotic behaviour of each word an.

Definition 6.45. Let fs,t : N→ R×N, such that fs,t(n) = (ρ, k) if and only if

• The largest spectral radius of any vertex visited on the any length n path
from s to t is ρ.

• The path from s to t which visits the most SCCs of spectral radius ρ
visits k + 1 such SCCs.

• If there is no path of length n from s to t, then (ρ, k) = (0, 0). J

Further, where only one component is necessary, assume the functions ρ(n), k(n),
defined by fs,t(n) = (ρ(n), k(n)).

Let s, t ∈ Q be fixed. The following lemma is the key technical lemma of this
subsection (compare to Theorem 6.38, Friedland and Schneider [FS80; Sch86]).

Lemma 6.46. There exists c, C ∈ R such that for every n ∈ N, with n ≥ |Q|,

c · ρ(n)nnk(n) ≤ Ans,t ≤ C · ρ(n)nnk(n).

The set of admissible (ρ, k)-pairs is the image of fs,t. Observe that this set is
finite and of size at most |Q|2: there can be no more than |Q| values of ρ (if at
worst each state were its own SCC) and the value of k is also bounded by the
number of SCCs and thus |Q|.

119

In order to prove Lemma 6.46 and the computability results, the (ρ, k)-annotated
version of W is defined, which, in each state records the relevant value of (ρ, k)

corresponding to the current run to the state.

Definition 6.47 (The weighted automaton M†). Given W = 〈Q,Σ,M, {t}〉
and s ∈ Q, the weighted automaton M† has states of the form (q, ρ, k) for
all q ∈ Q and all admissible (ρ, k)-pairs, the same Σ and no final states. For
every transition q p−→ q′ from W , include the following transition inM† for each
admissible (ρ, k):

• (q, ρ, k)
p−→ (q′, ρ, k) if SCC(q) = SCC(q′)

• (q, ρ, k)
p−→ (q′, ρ, k + 1) if SCC(q) 6= SCC(q′) and ρ = ρ(q′)

• (q, ρ, k)
p−→ (q′, ρ, k) if SCC(q) 6= SCC(q′) and ρ > ρ(q′)

• (q, ρ, k)
p−→ (q′, ρ(q′), 0) if SCC(q) 6= SCC(q′) and ρ(q′) > ρ J

Note that the accepting behaviour has not been specified, which will depend
on the application ofM†, and be specified on use.

Lemma 6.48.M† can be constructed in polynomial time given W.

Proof. It suffices to note that spectral radii of all SCCs can be computed and
compared to each other in time polynomial in the size of W (see Lemma 6.31).

Proof of Lemma 6.46. For values n < |Q| the value of ρ may be incorrectly
characterised as 0, by going through only strongly connected components with
no loops. If n ≥ |Q| some state repeats and ρ must be non-zero.

Case 1 (Lower Bound). Fix (ρ′, k′) and let π = ϕ1 . . . ϕk ∈P(s, t) be a sequence
of SCCs with exactly k′ + 1 SCCs of spectral radius ρ′ and no SCC with a
larger spectral radius.

Additionally, from each ϕi, specify an entry point si and an exit point ei
witnessing π, i.e. s = s1, SCC(si) = SCC(ei) = ϕi (1 ≤ i ≤ k), there is a
transition (of positive weight) from ei to si+1 (1 ≤ i < k) and ek = t.

Define a new unary weighted automaton WN to be a restriction of W so that
the only entry points to its SCCs are si’s and the only exit point are ei’s, i.e.
the probability is reduced to zero for any violating transition. Let D be the
transition matrix of WN.

Clearly Ans,t ≥ Dn
s,t, since WN is a restriction of W. Note that, in WN,

ρ(s, t) = ρ′ and k(s, t) = k′, because all paths from s to t must visit k′+1 SCCs

120

with spectral radius ρ′. Hence, by Theorem 6.38, Dn
s,t+Dn+1

s,t + · · ·+Dn+q−1
s,t ≥

c1(ρ′)nnk
′ , for some c1 > 0, where q is the local period from s to t inWN. Finally

it is required that Dn+1
s,t + · · ·+Dn+q−1

s,t = 0, which implies Dn
s,t ≥ c1(ρ′)nnk

′

and, hence, Ans,t ≥ c1(ρ′)nnk
′ .

Let L be the length of the shortest path from s to t in WN. Observe that paths
from s to t in WN can only have lengths from{

L+ n1 · qSCC(s1) + · · ·+ nk · qSCC(sk) | n1, . . . , nk ∈ N
}

and, thus,
{
L+ n · gcd

{
qSCC(s1), . . . , qSCC(sk)

}
| n ∈ N

}
. As P(s, t) = {π}

in WN, q(s, t) = gcd
{
qSCC(s1), . . . , qSCC(sk)

}
. Consequently, all paths from s

to t in WN have lengths of the form L+ nq. Hence, since Dn
s,t is positive, there

are no paths which can contribute positive value to Dn+1
s,t + · · ·+Dn+q−1

s,t .

Case 2 (Upper bound). Let N(ρ′,k′) = {n | fs,t(n) = (ρ′, k′)}. This gives a finite
partition of N as

⋃
(ρ,k)N(ρ,k). For each (ρ′, k′), the proof will find a value

C(ρ′,k′) so that, for n ∈ N(ρ′,k′), we have Ans,t ≤ C(ρ′,k′)(ρ
′)nnk

′ . Then, to have
Ans,t ≤ Cρ(n)nnk(n) for all n ∈ N, it will suffice to take C to be the maximum
over all C(ρ′,k′).

Fix (ρ′, k′) and considerW• to beM† in which, for every (ρ, k) ≤ (ρ′, k′), states
(t, ρ, k) are merged into a single final state t′ (recall there are no outgoing edges
from t). Finally, rename the state (s, 0, 0) to s′. Let E be the corresponding
transition matrix of W•. Note that all paths from s′ to t′ in W• go through at
most k′ + 1 SCCs with spectral radius ρ′.

Claim 6.49. For all n ∈ N(ρ′,k′), we have Ans,t = Ens′,t′.

Consider any path s → q1 → · · · → qm → t in W. There is a corresponding
path in W•, however the states qi are annotated as (qi, ρ, k), where ρ is the
largest spectral radius seen so far, and k + 1 is the number of SCCs of that
radius number seen so far. The only paths removed are those terminating at
(t, ρ, k) with (ρ, k) > (ρ′, k′). Since fs,t(n) = (ρ′, k′), then no path visits more
than k′ + 1 SCCs of spectral radius ρ′, or an SCC of spectral radius greater
than ρ′. Consequently, no such path is disallowed in W•. No paths were added
either. Because every SCC in W remains a strongly connected component in
W• (duplicated with various (ρ, k)) and its transition probability matrix (and
hence the spectral radius) remains the same, concluding that Ans,t = Ens′,t′ .

Claim 6.50. There exists C(ρ′,k′) such that Ans,t ≤ C(ρ′,k′)(ρ
′)nnk

′.

We have Ans,t = Ens′,t′ ≤ Ens′,t′ + En+1
s′,t′ + · · · + E

n+q(s′,t′)−1
s′,t′ , where q(s′, t′) is

the local period between states s′ and t′ in W•. By Theorem 6.38, there

121

exists C(ρ′,k′) such that this quantity is bounded by C(ρ′,k′)(ρ
′)nnk

′ . Thus, for
n ∈ N(ρ′,k′), we have Ans,t ≤ C(ρ′,k′)(ρ

′)nnk
′ .

For the following lemma, recall the language containment condition from
Definition 6.22 and the ordering on (ρ, k)-pairs from Definition 6.37.

Lemma 6.51. A state s is big-O of s′ if and only if the language containment
condition holds and, for all but finitely many n ∈ N, we have fs,t(n) ≤ fs′,t(n).

Proof. First note some consequences of fs,t(n) ≤ fs′,t(n). Suppose fs,t(n) =

(ρ, k) and fs′,t(n) = (ρ′, k′). Thanks to Lemma 6.46, we have νs(a
n) ≤

(Cc (ρρ′)
nnk−k

′
) · νs′(an). If fs,t(n) ≤ fs′,t(n) then there are two cases: either

(ρ, k) = (ρ′, k′) or (ρ, k) < (ρ′, k′).

• In the former case, (ρρ′)
nnk−k

′
= 1 and, thus, νs(an) ≤ (Cc) · νs′(an).

• In the latter case, we have limm→∞(ρρ′)
mmk−k′ = 0 and, thus, (ρρ′)

mmk−k′ <

1 for all but finitely many m. Consequently, for all but finitely many n,
νs(a

n) ≤ (Cc) · νs′(an).

Thanks to the above analysis, if fs,t(n) ≤ fs′,t(n) holds for all but finitely many
n, it follows that νs(an) ≤ (Cc) · νs′(an) for all but finitely many n. Moreover,
the language containment condition implies that νs(an) ≤ C ′ · νs′(an) for some
C ′ in the remaining (finitely many) cases. Hence, s is big-O of s′, which shows
the right-to-left implication.

For the converse, recall that it is already established that “s is big-O of s′”
implies the language containment condition. For the remaining part, suppose
that there are infinitely many n with fs,t(n) > fs′,t(n). As there are finitely
many values in the range of fs,t and fs′,t, there exist (ρ, k) and (ρ′, k′) such that
(ρ, k) > (ρ′, k′) and, for infinitely many n, fs,t = (ρ, k) and fs′,t = (ρ′, k′). For
such n, Lemma 6.46 yields νs(an) ≥ (cC (ρρ′)

nnk−k
′
)·νs′(an). But (ρ, k) > (ρ′, k′)

implies

lim
m→∞

(
ρ

ρ′
)mmk−k′ =∞,

i.e. (ρρ′)
nnk−k

′ is unbounded. Thus, s cannot be big-O of s′.

The following result relates Lemma 6.51 to eventual inclusion.

Lemma 6.52. Suppose f1, f2 : N → X, where (X,≤) is a finite total order.
Then f1(n) ≤ f2(n) for all but finitely many n if and only if {n | f1(n) ≥ x} ∼⊂
{n | f2(n) ≥ x} for all x ∈ X.

122

Proof. The left-to-right implication is clear. For the opposite direction, observe
that, because the order on X is total, f1(n) > f2(n) implies the existence of
x ∈ X such that f1(n) ≥ x and f2(n) < x (it suffices to take x = f1(n)).
Because X is finite, f1(n) > f2(n) for infinitely many n implies failure of
{n | f1(n) ≥ x} ∼⊂ {n | f1(n) ≥ x} for some x.

Lemma 6.53. Given a unary weighted automaton W, the associated problem
whether fs,t(n) ≤ fs′,t(n) for all but finitely many n ∈ N is in coNP.

Proof. Given an admissible pair x = (ρ, k), construct an NFA Ns,x accepting
{an | fs,t(n) ≥ x}, taking the NFA NFAs(M†) (Definitions 6.23 and 6.47) with
a suitable choice of accepting states. Recall that states inM† are of the form
(q, ρ′, k′), where q is a state from W and (ρ′, k′) is admissible. Designate states
(t, ρ′, k′) with (ρ′, k′) ≥ x as accepting, so it will accept {an | fs,t(n) ≥ x}.
Clearly, this is a polynomial-time construction. An analogous automaton, let
us call it Ns′,x, can be constructed for s′.

Then, by Lemma 6.52, the problem whether fs,t(n) ≤ fs′,t(n) for all but finitely
many n ∈ N is equivalent to L(Ns,x) ∼⊂ L(Ns′,x) for all admissible x. As there
are at most |Q|2 many values of x and each can be verified non-deterministically
by coNP, it suffices to show that L(Ns,x) ∼⊂ L(Ns′,x) is in coNP for each x.
This is the case by Theorem 6.43.

Remark. Lemma 6.52 remains true if using the condition {n | f1(n) = x} ∼⊂
{n | f2(n) ≥ x} instead. However, although this appears simpler, it does not
seem possible to construct an NFA for {an | fs,t(n) = x} in polynomial time.
For instance, taking accepting states to be (t′, ρ, k) would not be correct,
because there could be paths of the same length ending in (t′, ρ′, k′) with
(ρ′, k′) > (ρ, k). This problem is avoided if one uses ≥ instead of =, as done in
Lemma 6.53. J

Lemma 6.51 and Lemma 6.53 together complete computability result for Theo-
rem 6.26. The required hardness results is established next.

6.5.4 Tv-Bounded is coNP-hard for unary LMCs

Given a unary NFA, N , the NFA universality problem asks if is it the case that
L(N) = {an | n ∈ N}. This problem is coNP-complete [SM73].

Lemma 6.54. Tv-Bounded(s, s′) is coNP-hard on unary Markov chains.

Proof of Lemma 6.54. The proof reduces the NFA universality problem to
Tv-Bounded(s, s′). This will produce a labelled Markov chain with a strongly

123

s u t

s′

v

C1

...

Cm

.

C1

Cm

1

1
2

1
2

1
m+1

1
2|Q|

1− 1
2|Q|

1
m+1

1

1
24

1− 1
24

1

1

1
m+1

1
2|Cm|

1− 1
2|Cm|

. . .

1

. . .

Figure 6.6: Reduction from NFA (left) to LMC (right).

connected component for each cycle of the NFA, given in Chrobak normal form.
Each strongly connected component will be set to have spectral radius 1

2 , so
that in the case when the word is in the language νs′(an) = Θ((1

2)n) and when
the word is not in the language it will have a much smaller probability. When
there are infinitely many words not in the language the ratio with a branch
which always has νs(an) = Θ((1

2)n), will diverge. The remaining finite case will
be considered separately.

Formally, assume N = 〈Q,−→, s1, F 〉 is given in restricted Chrobak normal form
(Definition 6.41), or convert to this representation in polynomial time. Then
there is some path s1 → s2 → · · · → sn and for 1 ≤ k ≤ m, we have a cycle
Ck = ck1 → ck2 → · · · → ck|Ck| → ck1, with sn → ck1. All transitions are labelled

with the unique character (say a). There is exactly one accepting state in each
cycle.

If any of s1, . . . sn are not accepting then N is not universal; simply reject. The
path can now be discarded, and N has is a single accepting vertex s′ as the
path, so Q = {s′}] C1] . . .] Cm.

A unary Markov chainM, depicted in Figure 6.6 is constructed, with states
Q′ = Q ∪ {s, u, v, t} and t the final state.

First consider the fixed branch from s, behaving as νs(an) = Θ((1
2)n) for all

124

n ≥ 2:

s
1−→ u u

1
2−→ u u

1
2−→ t.

Then consider the remaining branch derived from N . First ensure that every
word has non-zero probability with a branch having very small probability.

s′
1

m+1−−−→ v v

1

2|Q|−−−→ v v
1− 1

2|Q|−−−−→ t.

The remainder ensures that if the cycle can be used, it will cause the probability
to behave according to νs′(an) = Θ((1

2)n): First enable a jump to each cycle,
for 1 ≤ k ≤ m

s′
1

m+1−−−→ ck1

And then simulate the cycle: if ckj 6∈ F we have

ckj−1
1−→ ckj (if j = 1 then j − 1 =

∣∣∣Ck∣∣∣)
and, if ckj ∈ F we have

ckj−1

1
2
|Ck|
−−−−→ ckj ckj−1

1− 1
2
|Ck|

−−−−−→ t (if j = 1 then j − 1 =
∣∣∣Ck∣∣∣).

Let ε = 1− 1
2
|Ck|, that is, the probability to leave the cycle instead of entering

the state corresponding to an accepting state in the NFA.

Claim 6.55. The spectral radius ρCi of each cycle SCC is (1− ε)
|Ci∩F |
|Ci| .

Proof of Claim 6.55. Let A be the transition matrix of the cycle,

A =



0 x1 0 · · · 0

0 x2 0

0 x3
...

...
. . . xn−1

xn 0 0 . . . 0



125

then we have

A− λI =



−λ x1 0 · · · 0

−λ x2 0

−λ x3
...

...
. . . xn−1

xn 0 0 . . . −λ


.

The eigenvalue of A are the roots of det(A− λI) = 0. Using Leibniz formula
det(A) = Σπ∈Snsgn(π)Πn

i=1Aπ(i),i, where Sn is the set of all permutation func-
tions. However note the only permutations which result in non-zero products
are the identity [1, . . . n] and [2, . . . , n, 1]. This obtains (−λ)n + (−1)n−1(x1 ·
. . . · xn) = 0. Note that xi is 1 where the only option is to stay in the cycle and
(1−ε) where there is some possibility to leave. Thus x1 · . . . ·xn = (1−ε)|Ci∩F |,
obtaining λn = (1 − ε)|Ci∩F | and so the only real dominant eigenvalue is

λ = (1− ε)
|Ci∩F |
|Ci| . �

Claim 6.56. N universal⇐⇒ tv�(s, s′) <∞ ⇐⇒ tv⊗(s, s′) <∞.

Proof. Let fs,t be defined as in Definition 6.45, then fs,t(0) = fs,t(1) = fs′,t(0) =

fs′,t(1) = (0, 0). For the s branch, observe then that fs,t(n) = (1
2 , 0) for all

n ≥ 2. Also note, using the claim above, that every cycle’s spectral radius, ρCi ,
is 1

2 :

ρCk = (1− ε)
|Ck∩F |
|Ck| = (1− ε)

1

|Ck| =

(
(
1

2
)|Ck|

) 1

|Ck|
=

1

2
.

Thus for all n ≥ 2 we have:

fs′,t(n) =

(1
2 , 0) some cycle accepts an−1 in N

(1
2|Q|

, 0) otherwise

Due to the branches s→ u→ t and s′ → v → t, both machines accept all words
of length 2 or more with some probability; the language containment condition
holds without testing. Then recall, by Lemma 6.51, νs(s,s′)

νs′ (s,s
′) is bounded when

all but finitely many n give fs′,t(n) ≥ fs,t(n). Note then fs′,t(n) ≤ fs,t(n) for
all n ≥ 2 so νs′ (s,s

′)
νs(s,s′)

is always bounded.

Suppose the automaton is universal, all an are accepted. Then fs′,t(n) =

fs,t(n) = (1
2 , 0) for all n ≥ 2 so νs(s,s′)

νs′ (s,s
′) is bounded.

Suppose the automaton is not universal, so some at 6∈ L(N). In Chrobak

126

s

ρ = 0.5

s′

ρ = 0.25

t

ρ = 0.5

ρ = 0.5

1

1

1

11
16

1
16

1
4

1
2

1
2

1
2

1
2

1
4

3
4

1

1
4

1
2

1

Figure 6.7: Example unary labelled Markov chain, with the spectral radius of
each SCC indicated.

normal form, the behaviour is periodic for q = lcm
{∣∣C1

∣∣ , . . . , |Cm|}. Hence
at+q·z 6∈ L(N) for all z ∈ N, so giving an infinite sequence with fs′,t(n) < fs,t(n),
so νs(s,s′)

νs′ (s,s
′) unbounded. �

Claim 6.56 entails the required hardness for Lemma 6.54.

Example 6.57. Consider the Markov chain depicted in Figure 6.7.

νs(a
n) =

Θ(0.5nn) n ≥ 3

0 n = 1, 2

νs′(a
n) =


Θ(0.25n) n ≥ 2 and even

Θ(0.5n) n ≥ 3 and odd

0 n = 1

Then s not big-O of s′ as
νs(a

n)

νs′(an)

n→∞−−−→∞.

Also s′ not big-O of s, as νs′(a2) > 0 but νs(a2) = 0. J

127

6.6 Decidability for weighted automata with bounded languages

This section considers the big-O problem on weighted automata with bounded
languages, which can be considered a generalisation of unary languages.

Definition 6.58. Let L ⊆ Σ∗.

• L is bounded [GS64] if L ⊆ w∗1w∗2 · · ·w∗m for some w1, . . . , wm ∈ Σ∗.

• L is letter-bounded if L ⊆ a∗1a∗2 . . . a∗m for some a1, . . . , am ∈ Σ.

• L is plus-letter-bounded if L ⊆ a+
1 a

+
2 . . . a

+
m for some a1, . . . , am ∈ Σ. J

The problem is first discussed for the plus-letter-bounded case, and in the
subsequent subsections this is generalised to weighted automata with bounded
languages. The decidability result in this section uses the first order theory
of the real numbers with exponential function. This theory is only known to
be decidable subject to Schanuel’s conjecture [MW96], and so the result is
conditional on this conjecture.

Theorem 6.59. Given a weighted automaton W = 〈Q,Σ,M, F 〉, s, s′ ∈ Q, with
L(NFAs(W)) and L(NFAs′(W)) bounded, it is decidable whether W, s, s′ form
a positive instance of the big-O problem, subject to Schanuel’s conjecture.

In the unary case it is sufficient to consider the relative order between spectral
radii at various points, with careful handling of the periodic behaviour. Such
an approach is not sufficient in the bounded case as the actual values of the
spectral radii have to be examined, as demonstrated in Example 6.60.

Example 6.60 (Relative orderings are insufficient). Consider the LMC in Fig-
ure 6.8, with 0.61 ≤ p ≤ 0.62, we have νs(anbm) = Θ(0.6n · 0.4m) and initially
νs′(a

nbm) = Θ(pn · 0.39m + 0.59n · 0.41m). Note that neither 0.59n · 0.41m nor
pn · 0.39m dominate, nor are dominated by, 0.6n · 0.4m for any value of 0.61 ≤
p ≤ 0.62. That is, there are values of n and m where 0.59n ·0.41m � 0.6n ·0.4m
and values of n and m where 0.59n · 0.41m � 0.6n · 0.4m; and similarly for
pn · 0.39m and 0.6n · 0.4m. However the values p = 0.61 and p = 0.62 have
different outcomes with respect to the big-O problem; despite the same relative
ordering between values.

When p = 0.62, the ratio νs(anbm)
νs′ (a

nbm) is bounded for all n,m. However, when p =

0.61, observe there is a solution to x with 0.61·0.39x < 0.6·0.4x and 0.59·0.41x <

0.6 · 0.4x, e.g. x = 0.66, then let m = xn and observe νs(anb0.66n)
νs′ (a

nb0.66n)
−−−→
n→∞ ∞.

Whilst useful for illustration in this example, this effect is not limited to a linear
relation between the characters, and so heavier machinery is required. J

128

s

s

s′

s′

a 1

a 0.5

a 0.5

a p

a 1−p

a 0.59

a 0.41

b 0.4

b 0.6

b 0.41

b 0.39

b 0.59

b 0.61

a 0.6

a 0.4

Figure 6.8: For p = 0.61 and p = 0.62 the relative orderings of spectral radii
are the same, but the big-O status is different.

The strategy to prove Theorem 6.59 will be as follows. First detector automata
will be defined, which characterise behaviours generalising (ρ, k)-pairs consid-
ered in the unary case. Once the behaviours can be characterised, the technical
meat of the argument will show the theorem restricted to plus-letter-bounded
languages (in Lemma 6.64). The generalisations of letter-bounded languages
and bounded languages will then be reduced to this case.

6.6.1 Detector automata

Like in Definition 6.45, a degree function is used which will associate the
asymptotic behaviour of each word, but (ρ, k) values are associated to each of
the m characters. However there may be multiple, incomparable behaviours,
hence f : Nm → P {(R× N)m}, such that for elements f(n1, . . . , nm) are
((ρ1, k1), . . . , (ρm, km)) pairs that are incomparable, first consider how to com-
pare elements.

Recall Lemma 6.46 does not capture the asymptotics when n ≤ |Q|. In the
unary case this is inconsequential as small words are covered by the finitely
many exceptions and the language containment condition. However, here, a
small number of one character may be used to enable access to a particular
part of the automaton in another character. For this case, a new number

129

δ = 1
2 minϕ:ρϕ>0 ρϕ is introduced which is strictly smaller than the spectral

radius of every non-zero SCC. The purpose of this value is to assign non-zero
weight to these small paths in such a way that they do not dominate in the
partial order. Since the path is a small finite path, thus in each path δ will
occur a finite number of times the asymptotic characterisation will be correct
no matter the true value of δ.

Definition 6.61. Let ≤ be a partial on (R × N)m, using the lexicographic
order used on R× N such that

(ρ1, k1), . . . , (ρm, km) ≤ (ρ′1, k
′
1), . . . , (ρ′m, k

′
m)

⇐⇒ ∀i ∈ {1, . . . ,m} : (ρi, ki) ≤ (ρ′i, k
′
i). J

Then ((ρ1, k1), . . . , (ρm, km)) ∈ fs(n1, . . . , nm) if and only if

1. There is a path labelled with an1
1 an2

2 . . . anmm such that for each i ∈
{1, . . . ,m}, either:

• visits ki+1 SCCs with spectral radius ρi whilst reading the character
ai, or

• the path visits only singleton SCCs (with no loops) whilst reading
ai, in which case (ρi, ki) = (δ, 0).

2. There is no path according to (1) that could be labelled
with (ρ′1, k

′
1), (ρ′2, k

′
2), . . . , (ρ′m, k

′
m) and (ρ1, k1), . . . , (ρm, km) ≤

(ρ′1, k
′
1), . . . , (ρ′m, k

′
m)

Let D be the set of possible such sequences, i.e. fs(n1, . . . , nm) ⊆ D, observe
that the size of D is less than (|Q|2)m.

Lemma 6.62. There exists c, C ∈ R such that

c
∑

X∈fs(n1,...,nm)

∏
(ρi,ki)∈X

(ρnii n
ki
i)

≤ νs(an1
1 an2

2 . . . anmm) ≤
C

∑
X∈fs(n1,...,nm)

∏
(ρi,ki)∈X

(ρnii n
ki
i).

130

Proof of Lemma 6.62.

νs(a
n1
1 an2

2 . . . anmm) = (M(a1)n1 ×M(a2)n2 × · · · ×M(am)nm)s,t

=
∑
q1∈Q

M(a1)n1
s,q1(×M(a2)n2 × · · · ×M(am)nm)q1,t

...

=
∑

(q1,...,qm−1)∈Qm−1

M(a1)n1
s,q1 ×M(a2)n2

q1,q2 × · · · ×M(am)nmqm−1,t

In the case ni ≥ |Q|, by Lemma 6.46 in the unary case, for each M(ai)
ni
qi−1,qi ,

there is a (ρqi−1,qi , kqi−1,qi), c, C, such that

cρniqi−1,qin
kqi−1,qi

i ≤M(ai)
ni
qi−1,qi ≤ Cρniqi−1,qin

kqi−1,qi

i .

Otherwise if ni ≤ |Q|, since there are at most |Q| instances it is clear there
exists c, C,

cδni ≤M(ai)
ni
qi−1,qi ≤ Cδni .

Take c, C so that C is maximised over all such C and c is minimised over all
such c.

cm−1
∑

(q1,...,qm−1)∈Qm−1

ρn1
s,q1n

ks,q1
1 · . . . · ρnmqm−1,t

n
kqm−1,t

m

≤ νs(an1
1 an2

2 . . . anmm) ≤

Cm−1
∑

(q1,...,qm−1)∈Qm−1

ρn1
s,q1n

ks,q1
1 · . . . · ρnmqm−1,t

n
kqm−1,t

m (6.7)

By standard manipulations, any such that if for all i (ρ̂i, k̂i) ≤ (ρ1, k1), then

ρ̂n1
1 nk̂1

1 · . . . · ρ̂nmm nk̂mm + ρn1
1 nk1

1 · . . . · ρnmm nkmm = Θ(ρn1
1 nk1

1 · . . . · ρnmm nkmm) and by
sufficient modification of C, c, paths admitting (ρ̂1, k̂1), . . . , (ρ̂m, k̂m) can be
omitted.

Since the sum is finite, any two sums with the same ρ, k values can be reduced
to a single one, changing c, C by a factor of two.

The remaining (ρ, k) paths correspond exactly with fs(n1, . . . , nm).

Given a set of sequences

X =
{

((ρ1
1, k

1
1), . . . , (ρ1

m, k
1
m)), . . . , ((ρh1 , k

h
1), . . . , (ρhm, k

h
m))
}
⊆ D.

An automaton accepting all an1
1 , . . . , anmm , where fs(n1, . . . , nm) = X , can be

131

constructed. First, let Xi = ((ρi1, k
i
1), . . . , (ρim, k

i
m)) and construct N≥Xis with

the language,

L(N≥Xis) =
{
an1

1 , . . . , anmm | ∃((ρ
′
1,k
′
1),...,(ρ′m,k

′
m))∈fs(n1,...,nm)

such that ((ρ′1,k
′
1),...,(ρ′m,k

′
m))≥Xi

}
.

This is done by tracking for each state the current maximum spectral radius
seen and the number of different SCCS with this spectral radius. Permit passage
from states reading aj to states reading aj+1 only if this tracked value is at
least (ρij , k

i
j) and states should only be final if the tracked value of am is at

least (ρim, k
i
m).

Similarly, by replacing ensuring at least one such inequality is strict, with one
extra bit of information, the machine N>Xi

s can be constructed such that:

L(N>Xi
s) =

{
an1

1 , . . . , anmm | ∃((ρ
′
1,k
′
1),...,(ρ′m,k

′
m))∈fs(n1,...,nm)

such that ((ρ′1,k
′
1),...,(ρ′m,k

′
m))>Xi

}
.

Which can then be used to make NXi
s with the property

L(NXi
s) = L(N≥Xis) \ L(N>Xi

s).

Then for the sequence X = {X1, . . . , Xh}, construct NXs such that:

L(NXs) =
⋂
Xi∈X

L(NXi
s) ∩

⋂
Xi∈D\X

L(NXi
s).

Finally, given two sets of sequences X and Y one can construct NXs ∩ NYs′
requiring words to satisfy X from state s, and Y from s′.

Definition 6.63. NXi
s and NXs are called detector automata. J

6.6.2 The plus-letter-bounded case

The problem will be addressed first when the language is of the form a+
1 . . . a

+
m

with ai 6= ai+1, so that any word can be uniquely identified as an1
1 . . . anmm using

a vector (n1, . . . , nm) ∈ Nm with ni > 0 for every i ∈ [m]. Note that one can
translate this into a machine such that ai 6= aj for all i 6= j, by relabelling the
transitions.

Lemma 6.64. Given a weighted automaton W = 〈Q,Σ,M, F 〉, s, s′ ∈ Q, with
L(NFAs(W)) and L(NFAs′(W)) plus-letter-bounded it is decidable whether
W, s, s′ form a positive instance of the big-O problem, subject to Schanuel’s
conjecture.

Proof. Again, assume that the language containment condition is satisfied.
Then, to violate big-O, there needs to exists a infinite sequence of words such

132

that for all C > 0, there exists a word such that νs(w)
νs′ (w) > C. The following will

define a procedure to detect if s is big-O of s′, described as a non-deterministic
procedure with a universal acceptance condition, that is, looking for a single
branch to detect s is not big-O of s′ and if no such branch detects it then s is
big-O of s′. Using the language of Lemma 6.62, the procedure will decide if
there is a sequence n : N→ Nm such that:∑

X∈fs(n(t)1,...,n(t)m)

∏
(ρi,ki)∈X(ρ

n(t)i
i n(t)kii)∑

X′∈fs′ (n(t)1,...,n(t)m)

∏
(ρi,ki)∈X′(ρ

n(t)i
i n(t)kii)

−−−→
t→∞ ∞.

If such a sequence exists, given a property of a word P , then there is either
an infinite subsequence satisfying P or an infinite subsequence satisfying its
complement P . Generalising this, given a set of properties P1, . . . , Pk, such
that any word satisfies exactly one of Pi; then there is an infinite subsequence
satisfying one choice of Pi. This idea will be used repeatedly to restrict the set
of sequence that need to be considered when detecting violations to big-O.

Since the image of fs and fs′ is finite, the search can be restricted to some
explicit choice of fs(n1, . . . , nm) = X and fs(n1, . . . , nm) = Y. Let

X = ((ρ1
1, k

1
1), . . . , (ρ1

m, k
1
m), . . . , (ρg1, k

g
1), . . . , (ρgm, k

g
m)), and

Y = ((σ1
1, `

1
1), . . . , (σ1

m, `
1
m)), . . . , ((σh1 , `

h
1), . . . , (σhm, `

h
m))

Now the question asks if there is a sequence n : N → Nm such that
fs(n(t)1, . . . , n(t)m) = X and fs′(n(t)1, . . . , n(t)m) = Y and∑

X∈X
∏

(ρi,ki)∈X(ρ
n(t)i
i n(t)kii)∑

X′∈Y
∏

(σi,`i)∈X′(σ
n(t)i
i n(t)`ii)

−−−→
t→∞ ∞

But note it would be necessary for one of the summand in the numerator to
go to infinity, hence only one choice of X ∈ X is required such that X ∈
fs(n1, . . . , nm).

X = ((ρ1, k1), . . . , (ρm, km)), and (6.8)

Y = ((σ1
1, `

1
1), . . . , (σ1

m, `
1
m)), . . . , ((σh1 , `

h
1), . . . , (σhm, `

h
m)).

Hence the question amounts to whether there is a sequence n : N→ Nm such
that X ∈ fs(n(t)1, . . . , n(t)m) and fs′(n(t)1, . . . , n(t)m) = Y and∏

(ρi,ki)∈X(ρ
n(t)i
i n(t)kii)∑

X′∈Y
∏

(σi,`i)∈X′(σ
n(t)i
i n(t)`ii)

−−−→
t→∞ ∞.

Thus, non-deterministically, guess such a combination of realisable elements of

133

the form in Equation (6.8). An automaton to capture X and Y can be built,
let N be a detector automaton such that L(N) = L(NX

s) ∩ L(NYs′) as per
Definition 6.63.

Further, observe that by taking the reciprocal and requiring each of the resulting
summands to go to zero, the question asks if there is a sequence n : N→ Nm

such that an(t)1

1 a
n(t)2

2 . . . a
n(t)m
m ∈ L(N) for all t and simultaneously for every

j ∈ {1, . . . , h}:∏
(σji ,`

j
i)∈X′

((σji)
n(t)in(t)i

`ji)∏
(ρi,ki)∈X(ρ

n(t)i
i n(t)i

ki)
−−−→
t→∞ 0.

Simplifying the equation, so that for all j ∈ {1, . . . , h} we have:

m∏
i=1

(
σji
ρi

)n(t)i

n(t)i
`ji−ki −−−→

t→∞ 0.

Then by taking logarithms let αj,i = log

(
σji
ρi

)
and pj,i = `ji − ki. Now ask if is

there a sequence n : N→ Nm such that

• a
n(t)1

1 a
n(t)2

2 . . . a
n(t)m
m ∈ L(N) for all t, and

•
h∧
j=1

m∑
i=1

αj,i · n(t)i + pj,i log(n(t)i) −−−→t→∞ −∞.

Note that, to go to −∞, it is equivalent to find a sequence such that:

h∧
j=1

m∑
i=1

αj,i · n(t)i + pj,i log(n(t)i) < −t.

The condition to characterise s not big-O of s′ is currently characterised by a
condition on automata and a condition expressible as a logical formula. The
next claim will characterise the condition on automata as a condition in logic
so that the two conditions can be merged into a single logical condition.

Claim 6.65. The language of N can be effectively decomposed as a finite
union

⋃
j Lj, where each Lj is defined by two vectors ~b = (a1, . . . , am), ~r =

(b1, . . . , bm) ∈ Nm, such that

Lj = {an1an2 . . . anm | ∃λ ∈ Nm s.t. ∀i ∈ [m] ni = bi + ri · λi} .

It is well known that the Parikh image of an NFA, that is, a set of vectors
indicating the number of occurrences of each character in each accepted word,
is a semi-linear set, which can be described as a finite union of linear sets.

134

A linear set L can be described by the base vector ~b ∈ Nm and the period
vectors ~r1 . . . ~rs ∈ Zm forming the set

{
~b+ λ1~r

1 + · · ·+ λs~r
s | λ1, . . . , λs ∈ Z

}
.

However since N is bounded over a+
1 a

+
2 . . . a

+
m and under the assumption that

ai 6= aj , the Parikh image describes exactly a unique word. Further note
Claim 6.65 enables the linear set to be of a particular form, where each ~ri is a
constant multiple of the ith unit vector, enabling a contracted representation.

Proof of Claim 6.65. Consider the machine N , accepting a language which is
a subset of a+

1 a
+
2 . . . a

+
m, with any state not reachable from the starting state or

not leading to an accepting state removed. To induce a form with the property
required property, intersectM with the standard DFA1 for a+

1 a
+
2 . . . a

+
m, without

changing the language.

Hence every state corresponds to reading from exactly one character block
of a1, a2, . . . , am. At each state there can be at most two characters enabled,
either the character to remain in the current character block, or the character
to move to the next. Every state can be labelled as

• only having transition for ai; or

• also having transition with ai+1.

Consider all possible choices of automaton formed by restricting N so that
there is a single state which is allowed to transition from ai to ai+1 for each
i and any other state which had this property in N has its ai+1 transitions
removed (but keeps its ai transitions). Each such choice corresponds with a
partition of the accepting runs of N .

Thus L(N) is the finite union over the languages induced by all such machines.
Such machines can further be expressed as a finite union of linear sets in the
form prescribed.

Assume Nj is such a machine with a single state capable of transitioning from
ai to ai+1 for each i, and again remove any state not reachable from the starting
state or not leading to an accepting state. The part of the machine reading ai
has a single starting state and a single final state, which is a unary NFA when
the transitions to ai+1 are discarded.

This unary NFA can be converted to Chrobak normal form; the section of Nj
corresponding to ai can be replaced with this unary NFA, and any accepting
state has additionally the transitions for transitioning from ai to ai+1 of the
single such state in Nj .

1By DFA allow 0 or 1 transition for each character from every state, rather than exactly
1; that is, the transition function may be partial.

135

Let us repeat the process above for all i, decomposing Nj into the subsets
of languages where there are exactly one state transitioning from ai to ai+1.
Let Nj =

⋃
kNj,k, a finite union; where each k corresponds to a selection of

accepting states (q1, . . . , qm) with ql being the accepting state in the Chrobak
normal form for al.

Consider such an Nj,k. The steps spent in each block corresponding to ai
is either formed by the finite path or the a single cycle at the end of the
path. If the transition occurs in the finite path then bi is the length of the
path to that transition and ri is zero. If the transition occurs in the cycle
at the end of the path, then bi is the length of the path to that transition
from the start of the path and ri is the length of the cycle. In Nj,k the
time spent in block ai has no influence on the time spent in aj for j 6= i.
Then L(Nj,k) = {an1an2 . . . anm |∃λ ∈ Nm s.t. ∀i ∈ [m]ni = bi + ri · λi}. The
language L(N) is the union over all L(Nj,k). �

Now guess one such set described by ~b and ~r; since there are finitely many
there must be a subsequence of n(t) conforming to one of them maintaining the
unbounded ratio. By expressing each n(t)i as a choice of λ ∈ Nm, the condition
can thus be expressed using the following characterisation:

s is not big-O of s′ if and only if, for some choice of X ∈ D, Y ⊆ D and ~b, ~r
the following holds:

∀C ∃λ ∈ Nm∧
j

∑
i∈[m]

αj,i · (bi + ri · λi) + pj,i log(bi + ri · λi) < C. (6.9)

Next it is argued that discarding offset component ~b and relaxing the restriction
of λ from naturals to positive reals maintains the satisfiability of the formula.
The advantage here is that this relaxation can be solved with the first order
theory of the reals with exponential function; which is decidable subject to
Schanuel’s conjecture.

Claim 6.66. Equation (6.9) holds if and only if the following holds:

∀C ∃x ∈ RU≥maxi bi ∧
j

∑
i∈U

αj,i · ri · xi +
∑
i∈U

pj,i log(xi) < C (6.10)

for some U ⊆ {i ∈ [m] | ri > 0}.

136

Proof. First equivalence of Equation (6.9) is shown with the following logical
characterisation:

∀C ∃λ ∈ NU
≥maxi bi∧

j

∑
i∈U

αj,i · (bi + ri · λi) + pj,i log(bi + ri · λi) < C (6.11)

for some U ⊆ {i ∈ [m] | ri > 0}.

First note that Equation (6.11) immediately implies Equation (6.9). It is
required to show the converse.

Note that in the sequence n(t) some components may be bounded. Either
because ri = 0, or the choice of n(t) makes it so. Suppose there exists a θ > 0

such that n(t)x ≤ θ for some x ∈ [m], then
∑m

i=1 αj,i · n(t)i + pj,i log(n(t)i) ≤∑m
i=1,i 6=x αj,i · n(t)i + pj,i log(n(t)i) + |αj,i| · θ + |pj,i| θ. Hence the sequence∑m
i=1,i 6=x αj,i · n(t)i + pj,i log(n(t)i) goes to −∞ as well.

Consider each choice of components B ⊆ [m] which will be bounded. For some
components there will be no choice as rki = 0. Assume that the chosen set is
maximal with respect to set-inclusion; that is, there should be no subsequence
maintaining the property with fewer components unbounded. Let the remaining
unbounded components be U = [m] \B.

Since each remaining component is not bounded, there is always a later point
in the sequence in which the value is larger; thus one can take a subsequence of
n(t) so that n(t)i ≤ n(t+1)i for every t. Repeat for every remaining component
i ∈ U ; this can be done as the minimal choice of unbounded components has
been selected. Hence, without loss of generality if there exists some sequence,
then for any θ, there exists a subsequence of n(t), such that n(t)i > θ for all
i ∈ U . To enable a more succinct analysis later, restrict n(t) to those in which
λi ≥ maxi bki where n(t)i = bki + rki · λi for some λi.

The characterisation of Equation (6.11) allows the removal of the base vector
~b. Observe that∑

i∈U
αj,i · (bi + ri · λi) =

∑
i∈U

αj,i · bi +
∑
i∈U

αj,i · ri · λi

and that
∑

i∈U αj,i · bi is constant so it does not affect whether the sequence
goes to −∞, hence Equation (6.11) holds if and only if :

∀C ∃λ ∈ NU
≥maxi bi ∧

j

∑
i∈U

αj,i · ri · λi + pj,i log(bi + ri · λi) < C. (6.12)

137

The log component can be extracted by using the following rewriting

log(bi + ri · λi) = log(λi · (
bi
λi

+ ri)) = log(λi) + log(
bi
λi

+ ri).

Since ri ≥ 1 and λi ≥ bi we have log(biλi + ri) ≤ log(ri + 1), which is constant.
Hence Equation (6.11) is equivalent to:

∀C ′ ∃λ ∈ NU
≥maxi bi ∧

j

∑
i∈U

αj,i · ri · λi +
∑
i∈U

pj,i log(λi) < C ′ (6.13)

Clearly a natural assignment (Equation (6.13)) implies a real assignment
(Equation (6.10)). Now consider Equation (6.10) holding, and it is required
that Equation (6.13) is satisfied, by exhibiting a choice of λ ∈ NU

≥maxi bi
for

every C ′.

Given C ′ < 0, let C = C ′ −maxj
∑

i∈U |αj,i| ri −maxj
∑

i∈U |pj,i|, and choose
x ∈ R|U |≥maxi bi

satisfying Equation (6.10).

Now let xi = λi + yi, with yi < 1, λi = bxic. First observe that since xi ≥
maxi bi, an integer, also λi ≥ maxi bi.

Observe that
∣∣∑

i∈U αj,i · ri · yi
∣∣ ≤∑i∈U |αj,i| ri. Since∑

i∈U
αj,i · ri · λi +

∑
i∈U

αj,i · ri · yi +
∑
i∈U

pj,i log(λi + yi) < C

we have∑
i∈U

αj,i · ri · λi +
∑
i∈U

pj,i log(λi + yi) < C +
∑
i∈U
|αj,i| ri

Again rewrite log(λi + yi) = log(λi(1 + yi
λi

)) = log(λi) + log(1 + yi
λi

). Then since

λi > yi, log(1 + yi
λi

) ≤ 1, so
∣∣∣∑i∈U pj,i log(1 + yi

λi
)
∣∣∣ ≤∑i∈U |pj,i|. Thus we have

∑
i∈U

αj,i · ri · λi +
∑
i∈U

pj,i log(λi) < C +
∑
i∈U
|αj,i| ri +

∑
i∈U
|pj,i| ≤ C ′

and hence, Equation (6.13) holds. �

This completes the proof of Lemma 6.64. To check that s is not big-O of s′, first,
check the language containment condition which may immediately conclude
that s is not big-O of s′. It then suffices to check all choices of X ∈ D, Y ⊆ D,
choice of ~b, ~r defining one of the linear sets making up L(N) = L(NX

s)∩L(NYs′),
and choice of U ⊆ {i ∈ [m] | ri > 0} and then verify Equation (6.10) using
the first order theory of the reals with exponential function (to encode the

138

logarithm). If any of these choices leads to the formula being satisfied then s is
not big-O of s′. Otherwise s is big-O of s′.

6.6.3 The letter-bounded case

In this section the restriction of the language as a+
1 . . . a

+
m is relaxed to a∗1 . . . a∗m.

Again assume that the language containment condition is satisfied. In this case,
great care must be taken in how a word is represented. For example, given
a language letter-bounded over a∗b∗a∗, the word an must refer to all paths
representing an1b0an2 for n1 + n2 = n.

On a more extreme example a word an1bn2an3 over the language a∗b∗a∗b∗a∗

then the bn2 could refer to either the first or second block of b’s, indeed it
could refer to both blocks of b’s with no central a’s. So all of the following
decompositions must be dealt with

• an1bn
′
2a0bn

′′
2an3 such that n2 = n′2 + n′′2; and

• an1bn2an
′
3b0an

′′
3 such that n3 = n′3 + n′′3; and

• an
′
1b0an

′′
1 bn2an3 such that n1 = n′1 + n′′1.

The analysis must account for all such paths, so that when a block of letters is
characterised by a (ρ, k)-pair it should capture all contiguous letters, no matter
how long is spent in each block.

Lemma 6.67. The big-O problem for W, s, s′ with L(NFAs(W)) and
L(NFAs′(W)) letter-bounded reduces to the plus-letter-bounded case.

Proof. Suppose the language containment condition holds and L(NFAs(W)) ⊆
L(NFAs′(W)) ⊆ a∗1 · · · a∗m. Let I be the set of strictly increasing sequences
~ı = i1 · · · ik of integers between 1 and m. Given ~ı ∈ I, let W~ı be the weighted
automaton obtained by intersecting W with a DFA for a+

i1
· · · a+

ik
whose initial

state is q. Note that s is big-O of s′ (in W) if and only if (s, q) is big-O of
(s′, q) in W~ı for all ~ı ∈ I, because a∗1 · · · a∗m =

⋃
~ı∈I a

+
i1
· · · a+

ik
. Because the

big-O problem for each W~ı, (s, q), (s′, q) falls into the plus-letter-bounded case,
it is decidable by Lemma 6.64 and the result follows.

On each of these new weighted automaton, the analysis of Lemma 6.64 will
apply to each block of letters, where each block may refer to more states which
referred to more than one set of characters in a∗1 . . . a∗m, after skipping some
characters. Then for this more complicated block, Friedland and Schneider can
correctly characterise the relevant decompositions. For example on an1b0an2

for n1 + n2 = n; if one block of a’s dominate the (ρ, k)-choice will correspond
to this, but if there is a path going through (ρ, k) in the first block of a’s and

139

(ρ, k′) in the second, both dominating, then the k’s will be added suitably to
account for the additional polynomial factor, i.e. (ρ, k + k′).

6.6.4 The bounded case

In this section the big-O problem is considered in the case where L(NFAs(W))

and L(NFAs′(W)) are bounded, which is a relaxation of letter-boundedness (see
Definition 6.58): L(NFAs(W)) and L(NFAs′(W)) are subsets of w∗1 . . . w∗m for
some w1, . . . , wm ∈ Σ∗. A reduction to the letter-bounded case (of Section 6.6.3)
is shown, entailing Theorem 6.59.

Here the situation is somewhat more complicated again, consider the language
(abab)∗a∗b∗(ab)∗, then the word (ab)4 can be decomposed in a number of
ways; (abab)2a0b0(ab)0, (abab)1a1b1(ab)1, (abab)1a0b0(ab)2, (abab)0a1b1(ab)3,
(abab)0a0b0(ab)4. One must be sure that when a word is referred to, its weight
is associated with all paths of any different decomposition.

Lemma 6.68. The big-O problem for W, s, s′ with L(NFAs(W)) and
L(NFAs′(W)) bounded reduces to the letter-bounded case.

Proof. Let W = 〈Q,Σ,M, F 〉. Then there exists w1, . . . , wm such that for all
w with νs(w) > 0, w = wn1

1 . . . wnmm for some n1, . . . , nm ∈ N. Assume that
wi = bi,1bi,2, . . . , bi,|wi|.

Given a word w, there may be multiple paths π1, π2, . . . from s to t respecting
that word. Further there may be multiple decomposition vectors ~n1, ~n2, · · · ∈
Nm such that ~ni = (n1, . . . , nm) and w = wn1

1 . . . wnmm . The goal will be to
construct a weighted automaton W ′ with states s and s′ letter-bounded over
a∗1 . . . a

∗
m such that for every word w the weight of an1

1 . . . anmm in W ′ (for every
valid decomposition vector ~n ∈ Nm) is the sum of the weights of all paths
π1, π2, . . . respecting w in W. To compute W ′, a transducer will be defined
and applied to the automaton W.

A non-deterministic finite transducer is an NFA with transitions labelled by
pairs from Σ×(Σ′∪{ε}). In the construction only edges of this form are required,
that is a definition with transitions labelled with ε in the first component (e.g.
ε/a) are not considered. A transducer induces a translation T : Σ∗ → Σ′∗.

Consider the set of regular expressions w+
i1
. . . w+

im′
each induced by a sequence

(i1, . . . , im′) ∈ Nm′ , m′ ≤ m, with 1 ≤ i1 < · · · < im′ ≤ m. Note that two
sequences (i′1, . . . , i

′
m′), (i′′1, . . . , i

′′
m′′) may induce the same expression w+

i1
. . . w+

im

in which case one need not consider more than one. The transducer T will be
defined as follows.

140

For each such sequence I = (i1, . . . , im′) build the following automaton. For
each ij , construct the following section, which simply reads the word:

f Ij
bij ,1−−−→ sIj

bij ,2−−−→ ·
bij ,3−−−→ · . . . ·

bij ,|wi|−1−−−−−−→ eIj .

Then on the final character, non-deterministically restart, or move to the next
word, emitting a character representing the word:

eIj

b
ij ,

∣∣∣∣wij
∣∣∣∣/aij

−−−−−−−→ f Ij and eIj

b
ij ,

∣∣∣∣wij
∣∣∣∣/aij

−−−−−−−→ f Ij+1

The transducer T is the union across all the transducers for each sequence. For
the global start state, non-deterministically move to f I1 for each I. To avoid ε
transitions, duplicate the first transition f I1

x−→ sI1 with q0
x−→ sI1 for a global start

state q0. Observe the valid output sequences are (ε∗a1)∗(ε∗a2)∗ . . . (ε∗am)∗.
However there can be a finite number of ε’s in a row; at most r = maxi∈[m] |wi|−
1.

Assume W = 〈Q,Σ,M, {t}〉 and T = 〈Q′,Σ × (Σ′ ∪ {ε}),→, q0〉. Then con-
struct the weighted automaton T (W) = 〈Q × Q′,Σ′,MT , {t} × Q′〉 using
a product construction. The probability is associated in the following way
MT (a)((s, q), (s′, q′)) = p if there is a transition q

b/a−−→ q′ in T and s p−→
b
s′ inW .

Note that, by this definition, there is a matrix MT (ε); however, in every run of
T (W) at most r many ε’s in a row are produced, where r = maxi∈[m] |wi| − 1.

Now let W ′ be a copy of T (W) with ε removed: M ′(ai) =

(
∑r

x=0M
T (ε)x)MT (ai). Then νW(w) = νW ′(a

n1
1 . . . anmm) for all n1, . . . , nm

such that w = wn1
1 . . . wnmm . Hence W ′ is a weighted automaton with letter-

bounded languages from (s, q0) and (s′, q0) such that (s, q0) is big-O of (s′, q0) in
W ′ if and only if s is big-O of s′ inW , which can be tested using Lemma 6.67.

141

6.7 Bisimilarity distances for ε

As discussed in Section 2.4.1, Chatzikokolakis et al. [CGPX14] defines a bisim-
ilarity distance as an upper bound on ε, which they called bm⊗. To avoid
confusion with the use of ⊗ here as the symmetric ratio variation distance, here
the same distance is called bd ln. The distance was considered in the context of
labelled concurrent Markov chains, here the definition is restricted to labelled
Markov chains (state-labelled and infinite-word). Recalling their definition,
recast in the notation of this thesis, let bd ln : Q×Q→ [0,∞] be the least fixed
point of Γln : [0,∞]Q×Q → [0,∞]Q×Q defined as

Γln(d)(s, s) =

Kln(d)(µs, µs) if `(s) = `(s′)

∞ if `(s) 6= `(s′)

where

Kln(d)(µ, µ′) = sup
f :Q→[0,1]

dln(f(q),f(q′))≤d(q,q′)

dln

(∫
fdµ,

∫
fdµ′

)
,

using the metric dln(x, x′) = |ln(x)− ln(x′)|. This distance bd ln serves as an
upper bound on the multiplicative total variation distance tv ln(s, s′).

This section considers relevant simplifications, recasts the bisimilarity distance
using the distance function d⊗(x, y) = max {x/y, y/x} directly and shows
that the threshold problem on this new distance, bd⊗, can be computed in
PSPACE; matching a similar early result for the approximation of the classical
bisimilarity distance on labelled Markov chains [BSW07].

6.7.1 Dual form and simplification

In the case where µ, µ′ are finite distributions, [CGPX14; Xu15] present a dual
form characterisation of Kln(d)(µ, µ′), being the optimal value of the following
optimisation problem. This is nearly a linear program, if the values of emi,j

are considered to be rational, except that the objective function contains ln. It
is equivalent to solve the linear program optimising over z and then take the
logarithm of the optimal value of z.

142

Presentation of [CGPX14]:

min
ω∈[0,1]Q×Q,γ∈[0,1]Q,z∈R+

ln(z)

Subject to:

∀i :
∑
j

ωi,j − γi = µi

∀j :
∑
i

ωi,je
mi,j − γj ≤ zµ′j

Linear Program:

min
ω∈[0,1]Q×Q,γ∈[0,1]Q,z∈R+

z

Subject to:

∀i :
∑
j

ωi,j − γi = µi

∀j :
∑
i

ωi,je
mi,j − γj ≤ zµ′j

This can be interpreted as an optimal transportation problem. For each s ∈ Q
there are two locations, a factory and a destination.

Each destination i requires exactly µi produce at the end of the transporta-
tion. Destination i receives

∑
j ωi,j produce, with ωi,j coming from factory

j. Additionally destination i can send produce back to its own factory for
redistribution, this is free and represented by γi.

When a factory sends produce, some of the produce gets lost on the way so to
be sure ωi,j is received at destination i from factory j it has to send ωi,jemi,j ,
where emi,j represents the percentage overproduction required. The standard
production for a factory i is µ′i, the cost of the transportation is the percentage
overproduction required z for the worst case factory.

Note that, in the case m is a pseudometric, this can actually be optimised
further, there is never a requirement to send produce back from destination to
factory for redistribution, that is, all γi are zero in some optimal solution and
therefore can be removed.

Lemma 6.69. Assume m : Q×Q→ [0,∞] is a pseudo-metric, then the following
linear programs have the same optimal value:

min
ω∈[0,1]Q×Q,γ∈[0,1]Q,z∈R+

ln(z)

Subject to:

∀i :
∑
j

ωi,j − γi = µi (1)

∀j :
∑
i

ωi,je
mi,j − γj ≤ zµ′j (2)

min
ω∈[0,1]Q×Q,z∈R+

ln(z)

Subject to:

∀i :
∑
j

ωi,j = µi

∀j :
∑
i

ωi,je
mi,j ≤ zµ′j

Proof. The proof shows that γ can be set to 0 in the optimal solution to
the first linear program. Suppose amongst all optimal solutions, choose the
solution such that

∑
i γi is minimised. When

∑
i γi > 0 a contradiction

will be obtained, by exhibiting another optimal solution with smaller
∑

i γi,
contradicting minimality. Thus, concluding

∑
i γi = 0 in some optimal solution.

Suppose γj > 0. Then there is some path µ′i
ωj,i−−→ µj

γj−→ µ′j
ωk,j−−→ µk, with

positive flow. Let x > 0 be the minimal flow on any section of this path, so we

143

have γj ≥ x, ωj,i ≥ x and ωk,j ≥ x
e
mk,j .

Define a new assignment ω′ ∈ [0, 1]Q×Q, γ′ ∈ [0, 1]Q, with ω = ω′ and γ = γ′

except that:

γ′j = γj−x ω′j,i = ωj,i−x ω′k,j = ωk,j−
x

emk,j
ω′k,i = ωk,i+

x

emk,j
.

It is necessary to verify the constraints hold whenever there has been a change:

• Constraint (2) at i: By satisfiability of the initial linear program, we
have

∑
a ωa,ie

ma,i − γi ≤ zµ′i and extracting the relevant variables for
some N we have ωj,iemj,i + ωk,ie

mk,i +N = zµ′i.

By triangle inequality we havemk,i ≤ mk,j+mj,i, hence emk,i ≤ emk,j+mj,i
and e

mk,i

e
mk,j ≤ emj,i . Thus:∑
a

ω′a,ie
ma,i − γi = ω′k,ie

mk,i + ω′j,ie
mj,i +N

= (ωk,i +
x

emk,j
)emk,i + (ωj,i − x)emj,i +N

=
x

emk,j
emk,i − xemj,i + ωk,ie

mk,i + ωj,ie
mj,i +N

≤ xemj,i − xemj,i + ωk,ie
mk,i + ωj,ie

mj,i +N

= ωk,ie
mk,i + ωj,ie

mj,i +N

= zµ′i.

• Constraint (2) at j: By satisfiability of the initial linear program, we
have

∑
a ωa,je

ma,j − γj = zµ′j and extracting the relevant variables for
some N we have ωk,jemk,j − γj +N ≤ zµ′j . Thus:∑

a

ω′a,ie
ma,i − γi = ω′k,je

mk,j − γ′j +N

= (ωk,j −
x

emk,j
)emk,j − (γj − x) +N

= ωk,je
mk,j − x− γj + x+N

= ωk,je
mk,j − γj +N

= zµ′j .

• Constraint (2) at b 6= i, j: There is no change of ω, γ to ω′, γ′ relevant
to
∑

a ωa,be
ma,b − γb ≤ zµ′b and

∑
a ω
′
a,be

ma,b − γ′b ≤ zµ′b.

• Constraint (1) at j: At
∑

a ωj,a − γj = µj we have ω′j,i decrease by x
complemented by γ′i decreased by x.

• Constraint (1) at k: At
∑

a ωk,a − γk = µk we have ω′k,i increase by
x

e
mk,j complemented by ω′k,j decrease by x

e
mk,j .

144

• Constraint (1) at b 6= j, k: There is no change of ω, γ to ω′, γ′ relevant
to
∑

a ωb,a − γb = µb and
∑

a ω
′
k,a − γ′k = µk.

Hence all constraints hold but γj is smaller. Contradiction.

6.7.2 Computing bd ln

The distance dln(x, y) is of particular interest as it can be directly plugged into
the frame work of generalised liftings, due to dln(x, y) being a metric. However
the computation of bd ln was not considered. In particular, it does not lend
itself to computation due to the exponential function and the necessity that
the value may be infinity.

Consider the threshold problem BDlnThreshold:

Definition 6.70 (BDlnThreshold).

input An LMCM, states s, s′ ∈ Q and a threshold θ ∈ [0,∞) ∩ Q

output is bd ln(s, s′) ≤ θ? J

One approach would be to reuse the approach to solving LDα-Threshold and
BDα-Threshold by encoding the problem into a decidable logic. In contrast
to the estimators of δ, where the answer is in the range [0, 1], the estimate of ε
can be infinity. Since infinity cannot be handled directly, the formula uses a
variable, bi,j which is either 0 or 1, where 1 indicates that di,j should be treated
as ∞ and otherwise as a real number.

The natural encoding, as demonstrated in Figure 6.9, would use first order
theory of reals with exponential function (that is, the same logic used to show
conditional decidability of the big-O problem in the bounded language case).
This logic is only known to be quasi-decidable [FRZ11], or decidable subject to
Schanuel’s conjecture [MW96]. In the next section this conditional decidability
is strengthened by removing the exponential function.

6.7.3 A direct approach avoiding exponentiation and logarithms

The previous section required the use of exponential function, however in this
section it can be seen that a similar problem is fully decidable by studying a
small modification to the problem. To do this the ratio is considered directly
using the distance d⊗(x, y) = max {x/y, y/x}. This can then be dealt with in
much the same way as ∆α or dln.

Remark. d⊗ is not a metric, nor a pseudometric, not least because d⊗(x, x) = 1

rather than 0. J

145

BDlnThreshold(s, s′, θ) =

∃(di,j)i,j∈Q
∧
i,j∈Q

(0 ≤ di,j ≤ 1 ∧ di,j = dj,i)

∧ ∃(bi,j)i,j∈Q
∧
i,j∈Q

(bi,j = 0 ∨ bi,j = 1) ∧ bi,j = bj,i

∧ labelconstraint(d, b) ∧ ds,s′ ≤ θ ∧ bs,s′ = 0

labelconstraint(d, b) =

∧
q,q′∈Q


bq,q′ = 1 if `(q) 6= `(q′)

couplingconstraint(d, b, q, q′, q, q′) if `(q) = `(q′)

∧ couplingconstraint(d, b, q, q′, q′, q)

couplingconstraint(d, b, x, x′, q, q′) =

bx,x′ = 1 ∨ ∃(ωi,j)i,j∈Q ∃z z ≤ exp(dx,x′)

∧
∧
i,j∈Q

0 ≤ ωi,j ≤ 1 ∧
∧
i∈Q

∑
j∈Q

ωi,j = µq(i)

∧
∧
j∈Q

(∑
i∈Q

ωi,j · exp(di,j) = zµq′(j)

∧
∧
i∈Q

ωi,j > 0 =⇒ bi,j = 0)
)

Figure 6.9: Logical formulation for BDlnThreshold.

One can also define a ratio based Kantorovich distance; by replacing dln with
d⊗:

K⊗(d)(µ, µ′) = sup
f :Q→[0,1]

∀q,q′∈Q d⊗(f(q)),f(q′))≤d(q,q′)

d⊗

(∫
fdµ,

∫
fdµ′

)
.

In the dual form, and on finite distributions µ, µ′, the distance can be computed
using the following linear program:

min
ω∈[0,1]Q×Q, z∈R+

z subject to:
∀i ∈ Q :

∑
j∈Q ωi,j = µi

∀j ∈ Q :
∑

i∈Q ωi,jmi,j ≤ zµ′j

Then let Γ⊗(d)(s, s′) =

K⊗(d)(µs, µs′) if `(s) = `(s′)

∞ otherwise
and let bd⊗ to be the least fixed point of Γ⊗(d). The following lemma shows
that the two distances are related; exactly by taking the exponential function
on the distance of [CGPX14]. This directly entails tv⊗(s, s′) ≤ bd⊗(s, s′), using

146

the result that tv ln(s, s′) ≤ bd ln(s, s′) of Chatzikokolakis et al. [CGPX14].

Lemma 6.71. bd⊗(s, s′) = exp(bd ln(s, s′))

Proof. Clearly when `(s) 6= `(s′) both distances are ∞. Therefore, assume
`(s) = `(s′).

Let d be some distance function such that Kln(d)(µs, µs′) v d and m(s, s′) =

ed(s,s′). Suppose f : Q→ [0, 1] then ∀q, q′ ∈ Q:

dln(f(q), f(q′)) ≤ d(q, q′)

⇐⇒
∣∣ln(f(q))− ln(f(q′))

∣∣ ≤ d(q, q′)

⇐⇒ max
{

ln(f(q))− ln(f(q′)), ln(f(q′))− ln(f(q))
}
≤ d(q, q′)

⇐⇒ exp(max
{

ln(f(q))− ln(f(q′)), ln(f(q′))− ln(f(q))
}

) ≤ exp(d(q, q′))

⇐⇒ max
{

exp(ln(f(q))− ln(f(q′))), exp(ln(f(q′))− ln(f(q)))
}
≤ exp(d(q, q′))

⇐⇒ max
{

exp(ln(f(q)/f(q′))), exp(ln(f(q′)/f(q)))
}
≤ m(q, q′)

⇐⇒ max
{
f(q)/f(q′), f(q′)/f(q)

}
≤ m(q, q′)

⇐⇒ d⊗(f(q), f(q′)) ≤ m(q, q′)

Hence the set of function f satisfying the restriction in each supremum are the
same. Let F be this set of function for s, s′.

Claim 6.72.

sup
f∈F

dln

(∫
fdµ,

∫
fdµ′

)
≤ d(s, s′) ⇐⇒ sup

f∈F
d⊗

(∫
fdµ,

∫
fdµ′

)
≤ m(s, s′).

Proof.

sup
f∈F

dln

(∫
fdµ,

∫
fdµ′

)
≤ d(s, s′)

sup
f∈F

∣∣∣∣ln(∫ fdµ

)
− ln

(∫
fdµ′

)∣∣∣∣ ≤ d(s, s′)

exp

(
sup
f∈F

max

{
ln

(∫
fdµ∫
fdµ′

)
, ln

(∫
fdµ′∫
fdµ

)})
≤ exp

(
d(s, s′)

)
sup
f∈F

max

{ ∫
fdµ∫
fdµ′

,

∫
fdµ′∫
fdµ

}
≤ m(s, s′)

sup
f∈F

d⊗

(∫
fdµ,

∫
fdµ′

)
≤ m(s, s′) �

Therefore concluding that if d is a fixed point of Γln then m is a fixed point of
Γ⊗ and that if m is a fixed point of Γ⊗ then d is a fixed point of Γln. Since
exp is a monotone function, then d is the least fixed point of Γln if and only if
m is the least fixed point of Γ⊗. Yielding, bd⊗(s, s′) = exp(bd ln(s, s′)).

147

6.7.4 Computing bd⊗

Consider the relevant threshold problem:

Definition 6.73 (BD⊗Threshold).

input An LMCM, states s, s′ ∈ Q and a threshold θ ∈ [0,∞) ∩ Q

output is bd⊗(s, s′) ≤ θ? J

It is easy to see that the BD⊗Threshold problem can be encoded in the
existential first order theory of the reals using a formula of polynomial size, as
demonstrated in Figure 6.10 using a technique similar to van Breugel, Sharma
and Worrell [BSW07] for encoding the standard bisimilarity distance. However,
this encoding does not require the exponential function and so falls within the
first order theory of the reals. This theory can be decided in PSPACE [Can88;
Ren92], entailing the following theorem and matching the complexity attained
by van Breugel et al. [BSW07] to approximate the standard bisimilarity distance.

Theorem 6.74. BD⊗Threshold is in PSPACE.

An approximation of the value can then be found by a variation on binary
search. First check there is a solution not requiring infinity, i.e. such that
bs,s′ = 0 but with no constraint on ds,s′ . Once this is established, the value may
be arbitrarily large. First find k such that ds,s′ ≤ 2k, in k steps. Binary search
can then be conducted on the interval [2k−1, 2k], up to arbitrary precision.
The result remains in polynomial space with respect to the output (but not
necessarily the input). This is because dds,s′e may be arbitrarily large.

This technique falls short of the later techniques to compute the standard
bisimilarity distance exactly in polynomial time, and the techniques of Chap-
ters 4 and 5 which compute bisimilarity distances in polynomial time with an
NP oracle. Both of these techniques, at minimum, relied on the polynomial
size representation of relevant variables. Note also the formula does not fall
into LRA due to the presence of ωi,j · di,j in the coupling condition. Thus it
remains open whether there are bounds on the size of ds,s′ , or whether the
threshold problem, or the exact computation, can be computed in a complexity
class below PSPACE.

6.7.5 Looking for a unique fixed point

Chatzikokolakis et al. [CGPX14] emphasised that their resulting bisimilarity
pseudometric respected that distance zero corresponded exactly with bisimi-
larity, i.e. bd ln(s, s′) = 0 ⇐⇒ s ∼ s′. Since bd⊗(s, s′) is the exponential of
bd ln(s, s′) one can conclude bd⊗(s, s′) = 1 ⇐⇒ s ∼ s′. One could ask whether

148

BD⊗Threshold(s, s′, θ) =

∃(di,j)i,j∈Q
∧
i,j∈Q

(0 ≤ di,j ≤ 1 ∧ di,j = dj,i)

∧ ∃(bi,j)i,j∈Q
∧
i,j∈Q

(bi,j = 0 ∨ bi,j = 1) ∧ bi,j = bj,i

∧ labels(d, b) ∧ ds,s′ ≤ θ ∧ bs,s′ = 0

labels(d, b) =
∧

q,q′∈Q


bq,q′ = 1 if `(q) 6= `(q′)

couplings(d, b, q, q′, q, q′) if `(q) = `(q′)

∧ couplings(d, b, q, q′, q′, q)

couplings(d, b, x, x′, q, q′) = bx,x′ = 1 ∨(
∃(ωi,j)i,j∈Q ∃z z ≤ dx,x′

∧
∧
i,j∈Q

(0 ≤ ωi,j ≤ 1)

∧
∧
j∈Q

∑
i∈Q

ωi,j · di,j ≤ zµq′(j) ∧
∧
i∈Q

(ωi,j > 0 =⇒ bi,j = 0)


∧
∧
i∈Q

∑
j∈Q

ωi,j = µq(i)
)

Figure 6.10: Logical formulation for BD⊗Threshold.

fixing Γ⊗ at the kernel results in a unique fixed point, in the same way as
happens for the standard bisimilarity distance. Then one may hope this would
lead to a polynomial algorithm for computing bd⊗ using a linear program for
the greatest fixed point. Lemma 6.75 shows that this strategy is not enough.

To that end, one can redefine bd⊗ : Q×Q→ [0,∞] to be the least fixed point
of

Γ′⊗(d) =


1 if s ∼ s′

K⊗(d)(µs, µs′) if `(s) = `(s′)

∞ otherwise

.

Lemma 6.75. Γ′⊗ does not have a unique fixed point.

149

Proof. The proof proceeds by showing that the following degenerate distance

d(s, s′) =

1 if s ∼ s′

∞ otherwise

is always a fixed point.

Consider Γ′⊗(d), if s ∼ s′ both Γ′⊗(d)(s, s′) and d(s, s′) are fixed to 1. Similarly
if `(s) 6= `(s′), both are fixed to ∞.

Then consider s 6∼ s′ and `(s) = `(s′), so then

Γ⊗(d)(s, s′) = min
ω∈[0,1]Q×Q, z∈R+

∀i:∑j ωi,j=µs(i)

∀j:∑i ωi,jdi,j≤zµs′ (j)

z.

Consider the pairs i, j, where ωi,j > 0. Either some of them have di,j =∞ or
only edges with i ∼ j are used. If any edge with di,j =∞, then z =∞ and thus
Γ⊗(d)(s, s′) =∞. If only i ∼ j edges are used, then z = 1, and the allocation ω
actually forms a proper coupling and implying that s ∼ s′ [CBW12, Proposition
9] which is a contradiction. So some edges with di,j = ∞ must be used so
z =∞.

Hence d is always a fixed point, indeed the greatest fixed point, which is not
unique, as in general there is a smaller, useful, least fixed point as demonstrated
by Chatzikokolakis et al. [CGPX14].

150

6.8 Conclusion

The problems relating to the big-O problem and the ratio variation distances
are, in full generality, undecidable and, unlike for the standard and skewed total
variation distances, also inapproximable. This chapter also has implication
for the skewed total variation distance of Chapter 5, for which the threshold
problem corresponds to the problem of whether lvα(s, s′) = 0; implying that
this is also undecidable (in contrast to deciding whether tv(s, s′) = 0, which
is decidable). This implies it is not possible to build a bisimilarity distance
operator, in the style of ΓΛ

α which fully captures the zero distance, and some
under-approximation (such as ∼α) is required.

Despite the undecidability results, there are positive results for some restricted
classes. However, even for automata with letter-bounded languages, the result
is conditional on a conjecture from number theory. This leaves open the barrier
between decidability and undecidability; in particular, is it (unconditionally)
decidable for automata with bounded language, or other classes of weighted
automata (such as leaktight probabilistic automata [FGO12]).

Chatzikokolakis et al. [CGPX14] defined the relevant bisimilarity pseudometric
for ε, but only considered the complexity of computing the related Kantorovich
distance, and not the bisimilarity distance. The question is partially answered
here, showing that the threshold problem is in PSPACE, providing one is
satisfied to instead consider the exponential of the distance, which for practical
purposes should be around 1 + ε. Whether the distance can be computed in
polynomial time, or classified in a complexity class below PSPACE, is left as
an open question; but the results show that technique of Chen et al. [CBW12],
that is, to capture a unique fixed point, will not be sufficient.

151

Chapter 7

Verifying Differential Privacy in Circuits

This chapter considers the computational complexity of determining whether
programs satisfy (ε, δ)-differential privacy. As demonstrated on labelled Markov
chains and more generally, the problem is undecidable, and hence the restriction
to probabilistic straight line programs is considered, which are part of any
reasonable programming language supporting random computations. Equiv-
alently, randomised circuits are considered. The latter are Boolean circuits
with input nodes corresponding both to input bits and to uniformly random
bits (“coin flips”) where the latter allow the circuit to behave probabilistically
(see Figure 7.1). Both decision and approximation versions of the problem are
considered, where in the case of decision the input consists of a randomised
circuit and parameters ε, δ and in the case of approximation the input is a
randomised circuit, the desired approximation precision, and one of the two
parameters ε, δ. In both cases, complexity is measured as function of the total
input length in bits.

Firstly, Theorem 7.9 shows that determining whether a randomised circuit is
ε-differentially private is coNP#P-complete. To show hardness in coNP#P,
the complement to the problem E-Maj-Sat [LGM98] is considered, which is
complete for NP#P [CDM17].

Turning to the case where δ > 0, this work shows that determining whether
a randomised circuit is (ε, δ)-differentially private is coNP#P-complete when
the number of output bits is small relative to the total size of the circuit and
otherwise between coNP#P and coNP#P#P

(Theorem 7.25).

This work is also motivated by the work by Murtagh and Vadhan [MV16] study-
ing the complexity of optimally compose differentially private algorithms. It is
known that the composition of differentially private computations also satisfies
differential privacy [DMNS06; DRV10; MV16]. Consider the composition of k
differentially private algorithms with privacy parameters (ε1, δ1), . . . , (εk, δk).
The resulting program is (εg, δg)-differentially private for a multitude of possible
(εg, δg) pairs. Murtagh and Vadhan showed that determining the minimal εg
given δg is #P-complete [MV16]. They also give an efficient, i.e. polynomial

152

time, approximation algorithm that computes εg to arbitrary accuracy, giving
hope that for “simple” programs deciding differential privacy or approximating
of privacy parameters may be tractable. Hence, one might expect the existence
of polynomial time algorithms to approximate ε or δ. The results show that
this is not the case, by showing this is NP-hard and coNP-hard, and therefore
an efficient algorithm does not exist, unless P = NP (Theorem 7.31).

This model is considered because it corresponds to (randomised) straight line
programs, i.e., programs with fixed input size, with access to random bits,
and with no loops. Notice also that any randomised computation running in
polynomial time p(n) can be translated to a sequence of randomised circuits of
size p′(n) using standard techniques. For example, if the the computation is
specified for a Turing Machine, then p′(n) = O(p(n) log p(n)) [PF79].

7.1 Preliminaries

7.1.1 Randomised circuits

Definition 7.1. A Boolean circuit ψ with n inputs and ` outputs is a directed
acyclic graph ψ = (V,E) containing n input vertices with zero in-degree, labelled
X1, . . . , Xn and ` output vertices with zero out-degree, labelled O1, . . . , O`.
Other nodes are assigned a label in {∧,∨,¬}, with vertices labelled ¬ having
in-degree one and all others having in-degree two. The size of ψ, denoted |ψ|, is
defined to be |V |. A randomised circuit has m additional random input vertices
labelled R1, . . . , Rm.

Given an input string x = (x1, . . . , xn) ∈ {0, 1}n, the circuit is evaluated
as follows. First, the values x1, . . . , xn are assigned to the nodes labelled
X1, . . . , Xn. Then, m bits r = (r1, . . . , rm) are sampled uniformly at random
from {0, 1}m and assigned to the nodes labelled R1, . . . , Rm. Then, the circuit
is evaluated in topological order in the natural way. For example, let v be a node
labelled ∧ with incoming edges (u1, v), (u2, v) where u1, u2 were assigned values
z1, z2 then v is assigned the value z1 ∧ z2. The outcome of ψ is (o1, . . . , o`), the
concatenation of values assigned to the ` output vertices O1, . . . , O`.

For input x ∈ {0, 1}n and event E ⊆ {0, 1}` we have

P [ψ(x) ∈ E] =
|{r ∈ {0, 1}m : ψ(x, r) ∈ E}|

2m
. J

Remark. The operators, ∧,∨ and ¬ are functionally complete. However, ⊕
(exclusive or) is also used, such that p⊕ q ⇐⇒ (p ∨ q) ∧ ¬(p ∧ q). J

153

In
pu

t

C
oi

n
Fl

ip
s

O
ut

pu
t

Boolean Circuit
Randomised Circuit

Figure 7.1: Example randomised circuit.

7.1.2 Differential privacy in randomised circuits

Let X be any input domain. An input to a differentially private analysis would
generally be an array of elements from X, i.e., x = (x1, . . . , xn) ∈ Xn.

The definition of differential privacy depends on adjacency between inputs,
neighbouring inputs are defined as follows.

Definition 7.2. Inputs x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n) ∈ Xn are called

neighbouring if there exist i ∈ [n] s.t. j 6= i implies xj = x′j . J

This work considers input domains with finite representation. Without loss of
generality set X = {0, 1}k and hence an array x = (x1, . . . , xn) can be written
as a sequence of nk bits, and given as input to a (randomised) circuit with nk
inputs. The lower bounds work already for k = 1 and the upper bounds are
presented using k = 1 but generalise to all k.

Reformulation 7.3 (Differential privacy for randomised circuits). A randomised
circuit ψ is (ε, δ)-differentially private if for all neighbouring x,x′ ∈ Xn and
for all E ⊆ {0, 1}`,

P [ψ(x) ∈ E] ≤ eε · P
[
ψ(x′) ∈ E

]
+ δ. J

154

7.1.3 Problems of deciding and approximating differential privacy

The two decision problems, to decide either pure or approximate differential
privacy, and the two approximation problems, to approximate either ε or δ, are
set out in the following definitions:

Definition 7.4 (Decide-ε-DP).

input ε and a circuit ψ

output is ψ ε-differentially private?

ε is assumed to be given by the input eε given in binary1. J

Definition 7.5 (Decide-ε, δ-DP).

input ε, δ and a circuit ψ

output is ψ (ε, δ)-differentially private?

ε is assumed to be given by the input eε given in binary. J

Definition 7.6. Given an approximation error γ > 0, the Approximate-δ
problem and the Approximate-ε problem, respectively, ask:

• Given ε, find δ̂ ∈ [0, 1], such that 0 ≤ δ̂ − δ ≤ γ, where δ is the minimal
value such that ψ is (ε, δ)-differentially private.

• Given δ, find ε̂ ≥ 0, such that 0 ≤ ε̂ − ε ≤ γ, where ε is the minimal
value such that ψ is (ε, δ)-differentially private. J

7.1.4 The class coNP#P

The complexity class #P is the counting analogue ofNP problems. In particular
the problem #Sat is complete for #P, which asks given a Boolean formula φ
on n variables, how many allocations x ∈ {0, 1}n does φ(x) evaluate to true.
Note that #Sat is not a decision problem, it returns a non-negative integer
between 0 and 2n. Similarly the problem #CircuitSat is #P-complete, which
ask given a circuit with a single output, how many allocations evaluate to true.
More generally one asks how many runs of a non-deterministic Turing machine
accept.

A language L is in coNP#P if its membership problem can be refuted using a
polynomial time non-deterministic Turing machine with access to a #P oracle.
Alternatively, x ∈ L if and only if all branches of the non-deterministic Turing
machine (with a #P oracle) accept. It is easy to see that coNP#P = coNPPP.
Finally, PH ⊆ coNP#P ⊆ PSPACE, where PH ⊆ coNP#P follows by
Toda’s theorem (PH ⊆ P#P) [Tod91].

1For this specific problem, the results apply if eε is given as a rational number.

155

To establish a complete problem (All-Min-Sat) for coNP#P, first consider
the problem E-Maj-Sat [LGM98], a complete decision problem for the class
NP#P [CDM17] (thus also complete for NPPP [PD08]).

Definition 7.7. E-Maj-Sat asks, given φ a quantifier free formula over n+m

variables if there exist an allocation x ∈ {0, 1}n such that there are strictly
greater than 1

2 of allocations to y ∈ {0, 1}m where φ(x,y) evaluates to true. J

The complementary problem All-Min-Sat, is complete for coNP#P: a for-
mula φ is All-Min-Sat, if φ is not E-Maj-Sat. That is, φ a quantifier free
formula over n+m variables is All-Min-Sat if for all allocations x ∈ {0, 1}n
there are no more than 1

2 of allocations to y ∈ {0, 1}m where φ(x,y) evaluates
to true.

Lemma 7.8. [Wag86, Theorem 4. Point 4.] co(NP#P) = coNP#P.

The remaining sections show the close connection between decision problems
for differential privacy and the complexity class coNP#P.

7.2 The complexity of deciding pure differential privacy

This section classifies the complexity of deciding ε-differential privacy, showing
the following theorem:

Theorem 7.9. Decide-ε-DP is coNP#P-complete.

It will be convenient to consider the well-known simpler reformulation of
the definition of pure differential privacy in finite ranges to consider specific
outcomes o ∈ {0, 1}` rather than events E ⊆ {0, 1}`.

Reformulation 7.10 (Pure differential privacy). A randomised circuit ψ is ε-
differentially private if and only if for all neighbouring x,x′ ∈ Xn and for all
o ∈ {0, 1}`,

P [ψ(x) = o] ≤ eε · P
[
ψ(x′) = o

]
. J

7.2.1 Decide-ε-DP ∈ coNP#P:

There is a non-deterministic Turing machine which can “refute” ψ being ε-
differentially private in polynomial time with a #P oracle. A circuit ψ is shown
not to be ε-differentially private by exhibiting a combination x,x′,o such
that P [ψ(x) = o] > eε · P [ψ(x′) = o] . The witness to the non-deterministic
Turing machine would be a sequence of 2n bits parsed as neighbouring inputs

156

x,x′ ∈ {0, 1}n and ` bits describing an output o ∈ {0, 1}`. The constraint
can then be checked in polynomial time, using the #P oracle to compute
P [ψ(x) = o] and P [ψ(x′) = o].

To compute P [ψ(x) = o] in #P create an instance to #CircuitSat, which
will count the number of allocations to the m probabilistic bits consistent with
this output. This is done by extending ψ with additional gates reducing to a
single output which is true only when the input is fixed to x and the output of
ψ was o.

7.2.2 coNP#P-hardness of Decide-ε-DP

coNP#P-hardness of Decide-ε-DP is shown by a reduction from All-Min-Sat

in Lemma 7.11; together with the inclusion result above, this entails that
Decide-ε-DP is coNP#P-complete (Theorem 7.9).

Randomised Response Randomised response [War65] is a technique for answer-
ing sensitive Yes/No questions by flipping the answer with probability p < 0.5.

Setting p = 1
1+eε gives ε-differential privacy.

Lemma 7.11. All-Min-Sat reduces in polynomial time to Decide-ε-DP.

Proof. The reduction from All-Min-Sat to Decide-ε-DP will use randomised
response, by taking a Boolean formula φ and creating a randomised circuit that
is ε-differentially private if and only if φ is All-Min-Sat.

Consider the circuit ψ which takes as input the value z ∈ {0, 1}. It probabilis-
tically chooses a value of x ∈ {0, 1}n and y ∈ {0, 1}m and one further random
bit p1 and computes b = z ⊕ ¬(p1 ∨ φ(x,y)). The circuit outputs (x, b).

Claim 7.12. ψ is ln(3)-differentially private if and only if φ is All-Min-Sat.

Suppose φ ∈ All-Min-Sat then, no matter the choice of x,

0 ≤ Py [φ(x,y) = 1] ≤ 1

2
and hence

1

4
≤ Py,p1 [¬(p1 ∨ φ(x,y)) = 1] ≤ 1

2
.

This concludes that the true answer z is flipped between 1
4 and 1

2 of the time,
recall this is exactly the region in which randomised response gives us the most
privacy. In the worst case p = 1

4 = 1
1+eε , gives e

ε = 3, so ln(3)-differential
privacy.

In the converse, suppose φ 6∈ All-Min-Sat and hence φ ∈ E-Maj-Sat,
then Py,p1 [¬(p1 ∨ φ(x,y)) = 1] < 1

4 for some x, in which case the randomised
response does not provide ln(3)-differential privacy.

157

Remark. The result is skewed so that the proportion of accepting allocations is
between 1

4 and 1
2 to satisfy privacy, resulting in the choice of ln(3)-differentially

privacy. Alternative skews, using more bits akin to p1, shows hardness for other
choices of ε. J

Hardness of Decide-ε-DP by number of input/output bits

The inclusion proof uses coNP to resolve the non-deterministic choice of both
input and output. This can be shown to be necessary, in the sense coNP is
still required for either large input or large output. The hardness proof shows
that when |ψ| = n the problem is hard for O(1)-bit input and Ω(n)-bit output.
It can also be proven (Lemma 7.13) this is hard for Ω(n)-bit input and O(1)-bit
output. Further the problem is in P#P for O(log(n))-bit input and O(log(n))-
bit output, as the choice made by coNP can be checked deterministically. In
this case it is PP-hard, even when there is 1-bit input and 1-bit output.

Lemma 7.13. Given a circuit ψ, the following hardness results apply:

Input Bits # Output Bits Hardness

Ω(n) 1 coNP#P-hard

1 Ω(n) coNP#P-hard

1 1 PP-hard

Remark. Note that the hardness results entail hardness for any larger number of
input and output bits; for example Θ(log n)-input,Θ(log n)-output is PP-hard
and Θ(n)-input,Θ(n)-output is coNP#P-hard. J

Proof for large input small output. Given φ(x,y), reduce φ ∈ All-Min-Sat

to Decide-ε-DP. The resulting circuit ψ will have 1 output bit but n + 1

input bits

Let ψ(x, z) = (z ∨ p1) ∧ (¬z ∨ (p2 ∨ (p3 ∧ p4 ∧ φ(x, r)))), with p1, . . . , p4, r

determined randomly. This circuit has the property:

• If z = 0 return 1 w.p. 1
2 .

• If z = 1 return 1 w.p. 1
2 + 1

4P [φ(x) = 1].

Claim 7.14. φ ∈ All-Min-Sat ⇐⇒ ln(4
3)-differential privacy holds.

If φ 6∈ All-Min-Sat then for some x with P [φ(x) = 1] > 1
2 , P [φ(x) = 0] < 1

2

158

P [ψ(x, 0) = 0]

P [ψ(x, 1) = 0]
=

1
2

1− 1
2 − 1

4P [φ(x) = 1])

=
1
2

1
4 + 1

4 − 1
4P [φ(x) = 1])

=
1
2

1
4 + 1

4(1− P [φ(x) = 1])

=
1
2

1
4 + 1

4(P [φ(x) = 0])

>
1
2

1
4 + 1

4
1
2

=
4

3
,

thus indicating the ratio is too large, and ln(4
3 -differential privacy is violated.

If φ ∈ All-Min-Sat then for all x it is the case P [φ(x) = 1] ≤ 1
2 , P [φ(x) = 0] ≥

1
2 . The following demonstrates the ratio is less than 4

3 for all adjacent inputs
and on each output (0 and 1), thus maintaining ln(4

3 -differential privacy:

P [ψ(x, 0) = 0]

P [ψ(x, 1) = 0]
≤ 4

3

P [ψ(x, 1) = 0]

P [ψ(x, 0) = 0]
=

1− 1
2 − 1

4P [φ(x) = 1]
1
2

=
1
4 + 1

4P [φ(x) = 0]
1
2

≤ 1

P [ψ(x, 1) = 1]

P [ψ(x, 0) = 1]
=

1
2 + 1

4P [φ(x) = 1]
1
2

≤
1
2 + 1

4
1
2

1
2

= 1.25

P [ψ(x, 0) = 1]

P [ψ(x, 1) = 1]
=

1
2

1
2 + 1

4P [φ(x) = 1]
≤ 1

P [ψ(x, 0) = 1]

P [ψ(x′, 0) = 1]
=

1
2
1
2

= 1

P [ψ(x, 1) = 1]

P [ψ(x′, 1) = 1]
=

1
2 + 1

4P [φ(x) = 1]
1
2 + 1

4P [φ(x′) = 1]
≤

1
2 + 1

4
1
2

1
2 + 1

40
= 1.25

P [ψ(x, 1) = 0]

P [ψ(x′, 1) = 0]
=

1− 1
2 − 1

4P [φ(x) = 1]

1− 1
2 − 1

4P [φ(x′) = 1]
≤

1
2 − 1

40

1− 1
2 − 1

4
1
2

=
4

3
.

Proof for small input large output. Given φ(x,y), reduce φ ∈ All-Min-Sat

to Decide-ε-DP. The resulting circuit ψ will have 1 input bit but n+1 output
bits.

Let ψ(z) = (x, (z ∨ p1)∧ (¬z ∨ (p2 ∨ (p3 ∧ p4 ∧ φ(x, r))))), with p1, . . . , p4,x, r

all chosen randomly. Then the circuit has the property:

• Choose and output some x and,

159

• If z = 0 return 1 w.p. 1
2 .

• If z = 1 return 1 w.p. 1
2 + 1

4P [φ(x) = 1].

Claim 7.15. φ ∈ All-Min-Sat ⇐⇒ ln(4
3)-differential privacy holds.

If φ 6∈ All-Min-Sat then for some x with P [φ(x) = 1] > 1
2 , P [φ(x) = 0] < 1

2

P [ψ(0) = (x, 0)]

P [ψ(1) = (x, 0)]
=

1
2

1− 1
2 − 1

4P [φ(x) = 1])

=
1
2

1
4 + 1

4 − 1
4P [φ(x) = 1])

=
1
2

1
4 + 1

4(1− P [φ(x) = 1])

=
1
2

1
4 + 1

4(P [φ(x) = 0])

>
1
2

1
4 + 1

4
1
2

=
4

3
,

thus indicating ln(4
3 -differential privacy is violated.

If φ ∈ All-Min-Sat then for all x it is the case P [φ(x) = 1] ≤ 1
2 , P [φ(x) = 0] ≥

1
2 . The ratios between adjacent inputs are shown to be less or equal to 4

3 .

P [ψ(0) = (x, 0)]

P [ψ(1) = (x, 0)]
≤ 4

3

P [ψ(1) = (x, 0)]

P [ψ(0) = (x, 0)]
=

1− 1
2 − 1

4P [φ(x) = 1]
1
2

=
1
4 + 1

4P [φ(x) = 0]
1
2

≤ 1

P [ψ(1) = (x, 1)]

P [ψ(0) = (x, 1)]
=

1
2 + 1

4P [φ(x) = 1]
1
2

≤
1
2 + 1

4
1
2

1
2

<
4

3

P [ψ(0) = (x, 1)]

P [ψ(1) = (x, 1)]
=

1
2

1
2 + 1

4P [φ(x) = 1]
≤ 1.

Proof for small input small output.
Given φ(x), reduce φ ∈ Maj-Sat to Decide-ε-DP. The resulting circuit ψ
will have 1 output bit and 1 input bits.

Let ψ(z) = (p1 ∧ z) ∨ (¬p1 ∧ (z ⊕ φ(r))), where p1 and r are chosen randomly.
Then the circuit has the property:

• return z w.p. 1
2 ,

• return z ⊕ φ(r) w.p. 1
2 . (Output z, flipped proportionally to the number

of accepting allocations to φ.)

160

Claim 7.16. φ ∈Maj-Sat ⇐⇒ ψ is ln(3)-differentially private

Conducting a similar case analysis to the above, the probabilities behave as
follows:

Output ↓ Input → 1 0 Max-Ratio

0
Maj > 1

4 < 3
4 > 3

Min ≤ 1
4 ≥ 3

4 ≤ 3

1
Maj < 3

4 > 1
4 > 3

Min ≥ 3
4 ≤ 1

4 ≤ 3

Then in the Maj cases the ratio is greater than 3, thus violating privacy
ln(3)-differential privacy and for both Min case the ratio is bounded by 3
(maintaining privacy).

7.3 The complexity of deciding approximate differential privacy

Theorem 7.9 shows that Decide-ε-DP is coNP#P-complete, in particular
coNP#P-hard and since Decide-ε-DP is a special case of Decide-ε, δ-DP,
this is also coNP#P-hard. Nevertheless the proof is based on particular values
of ε and an alternative proof of hardness is provided (Theorem 7.18) based on
δ (which applies even for ε = 0).

It is not clear whether deciding (ε, δ)-differential privacy can be done in
coNP#P. Recall that in the case of ε-differential privacy it was enough
to consider singleton events {o} where o ∈ {0, 1}`, however in the definition of
(ε, δ)-differential privacy requires quantifying over output events E ⊆ {0, 1}`.
When considering circuits with one output bit (` = 1), then the event space
essentially reduces to E ∈ {∅, {0} , {1} , {0, 1}} and so the same technique can
be test again, checking only P [ψ(x) = 1] vs P [ψ(x′) = 1] and similarly for = 0.
Noting that ∅ and {0, 1} do not need to be checked as they have probability
zero and one from any input respectively.

This can be extended to the case when the number of outputs bits is logarithmic
` ≤ log(|ψ|). To cater to this, rather than guessing a violating E ∈ {0, 1}`,
consider a violating subset of events E ⊆ {0, 1}`. Given such an event E create
a circuit ψE on ` inputs and a single output which indicates whether the input
is in the event E. The size of this circuit is exponential in `, thus polynomial
in |ψ|. Composing ψE ◦ψ, check the conditions hold for this event E, with just
one bit of output.

Claim 7.17. Decide-ε, δ-DP, restricted to circuits ψ with ` bit outputs where
` ≤ log(|ψ|), is in coNP#P (and hence coNP#P-complete).

161

Claim 7.17 trivially extends to ` ≤ c · log(|ψ|) for any fixed c > 0.

When ` is larger, one can verify “succinctly separable” events E, by quantifying
over all circuits of size p(|ψ|). However the majority of separation circuits
f : {0, 1}` → {0, 1}, require at least approximately 2`

` bits [RS42].

7.3.1 Direct proof that Decide-ε, δ-DP is coNP#P-hard

The following proves that Decide-ε, δ-DP is coNP#P-hard, even when there
is just one output bit and for every ε.

Theorem 7.18. Decide-ε, δ-DP is coNP#P-hard.

Hardness can be shown for Decide-ε, δ-DP by direct reduction from
All-Min-Sat, which would entail that (ε, 1

2)-differential privacy is coNP#P-
hard. To show hardness for a large range of δ, the problem All-Min-Sat

is also shown to be hard, where 1
2 is generalised to an arbitrary fraction f .

All-Frac-f-Sat is then reduced to Decide-ε, δ-DP.

Generalising All-Min-Sat

All-Min-Sat generalises to All-Frac-f-Sat by instead of requiring that the
minority (less than half) of allocations to y give true, rather no more than a
fraction f . Similarly E-Maj-Sat generalises to E-Frac-f-Sat. Hardness will
be shown on E-Frac-f-Sat using E-Maj-Sat.

Definition 7.19. A formula φ(x,y), x ∈ {0, 1}n,y ∈ {0, 1}m and f ∈ [0, 1]∩Q

is All-Frac-f-Sat if for every x ∈ {0, 1}n

|{y ∈ {0, 1}m } φ(x,y) is true| |
2m

≤ f. J

Remark. If f = 0, then this requires that for all x, no input of y gives true,
therefore requiring φ is unsatisfiable. For f = 1, is essentially no restriction
and for f = 2m−1

2m requires that φ is not a tautology. All-Min-Sat is then
when f = 1

2 . J

Definition 7.20. A formula φ is E-Frac-f-Sat if it is not All-Frac-f-Sat.
J

This means a formula φ(x,y), x ∈ {0, 1}n,y ∈ {0, 1}n and f ∈ [0, 1] ∩ Q is
E-Frac-f-Sat if there exists an allocation x that more than f fraction of
allocations to y result in φ(x,y) being true. That is there exists x ∈ {0, 1}n
such that |{y∈{0,1}

m } φ(x,y) is true||
2m > f.

162

To show All-Frac-f-Sat is coNP#P-hard it is shown that E-Frac-f-Sat

is NP#P-hard, entailing Corollary 7.22.

Lemma 7.21. E-Frac-f-Sat is NP#P-hard for f ∈ [1
2m ,

2m−1
2m).

Corollary 7.22. All-Frac-f-Sat is coNP#P-hard for f ∈ [1
2m ,

2m−1
2m).

Definition 7.23. Let χ b

2k
(z1, . . . , zk)) be a circuit on k bits, which is true for

b of its 2k inputs, but not true for z1 = · · · = zk = 1 when b < 2k. Given b, k
such that 0 < b

2k
< 1, create a formula, over 2k bits, which given two k-bit

integers m,n, return whether m ≤ n (such a formula is of size polynomial in
k). By fixing n to b, we have a circuit on m input bits which decides if m ≤ b.
If z1, . . . , zk is chosen probabilistically the circuit outputs 1 with probability
b2k. J

Proof of Lemma 7.21. The proof proceeds in three cases, depending on the
possible representation of the fraction f .

Case 1 (For f = 1
2k+1). Reduction from E-Maj-Sat, i.e. given a formula φ(x,y)

to E-Frac- 1
2k+1 -Sat.

(Assume 1
2k+1 takes O(k) bits.)

Define a formula φ′(x,w), with w ∈ {0, 1}m+k. Let w = (y1, . . . , ym, z1 . . . zk),
where y = (y1, . . . , ym).

φ′(x,w) = z1 ∧ · · · ∧ zk ∧ φ(x, y1, . . . , ym)

For x fixed if g allocations to y1, . . . , ym satisfy φ then each of these satisfy φ′

only when z1 = · · · = zk = 1. All remaining times are unsatisfied.

Suppose g
2m of y’s satisfy φ(x,y) then g

2m·2k w’s satisfy φ′(x,w).

That is we have:
g

2m · 2k >
1

2k+1
⇐⇒ g

2m
>

1

2
.

Case 2 (For f = a
2k+1). Reduce E-Maj-Sat, given a formula φ(x,y) to E-

Frac- 1
2k+1 -Sat. Assume a odd (otherwise, half and take a/2

2k
) and greater than

1, else use Case 1.

Define a formula φ′(x,w), with w ∈ {0, 1}m+k. Let w = (y1, . . . , ym, z1 . . . zk),
where y = (y1, . . . , ym). Let b = a−1

2 (b is always between 1 and 2k − 1).

Then we let φ′(x,w) = (z1 ∧ · · · ∧ zk ∧ φ(x, y1, . . . , ym)) ∨ χ b

2k
(z1, . . . , zk).

That is the formula φ′ is true whenever z1 = · · · = zk = 1 and φ is true, or on
the b

2k
choices of z1 . . . zk.

163

Suppose g
2m of y’s satisfy φ(x,y) then g

2m·2k + b
2k

= g
2m·2k + a−1

2k+1 w’s satisfy
φ′(x,w).

That is we have:

g

2m · 2k +
a− 1

2k+1
>

a

2k+1
⇐⇒ g

2m · 2k >
1

2k+1
⇐⇒ g

2m
>

1

2

Case 3 (For f = a
b). Let m be the number such that y ∈ {0, 1}m, the number

of y bits of the formula, or the number of “MAJ” bits. Let z be such that
z

2m < a
b <

z+1
2m . We reduce E-Frac- z

2m -Sat to E-Frac-ab -Sat, by simply
taking φ unchanged.

Suppose g
2m of y’s satisfy φ(x,y) then

g

2m
>

z

2m
⇐⇒ g

2m
≥ z + 1

2m
⇐⇒ g

2m
>
a

b
.

Main Proof of Theorem 7.18

Proof. Assume that an instance of All-Frac-f-Sat is given, a formula φ(x,y)

for x ∈ {0, 1}n,y ∈ {0, 1}m and f ∈ [0, 1].

Define a circuit ψ, with inputs x ∈ {0, 1}n+1, written as (z,x1, . . . ,xn); match-
ing the inputs x and a single additional bit z. There are m probabilistic
bits r ∈ {0, 1}m, matching y. There is one output bit o ∈ {0, 1}1. The
circuit ψ will behave like φ when z = 1 and simply output 0 when z = 0; i.e.
o1 = z ∧ φ(x1, . . . ,xn, r1, . . . , rm).

Claim 7.24. φ ∈ All-Frac-f-Sat if and only if ψ is (ε, δ)-differentially
private, for δ = f and any choice of ε (including zero).

Direction: if φ 6∈ All-Frac-f-Sat then not (ε, δ)-differentially private. Given
φ 6∈ All-Min-Sat then there exists x ∈ {0, 1}n such that φ(x,y) is on
more than f portion of y ∈ {0, 1}m. The differential privacy condition is
then shown to be violated exactly using this x, let x = (1,x1, . . . ,xn) and
x′ = (0,x1, . . . ,xn). Now consider the probability of the event o1 = 1.

Then we have P [ψ(1,x1, . . . ,xn) = 1] > f and P [ψ(0,x1, . . . ,xn) = 1] = 0,
violating differential privacy since,

P [ψ(1,x1, . . . ,xn) = 1]− eεP [ψ(0,x1, . . . ,xn) = 1] > f − 0 = δ.

Direction: if φ ∈All-Frac-f-Sat then (ε, δ)-differentially private. Since φ ∈
All-Frac-f-Sat then for all x ∈ {0, 1}n we have φ(x,y) true for less or equal
f proportion of the allocations to y ∈ {0, 1}m. Equivalently the more than f
of y ∈ {0, 1}m with φ(x,y) false.

164

Privacy is shown by considering all neighbouring inputs and all output event.
The output events are E ⊆ {0, 1}1, giving ∅, {0} , {1} , {0, 1}. The probability
of “no output” (∅) is zero for all inputs, so cannot violate differential privacy.
Similarly the probability of “output anything” ({0, 1}) is one for all inputs, so
does cannot violate differential privacy. Thus arguments are necessary that
events {0} and {1} do not violate differential privacy, for all neighbouring
inputs.

Inputs take the form x = (z,x1, . . . ,xn), and x,x′ can be neighbouring either
with fixed x and differing z or, fixed z and x differing in one position; in each
case it is shown that P [ψ(x) = E]− eεP [ψ(x′) = E] ≤ δ and P [ψ(x′) = E]−
eεP [ψ(x) = E] ≤ δ.

Let z be fixed to zero. Hence we have x,x′ with x’s differing in one position.
For z = 0 the circuit outputs zero in all cases, independently of x, thus does
not violate differential privacy since P [ψ(x) = E] = P [ψ(x′) = E].

Let z be fixed to one. Hence we have x,x′ with x’s differing in one position.
Without loss of generality suppose the difference is xj .

For the event E = {1} we have the probability being ≤ f for each input; that ism
regardless of x we have P [ψ(x) = 1] ≤ f . So P [ψ(x) = E]−eεP [ψ(x′) = E] ≤
P [ψ(x) = E] ≤ f = δ and P [ψ(x′) = E]− eεP [ψ(x) = E] ≤ P [ψ(x′) = E] ≤
f = δ.

For the event E = {0} we have the probability being ≥ 1 − f for
each input; that is, regardless of x we have P [ψ(x) = 0] ≥ 1 − f .
So P [ψ(x) = E] − eεP [ψ(x′) = E] ≤ 1 − P [ψ(x′) = E] ≤ f = δ and
P [ψ(x′) = E]− eεP [ψ(x) = E] ≤ 1− P [ψ(x) = E] ≤ f = δ.

Let x1, . . . ,xn be fixed. Hence we have x,x′ with differing z. Without loss
of generality, let x have z = 1, that is, x = (1,x1, . . . ,xn) and x′ have z = 0,
x′ = (0,x1, . . . ,xn).

For the event {1}, when z = 1, we have P [ψ(x) = 1] ≤ f , but for z = 0 the
circuit is always 0, thus P [ψ(x′) = 1] = 0.

Then P [ψ(x) = 1]−eεP [ψ(x′) = 1] = P [ψ(x) = 1] ≤ f = δ and P [ψ(x′) = 1]−
eεP [ψ(x) = 1] ≤ 0 ≤ δ.

For the event {0} we have then P [ψ(x) = 0] ≥ 1 − f and P [ψ(x′) = 0] = 1

Then P [ψ(x) = 0] − eεP [ψ(x′) = 0] ≤ 1 − eε ≤ 0 ≤ δ and P [ψ(x′) = 0] −
eεP [ψ(x) = 0] ≤ 1− P [ψ(x) = 0] ≤ f = δ.

165

7.3.2 Decide-ε, δ-DP ∈ coNP#P#P

This section shows that, in the most general case, Decide-ε, δ-DP can be
solved in coNP#P#P

.

Theorem 7.25. Decide-ε, δ-DP can be decided in coNP#P#P
.

Non-determinism will be used to choose inputs leading to a violating event,
but, unlike in Section 7.2 it will not be used for finding a violating output event
E, as an (explicit) description of such an event may be of super-polynomial
length. It is useful to use a reformulation of approximate differential privacy,
using a sum over potential individual outcomes:

Reformulation 7.26 (Pointwise differential privacy [Bar+16b]). A randomised
circuit ψ is (ε, δ)-differentially private if and only if for all neighbouring x,x′ ∈
Xn and for all o ∈ {0, 1}`,∑

o∈{0,1}`
δx,x′(o) ≤ δ

where δx,x′(o) = max (P [ψ(x) = o]− eε · P [ψ(x′) = o] , 0) . J

Proof of Theorem 7.25. Assume eε = α is given in binary, thus α = u
2v for

some integers u and v.

DefineM, a non-deterministic Turing Machine with access to a #P-oracle, and
where each execution branch runs in polynomial time. On inputs a randomised
circuit ψ and neighbouring x,x′ ∈ Xn the number of accepting executions of
M would be proportional to

∑
o∈{0,1}` δx,x′(o).

In more detail, on inputs ψ, x and x′,M chooses o ∈ {0, 1}` and an integer
C ∈ {1, 2, . . . , 2m+v} (this requires choosing l +m+ v bits). Through a call to
the #P oracle,M computes

a = |{r ∈ {0, 1}m : ψ(x, r) = o}| , and b =
∣∣{r ∈ {0, 1}m : ψ(x′, r) = o

}∣∣ .
Finally,M accepts if 2v · a− u · b ≥ C and otherwise rejects.

Claim 7.27. Give two inputs x,x′ ∈ Xn, M(ψ,x,x′) has exactly 2v ·
2m
∑

o∈{0,1}` δx,x′(o) accepting executions.

Proof. Let 1{X} be the indicator function, which is one if the predicate X
holds and zero otherwise.

166

2m2v
∑

o∈{0,1}`

δx,x′(o) =
∑

o∈{0,1}`

2v2m max (P [ψ(x) = o]− αP [ψ(x′) = o] , 0)

=
∑

o∈{0,1}`

2v2m max

 1

2m

∑
r∈{0,1}m

1{ψ(x, r) = o} − α 1

2m

∑
r∈{0,1}m

1{ψ(x′, r) = o}, 0


=

∑
o∈{0,1}`

max

2v
∑

r∈{0,1}m

1{ψ(x, r) = o} − 2vα
∑

r∈{0,1}m

1{ψ(x′, r) = o}, 0


=

∑
o∈{0,1}`

max

2v
∑

r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1{ψ(x′, r) = o}, 0


=

∑
o∈{0,1}`

2v+m∑
C=1

1

max

2v
∑

r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1{ψ(x′, r) = o}, 0

 ≥ C


= number of accepting executions in M̂. �

Now the coNP#P#P
procedure for Decide-ε, δ-DP can be described, entailing

Theorem 7.25. The procedure takes as input a randomised circuit ψ.

1. Non-deterministically choose neighbouring x and x′ ∈ {0, 1}n (i.e. 2n

bits)

2. LetM be the non-deterministic Turing Machine with access to a #P-
oracle as described above. Create a machine M̂ with no input that
executesM on ψ,x,x′

3. Make an #P#P oracle call for the number of accepting executions M̂
has.

4. Reject if the number of accepting executions is greater than 2v · 2m · δ
and otherwise accept.

By Claim 7.27, there is a choice x,x′ on which the procedure rejects if and
only if ψ is not (ε, δ)-differentially private.

7.4 Inapproximability of the privacy parameters ε and δ

Given the difficulty of deciding if a circuit is differentially private, one might
naturally consider whether approximating ε or δ could be efficient. This section
shows these tasks are both NP-hard and coNP-hard.

The problem of distinguishing between (ε, δ), and (ε′, δ′)-differential privacy
is NP-hard, by reduction from a problem called here Not-Constant which
will be shown to be NP-hard. A Boolean formula is in Not-Constant if it is
satisfiable and not also a tautology.

167

Lemma 7.28. Not-Constant is NP-complete. (hence Constant is coNP-
complete).

Proof. Clearly, Not-Constant ∈ NP, the witness being a pair of satisfy-
ing and non-satisfying assignments. Reducing 3-SAT to Not-Constant.
Given a Boolean formula φ over variables x1, . . . , xn let φ′(x1, . . . , xn, xn+1) =

φ(x1, . . . , xn)∧xn+1. Note that φ′ is never a tautology as φ′(x1, . . . , xn, 0) = 0.
Furthermore, φ′ is satisfiable if and only if φ is.

Randomised Response Revisited

In Section 7.2.2 randomised response is used in the pure differential privacy
setting. Now consider the approximate differential privacy variant RRε,δ :

{0, 1} → {>,⊥} × {0, 1} defined as follows:

RRε,δ(x) =


(>, x) w.p. δ

(⊥, x) w.p. (1− δ) α
1+α

(⊥,¬x) w.p. (1− δ) 1
1+α

where α = eε.

That is, with probability δ, RRε,δ(x) reveals x and otherwise it executes RRε(x).
The former is marked with “>” and the latter with “⊥”. This mechanism is
equivalent to the one described in [MV16].

RRε,δ is minimally (ε, δ)-differentially private, in the sense that this is the
smallest possible δ, and for this δ the smallest possible ε. Naturally ε could be
reduced for larger δ.

Description of the circuit RRε,δ Assume a number between 0 and 1 is given
that can be written in binary of the form c

2m . Recall from Definition 7.23 there
is a there is a circuit χc which is true c

2m of the time. Assume ε is such that
c = eε

1+eε can be written as a decimal in m bits and δ can be written as d
2q

where d has q bits.

Specifically the circuit RRε,δ is defined so that (o1, o2) = RRε,δ(x), with
p1, . . . , pm and p′1, . . . , p

′
q random bits. Let o1 = χδ(p

′
1, . . . , p

′
q) and o2 =

(o1 ∧x)∨ (¬o1 ∧ (x⊕χc(p1, . . . , pm))). (Formally, output bit o1 cannot be used
to determine o2, create an internal node for the value of o1 and use this for
both o1 and o2). RRε,δ is (ε, δ)-differentially private.

168

Distinguishing and Approximating Privacy Parameters

Definition 7.29. Let 0 ≤ ε ≤ ε′, 0 ≤ δ ≤ δ′ ≤ 1, with either ε < ε′ or δ < δ′.
Distinguish-(ε, δ), (ε′, δ′)-DP asks, given a circuit ψ, guaranteed to be either
(ε, δ)-differentially private, or (ε′, δ′)-differentially private. Determine whether
ψ is (ε, δ)-differentially private or (ε′, δ′)-differentially private. J

Lemma 7.30. Distinguish-(ε, δ), (ε′, δ′)-DP is NP-hard (and coNP-hard).

Proof. Reducing Not-Constant to Distinguish-(ε, δ), (ε′, δ′)-DP. Given the
Boolean formula φ(x) on n bits, create a randomised circuit ψ. The input to ψ
consists of the n bits of x plus a single bit y. The circuit ψ has four output
bits (o1, o2, o3, o4) such that (o1, o2) = RRε,δ(y) and (o3, o4) = RRε′,δ′(φ(x)).

Observe that (o1, o2) = RRε,δ(y) is always (ε, δ) differentially private. As for
(o3, o4) = RRε′,δ′(φ(x)), if φ ∈ Not-Constant then there are neighbouring
x,x′ such that φ(x) 6= φ(x′). In this case, (o3, o4) = RRε′,δ′(φ(x)) is (ε′, δ′)-
differential privacy, and, because (ε, δ) < (ε′, δ′), so is ψ . On the other hand, if
φ 6∈ Not-Constant then φ(x) does not depend on x and hence (o3, o4) does
not affect privacy, in which case we have that ψ is (ε, δ) differentially private.

The same argument also gives coNP-hardness.

Notice that the above theorem holds when δ = δ′ and ε < ε′ (similarly, ε = ε′

and δ < δ′), which entails the following theorem:

Theorem 7.31. Assuming P 6= NP, for any approximation error γ > 0,
there does not exist a polynomial time approximation algorithm that given a
randomised circuit ψ and δ some computes ε̂, where |ε̂− ε| ≤ γ and ε is the
minimal such that ψ is (ε, δ)-differentially private within error γ. Similarly,
given ε, no such δ̂ can be computed where

∣∣∣δ̂ − δ∣∣∣ ≤ γ and δ is minimal.

Proof. Suppose there is a polynomial time algorithm:

• Approximate-ε: Then Distinguish-(ε, δ), (ε′, δ′)-DP (coNP-hard)
is solved by approximating with γ = ε′−ε

3 to find ε̂. Then Distinguish-

(ε, δ), (ε′, δ′)-DP if and only if ε̂ < ε′+ε
2 . Similarly the complement

(NP-hard) is solved when ε̂ > ε′+ε
2 .

• Approximate-δ: Then Distinguish-(ε, δ), (ε′, δ′)-DP (coNP-hard)
is solved by approximating with γ = δ′−δ

3 to find δ̂. Then Distinguish-

(ε, δ), (ε′, δ′)-DP if and only if δ̂ < δ′+δ
2 . Similarly the complement

(NP-hard) is solved when δ̂ > δ′+δ
2 .

169

Remark. The results also hold when approximating pure differential privacy, i.e.
when δ = 0. Moreover, the result applies when approximating within a given
ratio ρ > 1 (e.g. in the case of approximating ε, to find ε̂ such that ε̂

ε ≤ ρ). J

7.5 Conclusion

This chapter considers the complexity of verifying differential privacy in ran-
domised circuits. Deciding ε-differential privacy in randomised circuits is
coNP#P-complete and (ε, δ)-differential privacy is coNP#P-hard and in
coNP#P#P

. Both problems are positioned in between the polynomial hi-
erarchy PH and PSPACE.

Nevertheless there is a gap to be closed for approximate differential privacy.
The direct hardness proof for δ has just one output bit, to improve the lower
bound, circuits with more output bits must be considered and possibly further
dependency on ε could refine the lower bound.

Towards a conjecture; coNP#P#P
would seem intuitive. coNP is used to

resolve the input, the first #P resolves the the output, and the final #P

resolves the probability for each input/output choice. It seems necessary that
the output cannot be resolved without a #P oracle, because it requires choice of
an object of exponential size. This is in contrast to ε-differential privacy, where
the choice of output is small and so can be chosen with coNP and the choice
of input and output can be resolved with one level of coNP. However there
is no completeness result, and it is possible that some ingenious construction
enables the output and probability choice can be combined into a single #P

oracle, rather than using a #P oracle which itself requires a #P oracle.

Considering the practical implications for verification of “simple” programs, the
results seem to point to a deficiency in available tools for model checking. The
model checking toolkit includes well established Sat solvers forNP (and coNP)
problems, solvers for further quantification in PH, solvers for #Sat (and hence
for #P problems) (see e.g. [Aut19]). However it would seem that there are
currently no solvers that are specialised for mixing the polynomial hierarchy
PH and counting problems #P, in particular for problems in coNP#P and
coNP#P#P

.

Approximating the differential privacy parameters is shown to be NP-hard
and coNP-hard, indicating polynomial approximation is not possible (unless
P = NP). This is determined by the problem of distinguishing (ε, δ)-differential
privacy from (ε′, δ′)-differential privacy where (ε, δ) < (ε′, δ′), which is both
NP-hard and coNP-hard. The full classification of the complexity of this
problem is left as an open problem.

170

Chapter 8

Conclusions and Future Work

The thesis contributed to the algorithmic verification of differential privacy;
the setting in which no further hints are provided to the verification procedure,
and the procedure must be fully automated. This is studied in the context of
two formal settings, namely labelled Markov chains and randomised circuits.
The main interest is the feasibility and complexity of verification procedures
for differential privacy on these models.

In the labelled Markov chain setting it is shown that most decision problems
are undecidable when considered directly and exactly. Focusing first on δ,
approximation is between #P and PSPACE on finite word models match-
ing the results for the standard total variation distance, but as yet there is
no complexity classification for the approximation on infinite word models.
Towards feasible verification techniques, this thesis demonstrates the theory of
bisimilarity distances on such models, showing these are sound upper bounds
on δ (existing work shows sound upper bounds for ε). This thesis takes a
computational approach and shows that the distances for δ can be computed in
polynomial time with an NP oracle and a slightly weaker distance computed in
polynomial time. In experiments it appears that these two distances coincide,
but further techniques may be required to enable practical implementations.
Figure 5.1 summarises the complexity results on δ and the relations between
distances.

Turning to ε, the bisimilarity distance can be approximated in PSPACE,
leaving further work to determine if it can be computed exactly, and to fully
classify the complexity of approximation. The distance of direct interest is also
studied, for which, the question of whether it is bounded is studied through
the big-O problem; determining that the complexity is coNP-complete for
unary models, and on models with bounded languages is decidable subject to
a well-known conjecture from number theory. Whilst studied in the context
of differential privacy here, the big-O problem, with its similarities to the
analysis of algorithms, may have interest outside the field of privacy as a
natural approach to whether two systems behave similarly asymptotically, or

171

whether one dominates another in the long run.

In the setting of randomised circuits, the complexity of verifying pure differential
is fully captured as coNP#P-complete; formalising the intuition that differential
privacy is universal quantification followed by a condition on probabilities. For
the case of approximate differential privacy the problem lies between coNP#P

and coNP#P#P
, and various restrictions on the shape of circuit are shown to

make the problem coNP#P-complete. The work extends to the verification
of any differentially private algorithm with an a priori bound on the length of
the computation; providing a general purpose, if perhaps infeasible in practice,
verification procedure for a large class of algorithms.

Turning to the problem of approximating the parameters, it is is shown that
this cannot be done in polynomial time. This can be seen a significant blow;
one may have expected that it could not be done exactly in polynomial time,
but the relaxation to approximation may have admitted a speed up. However
this result shows that from a complexity perspective, verification is a difficult
task, even on restricted models.

Labelled Markov chains and randomised circuits differ in their representation
of a probabilistic program. A labelled Markov chain must represent each
reachable configuration of the state explicitly in its own state, but can have
looping behaviour and can produce output during the computation. Circuits,
on the other hand, express the configuration more succinctly, using a binary
representation. However circuits are a model with finite state space, requiring
that any loop must be unrolled. Due to this finiteness one can be sure of
decidability, if necessary by complete exhaustion; the results highlight the
extent to which this complete exhaustion is necessary. Many of the complexity
classes shown in this thesis are super-polynomial (unless P = NP), indicating
that each of the tasks considered do not have realistically efficient algorithms.
In practice it is more important that the privacy of the mechanisms can be
verified (or refuted), rather than being able to decide for any possible algorithm.
Yet, the theoretical nature of this thesis, studying these problems from the
computational complexity perspective, provides further the understanding of
the difficulties involved in fully automated procedures for these tasks.

172

8.1 Open problems and future work

Whilst much has been resolved, this work has brought about new open questions.
The following are concrete questions deserving of further investigation.

Estimators of δ As an estimate to δ, three bounds have been provided, bdα, ldα
and lgdα. The first, bdα, can be considered superseded by ldα, which can still
be computed in polynomial time with an NP oracle. However, there is an open
question as to the gap between ldα and lgdα which is computable in polynomial
time. This leaves open Conjecture 5.27, that is, is ldα = lgdα? If not, is there
another way to get a polynomial time algorithm for ldα, or a polynomial time
algorithm for an even better estimate of δ?

Extended models The models considered in Chapters 4 and 5 are fully prob-
abilistic, that is, there is no non-determinism. As sketched in Section 5.7
there is scope to extend bisimilarity distances to models which support both
probabilistic choice and non-deterministic choice and this could enable the
verification of new classes of protocols and algorithms. Questions relating to
the estimation of δ and the computation on such distances are of interest in
this direction.

The big-O problem In Chapter 6, the big-O problem, and thus questions relating
to ε have been considered. In full generality the problems are undecidable,
even on labelled Markov chains, but in constrained classes the questions are
decidable, even on weighted automata. This leaves open the boundary between
decidability and undecidability in the big-O problem. In particular is there a
relation to leaktight automata, in the case of probabilistic automata, as in the
case of the Value-1 problem? In the cases where it is shown that the existence
of a constant is undecidable, it is also undecidable to approximate the constant
even under the promise that it does exist. It is open whether the constant, that
is exp(ε), can be approximated in the cases where existence is decidable.

Verification of circuits The complexity of verifying ε-differential privacy in
randomised circuits was fully settled to be coNP#P-complete. However there is
a gap between coNP#P or coNP#P#P

for (ε, δ)-differential privacy; although
certain restrictions on the shape of the formula show coNP#P-completeness.
Concretely it is open whether the problem is, in full generality, coNP#P-
complete or coNP#P#P

-complete, or complete for some class in between? Note
that well defined intermediate classes do exists, for instance coNP#PNP

sits
between coNP#P and coNP#P#P

, although it is not even known if coNP#P

and coNP#P#P
are different.

173

Models of privacy This thesis has conducted its analysis on both pure and ap-
proximate differential privacy. These are the standard versions of privacy which
have received the most attention in the literature. However, new definitions of
privacy are starting to gain traction which overcome some of the limitations of
these models. One can consider the complexity of verifying these models, in
particular Renyi-differential privacy [Mir17], which uses a different divergence
function instead of the one based on the total variation distance as studied in
this work. Concretely, one can study the complexity of computing or bounding
Renyi-differential privacy in labelled Markov chains and randomised circuits.

174

Bibliography

[AACP11] Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi. “On the Relation between Differential Privacy
and Quantitative Information Flow”. In: Automata, Languages and
Programming - 38th International Colloquium, ICALP 2011. Vol. 6756.
Lecture Notes in Computer Science. Springer, 2011, pp. 60–76. doi:
10.1007/978-3-642-22012-8_4.

[Abo18] John M Abowd. “The US Census Bureau Adopts Differential Privacy”.
In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM. 2018, pp. 2867–2867.

[AH18] Aws Albarghouthi and Justin Hsu. “Synthesizing coupling proofs of
differential privacy”. In: Proc. ACM Program. Lang. 2.POPL (2018),
58:1–58:30. doi: 10.1145/3158146.

[App] Apple. “Apple Differential Privacy Technical Overview”. Online at:
https://www.apple.com/privacy/docs/Differential_Privacy_
Overview.pdf Accessed 12/12/2019.

[Arr06] Michael Arrington. “AOL Proudly Releases Massive Amounts of Private
Data”. In: TechCrunch (2006). Online at: https://techcrunch.com/
2006/08/06/aol-proudly-releases-massive-amounts-of-user-
search-data/ Accessed 12/12/2019.

[Aut19] Automated Reasoning Group. “BeyondNP.org”. Online at: http://
beyondnp.org/pages/solvers/ Accessed 12/12/2019. 2019.

[Bac+19] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi
Tang, and Franck van Breugel. “Computing Probabilistic Bisimilarity
Distances for Probabilistic Automata”. In: 30th International Conference
on Concurrency Theory, CONCUR 2019. 2019, 9:1–9:17. doi: 10.4230/
LIPIcs.CONCUR.2019.9.

[Bar+14] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu,
César Kunz, and Pierre-Yves Strub. “Proving Differential Privacy in
Hoare Logic”. In: IEEE 27th Computer Security Foundations Symposium,
CSF 2014. IEEE Computer Society, 2014, pp. 411–424. doi: 10.1109/
CSF.2014.36.

[Bar+15a] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo
Stefanesco, and Pierre-Yves Strub. “Relational Reasoning via Proba-
bilistic Coupling”. In: Logic for Programming, Artificial Intelligence, and
Reasoning - 20th International Conference, LPAR-20 2015. Vol. 9450.
Lecture Notes in Computer Science. Springer, 2015, pp. 387–401. doi:
10.1007/978-3-662-48899-7_27.

[Bar+15b] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin
Hsu, Aaron Roth, and Pierre-Yves Strub. “Higher-Order Approximate
Relational Refinement Types for Mechanism Design and Differential
Privacy”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015.
ACM, 2015, pp. 55–68. doi: 10.1145/2676726.2677000.

175

https://doi.org/10.1007/978-3-642-22012-8_4
https://doi.org/10.1145/3158146
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
https://techcrunch.com/2006/08/06/aol-proudly-releases-massive-amounts-of-user-search-data/
http://beyondnp.org/pages/solvers/
http://beyondnp.org/pages/solvers/
https://doi.org/10.4230/LIPIcs.CONCUR.2019.9
https://doi.org/10.4230/LIPIcs.CONCUR.2019.9
https://doi.org/10.1109/CSF.2014.36
https://doi.org/10.1109/CSF.2014.36
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1145/2676726.2677000

[Bar+16a] Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin
Hsu, and Pierre-Yves Strub. “Advanced Probabilistic Couplings for Dif-
ferential Privacy”. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 55–67.
doi: 10.1145/2976749.2978391.

[Bar+16b] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. “Proving Differential Privacy via Probabilistic Cou-
plings”. In: Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2016. ACM, 2016, pp. 749–758. doi:
10.1145/2933575.2934554.

[Bar+20] Gilles Barthe, Rohit Chadha, Vishal Jagannath, A. Prasad Sistla,
and Mahesh Viswanathan. “Deciding Differential Privacy for Programs
with Finite Inputs and Outputs”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2020.
Arxiv pre-print: http://arxiv.org/abs/1910.04137. ACM, 2020,
pp. 141–154. doi: 10.1145/3373718.3394796.

[Bar12] Daniel Barth-Jones. “The’re-identification’of Governor William Weld’s
medical information: a critical re-examination of health data identifica-
tion risks and privacy protections, then and now”. In: Then and Now
(July 2012) (2012).

[BBLM13] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare.
“On-the-Fly Exact Computation of Bisimilarity Distances”. In: Tools
and Algorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013. Vol. 7795. Lecture Notes in
Computer Science. Springer, 2013, pp. 1–15. doi: 10.1007/978-3-642-
36742-7_1.

[BBLM17] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. “On-
the-Fly Computation of Bisimilarity Distances”. In: Logical Methods in
Computer Science 13.2 (2017). doi: 10.23638/LMCS-13(2:13)2017.

[BGB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. “For-
mal certification of code-based cryptographic proofs”. In: Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009. ACM, 2009, pp. 90–101. doi:
10.1145/1480881.1480894.

[BGHP16] Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce.
“Programming language techniques for differential privacy”. In: SIGLOG
News 3.1 (2016), pp. 34–53. url: https://dl.acm.org/citation.
cfm?id=2893591.

[Bic+18] Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov,
and Martin T. Vechev. “DP-Finder: Finding Differential Privacy Viola-
tions by Sampling and Optimization”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2018. ACM, 2018, pp. 508–524. doi: 10.1145/3243734.3243863.

[Bil86] Patrick Billingsley. “Probability and Measure”. 2nd. John Wiley and
Sons, 1986.

[BK08] Christel Baier and Joost-Pieter Katoen. “Principles of model checking”.
MIT Press, 2008. isbn: 978-0-262-02649-9.

[BKOB12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella
Béguelin. “Probabilistic relational reasoning for differential privacy”. In:
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2012. ACM, 2012, pp. 97–110.
doi: 10.1145/2103656.2103670.

176

https://doi.org/10.1145/2976749.2978391
https://doi.org/10.1145/2933575.2934554
http://arxiv.org/abs/1910.04137
https://doi.org/10.1145/3373718.3394796
https://doi.org/10.1007/978-3-642-36742-7_1
https://doi.org/10.1007/978-3-642-36742-7_1
https://doi.org/10.23638/LMCS-13(2:13)2017
https://doi.org/10.1145/1480881.1480894
https://dl.acm.org/citation.cfm?id=2893591
https://dl.acm.org/citation.cfm?id=2893591
https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1145/2103656.2103670

[BKOB13] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella
Béguelin. “Probabilistic Relational Reasoning for Differential Privacy”.
In: ACM Trans. Program. Lang. Syst. 35.3 (2013), 9:1–9:49. doi: 10.
1145/2492061.

[BO13] Gilles Barthe and Federico Olmedo. “Beyond Differential Privacy: Com-
position Theorems and Relational Logic for f-divergences between Prob-
abilistic Programs”. In: Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013. Vol. 7966. Lecture Notes in
Computer Science. Springer, 2013, pp. 49–60. doi: 10.1007/978-3-
642-39212-2_8.

[BPR05] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. “Betti number
bounds, applications and algorithms”. In: Current trends in combinatorial
and computational geometry: papers from the special program at MSRI
52 (2005), pp. 87–97.

[Bre17] Franck van Breugel. “Probabilistic Bisimilarity Distances”. In: ACM
SIGLOG News 4.4 (Nov. 2017), pp. 33–51. doi: 10.1145/3157831.
3157837.

[BSW07] Franck van Breugel, Babita Sharma, and James Worrell. “Approxi-
mating a Behavioural Pseudometric Without Discount for Probabilis-
tic Systems”. In: Foundations of Software Science and Computational
Structures, 10th International Conference, FOSSACS 2007. Vol. 4423.
Lecture Notes in Computer Science. Springer, 2007, pp. 123–137. doi:
10.1007/978-3-540-71389-0_10.

[BSW08] Franck van Breugel, Babita Sharma, and James Worrell. “Approximating
a Behavioural Pseudometric without Discount for Probabilistic Systems”.
In: Logical Methods in Computer Science 4.2 (2008). doi: 10.2168/
LMCS-4(2:2)2008.

[BW01] Franck van Breugel and James Worrell. “An Algorithm for Quantita-
tive Verification of Probabilistic Transition Systems”. In: Concurrency
Theory, 12th International Conference, CONCUR 2001. Vol. 2154. Lec-
ture Notes in Computer Science. Springer, 2001, pp. 336–350. doi:
10.1007/3-540-44685-0_23.

[BW14] Franck van Breugel and James Worrell. “The Complexity of Computing
a Bisimilarity Pseudometric on Probabilistic Automata”. In: Horizons
of the Mind. A Tribute to Prakash Panangaden - Essays Dedicated to
Prakash Panangaden on the Occasion of His 60th Birthday. Vol. 8464.
Lecture Notes in Computer Science. Springer, 2014, pp. 191–213. doi:
10.1007/978-3-319-06880-0_10.

[Can88] John F. Canny. “Some Algebraic and Geometric Computations in
PSPACE”. In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, 1988. ACM, 1988, pp. 460–467. doi: 10.1145/
62212.62257.

[Car15] Jean Cardinal. “Computational Geometry Column 62”. In: SIGACT
News 46.4 (2015), pp. 69–78. doi: 10.1145/2852040.2852053.

[CBW12] Di Chen, Franck van Breugel, and James Worrell. “On the Complexity
of Computing Probabilistic Bisimilarity”. In: Foundations of Software
Science and Computational Structures - 15th International Conference,
FOSSACS 2012. Vol. 7213. Lecture Notes in Computer Science. Springer,
2012, pp. 437–451. doi: 10.1007/978-3-642-28729-9_29.

[CDM17] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. “Approxi-
mate counting in SMT and value estimation for probabilistic programs”.
In: Acta Inf. 54.8 (2017), pp. 729–764. doi: 10.1007/s00236-017-
0297-2.

177

https://doi.org/10.1145/2492061
https://doi.org/10.1145/2492061
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1007/978-3-642-39212-2_8
https://doi.org/10.1145/3157831.3157837
https://doi.org/10.1145/3157831.3157837
https://doi.org/10.1007/978-3-540-71389-0_10
https://doi.org/10.2168/LMCS-4(2:2)2008
https://doi.org/10.2168/LMCS-4(2:2)2008
https://doi.org/10.1007/3-540-44685-0_23
https://doi.org/10.1007/978-3-319-06880-0_10
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/2852040.2852053
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.1007/s00236-017-0297-2
https://doi.org/10.1007/s00236-017-0297-2

[CGPX14] Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi,
and Lili Xu. “Generalized Bisimulation Metrics”. In: CONCUR 2014 -
Concurrency Theory - 25th International Conference, CONCUR 2014.
Vol. 8704. Lecture Notes in Computer Science. Springer, 2014, pp. 32–46.
doi: 10.1007/978-3-662-44584-6_4.

[Cha88] David Chaum. “The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untraceability”. In: J. Cryptology 1.1 (1988),
pp. 65–75. doi: 10.1007/BF00206326.

[Che+19] Albert Cheu, Adam D. Smith, Jonathan Ullman, David Zeber, and
Maxim Zhilyaev. “Distributed Differential Privacy via Shuffling”. In:
IACR Cryptology ePrint Archive 2019 (2019), p. 245. url: https:
//eprint.iacr.org/2019/245.

[Che08] Steve Cheng. “A Crash Course on the Lebesgue Integral and Measure
Theory”. 2008.

[Chr86] Marek Chrobak. “Finite Automata and Unary Languages”. In: Theor.
Comput. Sci. 47.3 (1986), pp. 149–158. doi: 10.1016/0304-3975(86)
90142-8.

[CK14] Taolue Chen and Stefan Kiefer. “On the total variation distance of
labelled Markov chains”. In: Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS 2014. ACM, 2014, 33:1–33:10. doi: 10 . 1145 /
2603088.2603099.

[CKMP20] Dmitry Chistikov, Stefan Kiefer, Andrzej S Murawski, and David Purser.
“The Big-O Problem for Labelled Markov Chains and Weighted Au-
tomata”. Manuscript in preparation. 2020.

[CKV14a] Rohit Chadha, Dileep Kini, and Mahesh Viswanathan. “Decidable Prob-
lems for Unary PFAs”. In: Quantitative Evaluation of Systems - 11th
International Conference, QEST 2014. Vol. 8657. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 329–344. doi: 10.1007/978-3-319-
10696-0_26.

[CKV14b] Rohit Chadha, Dileep Kini, and Mahesh Viswanathan. “Quantitative
Information Flow in Boolean Programs”. In: Principles of Security and
Trust - Third International Conference, POST 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014. Vol. 8414. Lecture Notes in Computer Science. Springer,
2014, pp. 103–119. doi: 10.1007/978-3-642-54792-8_6.

[CMP18] Dmitry Chistikov, Andrzej S. Murawski, and David Purser. “Bisimilarity
Distances for Approximate Differential Privacy”. In: Automated Tech-
nology for Verification and Analysis - 16th International Symposium,
ATVA 2018. Vol. 11138. Lecture Notes in Computer Science. Full version
with proofs can be found at https://arxiv.org/abs/1807.10015.
Springer, 2018, pp. 194–210. doi: 10.1007/978-3-030-01090-4_12.

[CMP19] Dmitry Chistikov, Andrzej S. Murawski, and David Purser. “Asymmetric
Distances for Approximate Differential Privacy”. In: 30th International
Conference on Concurrency Theory, CONCUR 2019. Vol. 140. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 10:1–10:17.
doi: 10.4230/LIPIcs.CONCUR.2019.10.

[Coh13] Henri Cohen. “A course in computational algebraic number theory”.
Vol. 138. Springer Science & Business Media, 2013.

178

https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1007/BF00206326
https://eprint.iacr.org/2019/245
https://eprint.iacr.org/2019/245
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1145/2603088.2603099
https://doi.org/10.1145/2603088.2603099
https://doi.org/10.1007/978-3-319-10696-0_26
https://doi.org/10.1007/978-3-319-10696-0_26
https://doi.org/10.1007/978-3-642-54792-8_6
https://arxiv.org/abs/1807.10015
https://doi.org/10.1007/978-3-030-01090-4_12
https://doi.org/10.4230/LIPIcs.CONCUR.2019.10

[Col15] Thomas Colcombet. “Unambiguity in Automata Theory”. In: Descrip-
tional Complexity of Formal Systems - 17th International Workshop,
DCFS 2015. Vol. 9118. Lecture Notes in Computer Science. Springer,
2015, pp. 3–18. doi: 10.1007/978-3-319-19225-3_1.

[CP10] Konstantinos Chatzikokolakis and Catuscia Palamidessi. “Making ran-
dom choices invisible to the scheduler”. In: Inf. Comput. 208.6 (2010),
pp. 694–715. doi: 10.1016/j.ic.2009.06.006.

[DAn+13] Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, An-
dreas Haeberlen, and Benjamin C. Pierce. “Sensitivity analysis using
type-based constraints”. In: Proceedings of the 1st annual workshop
on Functional Programming Concepts in Domain-Specific Languages,
FPCDSL@ICFP 2013. ACM, 2013, pp. 43–50. doi: 10.1145/2505351.
2505353.

[DD09] Yuxin Deng and Wenjie Du. “The Kantorovich Metric in Computer
Science: A Brief Survey”. In: Electr. Notes Theor. Comput. Sci. 253.3
(2009), pp. 73–82. doi: 10.1016/j.entcs.2009.10.006.

[DGJP04] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-
gaden. “Metrics for labelled Markov processes”. In: Theor. Comput. Sci.
318.3 (2004), pp. 323–354. doi: 10.1016/j.tcs.2003.09.013.

[Dif17] Differential Privacy Team, Apple. “Learning with privacy at scale”.
Online at: https://machinelearning.apple.com/docs/learning-
with- privacy- at- scale/appledifferentialprivacysystem.pdf
Accessed 12/12/2019. 2017.

[Din+18] Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel
Kifer. “Detecting Violations of Differential Privacy”. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018. ACM, 2018, pp. 475–489. doi: 10.1145/3243734.
3243818.

[DJGP02] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panan-
gaden. “The Metric Analogue of Weak Bisimulation for Probabilis-
tic Processes”. In: 17th IEEE Symposium on Logic in Computer Sci-
ence, LICS 2002. IEEE Computer Society, 2002, pp. 413–422. doi:
10.1109/LICS.2002.1029849.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith.
“Calibrating Noise to Sensitivity in Private Data Analysis”. In: Theory
of Cryptography, Third Theory of Cryptography Conference, TCC 2006.
Vol. 3876. Lecture Notes in Computer Science. Springer, 2006, pp. 265–
284. doi: 10.1007/11681878_14.

[DR14] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Dif-
ferential Privacy”. In: Foundations and Trends in Theoretical Computer
Science 9.3-4 (2014), pp. 211–407. doi: 10.1561/0400000042.

[DR16] Cynthia Dwork and Guy N. Rothblum. “Concentrated Differential Pri-
vacy”. In: CoRR abs/1603.01887 (2016). url: http://arxiv.org/abs/
1603.01887.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. “Boosting and
Differential Privacy”. In: 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2010. IEEE Computer Society, 2010, pp. 51–
60. doi: 10.1109/FOCS.2010.12.

179

https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.1016/j.ic.2009.06.006
https://doi.org/10.1145/2505351.2505353
https://doi.org/10.1145/2505351.2505353
https://doi.org/10.1016/j.entcs.2009.10.006
https://doi.org/10.1016/j.tcs.2003.09.013
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1109/LICS.2002.1029849
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
http://arxiv.org/abs/1603.01887
http://arxiv.org/abs/1603.01887
https://doi.org/10.1109/FOCS.2010.12

[Dwo+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. “Our Data, Ourselves: Privacy Via Distributed Noise
Generation”. In: Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Vol. 4004. Lecture Notes in Computer Science.
Springer, 2006, pp. 486–503. doi: 10.1007/11761679_29.

[Dwo+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and
Salil P. Vadhan. “On the complexity of differentially private data release:
efficient algorithms and hardness results”. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009. ACM,
2009, pp. 381–390. doi: 10.1145/1536414.1536467.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Response”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014. ACM, 2014, pp. 1054–1067. doi: 10.
1145/2660267.2660348.

[Erl+19] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta. “Amplification by Shuffling:
From Local to Central Differential Privacy via Anonymity”. In: Pro-
ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019. SIAM, 2019, pp. 2468–2479. doi: 10.1137/1.
9781611975482.151.

[ESS15] Hamid Ebadi, David Sands, and Gerardo Schneider. “Differential Pri-
vacy: Now it’s Getting Personal”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015. ACM, 2015, pp. 69–81. doi: 10.1145/2676726.
2677005.

[EY10] Kousha Etessami and Mihalis Yannakakis. “On the Complexity of Nash
Equilibria and Other Fixed Points”. In: SIAM J. Comput. 39.6 (2010),
pp. 2531–2597. doi: 10.1137/080720826.

[FGO12] Nathanaël Fijalkow, Hugo Gimbert, and Youssouf Oualhadj. “Deciding
the Value 1 Problem for Probabilistic Leaktight Automata”. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012. IEEE Computer Society, 2012, pp. 295–304. doi:
10.1109/LICS.2012.40.

[Fij17] Nathanaël Fijalkow. “Undecidability results for probabilistic automata”.
In: SIGLOG News 4.4 (2017), pp. 10–17. url: https://dl.acm.org/
citation.cfm?id=3157833.

[FJ14] Matthew Fredrikson and Somesh Jha. “Satisfiability modulo counting: a
new approach for analyzing privacy properties”. In: Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), CSL-LICS 2014. ACM, 2014, 42:1–42:10.
doi: 10.1145/2603088.2603097.

[FRZ11] Peter Franek, Stefan Ratschan, and Piotr Zgliczynski. “Satisfiability of
Systems of Equations of Real Analytic Functions Is Quasi-decidable”.
In: Mathematical Foundations of Computer Science 2011 - 36th Interna-
tional Symposium, MFCS 2011. Vol. 6907. Lecture Notes in Computer
Science. Springer, 2011, pp. 315–326. doi: 10.1007/978-3-642-22993-
0_30.

[FS80] Shmuel Friedland and Hans Schneider. “The Growth of Powers of a
Nonnegative Matrix”. In: SIAM J. Matrix Analysis Applications 1.2
(1980), pp. 185–200. doi: 10.1137/0601022.

180

https://doi.org/10.1007/11761679_29
https://doi.org/10.1145/1536414.1536467
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1137/1.9781611975482.151
https://doi.org/10.1137/1.9781611975482.151
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1137/080720826
https://doi.org/10.1109/LICS.2012.40
https://dl.acm.org/citation.cfm?id=3157833
https://dl.acm.org/citation.cfm?id=3157833
https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1007/978-3-642-22993-0_30
https://doi.org/10.1007/978-3-642-22993-0_30
https://doi.org/10.1137/0601022

[Gab+13] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce. “Linear dependent types for differential privacy”. In:
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2013. ACM, 2013, pp. 357–370. doi:
10.1145/2429069.2429113.

[Gad+19] Andrea Gadotti, Florimond Houssiau, Luc Rocher, Benjamin Livshits,
and Yves-Alexandre de Montjoye. “When the Signal is in the Noise:
Exploiting Diffix’s Sticky Noise”. In: 28th USENIX Security Symposium,
USENIX Security 2019. USENIX Association, 2019, pp. 1081–1098.
url: https://www.usenix.org/conference/usenixsecurity19/
presentation/gadotti.

[Gir12] Davide Giraudo. “Approximating a sigma-algebra by a generating alge-
bra”. In: StackExchange (2012). Online at: https://math.stackexchange.
com/questions/228998/approximating-a-sigma-algebra-by-a-
generating-algebra Accessed 17/12/2019.

[GJS90] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. “Algebraic
Reasoning for Probabilistic Concurrent Systems”. In: Programming con-
cepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3
Working Conference on Programming Concepts and Methods, 1990.
North-Holland, 1990, pp. 443–458. isbn: 0-444-88545-5.

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. “Geometric
Algorithms and Combinatorial Optimization”. Vol. 2. Algorithms and
Combinatorics. Springer, 1988. doi: 10.1007/978-3-642-97881-4.

[GM18] Anna C. Gilbert and Audra McMillan. “Property Testing For Differential
Privacy”. In: 56th Annual Allerton Conference on Communication,
Control, and Computing, 2018. IEEE, 2018, pp. 249–258. doi: 10.1109/
ALLERTON.2018.8636068.

[GNP20] Marco Gaboardi, Kobbi Nissim, and David Purser. “The Complexity
of Verifying Loop-Free Programs as Differentially Private”. In: 47th
International Colloquium on Automata, Languages, and Programming,
ICALP 2020 (to appear). 2020. url: http://arxiv.org/abs/1911.
03272.

[GS02] Alison L Gibbs and Francis Edward Su. “On choosing and bounding
probability metrics”. In: International statistical review 70.3 (2002),
pp. 419–435.

[GS64] Seymour Ginsburg and Edwin H Spanier. “Bounded ALGOL-like lan-
guages”. In: Transactions of the American Mathematical Society 113.2
(1964), pp. 333–368.

[Gup+18] Neha Gupta, Henry Crosby, David Purser, Stephen A. Jarvis, and Weisi
Guo. “Twitter Usage Across Industry: A Spatiotemporal Analysis”.
In: Fourth IEEE International Conference on Big Data Computing
Service and Applications, BigDataService 2018. 2018, pp. 64–71. doi:
10.1109/BigDataService.2018.00018.

[Hal74] Paul R Halmos. “Measure theory”. Vol. 18. Springer, 1974.

[Hoa69] Charles Antony Richard Hoare. “An axiomatic basis for computer pro-
gramming”. In: Communications of the ACM 12.10 (1969), pp. 576–
580.

[HPN11] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. “Dif-
ferential Privacy Under Fire”. In: 20th USENIX Security Symposium
2011. USENIX Association, 2011. url: http://static.usenix.org/
events/sec11/tech/full_papers/Haeberlen.pdf.

181

https://doi.org/10.1145/2429069.2429113
https://www.usenix.org/conference/usenixsecurity19/presentation/gadotti
https://www.usenix.org/conference/usenixsecurity19/presentation/gadotti
https://math.stackexchange.com/questions/228998/approximating-a-sigma-algebra-by-a-generating-algebra
https://math.stackexchange.com/questions/228998/approximating-a-sigma-algebra-by-a-generating-algebra
https://math.stackexchange.com/questions/228998/approximating-a-sigma-algebra-by-a-generating-algebra
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1109/ALLERTON.2018.8636068
https://doi.org/10.1109/ALLERTON.2018.8636068
http://arxiv.org/abs/1911.03272
http://arxiv.org/abs/1911.03272
https://doi.org/10.1109/BigDataService.2018.00018
http://static.usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf

[Hsu+14] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna,
Arjun Narayan, Benjamin C. Pierce, and Aaron Roth. “Differential
Privacy: An Economic Method for Choosing Epsilon”. In: IEEE 27th
Computer Security Foundations Symposium, CSF 2014. IEEE Computer
Society, 2014, pp. 398–410. doi: 10.1109/CSF.2014.35.

[HT03] Thanh Minh Hoang and Thomas Thierauf. “The complexity of the
characteristic and the minimal polynomial”. In: Theor. Comput. Sci.
295 (2003), pp. 205–222. doi: 10.1016/S0304-3975(02)00404-8.

[IRS76] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski.
“On the Equivalence, Containment, and Covering Problems for the
Regular and Context-Free Languages”. In: J. Comput. Syst. Sci. 12.2
(1976), pp. 222–268. doi: 10.1016/S0022-0000(76)80038-4.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. “Specification and Refine-
ment of Probabilistic Processes”. In: Proceedings of the Sixth Annual
Symposium on Logic in Computer Science, LICS 1991. IEEE Computer
Society, 1991, pp. 266–277. doi: 10.1109/LICS.1991.151651.

[JP19] Petr Jancar and David Purser. “Structural liveness of Petri nets is
ExpSpace-hard and decidable”. In: Acta Inf. 56.6 (2019), pp. 537–552.
doi: 10.1007/s00236-019-00338-6.

[Kan42] L. V. Kantorovich. “On the translocation of masses”. In: Doklady
Akademii Nauk SSSR 37(7-8) (1942), pp. 227–229.

[Kie+13] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and
James Worrell. “On the Complexity of Equivalence and Minimisation
for Q-weighted Automata”. In: Logical Methods in Computer Science
9.1 (2013). doi: 10.2168/LMCS-9(1:8)2013.

[Kie18] Stefan Kiefer. “On Computing the Total Variation Distance of Hid-
den Markov Models”. In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018. Vol. 107. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 130:1–130:13. doi:
10.4230/LIPIcs.ICALP.2018.130.

[KMT17] Markus Krötzsch, Tomás Masopust, and Michaël Thomazo. “Complexity
of universality and related problems for partially ordered NFAs”. In: Inf.
Comput. 255 (2017), pp. 177–192. doi: 10.1016/j.ic.2017.06.004.

[Koz92] Dexter C. Kozen. “The Design and Analysis of Algorithms”. In: New
York, NY: Springer New York, 1992. Chap. Integer Arithmetic in NC,
pp. 160–165. doi: 10.1007/978-1-4612-4400-4_30.

[KSM95] Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. “Counting and
Random Generation of Strings in Regular Languages”. In: Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 1995.
ACM/SIAM, 1995, pp. 551–557. url: http://dl.acm.org/citation.
cfm?id=313651.313803.

[Lad89] Richard E. Ladner. “Polynomial Space Counting Problems”. In: SIAM
J. Comput. 18.6 (1989), pp. 1087–1097. doi: 10.1137/0218073.

[LGM98] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. “The
Computational Complexity of Probabilistic Planning”. In: J. Artif.
Intell. Res. 9 (1998), pp. 1–36. doi: 10.1613/jair.505.

[LS89] Kim G Larsen and Arne Skou. “Bisimulation through probabilistic test-
ing (preliminary report)”. In: Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM.
1989, pp. 344–352.

182

https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1016/S0304-3975(02)00404-8
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1109/LICS.1991.151651
https://doi.org/10.1007/s00236-019-00338-6
https://doi.org/10.2168/LMCS-9(1:8)2013
https://doi.org/10.4230/LIPIcs.ICALP.2018.130
https://doi.org/10.1016/j.ic.2017.06.004
https://doi.org/10.1007/978-1-4612-4400-4_30
http://dl.acm.org/citation.cfm?id=313651.313803
http://dl.acm.org/citation.cfm?id=313651.313803
https://doi.org/10.1137/0218073
https://doi.org/10.1613/jair.505

[LS91] Kim Guldstrand Larsen and Arne Skou. “Bisimulation through Proba-
bilistic Testing”. In: Inf. Comput. 94.1 (1991), pp. 1–28. doi: 10.1016/
0890-5401(91)90030-6.

[LSL17] Min Lyu, Dong Su, and Ninghui Li. “Understanding the Sparse Vector
Technique for Differential Privacy”. In: PVLDB 10.6 (2017), pp. 637–
648. doi: 10.14778/3055330.3055331.

[LWZ18] Depeng Liu, Bow-Yaw Wang, and Lijun Zhang. “Model Checking Dif-
ferentially Private Properties”. In: Programming Languages and Systems
- 16th Asian Symposium, APLAS 2018. Vol. 11275. Lecture Notes in
Computer Science. Springer, 2018, pp. 394–414. doi: 10.1007/978-3-
030-02768-1_21.

[Mac+08] Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes
Gehrke, and Lars Vilhuber. “Privacy: Theory meets Practice on the
Map”. In: Proceedings of the 24th International Conference on Data
Engineering, ICDE 2008. IEEE Computer Society, 2008, pp. 277–286.
doi: 10.1109/ICDE.2008.4497436.

[Mar02] Andrew Martinez. “Efficient Computation of Regular Expressions from
Unary NFAs”. In: Fourth International Workshop on Descriptional Com-
plexity of Formal Systems - DCFS 2002. Vol. Report No. 586. Depart-
ment of Computer Science, The University of Western Ontario, Canada,
2002, pp. 174–187.

[McS09] Frank McSherry. “Privacy integrated queries: an extensible platform for
privacy-preserving data analysis”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009.
ACM, 2009, pp. 19–30. doi: 10.1145/1559845.1559850.

[Mei18] Sebastian Meiser. “Approximate and Probabilistic Differential Privacy
Definitions”. In: IACR Cryptology ePrint Archive 2018 (2018), p. 277.
url: https://eprint.iacr.org/2018/277.

[Mil89] R. Milner. “Communication and Concurrency”. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1989. isbn: 0131149849.

[Mir12] Ilya Mironov. “On significance of the least significant bits for differential
privacy”. In: The ACM Conference on Computer and Communications
Security, CCS 2012. ACM, 2012, pp. 650–661. doi: 10.1145/2382196.
2382264.

[Mir17] Ilya Mironov. “Rényi differential privacy”. In: 2017 IEEE 30th Computer
Security Foundations Symposium (CSF). IEEE. 2017, pp. 263–275.

[MV16] Jack Murtagh and Salil P. Vadhan. “The Complexity of Computing the
Optimal Composition of Differential Privacy”. In: Theory of Cryptogra-
phy - 13th International Conference, TCC 2016. Vol. 9562. Lecture Notes
in Computer Science. Springer, 2016, pp. 157–175. doi: 10.1007/978-
3-662-49096-9_7.

[MW96] Angus Macintyre and Alex J Wilkie. “On the decidability of the real
exponential field”. 1996.

[NS06] Arvind Narayanan and Vitaly Shmatikov. “How To Break Anonymity
of the Netflix Prize Dataset”. In: CoRR abs/cs/0610105 (2006). url:
http://arxiv.org/abs/cs/0610105.

[OW14] Joël Ouaknine and James Worrell. “Positivity Problems for Low-Order
Linear Recurrence Sequences”. In: Proceedings of the Twenty-Fifth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014.
SIAM, 2014, pp. 366–379. doi: 10.1137/1.9781611973402.27.

183

https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.14778/3055330.3055331
https://doi.org/10.1007/978-3-030-02768-1_21
https://doi.org/10.1007/978-3-030-02768-1_21
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1145/1559845.1559850
https://eprint.iacr.org/2018/277
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1007/978-3-662-49096-9_7
https://doi.org/10.1007/978-3-662-49096-9_7
http://arxiv.org/abs/cs/0610105
https://doi.org/10.1137/1.9781611973402.27

[Pan96] Victor Y Pan. “Optimal and nearly optimal algorithms for approximating
polynomial zeros”. In: Computers & Mathematics with Applications 31.12
(1996), pp. 97–138.

[Pap+17] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfel-
low, and Kunal Talwar. “Semi-supervised Knowledge Transfer for Deep
Learning from Private Training Data”. In: 5th International Conference
on Learning Representations, ICLR 2017. OpenReview.net, 2017. url:
https://openreview.net/forum?id=HkwoSDPgg.

[Paz14] Azaria Paz. “Introduction to probabilistic automata”. Academic Press,
2014.

[PD08] Knot Pipatsrisawat and Adnan Darwiche. “A New Algorithm for Com-
puting Upper Bounds for Functional E-MAJSAT”. Tech. rep. Tech. Rep.
D–156, Automated Reasoning Group, Computer Science Department,
UCLA, 2008.

[PF79] Nicholas Pippenger and Michael J. Fischer. “Relations Among Com-
plexity Measures”. In: J. ACM 26.2 (1979), pp. 361–381. doi: 10.1145/
322123.322138.

[Rav19] Vishal Jagannath Ravi. “Automated methods for checking differential
privacy”. M.S. Thesis. University of Illinois at Urbana-Champaign,
Illinois, USA, 2019. url: http://hdl.handle.net/2142/104913.

[Ren92] James Renegar. “On the computational complexity and geometry of the
first-order theory of the reals. Part I, II, III”. In: Journal of symbolic
computation 13.3 (1992), pp. 255–352.

[Roy+10] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and
Emmett Witchel. “Airavat: Security and Privacy for MapReduce”. In:
Proceedings of the 7th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2010. USENIX Association, 2010,
pp. 297–312. url: http://www.usenix.org/events/nsdi10/tech/
full_papers/roy.pdf.

[RP10] Jason Reed and Benjamin C. Pierce. “Distance makes the types grow
stronger: a calculus for differential privacy”. In: Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming,
ICFP 2010. ACM, 2010, pp. 157–168. doi: 10.1145/1863543.1863568.

[RS42] John Riordan and Claude E Shannon. “The number of two-terminal
series-parallel networks”. In: Journal of Mathematics and Physics 21.1-4
(1942), pp. 83–93.

[SA19] Calvin Smith and Aws Albarghouthi. “Synthesizing differentially private
programs”. In: PACMPL 3.ICFP (2019), 94:1–94:29. doi: 10.1145/
3341698.

[Sch61] Marcel Paul Schützenberger. “On the Definition of a Family of Au-
tomata”. In: Information and Control 4.2-3 (1961), pp. 245–270. doi:
10.1016/S0019-9958(61)80020-X.

[Sch86] Hans Schneider. “The influence of the marked reduced graph of a non-
negative matrix on the Jordan form and on related properties: A survey”.
In: Linear Algebra and its Applications 84 (1986), pp. 161–189.

[Sch99] Alexander Schrijver. “Theory of linear and integer programming”. Wiley-
Interscience series in discrete mathematics and optimization. Wiley,
1999. isbn: 978-0-471-98232-6.

[Ser13] Bruno Sericola. “Markov chains: theory and applications”. John Wiley
& Sons, 2013.

184

https://openreview.net/forum?id=HkwoSDPgg
https://doi.org/10.1145/322123.322138
https://doi.org/10.1145/322123.322138
http://hdl.handle.net/2142/104913
http://www.usenix.org/events/nsdi10/tech/full_papers/roy.pdf
http://www.usenix.org/events/nsdi10/tech/full_papers/roy.pdf
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/3341698
https://doi.org/10.1145/3341698
https://doi.org/10.1016/S0019-9958(61)80020-X

[SJ05] Zdenek Sawa and Petr Jancar. “Behavioural Equivalences on Finite-State
Systems are PTIME-hard”. In: Computers and Artificial Intelligence
24.5 (2005), pp. 513–528.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. “Word Problems Requiring
Exponential Time: Preliminary Report”. In: Proceedings of the 5th
Annual ACM Symposium on Theory of Computing, 1973. ACM, 1973,
pp. 1–9. doi: 10.1145/800125.804029.

[Smi08] Adam D. Smith. “Efficient, Differentially Private Point Estimators”. In:
CoRR abs/0809.4794 (2008). url: http://arxiv.org/abs/0809.4794.

[Son85] Eduardo D. Sontag. “Real Addition and the Polynomial Hierarchy”.
In: Inf. Process. Lett. 20.3 (1985), pp. 115–120. doi: 10.1016/0020-
0190(85)90076-6.

[SS17] Marcus Schaefer and Daniel Stefankovic. “Fixed Points, Nash Equilibria,
and the Existential Theory of the Reals”. In: Theory Comput. Syst. 60.2
(2017), pp. 172–193. doi: 10.1007/s00224-015-9662-0.

[SY13] Entong Shen and Ting Yu. “Mining frequent graph patterns with differ-
ential privacy”. In: The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2013. ACM, 2013,
pp. 545–553. doi: 10.1145/2487575.2487601.

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applica-
tions”. In: Pacific Journal of Mathematics 5.2 (1955), pp. 285–309.

[TB16] Qiyi Tang and Franck van Breugel. “Computing Probabilistic Bisim-
ilarity Distances via Policy Iteration”. In: 27th International Confer-
ence on Concurrency Theory, CONCUR 2016. Vol. 59. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 22:1–22:15. doi:
10.4230/LIPIcs.CONCUR.2016.22.

[TB17] Qiyi Tang and Franck van Breugel. “Algorithms to Compute Proba-
bilistic Bisimilarity Distances for Labelled Markov Chains”. In: 28th
International Conference on Concurrency Theory, CONCUR 2017. 2017,
27:1–27:16. doi: 10.4230/LIPIcs.CONCUR.2017.27.

[TB18] Qiyi Tang and Franck van Breugel. “Deciding Probabilistic Bisimilarity
Distance One for Probabilistic Automata”. In: 29th International Con-
ference on Concurrency Theory, CONCUR 2018. 2018, 9:1–9:17. doi:
10.4230/LIPIcs.CONCUR.2018.9.

[TKD11] Michael Carl Tschantz, Dilsun Kirli Kaynar, and Anupam Datta. “Formal
Verification of Differential Privacy for Interactive Systems (Extended
Abstract)”. In: Twenty-seventh Conference on the Mathematical Foun-
dations of Programming Semantics, MFPS 2011. Vol. 276. Electronic
Notes in Theoretical Computer Science. Elsevier, 2011, pp. 61–79. doi:
10.1016/j.entcs.2011.09.015.

[To09] Anthony Widjaja To. “Unary finite automata vs. arithmetic progres-
sions”. In: Inf. Process. Lett. 109.17 (2009), pp. 1010–1014. doi: 10.
1016/j.ipl.2009.06.005.

[Tod91] Seinosuke Toda. “PP is as Hard as the Polynomial-Time Hierarchy”. In:
SIAM J. Comput. 20.5 (1991), pp. 865–877. doi: 10.1137/0220053.

[Tro14] J.K. Trotter. “Public NYC Taxicab Database Lets You See How Celebri-
ties Tip”. In: Gawker (2014). Online at: https : / / gawker . com /
the-public-nyc-taxicab-database-that-accidentally-track-
1646724546 Accessed 12/12/2019.

[Tur37] Alan Mathison Turing. “On computable numbers, with an application to
the Entscheidungsproblem”. In: Proceedings of the London mathematical
society 2.1 (1937), pp. 230–265.

185

https://doi.org/10.1145/800125.804029
http://arxiv.org/abs/0809.4794
https://doi.org/10.1016/0020-0190(85)90076-6
https://doi.org/10.1016/0020-0190(85)90076-6
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1145/2487575.2487601
https://doi.org/10.4230/LIPIcs.CONCUR.2016.22
https://doi.org/10.4230/LIPIcs.CONCUR.2017.27
https://doi.org/10.4230/LIPIcs.CONCUR.2018.9
https://doi.org/10.1016/j.entcs.2011.09.015
https://doi.org/10.1016/j.ipl.2009.06.005
https://doi.org/10.1016/j.ipl.2009.06.005
https://doi.org/10.1137/0220053
https://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546
https://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546
https://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546

[Tze92] Wen-Guey Tzeng. “A Polynomial-Time Algorithm for the Equivalence of
Probabilistic Automata”. In: SIAM J. Comput. 21.2 (1992), pp. 216–227.
doi: 10.1137/0221017.

[US 19] US Census Bureau. “OnTheMap project”. Online at: https://onthemap.
ces.census.gov Accessed 12/12/2019. 2019.

[Vad17] Salil P. Vadhan. “The Complexity of Differential Privacy”. In: Tutorials
on the Foundations of Cryptography. Ed. by Yehuda Lindell. Springer
International Publishing, 2017, pp. 347–450. doi: 10.1007/978-3-319-
57048-8_7.

[VRG20] Elisabet Lobo Vesga, Alejandro Russo, and Marco Gaboardi. “A Pro-
gramming Framework for Differential Privacy with Accuracy Concen-
tration Bounds”. In: 41st IEEE Symposium on Security and Privacy.
2020. url: http://arxiv.org/abs/1909.07918.

[Wag86] Klaus W. Wagner. “The Complexity of Combinatorial Problems with
Succinct Input Representation”. In: Acta Inf. 23.3 (1986), pp. 325–356.
doi: 10.1007/BF00289117.

[War65] Stanley L Warner. “Randomized response: A survey technique for elim-
inating evasive answer bias”. In: Journal of the American Statistical
Association 60.309 (1965), pp. 63–69.

[XCL14] Lili Xu, Konstantinos Chatzikokolakis, and Huimin Lin. “Metrics for
Differential Privacy in Concurrent Systems”. In: Formal Techniques for
Distributed Objects, Components, and Systems. FORTE 2014. Vol. 8461.
Lecture Notes in Computer Science. Springer, 2014, pp. 199–215. doi:
10.1007/978-3-662-43613-4_13.

[Xu15] Lili Xu. “Formal Verification of Differential Privacy in Concurrent
Systems.” PhD thesis. École Polytechnique, Palaiseau, France, 2015.
url: https://tel.archives-ouvertes.fr/tel-01384363.

[YT10] Hirotoshi Yasuoka and Tachio Terauchi. “Quantitative Information Flow
- Verification Hardness and Possibilities”. In: Proceedings of the 23rd
IEEE Computer Security Foundations Symposium, CSF 2010. IEEE
Computer Society, 2010, pp. 15–27. doi: 10.1109/CSF.2010.9.

[YT11] Hirotoshi Yasuoka and Tachio Terauchi. “On bounding problems of
quantitative information flow”. In: Journal of Computer Security 19.6
(2011), pp. 1029–1082. doi: 10.3233/JCS-2011-0437.

[ZK17] Danfeng Zhang and Daniel Kifer. “LightDP: towards automating dif-
ferential privacy proofs”. In: Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017.
ACM, 2017, pp. 888–901. url: http://dl.acm.org/citation.cfm?
id=3009884.

186

https://doi.org/10.1137/0221017
https://onthemap.ces.census.gov
https://onthemap.ces.census.gov
https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.1007/978-3-319-57048-8_7
http://arxiv.org/abs/1909.07918
https://doi.org/10.1007/BF00289117
https://doi.org/10.1007/978-3-662-43613-4_13
https://tel.archives-ouvertes.fr/tel-01384363
https://doi.org/10.1109/CSF.2010.9
https://doi.org/10.3233/JCS-2011-0437
http://dl.acm.org/citation.cfm?id=3009884
http://dl.acm.org/citation.cfm?id=3009884

	Contents
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Acronyms
	Symbols
	Chapter 1 Introduction
	1.1 Contributions

	Chapter 2 Background
	2.1 Differential privacy
	2.1.1 Laplacian and exponential mechanisms
	2.1.2 Composition
	2.1.3 The relation to quantitative information flow

	2.2 Programming language based verification
	2.3 Relational logic based verification
	2.4 Verification on probabilistic transition systems
	2.4.1 Bisimilarity pseudometrics for epsilon-differential privacy
	2.4.2 Other techniques

	Chapter 3 Common Definitions
	3.1 Basic notation
	3.1.1 Set operations
	3.1.2 Representations of numbers
	3.1.3 Approximation and computation of numbers

	3.2 Models of automata and Markov chains
	3.2.1 Weighted automata
	3.2.2 Finite word labelled Markov chains
	3.2.3 Infinite word labelled Markov chains
	3.2.4 Transition labelled vs state labelled LMCs
	3.2.5 Relation between models
	3.2.6 Comparison of labelled Markov chains

	3.3 Differential privacy in LMCs

	Chapter 4 Symmetric Bisimilarity Distances for delta
	4.1 Preliminaries
	4.2 Skewed bisimilarity distance, bd alpha
	4.3 Proving Theorem 4.11
	4.4 Skewed Kantorovich distances
	4.5 Computing bdalpha
	4.6 Examples
	4.7 Conclusion

	Chapter 5 Asymmetric Distances for delta
	5.1 Defining lv alpha to capture delta
	5.2 lv alpha is not computable
	5.3 Approximation of lv alpha
	5.4 A least fixed point bound ld alpha
	5.4.1 Comparison with bd alpha from Chapter 4
	5.4.2 Computing ld alpha

	5.5 A greatest fixed point bound lgd alpha
	5.5.1 A unique fixed point?

	5.6 Examples
	5.7 Future work: extended models
	5.8 Conclusion

	Chapter 6 Distances for epsilon
	6.1 The big-O problem
	6.1.1 The relation to differential privacy
	6.1.2 The big-Theta problem

	6.2 Big-O, threshold and approximation problems are undecidable
	6.3 The relation to the Value-1 problem
	6.4 The language containment condition
	6.4.1 Unambiguous weighted automata

	6.5 The big-O problem is coNP-complete
	6.5.1 Preliminaries
	6.5.2 Eventual inclusion
	6.5.3 The big-O problem is in coNP
	6.5.4 Tv-Bounded is coNP-hard for unary LMCs

	6.6 Decidability for weighted automata with bounded languages
	6.6.1 Detector automata
	6.6.2 The plus-letter-bounded case
	6.6.3 The letter-bounded case
	6.6.4 The bounded case

	6.7 Bisimilarity distances for epsilon
	6.7.1 Dual form and simplification
	6.7.2 Computing bd ln
	6.7.3 A direct approach bd otimes
	6.7.4 Computing bd otimes
	6.7.5 Looking for a unique fixed point

	6.8 Conclusion

	Chapter 7 Verifying Differential Privacy in Circuits
	7.1 Preliminaries
	7.1.1 Randomised circuits
	7.1.2 Differential privacy in randomised circuits
	7.1.3 Problems of deciding and approximating DP
	7.1.4 The class coNP^{#P}

	7.2 The complexity of deciding pure differential privacy
	7.2.1 Deciding epsilon differential privacy in coNP^{#P}
	7.2.2 coNP^{#P}-hardness of deciding epsilon differential privacy

	7.3 The complexity of deciding approximate differential privacy
	7.3.1 Direct proof that deciding epsilon delta is coNP^{#P}-hard
	7.3.2 Deciding epsilon delta in coNP^{#P^{#P}}

	7.4 Inapproximability of the privacy parameters epsilon and delta
	7.5 Conclusion

	Chapter 8 Conclusions and Future Work
	8.1 Open problems and future work

	Bibliography
	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/153544

