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Key Points: 

x Anisotropy markedly affects wormholing dynamics, medium permeability evolution, and 
the optimum injection rate 

x Anisotropy controls wormhole competition and their characteristic separation distance, 
wormhole shapes and tendency to develop side-branches  

x Similarities and differences to viscous fingering and other unstable growth processes are 
analyzed 
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Abstract 

The formation of dissolution conduits by focused reactive flow (i.e., wormholing) in anisotropic 

media is studied using a pore network model. Simulations reveal a significant effect of anisotropy 

on wormholing dynamics and medium permeability evolution. Particularly, anisotropy controls 

wormhole competition and their characteristic spacing. It also affects the flow through the 

individual wormholes and their shapes, and consequently, shifts the optimum injection rate at 

which breakthrough is achieved at a minimal expense of reactant. For anisotropic media with low 

transverse pore conductivities, wormhole distribution ceases to be scale-invariant and pronounced 

side-branches develop. 

Wormholing is further compared to viscous fingering in an anisotropic network, and other unstable 

growth processes of similar underlying dynamics. Despite several similarities, few important 

differences are identified. Our findings contribute to the understanding of wormholing in 

geological media and demonstrate how pore-scale features can fundamentally affect the emergence 

of large-scale morphologies.    

Plain Language Summary 

The flow of corrosive fluids in an aquifer (e.g., acidic water in limestone) can become focused in 

conductive pathways leading to the formation of pronounced dissolution conduits—wormholes. 

Wormholes can form across a large range of scales, from microns to the extended systems of karst 

conduits. Wormholing patterns evolve by competitive dynamics: longer wormholes drain more 

flow and hence grow faster, increasing their conductivity, in turn focusing even more flow. In the 

meantime, shorter wormholes become devoid of reactant and stop growing. This results in a 

hierarchical distribution of wormhole lengths, with many small and only a few long ones. 

Here, using a numerical model, we study wormholing in anisotropic media characterized by 

different permeabilities along different directions—a common feature of geological media. We 

find that anisotropy markedly affects wormhole dynamics and the evolution of overall medium 

permeability. Particularly, anisotropy affects wormhole competition and thus their number, shapes, 

and branching. Wormholing is further compared to other pattern-forming processes in nature, and 

similarities and differences are analyzed. These findings contribute to the understanding of 



Confidential manuscript submitted to replace this text with name of AGU journal 

 

wormholing, with implications to subsurface flow-related processes such as karst and contaminant 

migration. The results demonstrate how micro-scale features controls the large-scale morphology.    

1 Introduction 

Focused reactive flow and dissolution in fractured or porous media leads to the emergence of 

highly conductive dissolution conduits, so-called "wormholes´ (Daccord et al., 1993; Hoefner & 

Fogler, 1988). Dissolution conduits are prevalent in subsurface karst, and can form extended 

speleological systems (Dreybrodt et al., 2005; Palmer, 1991). Wormholes are also important in 

several other applications, including CO2 geo-sequestration (Deng et al., 2016), risk assessment of 

groundwater contamination (Fryar & Schwartz, 1998) or stimulation of petroleum reservoirs 

(Panga et al., 2005).  

The underlying mechanism involves positive feedback between reaction and transport—the 

pathways that focus the reactive flow dissolve preferentially, increasing their conductivity, and in 

turn focusing more flow. Concurrently, shorter wormholes are progressively drained and screened 

off by the longer wormholes, and ultimately cease to grow, resulting eventually in the appearance 

of hierarchical, scale-invariant distribution of wormhole lengths (Szymczak & Ladd, 2006). 

Similar competitive dynamics and emergence of hierarchical structures are observed in various 

other unstable growth processes in nature, with examples ranging from viscous fingering (Roy et 

al., 1999) to crack propagation in brittle solids (Huang et al., 1997) and side-branches growth in 

crystallization (Couder et al., 1990).  

The importance of wormholing and its intriguing physics motivated intensive research, in 

particular on the emergence of reactive-infiltration instabilities (Chadam et al., 1986; Aharonov et 

al., 1995), their formation and competitive dynamics (Budek & Szymczak, 2012; Szymczak & 

Ladd, 2006), and the effects of medium heterogeneity (Hanna & Rajaram, 1998; Upadhyay et al., 

2015). 

However, the effect of pore-scale anisotropy on the dissolution patterns has received only minor 

attention (e.g., Lai et al., 2016; Schwalbert et al., 2017), despite its prevalence  in rocks (Clavaud 

et al., 2008, and references therein), often induced by in-situ differential stress (Bruno, 1994; Kang 

et al., 2018). Additionally, anisotropic void-space is characteristic of fractured media at scales 

ranging from a single fracture to the field-scale (Bonnet et al., 2001; Sahimi, 2011) , and often is 
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very pronounced (Barton, 2006). Furthermore, previous studies of similar unstable growth 

processes have shown that anisotropy can have a substantial effect on the dynamics and pattern 

formation (Ben-Jacob et al., 1985; Budek et al., 2015; Couder et al., 1990).  

In this study, we investigate the effects of pore-scale anisotropy on wormholing dynamics and 

permeability evolution using a pore network model. We find that anisotropy strongly affects 

wormhole competition, their characteristic spacing, and shapes. Additionally, we highlight 

similarities and differences with viscous fingering in an anisotropic network of channels (Budek 

et al., 2015). The findings emphasize how pore-scale phenomena and microscopic characteristics 

of the medium can govern the formation of large-scale morphologies. 

2 The Pore Network Model 

To gain fundamental understanding of the effect of anisotropy on wormholing, we use a 2-D 

numerical pore network model (PNM). PNMs are frequently used to represent dissolution in 

anisotropic porous (e.g., Algive et al., 2010; Hoefner & Fogler, 1988; Nogues et al., 2013; Raoof 

et al., 2012) and fractured media (e.g., Dreybrodt et al., 2005; Perne et al., 2014). Despite their 

simplicity, PNMs capture the major characteristics of wormholing observed experimentally, 

including their structure and advancement rate, permeability evolution and the non-monotonic 

relationship between injection rate and fluid volume required for breakthrough (e.g., Budek & 

Szymczak, 2012; Fredd & Fogler, 1998; Wang et al., 2016).  

In our model, the pore space is represented as connected cylindrical channels (of initially 

heterogeneous sizes) that are broadened by the dissolution (following e.g., Hoefner & Fogler, 

1988, Fredd & Fogler, 1998, Budek & Szymczak, 2012; Wang et al., 2016). The nodes of the 

network (³pore junctions´) are assumed to be volumeless such that all the reaction takes place in 

the channels (³pores´) only (Fig. S1 in the Supporting Information (SI)). This representation also 

resembles the 2-D network of conduits formed at the intersection of bedding plane with a 

subvertical fracture network, where karst systems evolution initiates (so-called ³inception 

horizon´; Dreybrodt, 1988; Filipponi et al., 2009; Frumkin et al., 2017).  

The conservation equations for the fluid and solute are written for individual pores and nodes. 

These systems of equations provide the fluid fluxes, solute concentrations and mass of solid 

dissolved. Solute transport in the pores is assumed here to be dominated by advection in the axial 
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direction (flow direction), whereas axial diffusion is neglected. This restricts the analysis to 

conditions where the pore-scale Péclet number, Pe=vժ l/D, is sufficiently large, Pe>>1, common in 

natural processes and engineering applications (Ford & Williams, 2013; Niemi et al., 2017). Here 

l is the pore length, vժ  is the average fluid velocity and D is the diffusion coefficient. At pore 

surfaces, first-order dissolution reaction is considered. Such assumption is often applied to 

describe dissolution of limestone by acidic solutions (at pH~3; Peng et al., 2015) and under natural 

conditions (karst, with pH~6; Dreybrodt et al., 2005; Palmer, 1991), or of halite (Alkattan et al., 

1997) and gypsum (Colombani, 2008) by water. 

The separation of time-scales between fluid flow, solute transport, and dissolution allows us to use 

the quasi-static approach, treating the flow and concentration fields as stationary at each timestep. 

Then, following the dissolution in each timestep the geometrical properties are updated (see e.g., 

Bekri et al., 1995; Detwiler & Rajaram, 2007; Lichtner, 1991). Below, the PNM and main equation 

are succinctly described; for detailed description see S1 in the SI and previous works (Budek & 

Szymczak, 2012; Roded et al., 2020). 

2.1 Fluid flow 

For an incompressible fluid, steady-state fluid mass conservation at each node i yields 

∑ 𝑞௜௝ ൌ 0,                                                                ௝                                                                                      ሺ1ሻ                                                                                           

where qij is the volumetric flow rate through pore ij (qij>0 indicates flow from node i to j), and the 

summation is over all neighboring nodes j. These flow rates are calculated using the Hagen-

Poiseuille equation 

𝑞௜௝ ൌ
𝜋𝑟௜௝

4

8𝜇𝑙
𝛥𝑝௜௝,                                                                                                                                              ሺ2ሻ 

where rij is the channel radius, ȝ is the fluid viscosity and ǻpij=pi-pj is the pressure drop between 

nodes, which are a distance l apart (l is constant throughout the network). The system of linear 

equations (1-2) is solved for the pressures at the nodes. 
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2.2 Reactive transport and dissolution 

Dissolution is modeled assuming: (a) first-order reaction kinetics, (b) solute transport controlled 

by advection in the axial direction, and (c) by diffusion in the radial direction (from the bulk fluid 

to the mineral surface). With these assumptions, a 1-D solute conservation equation in each pore 

can be written in terms of the flow-weighted average concentration, c,  

𝑞
𝑑𝑐
𝑑𝜉

ൌ െ2𝜋𝑟𝜆𝑒𝑓𝑓𝑐,                                                                                                                                      ሺ3ሻ 

where ȟ is the axial coordinate, and Ȝeff is the effective reaction rate coefficient [L/T]. Using the 

known concentration of the pore inlet cin=c(ȟ=0), Eq. 3 can be solved for the concentration profile 

along the pore 

𝑐ሺ𝜉ሻ ൌ 𝑐௜𝑛𝑒−
2గ𝑟𝜆೐೑೑క

𝑞 .                                                                                                                                  ሺ4ሻ 

Substituting ȟ=l for the pore outlet, we note that the exponential decay of the concentration within 

the pore is controlled by  

𝑓ሺ𝑟, 𝑞ሻ ൌ
𝑠𝜆𝑒𝑓𝑓

𝑞
,                                                                                                                                           ሺ5ሻ 

where s=2ʌrl is the pore surface area. The effective reaction rate coefficient, Ȝeff= Ȝ/(1+g(r)), 

incorporates the effect of transport on reaction, where Ȝ is the surface reaction rate coefficient and 

the slowdown function g(r) accounts for the extent by which dissolution rate within a single pore 

is hindered by the transport,  

𝑔ሺ𝑟ሻ ൌ
𝜆2𝑟
𝐷𝑆ℎ

.                                                                                                                                                  ሺ6ሻ 

Here Sh is the Sherwood number, approximated by a constant value of Sh=4 (Budek & Szymczak, 

2012). The concentration at the nodes is then calculated using Eq. 4 for each pore outlet, assuming 

complete mixing (Kang et al., 2019; Varloteaux et al., 2013). As noted previously (Kang et al., 

2015), the assumption of complete mixing in junctions may affect reactant dispersion, which, in 
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turn, can influence the dissolution patterns. A detailed investigation of this effect is beyond the 

scope of the present paper and is deferred for future research.   

Conservation of solid mass together with the assumption that the pores are broadening uniformly 

along their length, provides the following expression for the change in radius during a timestep ǻtը  

𝛥𝑟 ൌ
𝑟0𝛥𝑡̂

ሺ𝑐0/𝑐௜𝑛ሻ
ሺ1 െ 𝑒−𝑓ሻ
ሺ1 ൅ 𝑔ሻ𝑓

,                                                                                                                           ሺ7ሻ 

where c0 is the concentration at the system¶s inlet, r0 is the initial average radius, and tը is the 

dimensionless time  

𝑡̂ ൌ
𝜆𝑡𝛾
𝑟0

.                                                                                                                                                         ሺ8ሻ 

Here Ȗ=c0/csolș is the acid capacity number, defined as the ratio between the number of molecules 

in a unit volume of mineral to the number of molecules of reactant in a unit volume of the incoming 

fluid, with ș accounting for the reaction stoichiometry. To account for a finite amount of soluble 

solid, once locally solid is fully dissolved between adjacent pores, these pores are merged (see 

Roded et al., 2018). 

2.2.3 Dimensionless groups  

The dissolution rate of the pores is a function of f and g, with dependence on time arising through 

the radius, r, and flow rate, q. To characterize transport and reaction conditions, we use initial 

averaged values of f and g functions for the longitudinal pores, aligned in the main flow direction, 

x. This leads to the following definition of the dimensionless Damkऺhler number: 

𝐷𝑎 ൌ
𝑠0𝜆

𝑞തሺ1 ൅ 𝐺ሻ
,                                                                                                                                            ሺ9ሻ 

and the dimensionless transport parameter  

𝐺 ൌ
𝜆2𝑟0

𝐷𝑆ℎ
,                                                                                                                                                    ሺ10ሻ 
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where s0 and qժ  are the average surface area and inlet flow rate in longitudinal pores. Note that the 

Péclet number does not appear in these equations as diffusion effects in the axial direction are 

neglected (Pe>>1). 

2.3 Simulation setup 

2.3.1. Initial and boundary conditions 

We consider flow of fixed total volumetric rate, Q, and reactant concentration, c0, from the inlet 

to the outlet face. At the side walls, periodic boundary conditions for flow and transport are set. 

Concentration at the outlet nodes is calculated from solute mass conservation (Eq. 4; free-flow 

boundary). 

2.3.2. Network and reactive transport conditions  

We use a regular rectangular network and consider heterogeneity in pore volumes by drawing 

values from a lognormal distribution with relative standard deviation of 0.7, representative of the 

large characteristic variability in pore sizes of geological media (Sahimi, 2011). Anisotropy in the 

network is implemented by changing the average size of transverse pores, keeping the average size 

of the longitudinal pores constant in the different simulations. The anisotropy degree is defined as 

𝑆 ൌ 𝑎೤

𝑎ೣ
,                                                                                                                                                          ሺ11ሻ          

where a is the average pore cross-sectional area, with subscript x and y denoting longitudinal and 

transverse pores. We use here S values of 0.1-10, to reflect the fact that anisotropy can be very 

pronounced (e.g., in the case of unidirectional tensile joints; Adler et al., 2013).  

The network has 200 nodes in the x-direction, whereas the number of nodes in the orthogonal 

direction, y, depends on S. To allow uninhibited pattern formation, the computational domain must 

be sufficiently wide; this width, defined by the distance between longest wormholes, depends on 

S, and thus we vary the aspect ratio when simulating different values of S (Section 3, Fig. 1). 

In this study, we focus on the wormholing regime prevailing when the reaction rate is relatively 

fast, and thus consider values of Da=1 and G=10. To obtain statistically representative results for 

the heterogeneous media, results were averaged over 150 realizations. 
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3 Results and Discussion  

The detailed microstructure of the porous medium can affect the manner in which reactive fluid is 

distributed within the void space and thus modify the dissolution patterns (Deng et al., 2018). Here, 

we show that anisotropy substantially changes the characteristic spacing between the wormholes 

(Fig. 1a), and consequently the fluid volume required to attain a given permeability enhancement 

(Fig. 1b). For narrow transverse pores (low S), the spacing between the wormholes is small and 

the reactant is spent on extending multiple wormholes. Conversely, for wide transverse pores 

(large S) dissolution is focused in a small number of competing wormholes, with more rapid 

permeability enhancement. Increasing S from 0.1 to 10, increases by a factor of four the volume 

of reactive fluid, Vf, required to attain a 10-fold increase in permeability (k/k0=10, where k0 is the 

initial value), cf., Fig. 1b.  

The underlying mechanism of wormhole growth involves competition between the wormholes for 

the available flow. Longer and more conductive wormholes progressively focus more flow at the 

expense of shorter ones. In return, an increased pressure ahead of the longer wormholes screens 

off the shorter ones, which ultimately cease to grow. This process perpetuates, leading to pattern 

coarsening: the separation between active (growing) wormholes increases while their number 

decreases (Fig. 1c).  

This competitive dynamics results in the appearance of hierarchical, scale-invariant distribution of 

wormhole lengths, obeying a power-law   

𝑛ሺ𝐿௪ሻ~𝐿௪
−ఈ,                                                                                                                                                 ሺ12ሻ 

where n(Lw) is the linear wormhole density, n(Lw)=N(Lw)/Ly, with N(Lw) being the total number of 

wormholes longer than Lw, normalized by injection face length, Ly, and Į≈1 (Szymczak & Ladd, 

2006; Upadhyay et al., 2015). The exponent Į≈1 agrees with theoretical results on the scaling of 

dendrite growth driven by a Laplacian field (Krug et al., 1993). Here, we observe that while for 

S>1 the length distribution indeed follows a power-law with Į≈1, for S<1 the distribution ceases 

to be scale-free (Fig. 2a). The different domain aspect ratios (Fig. 1a) are chosen to be wider than 

the distance between the longest group of wormholes which has not yet screened each other, i.e., 

wide enough to accommodate at least one cell, which in turn depends on S (Fig. 1c). 
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Fig. 1. (a) Dissolution patterns in grayscale (white depicts fully dissolved areas) for different 

anisotropy degrees, S, and (b) the evolution of permeability k (normalized by its initial value, k0) 

with injected fluid volume, Vf (scaled by the sample volume). (c) Schematics of the evolution of 

hierarchical growth pattern. Over time (advancing from I to IV), the number of active wormholes 

(orange) decreases, while the spacing between them increases. The dashed frame (IV) is the 

hierarchical cell, with an aspect ratio Ö
sL =Ls/Lx, and Ncell(Lw) is the number of wormholes in the 

cell longer than Lw; here Ncell(Lw=1/4Lx)=4. The patterns in (a) are shown for domains with 

Ly/Lx>Lը s.  

Interestingly, these findings are consistent with recent experimental results of viscous fingering of 

two immiscible fluids in an anisotropic network of microfluidic channels (Budek et al., 2015). The 

setup in Budek et al. (2015) can be described as a collection of zero-resistance dendrites (displacing 

fluid fingers of negligible viscosity) that interact through the Laplacian pressure field, with their 

growth proportional to the gradient ahead of their tips. An analogy between viscous fingering and 

wormholing can be made by replacing the continuous porosity field by a sharp transition: the 

wormholes approximated as fully dissolved and the matrix assumed completely undissolved. This 

analogy assumes that: (a) the pressure field in the undissolved rock satisfies the Laplace equation; 
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(b) the hydraulic resistance of the wormholes is negligible in comparison to the matrix; and (c) 

wormhole growth speeds are proportional to the pressure gradient ahead of their tips (Cabeza et 

al., 2020). 

 
Fig. 2. (a) The linear density of wormholes longer than Lw, n(Lw). Wormhole distribution for 

anisotropy degree S≳1, obeys a power-law with Į≈1 (Eq. 12; fitted dashed black line). (b) 

Characteristic wormhole spacing, Ö
sL  (orange squares), showing a fit to the power-law Ö

sL ~Sȕ with 

ȕ=0.62 (dashed blue line). The black line shows the dependence Ö
sL ~S, which holds for Laplacian 

growth (e.g. viscous fingering). Wormholes shorter than 0.05Lx and longer than 0.5Lx were not 

taken into account in the distribution, the former because their length is influenced by the lattice 

discretization effects, and the latter because the selection process among the longest ones has not 

yet been concluded. 

The increase of the spacing between the wormholes and their lower density, n(Lw), observed for 

wider and more conductive transverse pores (S>1), is explained by enhanced interaction among 

the wormholes via the pressure field, increasing wormhole competition. However, when S is small, 

the interaction and selection are weaker, resulting in smaller separation distance and larger n(Lw) 

(Fig. 2a).  
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A longer wormhole of length Lw will screen neighboring shorter ones over a typical distance, Ls 

(Fig. 1c). This distance can be obtained by dividing the width of the system, Ly, by the number of 

hierarchical cells in the system, İ, 

𝐿𝑠 ൌ
𝐿௬

𝜀
,                                                                                                                                                       ሺ13ሻ 

where İ is calculated using 

𝜀 ൌ
𝑁ഥሺ𝐿௪/𝐿௫ሻ

𝑁𝑐𝑒𝑙𝑙ሺ𝐿௪/𝐿௫ሻ.                                                                                                                                     ሺ14ሻ 

Here Nժ (Lw/Lx) and Ncell(Lw/Lx) are the number of wormholes that are longer than Lw at 

breakthrough, in the entire system and in the hierarchical cell, respectively. The latter is determined 

using Eq. 12 as Ncell(Lw/Lx)=(Lw/Lx)-1 (Fig. 1c). Here, breakthrough is defined as the moment when 

the longest wormhole reaches the outlet. Ls can be scaled to provide the hierarchical cell aspect 

ratio,  Ö
sL =Ls/Lx. Thus, the complete hierarchical distribution of the wormhole lengths can only be 

observed if the system is wide enough, Ly/Lx൒ Ö
sL . 

In the case of viscous fingering on a rectangular network, both the numerical results and scaling 

analysis of the anisotropic Laplace equation suggest that the characteristic spacing scales linearly 

with S, Ö
sL ~S, as long as S≳1 (black line in Fig. 2b; Budek et al., 2015). However, for wormholing, 

Lը s increases with S nonlinearly, obeying Ö
sL ~Sȕ with ȕ≈0.62. This difference between the systems 

demonstrates that wormholing deviates from the simplified description of the model for dendrite 

growth in the Laplacian fieldand is a more intricate phenomenon. We attribute the power-law 

scaling to the effect of anisotropy on wormhole shape and their advancement velocity. The precise 

nature of this relationship remains the subject of future investigation. For S<1, since the 

distribution is no longer hierarchical (see Fig. 2a) the scaling relation is no longer valid.  

By affecting wormhole spacing, the anisotropy also controls the flow rate drained through the 

individual wormholes, which in turn profoundly affects the wormhole shape (Fredd & Fogler, 

1998; Golfier et al., 2002). To characterize the latter, we measure the wormhole aspect ratio, 

Awh=Lw/ȡ, defined as the ratio between wormhole length and its average width, ȡ, calculated from 
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the fully dissolved area (Fig. 3a and b). We find that Awh is inversely proportional to S. This can 

be rationalized by noting that as S decreases, the wormhole spacing and fluid velocity in individual 

wormholes decrease. This, in turn, leads to longer fluid residence times, substantial reactant 

concentration decay along the flow path (Fig. 3b.1), and an enhanced role of the mass transfer to 

the wormhole walls (Steefel & Lasaga, 1990; Szymczak & Ladd, 2009). As a result, the dissolution 

rate is largest near the inlet and decreases downstream, such that wormholes develop an elongated 

conical shape with relatively high Awh (Fig. 3a and 3b.1).  

 
Fig. 3. (a) Aspect ratio of the individual wormholes (circles), Awh, defined as wormhole length, Lw 

over its average width (measured at breakthrough). Lines denote second-order polynomial fits. (b) 

Magnification of single wormholes (grayscale, white depicts fully dissolved regions) and the 

corresponding reactant concentration field, c. For low S (S=0.5, b.1), reactant concentration decays 

within the wormhole, resulting in an elongated conical shape and high Awh. Conversely, for S=10 

(b.2), the flow rate in the wormholes is higher and wormholes become more linear. (c) Volume to 

breakthrough, VBT, vs. Da. Changing anisotropy shifts the optimum injection rate (guidelines 

connect the simulation results); in (c) a hundred realizations were carried out on smaller networks 

(100 nodes in the x-direction). 
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Conversely, for large S and fast flow, reactivity at the tip remains high and wormholes attain a 

more linear shape (so-called ³dominant wormholes´, Fredd & Fogler (1998)) (Fig. 3b.2). In fact, 

the wormholes tend to widen downstream: as dissolution progresses, the spacing between the 

active wormholes increases and they focus increasingly more flow. In turn, the flow spreads 

sideways from the wormhole tip through the highly conductive transverse pores, leading to 

widening downstream. Analogous widening was also observed in viscous fingering and 

solidification (Budek et al., 2015; Couder et al., 1990), apparently induced by similar dynamics. 

The effect of anisotropy on wormhole shape has also important implications for permeability 

evolution and the fluid volume to breakthrough curve. The latter is important in oil wells 

stimulation, in which one looks for an optimum injection rate allowing to attain breakthrough with 

a minimum reactant usage (Fredd & Fogler, 1998; Xu at al., 2020). This is usually associated with 

the formation of dominant wormholes because they progress faster than conical ones. Since for 

larger S dominant wormholes appear at lower flow rates (higher Da), a corresponding shift takes 

place in the optimum injection rate (Fig. 3c).  

Lastly, we focus on low S conditions, where wormholes tend to develop pronounced side branches 

that strongly compete with the main wormhole and occasionally even divert the bulk flow (Fig. 1a 

and 4a.1). To investigate the development of side branches, we use a simple model system with a 

central permeable pre-existing channel extending from the inlet to 1/4Lx, with the rest of the pores 

of almost uniform sizes (relative standard deviation of 0.03). We observe that while in the isotropic 

system (S=1) hardly any side branches develop, for S=0.1 branching becomes extensive (cf., Fig. 

4b.2 and 4b.4).  

Inspecting the pressure field at t=0 reveals that for S=0.1 the pressure perturbation induced by the 

preexisting channel decays sharply in the transverse direction (Fig. 4b.1, see inset), because of the 

high resistivity of the transverse pores. Conversely, the pressure decay is much more gradual for 

isotropic media (Fig. 4b.3). These observations reveal that the short screening range at S=0.1, and 

the pressure gradient that is almost perpendicular to the channel, promote transverse flow and 

branch development. The branches efficiently drain fluid to the outlet, and their extension continue 

due to the short transverse screening length and the relatively high transverse pressure gradient. 

As the process continues, new branches develop downstream from the main wormhole body. 
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Consequently, upstream branches become gradually screened-off and are eventually abandoned. 

Similar branching was observed at low S conditions in viscous fingering on a lattice and in 

solidification (Budek et al., 2015; Couder et al., 1990).  

 
Fig. 4. (a) Dissolution patterns at low S (wider longitudinal pores); fully dissolved areas marked 

in white. For S=0.1 pronounced branches develop (a.1), whereas for lower S, wormholes tend to 

merge (a.2). (b) Branching development is studied using a system with a seeded central channel 

(white segments in b.1 and b.3). At t=0 for S=0.1, the pressure perturbation induced by the channel 

decays sharply, leading to large transverse gradients and short screening range, which promote 

branching. Conversely, for S=1 extensive screening occurs ahead of the wormhole tip (cf., 

magnification in b.1 and b.2).  

For very narrow traverse pores (S=0.01), the weak competition results in wormhole merging and 

relatively compact and planar dissolution front. Compact front is commonly a characteristic of low 

Péclet diffusion-dominated conditions  (Golfier et al., 2002; Fig. 4a.2). Here, however, we show 

that at high Péclet, low S conditions can preclude wormholing, which would otherwise develop if 

the medium was isotropic.  
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4 Summary 

Simulations using a pore network model reveal that the degree of anisotropy S (ratio of transverse 

to longitudinal pore-sizes) markedly affects wormholing and permeability evolution. In particular, 

anisotropy alters the wormhole competition and their characteristic spacings and shapes. It also 

leads to a shift in the optimum injection rate, which is important for practical applications. These 

findings are comparable with those reported for other unstable growth processes, such as viscous 

fingering. However, we also find important difference: while in viscous fingering for S≳1 the 

spacing between the fingers scales linearly with anisotropy degree S, it does not in wormholing. 

This could be attributed to the effect of anisotropy on wormhole shape and the link between the 

latter and the wormhole advancement velocity. The elucidation of these intriguing mechanisms 

remains the subject of future investigation. 

Finally, we note that the anisotropy model adopted here, with different pore diameters in 

orthogonal directions, represents one of many possible ways of introducing anisotropy in rocks. 

To test the generality of our results, we have also analyzed the dissolution patterns in a single 

fracture, with anisotropy introduced by controlling the spatial correlation length of the aperture in 

two orthogonal directions. The results presented in SI (S2) show a remarkable agreement with the 

pore network model, demonstrating that our main conclusions do not depend on the details of pore-

scale anisotropy model. 
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