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ABSTRACT: Asymmetric transfer hydrogenation (ATH) is an important catalytic process in the fragrance and pharmaceutical in-

dustries. The Noyori‒Ikariya chiral molecular ruthenium complex has been the catalyst of choice for this reaction for over 25 years. 

The mechanism and origin of enantioselectivity has irked chemists ever since the catalyst conception. This work addresses important 

shortcomings in understanding the origin of enantioselectivity with the Noyori‒Ikariya catalysts, traditionally associated with the 

CH‒π interaction (Noyori, R. et al Angew. Chem. Int. Ed. 2001, 40, 2818). Here we show that there are two spatial regions of the 

catalyst that simultaneously control the enantioselectivity for any arbitrary substrate: the region of the (tethered) η6-arene ligand and 

the region of the SO2 moiety. Dynamic equilibrium and interplay of attraction and repulsion via CH‒π, C‒H···H‒C, lone pair‒π, lone 

pair···H‒C and other non-covalent interactions in each region leads to stabilization/destabilization of the corresponding diastereo-

meric transition state and, as such, determines the final percent enantiomeric excess (% ee). 

 

1. INTRODUCTION 

Asymmetric transfer hydrogenation (ATH) of ketones and imines 

represents a powerful alternative to asymmetric hydrogenation for 

the production of optically active alcohols and amines.1 

Specifically, the use of stable hydrogen donors such as propan-2-

ol, HCO2Na/H2O, or azeotropic mixtures of HCO2H–NEt3 has 

operational advantage by avoiding flammable hydrogen gas and 

high-pressure equipment.2 Because of its modularity, efficiency, 

stability and cost-effectiveness, the N-sulfonated diamine-η6-arene 

Noyori‒Ikariya ruthenium complex is one of the most common 

catalysts used in the fine chemical industry.3 Since the publication 

of the first catalytic system in 1995,4 several other variations have 

been developed.5 In many cases the enantiomeric excess (ee) in the 

ATH (and related AH) of ketones frequently reach ~99%. However, 

such high levels of enantioselection are observed for electron-rich 

aromatic4a and alkynyl6 ketones. In contrast, the use of 

perfluoroaromatic7 and aliphatic1a-c, 1e, 1f, 5e, 8 ketones leads to much 

smaller ee’s and even reversal of the sense of the enantioselection; 

see Scheme 1 on the example of representative commercially 

available precatalysts (R,R)-I and (R,R)-II. 

For a period of time,9,10 CH‒π interaction between the C−H 

proton(s) of the (η6-arene) ligand and π electron density of the 

approaching electron-rich ketonic substrate have been associated 

with the major interaction that contributes to the high 

enantioselectivity.11 However, an ee of 99% or higher usually 

suggests there is only one kinetically accessible mechanism of 

generation of chirality arising as a compromise of multiple 

attractive and repulsive (typically non-covalent) interactions 

between the substrate and the catalyst within the catalyst-substrate 

transition-state complex.12 Specifically, lone pair(s) lp(s)‒π 

repulsion originating from the SO2 oxygen atom(s) of the catalyst  

Scheme 1. Reported asymmetric transfer hydrogenation of aceto-

phenone,4a 2',3',4',5',6'-pentafluoroacetophenone7 and 1-cyclo-

hexylethanone5e with precatalysts (R,R)-I and (R,R)-II. Ts = 4-

CH3C6H4SO2. 

 
ap-cymene version of the catalyst 1 and propan-2-ol as 

reagent/solvent were used, respectively. 

 

and the electron-rich aromatic substrate was further identified as 

another equally important factor contributing to the high 

enantiomeric excess for electron-rich aromatic ketones with the 



 

Noyori‒Ikariya complex.13 Up to now, however, there is no general 

understanding on what determines the enantioselectivity for an 

arbitrary prochiral ketone and/or any N-sulfonated diamine 

derivatives of the Noyori‒Ikariya ruthenium catalyst. Here, based 

on hybrid dispersion-corrected Density Functional Theory (DFT)14 

calibrated against experimental data, we eliminate these important 

shortcomings in understanding the origin of enantioselectivity with 

the Noyori‒Ikariya catalyst. Our results explain the experimentally 

observed drop and further reverse of the sense of the 

enantioselection for “challenging” perfluoroaromatic and aliphatic 

ketones and, more-importantly, provide insights for next-

generation catalyst design. 

 

2. RESULTS AND DISCUSSION     

2.1. Comparative asymmetric transfer hydrogenation of 1a‒c 

with precatalysts (R,R)-I and (R,R)-II. To calibrate the computa-

tional results presented in this work, we performed the ATH of ace-

tophenone (1a), 2',3',4',5',6'-pentafluoroacetophenone (1b) and 1-

cyclohexylethanone (1c) with chiral precatalysts (R,R)-I and (R,R)-

II under identical conditions in propan-2-ol, Table 1. 

 

Table 1. Comparative ATH of acetophenone, 2',3',4',5',6'-

pentafluoroacetophenone and 1-cyclohexylethanone with chiral 

precatalysts (R,R)-I and (R,R)-II, isopropanol, 2 mol% KOH, 25 °C, 

1 mol% precatalyst loading. [substrate] = 0.1 M, 0.5 mmol scale. 

Run substrate pre 
catalyst 

conversion, 
%[a] 

% ee[a] R/S 

1 1a (R,R)-I ~99 97 ± 1 R 

2 1a (R,R)-II ~95 96 ± 1 R 

3 1b (R,R)-I >99 ‒16 ± 2 S 

4 1b (R,R)-II >99 ‒90 ± 0 S 

5 1c (R,R)-I ~13 ‒72 ± 2 S 

6 1c (R,R)-II ~40 ‒73 ± 4 S 

[a]In 24h, based on withdrawn aliquot, chiral GC (average of 2 

runs). 

 

In line with the previous results where HCO2H‒NEt3 was used as a 

source of hydrogen atoms and reaction media,4a, 5e both precatalysts 

(R,R)-I and (R,R)-II produced (R)-1-phenylethanol (2a) with excel-

lent enantiomeric excess of ~97-98% in the ATH of acetophenone 

(1a), runs 1‒2 (Table 1). Switching to 2',3',4',5',6'-pentafluoroace-

tophenone (1b) resulted in the reverse of the sense of the enantiose-

lection, producing (S)-configuration 1-(pentafluorophenyl)ethanol 

(2b) with 15% and 90% ee for precatalysts (R,R)-I and (R,R)-II, 

respectively (runs 3‒4, Table 1). The sense and level of enantiose-

lectivity of 15% observed with mesitylene precatalyst (R,R)-I is 

comparable to that of 12% reported for the similar p-cymene ana-

log.7b However, we note here an appreciably high level of percent 

enantiomeric excess of ~90% for (S)-1-(pentafluorophenyl)ethanol 

(2b) achieved with catalyst (R,R)-II in this reaction, which is a sig-

nificant improvement over most existing catalytic ATH ap-

proaches15 developed to replace classical synthetic methods.16 The 

use of 1-cyclohexylethanone (1c) similarly results in the reverse of 

the sense of the enantioselection, delivering (S)-1-cyclohexyleth-

anol (2c) with similar (assuming exponential behavior) ~69% ee 

and ~78% ee for (R,R)-I and (R,R)-II, respectively (runs 5‒6, Table 

1). The sense of the enantioface selection (S-product) and the value 

of ~78% ee for (R,R)-II is well-comparable to the value of ~69% 

ee reported in HCO2H–NEt3.5e 

2.2. Dispersion-corrected DFT identification of stereoselectiv-

ity determining transition states. Dispersion-corrected DFT cal-

culations were further used to estimate percent enantiomeric ex-

cesses and identify non-covalent interactions involved in four rep-

resentative enantioselective reactions of (R,R)-I/1a, (R,R)-I/1b, 

(R,R)-II/1b and (R,R)-II/1c. The mechanism of ATH of ketones 

with the Noyori‒Ikariya catalyst is understood to an appreciable 

degree.1b, 17 The experimental and theoretical data accumulated for 

the asymmetric transfer hydrogenation of ketones points to two 

plausible catalytic cycles, which differ only in their second proton 

(H+) transfer step.13 The relative contribution of the pathway in 

which the N–H functionality remains intact is difficult to assess 

from the static13 DFT computations, whereas dynamic18 DFT com-

putations point to propan-2-ol as the predominant source of the pro-

ton, i.e. the catalytic reaction coordinate does not asymptotically 

include the 16e‒ amido Ru complex19 on the potential energy sur-

face. Regardless, both reaction channels are identical by the first 

hydride (H‒) step, which is rate- and enantiodetermining.20 The 

composition of the enantiomers (% ee) therefore is (classically) ex-

pected to be determined by the free energy difference (ΔG298K°) 

between two diastereomeric transition states leading to the opposite 

enantiomers of the product. The stereoselectivity determining tran-

sition states can be accessed via geometry optimization using com-

mon quantum chemical methodologies.12 

Three popular hybrid DFT exchange-correlation kernels21 cou-

pled with extended def2-TZVP basis set22 were then used to model 

stereoselectivity determining transition states, namely B3LYP23 

(with global 20% orbital exchange fraction), range-separated 

ωB97X-D24 (with 100 and 22% exchange at long and short ranges, 

respectively) and M06-2X25 (with global 54% exchange) function-

als. The use of dispersion-corrected models is mandatory for im-

proved description of non-covalent interactions (specifically van 

der Waals forces).26 As such, utilized B3LYP and M06-2X func-

tionals were parametrized via D3 dispersion model,27 whereas 

ωB97X-D implements built-in D2 correction term.28 Furthermore, 

to introduce non-specific solvent effects of propan-2-ol in the ge-

ometry optimization steps, we employed the Solvation Model 

based on Density (SMD),29 a popular version of a polarizable con-

tinuum model. All simulations were performed with Gaussian 16 

(rev. C01) software.30 Additional computational details and opti-

mized geometries are provided in SI. The results for the free energy 

difference (ΔG298K°) in kcal·mol‒1 between the transition states 

leading to S- and R-product as well as calculated from it percent 

enantiomeric excess31 are presented in Table 2. 

 

Table 2. Calculated free energy difference (ΔG298K°) in kcal·mol‒1 

between the transition states leading to S- and R-product and per-

cent enantiomeric excess (% ee) as a function of a DFT model 

combined with Def2-TZVP basis and SMD(propan-2-ol) solvent 

model. 

Substrate catalyst ΔG298K° (ee) 

B3LYP-D3 

ΔG298K° (ee) 

ωB97X-D 

ΔG298K° (ee) 

M06-2X-D3 

1a (R,R)-I 0.9 (65%) 0.7 (51%) 2.1 (94%) 

1b (R,R)-I ‒0.3 (‒27%) ‒2.1 (‒95%) ‒1.0 (‒70%) 

1b (R,R)-II ‒2.7 (‒98%) ‒4.2 (‒99.8%) ‒4.0 (‒99.8%) 

1c(eq) (R,R)-II 1.6 (88%) 1.1 (73%) ‒0.9 (‒66%) 

 

The following conclusions can be made from Table 2: 1) regardless 

the functional use, calculations consistently qualitatively predict13 

the correct sense of the enantioface selection for substrates 1a and 

1b;  

  



 

Figure 1. Optimized transition states at the M06-2X-D3/def2-TZVP/SMD(propan-2-ol) level leading to enantiomers of 1-phenylethanol 

(catalyst (R,R)-I, top), 1-(2,3,4,5,6-pentafluorophenyl)ethanol (catalysts (R,R)-I and (R,R)-II, middle) and 1-cyclohexane-1-ethanol (catalyst 

(R,R)-II, bottom). For (R,R)-II, the tethering arm is highlighted by violet. The color for various non-covalent interactions identified by 

finding close contacts between atoms (separation that is less than the sum of the van der Waals radii of the respective atoms) represents 

relative attractive (green), repulsive (red), and neutral (grey) cases. 

 
 

2) only highly advanced specifically designed to describe noncova-

lent interactions M06-2X-D3 functional predicts the correct sense 

of the enantioface selection for substrate 1c32,33; 3) on average, 

M06-2X-D3 being one of the most efficient dispersion-corrected 

hybrid according to GMTKN30 database,34 works more effectively 

in terms of the sense of enantioselection and % ee prediction com-

pared to that of B3LYP-D3 and ωB97X-D.26d, 35 However, the re-

sults are only qualitative as expected due to non-universal nature of 

the functional. In addition, the discrepancy between experimental 

and theoretically predicted % ee might be affected by the additional 

mechanisms of the generation of chirality caused by energetically 

accessible conformers of the catalyst-substrate complex, possible 

involvement of RuR-pathway, specific solvation of propan-2-ol. 

These pathways, however, seem to play a minor role as discussed 

elsewhere.17 Optimized M06-2X-D3 geometries for the transition 

states are shown in Figure 1. 
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Figure 2. Non-covalent interaction (NCI) plots of transition states leading to enantiomers of 1-phenylethanol (catalyst (R,R)-I, left), 1-

(2,3,4,5,6-pentafluorophenyl)ethanol (catalysts (R,R)-I and (R,R)-II, middle) and 1-cyclohexane-1-ethanol (catalyst (R,R)-II, right), reduced 

gradient of the electron density (s) = 0.6 a.u. 

 
Figure 3. Quantum theory of atoms in molecules (QTAIM) plots of transition states leading to enantiomers of 1-phenylethanol (catalyst 

(R,R)-I, left), 1-(2,3,4,5,6-pentafluorophenyl)ethanol (catalysts (R,R)-I and (R,R)-II, middle) and 1-cyclohexane-1-ethanol (catalyst (R,R)-

II, right). Bond paths (orange lines), bond critical points (orange small dots), ring critical points (yellow small dots), and cage critical points 

(green small dots). Values of electron densities (ρ) for bond critical points are given in [10‒2 × a.u.] units. 
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By inspecting optimized geometries which are first-order saddle-

points on the potential energy surface, multiple close contacts 

defined as a separation that is less than the sum of the van der Waals 

radii of the respective atoms could be identified in the region of 

(tethered) η6-arene ligand and the region of SO2 moiety. These 

contacts include not only known CH‒π,36 lone pair (lp)‒π,37 and C‒

H∙∙∙H‒C interactions,38 but also apparently a novel39 lp···H‒C non-

covalent interaction (dH∙∙∙O = 2.36 Å, cf. 2.70 Å for the sum of van 

der Waals radii40). In addition, we also note several short C‒H∙∙∙F 

proximities of 2.64-2.71 Å observed for transition states leading to 

R-product of 2b (Figure 1). To visualize non-covalent interactions 

present in these geometries, Non-Covalent Interaction (NCI)41 

plots, which are based on M06-2X-D3 electron density and its 

derivative analysis, were adapted (Figure 2). In all cases (i.e., eight 

transition states), the (green) isosurfaces confirm the presence of 

delocalized weak non-covalent interactions in the region of 

(tethered) η6-arene ligand and the region of SO2 moiety of the 

catalyst. The topological features of electron density in these 

regions were further analyzed with well-established Quantum 

Theory of Atoms in Molecules (QTAIM) analysis (Figure 3).42 The 

presence of non-covalent interactions is confirmed by the presence 

of bond critical points (BCPs) of molecular electron density. 

Furthermore, cage critical points (CCPs) are observed in the 

regions of O=S=O/arene in all three studied cases of 1a and 1b and 

are characteristic for lp‒π interactions.43  

What causes the reverse of the sense of enantioselection when 

going from 1a to 1b with catalyst (R,R)-I? The analysis presented 

above indicates that transition states leading to R-product are com-

parably somewhat equally stabilized via CH‒π interactions (Figure 

1, two top left structures). However, the large difference is ob-

served for transition states leading to S-product in the region of lp‒

π interactions (Figure 1, two top right structures). Although any 

chemical bond is a dynamic equilibrium between attractive and re-

pulsive forces,44 there is apparently more attraction between lone 

pair of (SO)O oxygen of the catalyst and π-electron density of 

2',3',4',5',6'-pentafluoroacetophenone (1b) vs π-electron density of 

acetophenone (1a). This is evidenced by a much shorter centroid 

(CNT)∙∙∙O bond distance present in the case of 1b with respect to 

1a (∆ = ‒0.29 Å, Figure 1), as well as greater values of electron 

densities (ρ) for bond critical points in the corresponding transition 

state structures (∆ ~ 0.16 × 10‒2 a.u. on average, Figure 3). More 

attraction implies more exergonic stabilization of the correspond-

ing transition state, e.g. a kinetical deblockage to accumulate the S-

enantiomer through lowering the position of the first-order saddle-

point on the potential energy surface.  Purely electrostatic compo-

nent of these lp‒π interactions can be further understood by exam-

ining electrostatic potential (ESP)45 maps of 1a and 1b as shown in 

Figure 4. 

The π cloud of benzene (shown for comparison) and to some ex-

tent acetophenone (1a) creates a negative region of ESP, called the 

heap, above and below the molecular plane leading to a negative 

sign of quadrupole moment tensor Qzz (z-direction is normal to the 

molecular plane), see SI.46 In contrast, the similar region (“hole”) 

of ESP is positive for hexafluorobenzene (shown for comparison) 

and 2',3',4',5',6'-pentafluoroacetophenone (1b), leading to a posi-

tive sign of quadrupole moment tensor Qzz. One therefore should 

expect that the aromatic ring of 1a will repel the negative oxygen 

atom of SO2 moiety of the catalyst, whereas the one of 1b will at-

tract it. To conclude, lp‒π interaction in the region of SO2 moiety 

of the catalyst seems to be the major driving force which causes the 

reverse of the sense of enantioselection when going from 1a to 1b 

with catalyst (R,R)-I. 

What makes a further dramatic improvement of the % ee for 1b 

when going from catalyst (R,R)-I to (R,R)-II? The transition states 

leading to the major S-product seems to be stabilized by lp‒π inter-

action on an equal footing (“identical” CNT∙∙∙O bond distance of 

~2.94 Å as well as ρ of ~0.70 × 10‒2 a.u.). 

Figure 4. Calculated M06-2X-D3/def2-TZVP/SMD(pronan-2-ol) 

electrostatic potential (ESP) surfaces (ρ = 0.001 a.u.) of benzene, 

hexafluorobenzene, acetophenone, 2',3',4',5',6'-pentafluoroaceto-

phenone, and two conformers of 1-cyclohexylethanone.  

 
 

In contrast, there seems to be more destabilization present for the 

diastereomeric transition state leading to a minor R-product with 

(R,R)-II (Figure 1, second structure from bottom right), thus 

kinetically blocking its accumulation. The origin of this 

destabilization is the “tethered” arm, which increases steric 

bulkiness. As a result, the aromatic ring of 1b experiences forced 

rotation around C(sp2)‒C(sp3) bond. Even though the resultant 

structure is stabilized by C‒H∙∙∙X (X = C, F) interactions, the 

overall destabilization plays a major role. Therefore, the reason 

why (R,R)-II gives 2b with much improved % ee than (R,R)-I relies 

in the kinetical blockage of the pathway leading to a minor R-

product through significant destabilization of the corresponding 

diastereomeric transition state in the region of (tethered) η6-arene 

ligand. 

 Finally, computational analysis provides insights on why (R,R)-

II reduces 3a with the  reverse of the sense of enantioselection and 

moderate enantioselectivity. Here the transition state that leads to 

S-product, is stabilized by lp···H‒C interactions, whereas its dia-

stereomeric counterpart that leads to R-product, is stabilized by C‒

H∙∙∙H‒C interactions. Since these interactions seem to be compara-

ble by force (see ESP surfaces in Figure 4), but with the non-negli-

gable preference for S-pathway (ρ of ~1.24 × 10‒2 vs 0.95 × 10‒2 

a.u., respectively), the final product is accumulated as S-enantiomer 

with moderate ee of 78%. 

 

3. CONCLUSION 

The field of molecular asymmetric catalysis is of great research in-

terest in modern catalysis science. The elucidation of the mecha-

nism of the generation of chirality in catalytic asymmetric reac-

tions, is a central task aimed at improved catalyst design. This task 

is seemingly much more complex than is commonly accepted. For 

example, it is known that increasing the size of the catalyst often 

results in a higher percent enantiomeric excess.12 However, at the 

moment it is impossible to attribute this effect to any particular 

dominating type of intramolecular interactions, because along with 

an evident increase of steric bulkiness, the network of possible non-
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covalent interactions is also increasing.39 Hence, mechanistic stud-

ies of the chiral catalytic reactions should preferably pursue the task 

of accumulating and calibrating data describing the weak non-co-

valent interactions.12 This work attempts to provide a comprehen-

sive understanding for the mechanism of generation of chirality in 

the ATH of arbitrary prochiral ketones with the Noyori‒Ikariya ru-

thenium catalyst, being one of the most appealing examples of the 

use of molecular catalysts in the fine chemicals industry. Thus far, 

CH‒π interaction in the region of (η6-arene) ligand of the catalyst 

has been thought to be a major stereoregulating factor.11 This work 

shows that there are actually two spatial regions of the catalyst that 

simultaneously control the enantioselectivity for any arbitrary sub-

strate: the region of (tethered) η6-arene ligand and the region of the 

SO2 moiety. Dynamical equilibrium & interplay of attraction and 

repulsion via various non-covalent interactions in each region leads 

to stabilization/destabilization of the corresponding diastereomeric 

transition state and, as such, determines the final percent enantio-

meric excess (% ee).  

The newly established mechanism of generation of chirality with 

the Noyori‒Ikariya catalyst explains the experimental drop and fur-

ther reverse of the sense of the enantioselection for “challenging” 

perfluoroaromatic and aliphatic ketones. For the aromatic and per-

fluoroaromatic ketones in particular, the enantioselectivity is 

largely controlled by the catalyst region of the SO2 moiety, in 

which repulsive-to-attractive repolarization of lp–π interactions 

leads to the inversion in the sense of enantioselection. 

It is our hope that the results of this work will inspire next-gen-

eration catalyst design, which still traditionally relies on experi-

mental trial-and-error approach. Although to our knowledge no ex-

plicit examples exist of rational catalyst design using lessons from 

studies of lp–π interactions in particular, we note that this interac-

tion within catalyst-substrate complex was recently used to ration-

alize an inversion in the sense of enantioselection in another inter-

esting asymmetric catalytic reaction, an asymmetric fluorination of 

allylic alcohols.47 
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