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The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity
distribution function f (v⊥) of the fast ions triggering the ICE is modelled using a two-layer deep neural
network. The network architecture (number of layers and number of computational nodes in each layer)
and hyperparameters (learning rate and number of learning iterations) are fine-tuned using a bottom-up
approach based on cross-validation. Thus, the optimal mapping g (s; θ) of the neural network in terms of
the number of nodes, the number of layers, and the values of the hyperparameters, where θ is the learned
model parameters, is determined by comparing many different configurations of the network on the same
training and test set and choosing the best one based on its average test error. The training and test sets are
generated by computing random ICE velocity distribution functions f and their corresponding ICE signals s
by modelling the relationship as the linear matrix equation Wf = s. The simulated ICE signals are modelled
as edge ICE signals at LHD. The network predictions for f based on ICE signals s are on many simulated ICE
signal examples closer to the true velocity distribution function than that obtained by 0th-order Tikhonov
regularization, although there might be qualitative differences in which features one technique is better at
predicting than the other. Additionally, the network computations are much faster. Adapted versions of the
network can be applied to future experimental ICE data to infer fast-ion velocity distribution functions.

I. INTRODUCTION

In recent years, it has become possible to in-
fer 2D fast-ion velocity distribution functions from
fast-ion measurement data in magnetically confined
plasmas1–8. This traditionally requires a formula-
tion of the diagnostic forward models in terms of
so-called weight functions that have been developed
for collective Thomson scattering9, fast-ion D-alpha
spectroscopy10–12, gamma-ray spectroscopy13,14, neutron
emission spectroscopy15,16, and fast-ion loss detectors17.
Here, we apply this approach to simulated ion cyclotron
emission (ICE)18 data and formulate a 1D inversion prob-
lem to infer a 1D fast-ion velocity distribution function.
Further, we take an entirely new approach based on deep
neural networks.
A deep neural network is a computational model com-

prising a network of functions capable of representing
complex linear and non-linear relationships to translate
input data into output data. Such networks are well-
suited for analysing data from experiments where the
quantities of interest are not directly measurable but
must be inferred by modelling. The mathematical for-
mulation of the problem may introduce systematic bias,
and the inherent noise of the measurements increases the
difficulty in obtaining a solution representative of the

a)Electronic mail: bossc@fysik.dtu.dk

true solution by using traditional mathematical methods.
Specifically, the linear inverse problemWf = s of finding
a distribution function f given a forward model encoded
in W and the measurement data s, is ill-posed. Regular-
ization is needed in order to find an approximate solution.
This is often done by Tikhonov regularization2–8.
An alternative approach is to use deep neural networks

to model the relationship between the measured signal s
and the distribution function f . The networks are trained
using a supervised training approach on datasets consist-
ing of an input and known true solution such that the
predictions by the network g (s; θ) come as close as pos-
sible to the true solutions. The network learns to predict
f by optimizing its internal parameters θ. In effect, train-
ing a neural network is a calibration of the network (the
equipment) by comparing its output values (the measure-
ments) to known values (the calibration standard).
Deep neural networks can be applied to ICE data anal-

ysis to assist and improve current analysis techniques
for measurements of velocities, densities, and energies
of fast ions. Such analysis is of crucial importance for
ITER21,22. Further, such measurements require no ad-
ditional measurement equipment since the future ICRH
antennas at ITER can be used as receivers to measure
ICE23. Thus, the easy access to ICE data and the inclu-
sion of such diagnostic systems in ITER provide a strong
incentive to develop ICE data analysis techniques.
Typically, fast ions drive instabilities at the ion cy-

clotron frequency and higher harmonics in the 5 − 100
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MHz range. Such instabilities occur when the distri-
bution function f becomes inverted in velocity space,
i.e., when ∂f/∂v > 0, since free energy becomes avail-
able to drive the instabilities19. The magnetoacoustic
cyclotron instability (MCI) produces ICE19,20, and com-
pressional Alfvén eigenmodes (CAEs) and global Alfvén
eigenmodes (GAEs) occur in the ion cyclotron frequency
range24–27. Therefore, analysis of data from ICE is im-
portant since CAEs and GAEs may redistribute the en-
ergy from fusion-born alpha particles to the bulk plasma
faster than Coulomb collisions. Furthermore, ICE may
cause pitch angle scattering of beam ions when using NBI
as heating source28.

II. 1D ICE WEIGHT FUNCTIONS

We calculate 1D ICE weight functions by running
a hybrid particle-in-cell (PIC) self-consistent Maxwell-
Lorentz computation of the relaxation of an energetic ion
population with given values of v⊥ and v‖ in the presence
of an MCI. The computations result in power spectra of
the excited fields in the non-linear saturated regime of
the MCI. Each horizontal line in Fig. 1 constitutes such
a power spectrum for the specified value of v⊥ while v‖ is
held constant. Thus, Fig. 1 illustrates the signal intensi-
ties for a given v⊥ and v‖ of the ions for the frequencies
ω. 1D weight functions for ICE appear as vertical lines
in Fig. 1 and indicate the 1D velocity-space sensitivity of
the detector to ions at a given ω. The 1D weight functions
are analogous to the 2D weight functions for the previ-
ously mentioned fast-ion diagnostics1,2,9,10,13,15–17. The
data array W displayed in Fig. 1 provides a mapping
from ICE signals to distribution functions on the basis
that Wf = s, where f is the distribution function and s
the ICE signal. This approach assumes that the physics
embodied in the PIC-hybrid simulations dominates the
generation of the observed ICE signals, and this appears
to be well grounded29.
The relationship between the distribution function and

the ICE signal is modelled as follows. Let f ∈ Rn be the
distribution function and let s ∈ Rm be the signal. The
relationship between f and s is then given by the linear
equation

Wf = s, (1)

where W ∈ Rm×n, m = 451, and n = 22. The matrix
W contains the known physics of the problem and is cal-
culated numerically from the Maxwell-Lorentz system of
equations as follows: A non-linear 1D3V PIC-hybrid code
follows the velocity-space trajectories (including the gy-
romotion of fully kinetic energetic and thermal ions) to-
gether with the three components of the electric and mag-
netic fields in an isothermal massless neutralising elec-
tron fluid. The kinetic ions, fluid electrons, and fields
are coupled self-consistently through the Lorentz force
and Maxwell’s equations in Darwin’s approximation30.
These simulations are followed through the linear phase
of the MCI and then deeply into its non-linear saturated
phase.
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Figure 1. The weight function matrix W in the formulation
W f = s. VA is the Alfvén speed, and ΩH is the proton
cyclotron frequency.

The calculations are initialized with physical parame-
ters representative of tokamak and stellarator edge plas-
mas. In these simulations, we used parameters relevant
for LHD. The thermal deuterons are loaded using a quiet
start method31 while the energetic protons are initialised
uniformly and randomly in space with velocities follow-
ing a cold-ring distribution nHδ

(
v‖
)
δ (v⊥ − u⊥) to gen-

erate the inversion32. The background magnetic field
B0 = 1.75T is oriented at 89◦ with respect to the pe-
riodic simulation domain that consists of 2048 cells of
length ∆x = 1.30rD, where rD is the deuteron Larmor
radius. 500 macroparticles per energetic and per thermal
ion species are loaded in each cell and nH/ne = 0.002 to
achieve a high signal-to-noise ratio. The spatio-temporal
fast Fourier transform of the perturbed magnetic field
δBz (x, t) provides the 2D dispersion relation δBz (k, ω),
where k and ω are the wavenumber and frequency, re-
spectively. In this specific case, the relaxation of the en-
ergetic protons through the MCI generates self-consistent
excitations of the magnetic fields at multiple cyclotron
harmonics on the fast-Alfvén branch. Summing over
wavenumber-space k yields the synthetic power spec-
tra. Each simulation corresponds to a different value of
v⊥ ∈ [0VA, 2VA]. The power spectra are illustrated in
Fig. 1.

III. INVERSION BY DEEP NEURAL NETWORKS

We use a trained deep neural network to predict the
distribution functions from simulated ICE signals. Note
that the simulated ICE signals closely mimic actual ICE
signals from edge ICE in LHD. The network is trained us-
ing a stochastic gradient descent method based on adap-
tive estimation of first-order and second-order moments
called Adam in the Keras API. The network is trained
on a large number of simulated datasets where each ICE
spectrum is directly matched with a distribution func-
tion. Gaussian noise is added to the measurements to
obtain a signal-to-noise ratio of 5% which is similar to
the expected noise level in ICE measurements at LHD.
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Figure 2. An example of a simulated distribution function
f (v⊥) along with its corresponding simulated signal as mea-
sured by an ICE detector.

Fig. 2 shows a simulated ICE signal and the correspond-
ing distribution function.
The network performs its computations according to a

predetermined architecture, initial values of network pa-
rameters, and user-specified values of hyperparameters
to produce the network output. The network output is
compared to the true solution, and the internal param-
eters are updated by backpropagation. The network is
then trained again on the same data with its updated in-
ternal parameters. The number of times this is repeated
is called the number of iterations.
The cost function that the network minimizes during

training is chosen to be the mean squared error

MSE = 1
N

N∑
i=1

(
fi − f̂i

)2
, (2)

where fi corresponds to the ith entry in the true solution
f , and f̂i corresponds to the ith entry in the network out-
put vector f̂ . Letting pdata be the true data generating
distribution, the problem that the network solves is

g∗ = arg min
g

Es,f∼pdata ‖f − g(y)‖2 (3)

with the solution

g∗(s) = Ef∼pdata(f |s)(f), (4)

derived using calculus of variations33. This result shows
that by training the network on infinitely many samples
from the true data generating distribution pdata by min-
imizing the MSE cost function, the network prediction is
the mean of f for each s. Other possible cost functions
include how well the predictions match the width and

height of the peaks of the ice distribution or just focus-
ing on the location of the peaks. Such measures will be
explored in future works.
The dataset used for training the network consists of

400.000 simulated ICE signal-distribution function pairs.
The dataset includes distribution functions with up to
three normal distributions with random center, width,
and amplitude to mimic possible ICE distributions. As
an example, consider Fig. 2 but with three distributions
with random locations, amplitude, and width.
The optimal network architecture is determined in a

bottom-up manner by first comparing the MSE loss for a
network consisting of a single layer and an output layer
using the default learning rate of α = 0.0001 for the
Adam optimizer. This comparison is made using K = 5
cross-validation, thereby ensuring that the training and
validation set is the same for all network models. The
performance of a specific network architecture is deter-
mined by the mean and standard deviation of the MSE
across the 5 tests. The number of nodes in the first layer
is varied from 100 to 5000, and the number of nodes in
the best performing network is chosen as the number of
nodes in the first layer. A second layer is then added be-
tween the input and output layer and the optimal number
of nodes determined in a similar manner. These calcula-
tions were performed for up to four layers excluding the
output layer. See Fig. 3 for the performance of each net-
work architecture. The optimal number of nodes in the
input layer is 1300. Including a second layer improves the
model, and its optimal number of nodes is 500 or 2000.
Here, 500 is chosen since the mean value of the loss is
slightly lower and to save computational resources. The
model gets worse when including additional layers.
Similar cross-validation investigations show that

adding a dropout layer improves model performance.
The optimal choice of dropout fraction is 0.4 after the
first layer and no dropout after the second layer. The
mean value of the loss in 5-fold cross-validation is im-
proved from 7.6 × 10−3 to 4.0 × 10−3 corresponding to
an improvement of approximately 52 %.
Finally, the learning rate α is optimized by performing

the learning rate range test as described by Leslie34 and
implemented by Wittmann35. The learning rate range
test determines the values of the learning rate for which
training improves the initial loss value. This range is
then used to implement a triangular cyclical learning rate
policy to achieve better and faster convergence of the
model towards the optimal training state. The training
for the range test is generally run for a low number of
iterations. Here a single iteration is used with a batch
size of 500. The results for the MSE loss is shown in
Fig. 4. A good value of the learning rate occurs when
the loss decreases. This occurs approximately for any
α ∈

[
10−5, 2× 10−3], which is chosen to be the lower and

upper bounds for the learning rate in the cyclical learning
rate policy. The cyclical learning rate is implemented by
using the code developed by Kenstler36.
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Figure 3. MSE loss of the network for a different number of
layers and nodes.

Figure 4. MSE loss from the learning rate range test to de-
termine the optimal minimum and maximum values for the
learning rate when employing a cyclical learning rate strategy.

IV. RESULTS AND DISCUSSION

Based on the investigation described in the previous
section, the optimal network has the following proper-
ties. The network has three layers: one layer with 1300
nodes, a second layer with 500 nodes, and an output layer
with 22 nodes. A 40 % dropout layer is placed between
the first and second layer. Finally, the Adam optimizer
is used in training the network with a cyclical learning
rate policy with α ∈

[
10−5, 2× 10−3]. This network is

illustrated in Fig. 5.
The network is trained for 1500 iterations as the net-

work has converged to the best possible model at this
point. This is shown by the training loss curve, see Fig.
6. Two signals and their distribution function predictions
by the network, the best Tikhonov inversions, and the
true solutions are displayed in Fig. 7. The network finds
a more accurate distribution function than Tikhonov reg-
ularization as shown by the lower MSE value, although
the distribution functions are quantitatively similar.
The neural network is trained to analyse simulated ICE

spectra from LHD. In order to apply the trained neural

Figure 5. The structure of the neural network to obtain dis-
tribution functions from simulated ICE data.

Figure 6. Convergence of the network as a function of the
number of training iterations for the MSE loss using the cycli-
cal learning rate policy.

network to other ICE spectra such as ICE spectra from
JET and TFTR, the neural network needs to be trained
for these scenarios. Since the weight function matrix de-
pends on the ion species, the magnetic field, and other pa-
rameters, the weight function matrix for other machines,
and even for other discharges in LHD, will differ from the
ones used here. However, we expect the same methods
to be applicable.
The computation speed of the network surpasses that

of the Tikhonov inversions by at leastO
(
103): the neural

network performs one prediction on the order of ms, and
Tikhonov inversions on the order of a second or slower.
The problem with Tikhonov regularization is the need for
determining a value of the regularization parameter in or-
der to obtain a good inversion. This either costs extra
computation time or must be done manually. Computa-
tion speed is relevant for both on-site and off-site analyses
since the data analysis speed is often a bottleneck in de-
termining how to proceed with a given experiment. Fast
inversions for in-between shot analysis would be a large
advantage.
V. CONCLUSION

A trained deep neural network can be used to model
the relationship between simulated edge ICE signals from
LHD due to fast ions and their 1D velocity distribu-
tion function in v⊥. The network is more accurate than
Tikhonov regularization on many of the ICE signal val-
idation examples. Application of the neural network to
ICE measurements and not simulated ICE data requires
specific training of the network and the sensitivity of how
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Figure 7. Two signals, indicated by ‘(1)’ and ‘(2)’, with the
deep neural network (‘NN’) and Tikhonov inversion (‘Tikh’)
predictions compared to the true solutions (‘True’). The MSE
is indicated. Note that the signals are normalized so that the
y-axis is the normalized intensity in arbitrary units.

exactly the simulated training data must mimic the mea-
surement data has not been studied here. Thus, criteria
for when a training set is good enough needs to be in-
vestigated further. Future work also involves expanding
the neural network to predict the 2D velocity distribu-
tion in v⊥ and v‖ of fast ions, or even the 3D phase-space
distribution37, from ICE signals.
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