1 Protective action of *N*-acetyl-L-cysteine associated with a polyvalent

2 antivenom on the envenomation induced by *Lachesis muta muta* (South

- 3 American bushmaster) in rats
- 4
- 5 Aline G. Leão-Torres^a, Carina V. Pires^a, Amanda C. Ribelato^a, Maria C. Zerbinatti^a,
- 6 Cecília L. Santarém^b, Rosa M. B. Nogueira^b, Inês C. Giometti^b, Rogério Giuffrida^b,
- 7 Elisangela O. Silva^c, Juliana R. Gerez^d, Nelson J. Silva Jr.^e, Edward G. Rowan^f,
- 8 Rafael S. Floriano^{a*}
- 9
- 10 ^aLaboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences,
- 11 University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares km 572, B2-205, 19067-175,
- 12 Presidente Prudente, SP, Brazil
- 13 ^bGraduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo
- 14 Tavares km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
- 15 °Pathological Anatomy Laboratory, Veterinary Hospital, University of Western São Paulo (UNOESTE),
- 16 Rodovia Raposo Tavares km 572, 19067-175, Presidente Prudente, SP, Brazil
- ^dDepartment of Histology, State University of Londrina, Rodovia Celso Garcia Cid km 380, 86057-970,
- 18 Londrina, PR, Brazil
- 19 ^eGraduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and
- 20 Biomedical Sciences, Pontifical Catholic University of Goiás (PUC Goiás), Rua 232, 128, 74605-140,
- 21 Goiânia, GO, Brazil
- 22 fStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral
- 23 Street, G4 0RE, Glasgow, UK
- 24

```
Running title: Action of N-acetyl-L-cysteine on the envenomation by Lachesis m. muta
```

26 in rats

27

- 28 *Corresponding author: R.S. Floriano (rafael@unoeste.br)
- 29

30 Abstract

31	In this study, we examined the potential use of N-acetyl-L-cysteine (NAC) in
32	association with a polyvalent antivenom and as stand-alone therapy to reduce the acute
33	local and systemic effects induced by Lachesis muta muta venom in rats. Male Wistar
34	rats (300–350 g) were exposed to L. m. muta venom (1.5 mg/kg – i.m.) and
35	subsequently treated with anti-Bothrops/Lachesis serum (antivenom:venom ratio 1:3
36	'v/w' – i.p.) and NAC (150 mg/kg – i.p.) separately or in association; the animals were
37	monitored for 120 min to assess changes in temperature, locomotor activity, local
38	oedema formation and the prevalence of haemorrhaging. After this time, animals were
39	anesthetized in order to collect blood samples through intracardiac puncture and then
40	euthanized for collecting tissue samples; the hematological-biochemical and
41	histopathological analysis were performed through conventional methods. L. m. muta
42	venom produced pronounced local oedema, subcutaneous haemorrhage and
43	myonecrosis, with both antivenom and NAC successfully reducing the extent of the
44	myonecrotic lesion when individually administered; their association also prevented the
45	occurrence of subcutaneous haemorrhage. Venom-induced creatine kinase (CK) release
46	was significantly prevented by NAC alone or in combination with antivenom; NAC
47	alone failed to reduce the release of hepatotoxic (alanine aminotransferase) and
48	nephrotoxic (creatinine) serum biomarkers induced by L. m. muta venom. Venom
49	induced significant increase of leucocytes which was also associated with an increase of
50	neutrophils, eosinophils and monocytes; antivenom and NAC partially reduced these

51 alterations, with NAC alone significantly preventing the increase of eosinophils whereas

52 neither NAC or antivenom prevented the increase in monocytes. Venom did not induce

53 changes in the erythrogram parameters. In the absence of a suitable antivenom, NAC

- has the potential to reduce a number of local and systemic effects caused by *L. m. muta*
- 55 venom.
- 56

57 Keywords: Viperidae snake; L. m. muta venom; local and systemic toxicity; N-acetyl-

- 58 L-cysteine, antivenom, neutralization.
- 59

60 1. Introduction

61 Envenomation by Viperidae snakes represent a critical public health problem in

62 most countries of Latin America (Chippaux, 2017; Gutiérrez et al., 2020; Ochoa-Avilés

et al., 2020). In Brazil, more than 24,000 cases of snakebites were officially notified in

64 2019 by Notifiable Diseases Information System of the Brazilian Ministry of Health

65 (SINAN, 2020), being them mostly caused by *Bothrops* snakes (~85.5%), followed by

66 Crotalus (~10.7%), Lachesis (~2.5%) 'Viperidae' and Micrurus (~1.3%) 'Elapidae'

67 snakes. The low incidence of bites by *Lachesis* snakes probably reflects their low

68 population density in the Amazon river basin (=L. muta muta) and Atlantic rainforest

69 (=L. muta rhombeata), including their secretive behaviour and habitat preferences,

70 although these envenomations are potentially severe (Campbell and Lamar, 2004; Costa

and Bérnils, 2018; Diniz-Sousa et al., 2020; Nogueira et al., 2019).

72 *Lachesis* snakes – bushmaster or surucucu – (Viperidae: Crotalinae) represent the

73 largest viper found in Americas and comprise four terrestrial oviparous species (L.

74 stenophrys, L. melanocephala, L. acrochorda and L. muta) distributed in Central and

75	South America: (1) L. stenophrys is distributed along the Caribbean coast of Central
76	America, (2) L. melanocephala occurs along the Pacific coast of southwestern Costa
77	Rica and extreme western of Panama, (3) L. acrochorda is found in western Panama
78	and northwestern Colombia and (4) L. muta is widely distributed in the Amazon river
79	basin and east coast of Brazil (Campbell and Lamar, 2004; Costa and Bérnils, 2018;
80	Diniz-Sousa et al., 2020; McDiarmid et a., 1999; Nogueira et al., 2019) (Figure 1).
81	Together, these species comprising the second most frequent snakes involved in
82	ophidian accidents in Americas, being exceeded only by those ones of the genus
83	Bothrops (Magalhães et al., 2018; Diniz-Sousa et al., 2020).
84	Envenomation by Lachesis spp. is characterized by intense local pain
85	accompanied by pronounced oedema and myonecrosis (Fuly et al., 2000, 2003; Damico
86	et al., 2006, 2008, 2012; Ferreira et al., 2009), including severe systemic alterations
87	such as haemorrhage (Rucavado et al., 1999; Sánchez et al., 1987, 1991, 1995),
88	coagulopathy (Estevão-Costa et al., 2000; Fuly et al., 1997; Torres-Huaco et al., 2013),
89	pulmonary thrombosis (Dias et al., 2016a) and cardiovascular disorders consisting of
90	prolonged bradycardia and hypotension (Angel-Camilo et al., 2020; Dias et al., 2016a,
91	2016b; Diniz and Oliveira, 1992; Giovanni-De-Simone et al., 1997). These effects have
92	been related to presence of non-enzymatic proteins, e.g., bradykinin-potentiating
93	peptides and bradykinin receptor antagonists (Graham et al., 2005; Pinheiro-Júnior et
94	al., 2018; Pla et al., 2013; Sanz et al., 2008; Soares et al., 2005), including a variety of
95	enzymatically active proteins such as snake venom metalloproteases (SVMPs), serine
96	proteases (SVSPs), phospholipases A2 (PLA2), C-type lectins and L-amino acid oxidase
97	(Bregge-Silva et al., 2012; Cordeiro et al., 2018; Diniz-Sousa et al., 2018; Junqueira-de-
98	Azevedo et al., 2006; Madrigal et al., 2012; Weinberg et al., 2004; Wiezel et al., 2019).

99	In Central and South America, envenomations caused by Lachesis spp. are treated
100	with polyvalent antivenoms (Madrigal et al., 2017; Pla et al., 2013; Solano et al., 2018),
101	whereas the efficacy of therapeutically useful adjuncts to treat local and systemic effects
102	induced by these venoms needs further investigation (De Oliveira et al., 2014, 2016,
103	2020; Faioli et al., 2013; Marques et al., 2019). In Brazil, polyvalent antivenoms (=anti-
104	Bothrops/Lachesis serum) used to treat envenomations by Lachesis muta are produced
105	mainly by Instituto Butantan (IB, São Paulo, SP, Brazil), Fundação Ezequiel Dias
106	(FUNED, Belo Horizonte, MG, Brazil) and Instituto Vital Brazil (IVB, Niterói, RJ,
107	Brazil). These antivenoms consist in immunoglobulins raised in hyperimmunized horses
108	using a pool of venoms that including five <i>Bothrops</i> snake's species (= <i>B. jararaca</i> , <i>B.</i>
109	alternatus, B. jararacussu, B. moojeni and B. neuwiedi) and Lachesis muta (IB and
110	IVB); there is also a second type of antivenom consisted in F(ab')2 fragments obtained
111	by pepsin digestion of immunoglobulins raised in hyperimmunized horses using
112	Bothrops jararaca and Lachesis muta venoms (FUNED).
113	In this study, we aimed to investigate the potential use of N-acetyl-L-cysteine
114	(NAC), a drug known for scavenging a wide variety of reactive oxygen species (ROS)
115	and increasing the intracellular level of glutathione (Briguori et al., 2011; Nicoletta et
116	al., 2006; Paller and Patten, 1984; Thielemann and Rosenblut, 1990), to reduce the local
117	and systemic effects induced by L. m. muta venom in rats. NAC is rapidly distributed
118	and is free of systemic toxicity, being used therapeutically in the treatment of
119	respiratory disorders (Fok, 2009; El-Hafiz et al., 2013; Moroz et al., 2019; Rogliani et
120	al., 2019; Zhang et al., 2017). In recent studies, NAC has also demonstrated to be
121	effective at inhibiting the haemorrhagic and nephrotoxic activities induced by Viperidae
122	snakes from the New (Barone et al., 2014) and Old World (Sunitha et al., 2011, 2013).

123	According to Sunitha et al. (2011), NAC inhibited the haemorrhagic activity of <i>Echis</i>
124	carinatus and Vipera russelli (=Daboia russelii) (Viperidae: Viperinae) venoms in
125	mice; NAC also significantly decreased the hyaluronidase activity of Echis carinatus
126	venom in vitro (Sunitha et al., 2013). In addition, Barone et al. (2014) reported that
127	NAC improves the renal redox status and renal functions in mice exposed to Bothrops
128	jararaca and Crotalus durissus terrificus (Viperidae: Crotalinae) venoms.
129	As the use of NAC has been shown to have a number of favourable physiological
130	outcomes, we have systematically examined the potential use of this drug as an adjunct
131	to the recommended polyvalent (anti-Bothrops/Lachesis) antivenom for envenomation
132	by Lachesis muta and as a stand-alone therapy on the acute local and systemic effects of
133	L. m. muta envenomation in rats using hematological, biochemical and
134	histopathological approaches.
135	
136	2. Material and methods
137	2.1. Reagents and venom
138	N-acetyl-L-cysteine (A7250) was obtained from Sigma-Aldrich Chemical Co. (St.
139	Louis, MO, USA) and polyvalent antivenom (anti-Bothrops/Lachesis serum) was from
140	Instituto Butantan (São Paulo, SP, Brazil). Lachesis muta muta venom was provided by
141	Center for Biological Studies and Research of the Pontifical Catholic University of
142	Goiás (Goiânia, GO, Brazil) through Dr. Nelson J. Silva Jr.; venom was obtained from
143	one male adult snake from Altamira in the northern Brazilian state of Pará in the
144	Brazilian Amazon (3°25′55″S and 51°56′6″W), lyophilized and stored at -20 °C until
145	used.

- ...

146

147 *2.2. Animals*

148 Wistar rats (300–350 g; 2–3 months old) obtained from Central Bioterium of the 149 University of Western São Paulo (UNOESTE, Presidente Prudente, SP, Brazil) were 150 housed in plastic cages (2 animals/cage) with a wood-shaving substrate, at 23 ± 1 °C on 151 a 12-h light/dark cycle with lights on at 6 a.m. The animals had free access to food and water. The experimental procedures were approved by an institutional Committee for 152 153 Ethics in Animal Use (CEUA/UNOESTE, Protocol No. 5808/2019) and were done according to the general ethical guidelines for animal use established by the Brazilian 154 Society of Laboratory Animal Science (SBCAL) and Brazilian Federal Law No. 11.794 155 of October 8, 2008, in conjunction with the guidelines for animal experiments 156 157 established by the Brazilian National Council for Animal Experimentation (CONCEA). 158 159 2.3. Experimental design 160 The animals were transferred to the Experimental Bioterium of the University of 161 Western São Paulo (UNOESTE, Presidente Prudente, SP, Brazil) and allowed to adapt for two weeks, under the same conditions as described above, before initiating the 162 163 experimental procedures. The animals were then randomly distributed in six 164 experimental groups (n = 6 per group) identified as: group G1 (control) – intramuscular (gastrocnemius muscle) injection of saline 0.9%; group G2 (N-acetyl-L-cysteine 165 'NAC') – intraperitoneal injection of NAC at a dose of 150 mg/kg; group G3 (L. m. 166 167 *muta* venom) – intramuscular (gastrocnemius muscle) injection of venom at a dose of 1.5 mg/kg; group G4 (L. m. muta venom + antivenom) – intramuscular (gastrocnemius 168 169 muscle) injection of venom '1.5 mg/kg' followed by intraperitoneal injection of 170 antivenom at an antivenom: venom ratio of 1:3 (v/w); group G5 (L. m. muta venom +

171	NAC) – intramuscular (gastrocnemius muscle) injection of venom '1.5 mg/kg' followed
172	by intraperitoneal injection of NAC '150 mg/kg'; group G6 (L. m. muta venom + NAC
173	+ antivenom) – intramuscular (gastrocnemius muscle) injection of venom '1.5 mg/kg'
174	followed by intraperitoneal injections of NAC '150 mg/kg' and antivenom '1:3 (v/w)'.
175	The animals were monitored before (T_0) and at various intervals $(T_{30}, T_{60}, T_{90} \text{ and } T_{120})$
176	min) and then anesthetized with thiopental (1.8 mg/kg - i.p.) (Cristália [®] , São Paulo, SP,
177	Brazil) to collect blood samples for hematological and biochemical analysis; the
178	animals were afterwards euthanized by an overdose of thiopental and subjected to
179	dissection of gastrocnemius muscle (right 'local of venom-injection' and left hind
180	limbs), kidney, liver, lung and heart samples for histopathological analysis. To induce
181	acute toxicity in rats, the dose of 1.5 mg of venom/kg was chosen based on previous
182	investigations (Dias et al., 2016a, 2016b) and confirmed in pilot experiments in order to
183	produce pronounced local and systemic alterations in at least 120 min post
184	envenomation. The ability of anti-Bothrops/Lachesis serum produced by Instituto
185	Butantan (IB) (São Paulo, SP, Brazil) to neutralize the L. m. muta venom-induced local
186	and systemic effects in rats was assessed by administrating antivenom via
187	intraperitoneal at an antivenom:venom ratio of 1:3 (v/w) immediately after exposing the
188	animals to an intramuscular injection of venom (1.5 mg/kg); this antivenom:venom ratio
189	was based on the manufacturer's stated neutralizing capacity for the antivenom (1 ml of
190	antivenom neutralizes 3 mg of <i>L. muta</i> venom). The dose of 150 mg of NAC/kg was
191	based on previous investigations (Oliveira Filho et al. 2015; Portella et al., 2004) and its
192	lack of toxicity confirmed in pilot experiments. Fig. 2 summarizes the experimental
193	design described in this section.

194

195 *2.4. Clinical monitoring*

196 The clinical monitoring (To 'basal', T₃₀, T₆₀, T₉₀ and T₁₂₀ min 'post exposure to 197 venom') consisted in measuring the auricular temperature using a digital thermometer, locomotor activity using a semi-quantitative toxicity scale, local oedema formation 198 199 using Image J software (National Institute of Health, Bethesda, Maryland, USA), 200 including macroscopic monitoring for myonecrosis formation and occurrence of local or 201 widespread bleeding. The animals were subsequently anesthetized by a non-lethal dose 202 of thiopental (1.8 mg/kg - i.p.) and subjected to intracardiac puncture. Some blood 203 samples were collected in vacuum EDTA tubes for hematological analysis and other 204 ones in vacuum sodium citrate tubes for hemostatic analysis (BD Vacutainer[®]); blood 205 samples for biochemical analysis were collected in vacuum tubes without anticoagulant (BD Vacutainer[®]). The animals were then placed in a dorsal position with the hind 206 207 limbs positioned in the same orientation and images were taken of the ventral view 15 208 cm from both hind limbs, followed by analysis via Image J software to measure 209 oedema; length calculations were determined by placing a centimeter scale close to the 210 limbs (Supplementary material, Figure S1); values were expressed as a percentage of 211 the magnitude of RHL and LHL observed in control animals 'G1', considered 100%. 212 The animals were then exposed to an overdose of thiopental, followed by dissection of 213 muscle (gastrocnemius), renal, hepatic, pulmonary and cardiac tissue samples for 214 histopathological analysis. The action of antivenom and NAC to prevent the venom-215 induced lack of locomotor activity was determined based on a semi-quantitative toxicity 216 scale (severity score) using the open field test. A cage with walls to prevent escape was divided by grid lines into nine squares (155 cm^2 each), with (0) indicating a complete 217 absence of paralysis (more than 15 times crossing the grid lines), (1) indicating a slight 218

9

219 lack of locomotor activity (between 10 and 15 times crossing the grid lines), (2)

indicating a moderate lack of locomotor activity (between 5 and 10 times crossing the

grid lines) and (3) indicating a severe lack of locomotor activity (less than 5 times

- crossing the grid lines or no locomotor activity).
- 223
- 224 2.5. Haematological analysis

Erythrocytes, haemoglobin, haematocrit, mean corpuscular volume (MCV), mean

226 corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration

227 (MCHC), red blood cell distribution width (RDW-SD) and total leukocyte count were

228 determined using the POCH-100 iV DIFF haematology analyser (Sysmex do Brasil

229 Indústria e Comércio Ltda., São José dos Pinhais, PR, Brazil); the relative values for

reticulocytes were determined as a percentage of total red blood cells (Bessman, 1990;

231 Brandow, 2018). For differential counting of leukocytes, blood smears were stained

232 with Diff-Quick (Panótico[®] – Laborclin Produtos para Laboratórios Ltda., Pinhais, PR,

233 Brazil) and then analysed under an E-200 Nikon light microscope (Nikon Inc., Tokyo,

234 Japan) at 100x magnification. The concentration of fibrinogen was determined by

235 calorimetric technique using a refractometer ATC-ITREF-200 (Instrumentos

de Medição Ltda., São Paulo, SP, Brazil) and the results were expressed as mg/dL. The

total plasmatic protein (TPP) concentration was quantified by the ATC-ITREF-200

238 refractometer (Instrutemp Instrumentos de Medição Ltda., São Paulo, SP, Brazil) and

239 the results were expressed as g/dL.

240

241

2.6. Serum biochemical analysis

242	The serum biomarkers for systemic myotoxic, cardiotoxic, hepatotoxic and
243	nephrotoxic activities were determined using Cobas C111 commercial kits (Roche
244	Holding AG, Basel, Switzerland) for creatine kinase 'CK' (code 07442017-190),
245	creatine kinase myocardial band 'CK-MB' (code 05401763-190), alanine
246	aminotransferase 'ALT' (code 04718569-190) and creatinine 'Cr' (code 05401755-
247	190), respectively. The assays were performed using a Cobas C111 analyser (Roche
248	Holding AG, Basel, Switzerland).
249	
250	2.7. Histopathological analysis
251	After collecting the blood samples, the animals were subsequently euthanized by
252	an overdose of thiopental and subjected to dissection in order to collect tissue samples

formaldehyde overnight and then washed for 30 min in 0.1 M phosphate-buffered saline

from the heart, lungs, liver and kidney. The samples were immediately fixed in 10%

and 30 min in distilled water prior to storage in 70% ethanol overnight. The samples

were dehydrated in graded ethanol (80%, 95% and 100%), cleared in xylene (1:1

ethanol:xylene, 1:1 xylene:paraffin) and finally embedded in paraplast. Serial of 3–5

sections per sample (5 μ m thick), separated from each other by 25 μ m, were cut and

259 mounted on plain glass slides for hematoxylin–eosin (HE) staining. The slides were

examined with a Leica ICC50HD camera coupled to a Leica DM750 light microscope

261 (Leica Microsystems, Wetzlar, Germany) and the images were then captured and

analyzed semi-qualitatively using a LAS 4.2 software (Leica Microsystems, Wetzlar,

263 Germany). The morphological changes and frequency of lesions were compared among

the treatments based on a lesional score, as essentially described elsewhere (Gerez et al.,

265 2015; Grenier et al., 2011).

253

11

266

267 *2.8. Statistical analysis*

268	The results were expressed as the mean \pm SEM and statistical comparisons were
269	performed with Student's t-test or one-way ANOVA followed by the Tukey test, with
270	p < 0.05 indicated significance. In histopathological analysis, Dunn's test was applied to
271	evaluate the lesional score. All data were analyzed using Microcal Origin 8 SR4 v.
272	8.0951 (Microcal Software Inc., Northampton, MA, USA) and GraphPad Prism 4 v.
273	4.03 (GraphPad Software Inc., La Jolla, CA, USA) software.
274	
275	3. Results
276	3.1. Clinical manifestations produced by L. m. muta venom in rats and treatment
277	with antivenom and NAC
278	L. m. muta venom (1.5 mg/kg – i.m.) administered into gastrocnemius muscle
279	(right hind limb 'RHL') produced pronounced oedema (Figure 3A) accompanied by
280	intense myonecrosis formation and subcutaneous haemorrhage (Figure 3B ₃).
281	Administration of antivenom (antivenom:venom ratio 1:3 'v/w' – i.p.) (G4) or NAC
282	(150 mg/kg – i.p.) (G5) reduced the venom-induced oedema by approximately 14% ($p < 10^{-10}$
283	0.05 compared to G3 'venom' or G5 'venom + NAC', $n = 6$) and 5%, respectively, with
284	their combination promoting approximately 16% of reduction ($p < 0.05$ compared to G3
285	'venom' or G5 'venom + NAC', $n = 6$) (Figure 3A), whereas the myonecrosis caused
286	by venom was markedly reduced by both agents (Figures 3B4 and 3B5); antivenom and
287	NAC in combination also abolished venom-induced subcutaneous haemorrhage (Figure
288	3B ₆). Fig. 3B ₁ and 3B ₂ show the unaffected hind limbs in animals exposed to an
289	injection of saline 0.9% (G1) or NAC alone (G2), respectively. No animal showed

290	evidence for oedema or necrosis formation in the contralateral gastrocnemius muscle
291	(left hind limb 'LHL'). There was no apparent systemic haemorrhage in the groups of
292	animals exposed to L. m. muta venom independently of the treatment. After 120 min,
293	following envenomation, locomotor activity was reduced by venom (severity score '3')
294	(G3) and the treatment with antivenom (G4) and NAC (G5), separately administered,
295	decreased the severity score to '2', whereas the combination of both agents (G6)
296	decreased the severity score to '1'. Table 1 summarizes the results of the clinical
297	assessment.
298	
299	3.2. Biochemical profile of rats exposed to L. m. muta venom and treated with
300	antivenom and NAC
301	In those animals exposed to an intramuscular injection of <i>L. m. muta</i> venom (G3)
302	there was a significant increase in CK serum release after 120 min envenomation ($p <$
303	0.05 compared to G1 'control', $n = 6$); NAC administered alone (G2) did not affect the

304 basal CK serum level. Venom-induced CK release was significantly prevented by

antivenom (G4) and NAC (G5) when administered individually or combining both of

agents (G6) (p < 0.05 compared to G3 'venom' for all these treatments, n = 6) (Figure

4A). There was no alteration in CK-MB level in those animals exposed to *L. m. muta*

308 venom after 120 min envenomation (Figure 4B). Venom (G3) produced pronounced

- increase of ALT serum (p < 0.05 compared to G1 'control', n = 6), which was
- efficiently prevented by antivenom alone (G4) or associated with NAC (G6) (p < 0.05
- 311 compared to G3 'venom' for both treatments, n = 6); however, NAC alone (G5) failed
- to prevent the venom-induced ALT release (Figure 4C). Venom (G3) also caused
- 313 significant increase in the creatinine serum level (p < 0.05 compared to G1 'control', n

= 6), with antivenom alone (G4) or associated with NAC (G6) (p < 0.05 compared to

315 G5 'venom + NAC', n = 6) preventing partially this alteration; NAC alone (G5) did not

- 316 prevent the increase of creatinine serum induced by venom (Figure 4D).
- 317
- 318

3.3. Haematological profile of rats exposed to L. m. muta venom and treatment

319 *with antivenom and NAC*

320 In those animals exposed to L. m. muta venom alone (G3) or also in those ones treated with antivenom (G4 or G6) and NAC (G5 or G6), there was no significant 321 322 alteration in total erythrocytes count, haemoglobin, haematocrit, mean corpuscular 323 volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular 324 haemoglobin concentration (MCHC), red blood cell distribution width (RDW) and total 325 plasma protein after 120 min envenomation; NAC (G2) did not cause chances in these 326 parameters when administered by itself. In addition, venom (G3) induced a slight increase in fibrinogen blood level and platelets count after 120 min envenomation; the 327 328 treatments with antivenom (G4) and NAC (G5) avoided partially the increase of fibrinogen and platelets, with the association of these agents (G6) being more effective 329 330 to avoid the increase of the former; NAC (G2) did not cause changes in these 331 parameters when administered by itself (Supplementary material, Figure S2A and S2B). Venom (G3) also induced a mild increase in reticulocytes, with antivenom (G4) being 332 333 effective at keeping the reticulocytes values close to normal whereas NAC (G5) slightly 334 prevented the increase of reticulocytes by venom; the combined action of antivenom and NAC (G6) also kept the reticulocytes values close to normal. NAC alone (G2) did 335 336 not cause alterations in reticulocytes values. (Supplementary material, Figure S2C). 337

338

3.4. Leukocyte profile of rats exposed to L. m. muta venom and treatment with

antivenom and NAC

340	No group showed alteration in lymphocytes count (Supplementary material,
341	Figure S3), whereas basophils and neutrophils precursor cells (myelocytes and
342	metamyelocytes) were not identified in any group. In addition, venom (G3) induced
343	significant increase in total leukocytes count after 120 min envenomation ($p < 0.05$
344	compared to G1 'control', $n = 6$), being moderately prevented by antivenom (G4) and
345	NAC (G5) or by both of agents associated (G6) ($p < 0.05$ compared to G3 'venom' for
346	all these treatments, $n = 6$); NAC alone (G2) did not interfere in the total leukocytes
347	count (Figure 5A). This increase in total leukocytes count was accompanied by a
348	pronounced increase of neutrophils ($p < 0.05$ compared to G1 'control', $n = 6$),
349	eosinophils ($p < 0.05$ compared to G1 'control', $n = 6$) and monocytes ($p < 0.05$
350	compared to G1 'control', $n = 6$) count. Antivenom (G4) and NAC (G5) administered
351	individually or in association (G6), moderately prevented the increase of neutrophils
352	caused by venom ($p < 0.05$ compared to G3 'venom' for all these treatments, $n = 6$),
353	with NAC alone (G2) unaffecting the neutrophils count (Figure 5B). Individual
354	administration of NAC alone (G5) ($p < 0.05$ compared to G3 'venom' or G4 'venom +
355	antivenom', $n = 6$) or in association with antivenom (G6) ($p < 0.05$ compared to G3
356	'venom', $n = 6$) produced greater protective action against the increase of eosinophils
357	caused by venom (G3) ($p < 0.05$ compared to G1 'control', n = 6) compared to
358	antivenom administered by itself (G4) ($p < 0.05$ compared to G3 'venom', $n = 6$),
359	whereas eosinophils were not identified in those animals treated with NAC alone (G2);
360	that is interesting to notice that the level of protection exhibited by NAC alone (G5) or
361	associated with antivenom (G6) on the venom-induced eosinophils increase were highly

362	similar, although only the protective action of NAC alone has been statistically greater
363	when compared to antivenom therapy (G4) (Figure 5C). Venom-induced monocytes
364	count increase (G3) was not prevented by antivenom (G4) and NAC (G5) administered
365	individually or associating both of agents (G6) after 120 min envenomation (Figure
366	5D).
367	
368	3.5. Morphological changes induced by L. m. muta venom in rats and treatment
369	with antivenom and NAC
370	L. m. muta venom (G3) produced severe morphological changes in gastrocnemius
371	muscle (RHL) characterized by haemorrhage, congestion, oedema, neutrophilic
372	inflammatory infiltration, degeneration and myonecrosis ($p < 0.05$ compared to G1
373	'control', $n = 6$); the individual administration of antivenom (G3) and NAC (G4)
374	prevented significantly the increase of the lesional score in gastrocnemius muscle ($p < p$
375	0.05 compared to G3 'venom' for both treatments, $n = 6$), whereas their association
376	(G6) was more effective to prevent the local myotoxicity ($p < 0.05$ compared to G3
377	'venom' or G4 'venom + antivenom' or G5 'venom + NAC', $n = 6$) (Figure 6A ₁). There
378	were no morphological changes in the contralateral gastrocnemius muscle (LHL) after
379	120 min envenomation (Figure 6A2). L. m. muta venom did not induced relevant
380	pulmonary (Figure 6B) and cardiac changes (Figure 6C). In liver, venom (G3) increased
381	significantly the lesional score compared to control by causing mostly megalocytosis,
382	congestion and cytoplasmic degeneration ($p < 0.05$ compared to G1 'control', $n = 6$);
383	NAC administered by itself (G5) ($p < 0.05$ compared to G3 'venom', $n = 6$) or in
384	association with antivenom (G6) ($p < 0.05$ compared to G3 'venom' or G4 'venom +
385	antivenom', $n = 6$) produced greater protection than that seen with antivenom alone

386	(G4) on the venom-induced hepatotoxicity (Figure 6D). Venom (G3) also caused
387	pronounced morphological changes in renal tissue characterized by acute tubular
388	necrosis, cytoplasmic degeneration and congestion ($p < 0.05$ compared to G1 'control',
389	n = 6); antivenom (G4) and NAC (G5) individually administered promoted significant
390	reduction of these changes ($p < 0.05$ compared to G3 'venom' for both treatments, $n =$
391	6), while their association (G6) produced greater protection on the venom-induced
392	nephrotoxicity ($p < 0.05$ compared to G3 'venom' or G4 'venom + antivenom' or G5
393	'venom + NAC', $n = 6$) (Figure 6E).

394

395 4. Discussion

396 The systemic effects produced by Lachesis envenomation such as consumption 397 coagulopathy (Fuly et al., 1997; Estevão-Costa et al., 2000; Torres-Huaco et al., 2013), 398 haemorrhagic disturbances (Sánchez et al., 1987, 1991, 1995; Rucavado et al., 1999), 399 hypotension (Diniz e Oliveira, 1992; Giovanni-De-Simone et al., 1997; Dias et al., 400 2016a), bradycardia (Soares et al., 2005; Sanz et al., 2008; Pla et al., 2013) and renal disturbances (Damico et al., 2007; Alves, 2010) may be satisfactorily attenuated or even 401 402 prevented with early administration of a suitable antivenom. However, the limited 403 availability of antivenom in addition to the difficulties in accessing health services in certain regions of Brazil are the likely factors resulting in death by accidents involving 404 405 Lachesis snakes. In this study, rats exposed to L. m. muta venom (1.5 mg/kg - i.m.) 406 exhibited 1) pronounced local oedema accompanied by intense myonecrosis and 407 haemorrhage, 2) important haematological changes such as leukocytosis, neutrophilia, 408 eosinophilia and monocytosis, 3) significant increase in serum markers indicating myotoxicity (CK), hepatotoxicity (ALT) and nephrotoxicity (creatinine), 4) skeletal 409

410	muscle, hepatic and renal morphological alterations after 120 min envenomation.
411	Treatment with a single peritoneal administration of anti-Bothrops/Lachesis serum (IB)
412	(venom: antivenom ratio 1:3 'v/w' – i.p.) did ameliorate both the local and systemic
413	myotoxicity, e.g., oedema and myonecrotic lesions were reduced alongside reduced
414	levels of serum CK, however, the antivenom did not prevent the development of a local
415	subcutaneous haemorrhage. In addition, the antivenom also prevent the hepatotoxic
416	action of L. m. muta venom as assessed through serum ALT release. On the other hand,
417	the antivenom only partially prevented the nephrotoxicity induced by L. m. muta venom
418	and offered limited protection against the increase in leukocytes involved in mediating
419	the inflammatory response, e.g., neutrophils and monocytes.
420	Studies with antivenom supporting therapeutic tools have been limited in regard
421	to envenomation by Lachesis spp., however, there have been a few reports describing
422	the neutralizing properties of plant extracts (De Oliveira et al., 2014, 2016; Marques et
423	al., 2019) and their isolated metabolites (De Oliveira et al., 2020), including marine
424	sponge extracts (Faioli et al., 2013). This study is the first to demonstrate the protective
425	action of an antioxidant drug (N-acetyl-L-cysteine) with well-known molecular and
426	pharmacology properties (Paller & Patten, 1984; Thielemann & Rosenblut, 1990;
427	Nicoletta et al., 2006; Fok, 2009; Briguori et al., 2011; Zhang et al., 2017; Moroz et al.,
428	2019; Rogliani et al., 2019) on the experimental envenomation by Lachesis (=L. m.
429	<i>muta</i>) in rats.
430	N-acetyl-L-cysteine (NAC) has potent antioxidant activity and has the capacity to
431	scavenge a variety of ROS or indirectly acting as a precursor of L-cysteine which is a

432 limiting factor in the biosynthesis of intracellular glutathione, a natural antioxidant

433 agent and substrate for several antioxidant enzymes (Paller & Patten, 1984; Thielemann

18

434	& Rosenblut, 1990; Gillissen & Nowak, 1998; Nicoletta et al., 2006; Briguori et al.,
435	2011; Aldini et al., 2018). NAC also shows efficient mucolytic action due its ability to
436	break the disulphide bridges of high molecular weight glycoproteins present in
437	bronchial mucus, resulting in the reduction of its viscosity, important for treating of
438	respiratory disorders (Hurst et al., 1967; Fok, 2009; Aldini et al., 2018; Zhang et al.,
439	2017; Rogliani et al., 2019). In addition, NAC has potential to reverse the toxic effects
440	induced by acetaminophen (Prescott, 1983; Whitehouse et al., 1985; Holdiness, 1991),
441	to prevent haemorrhagic cystitis induced by cyclophosphamide and doxorubicin
442	hydrochloride (Palma et al., 1986), including renal disorders caused by contrasts (Sun et
443	al., 2013). These well-known favourable therapeutic properties of NAC, aided by its
444	rapid distribution and relatively low toxicity (Holdiness, 1991; Atkuri et al., 2007;
445	Mokhtari et al., 2017), suggests there is a therapeutic application of this drug in treating
446	the local and systemic toxicity caused by Viperidae snake venoms (Sunitha et al., 2011,
447	2013; Barone et al., 2014).
448	In this study, we have investigated the action of NAC on the acute envenomation
449	by L. m. muta induced in rats using two different approaches that consisted of the
450	administration of NAC alone or in association with a polyvalent antivenom,
451	immediately post exposing the animals to venom. In this context, NAC showed great
452	therapeutic potential on some local and systemic aspects of the envenomation by L. m.
453	muta in rats such as: 1) NAC prevented the local oedema only when used in association
454	with antivenom, 2) NAC alone reduced significantly the local myonecrosis formation
455	comparable to antivenom, whereas the association of these agents produced greater
456	protection, 3) NAC prevented the occurrence of subcutaneous haemorrhage when used
457	in association with antivenom, 4) NAC alone prevented the systemic myotoxicity and in

458	association with antivenom as measured through serum CK release, 5) NAC also
459	reduced hepatotoxicity in association with antivenom as measured through serum ALT
460	release and 6) partially reduced the inflammatory responses similarly to the action of
461	antivenom alone. The suppressive action of NAC on the numbers of eosinophils during
462	the envenomation process by L. m. muta venom may be related to the ability of this
463	drug to inhibit specifically the functional responses of eosinophils (Martinez-Losa et al.,
464	2007) and through its action as an anti-inflammatory as reported by El Hafiz et al.
465	(2013), when used in patients with chronic obstructive pulmonary disease.
466	L. m. muta venom produced pronounced morphological changes in gastrocnemius
467	muscle, without affecting the contralateral muscle. These local alterations, e.g.,
468	haemorrhage, congestion, oedema, neutrophilic inflammatory infiltration, degeneration
469	and myonecrosis, are commonly caused by Lachesis spp. venoms (Fuly et al., 2000,
470	2003; Damico et al., 2006, 2008, 2012; Ferreira et al., 2009; De Oliveira et al., 2016).
471	NAC alone and when used in association with antivenom prevented the local
472	morphological alteration as measured through lesional score, corroborating with that
473	delay of the local myonecrosis formation previously mentioned. L. m. muta venom also
474	altered markedly the renal and hepatic morphological aspects which were associated
475	with the increase of serum creatinine and ALT release, respectively, with NAC alone
476	and in association with antivenom avoiding efficiently the increase of the lesional score
477	for both tissues. We have not observed important cardiac and pulmonary damage in any
478	group of animals exposed to L. m. muta venom, as measured through serum CK-MB
479	release and histopathological analysis of the heart and lungs tissue samples; however,
480	cardiovascular disorders and occurrence of pulmonary thrombosis have been previously
481	seen in animal experimentation models (Diniz e Oliveira, 1992; Dias et al., 2016a,

20

482	2016b; Zanotty et al., 2019; Angel-Camilo et al., 2020) and in human cases reports
483	(Jorge et al., 1997) involving Lachesis spp. venoms and their toxins. Here, we have also
484	shown the renal and hepatic toxicity of L. m. muta venom characterized by increase of
485	serum creatinine and ALT release, respectively, accompanied by increase in the lesional
486	score. Although the hepatotoxicity by Lachesis venoms has not been previously
487	reported, the renal injuries comprises one of the most important consequences of the
488	envenomation by these snakes (Damico et al., 2007; Alves, 2010). NAC alone failed to
489	prevent the increase in the serum biomarkers but managed to prevent the renal and
490	hepatic tissue damage.
491	Hence, NAC administered by itself effectively prevents the L. m. muta venom-
492	induced local (i.e. delaying the myonecrosis formation) and systemic myotoxicity (i.e.
493	preventing serum CK release), haematological alterations (i.e. leukocytosis, neutrophilia
494	and eosinophilia) and helps to decrease skeletal muscle, hepatic and renal
495	morphological damage. These effects were comparable to those ones seen in animals
496	treated with antivenom alone. In association with a polyvalent antivenom (=anti-
497	Bothrops/Lachesis serum), NAC has additional therapeutic benefit to produce greater
498	protection than that seen with antivenom alone such as: preventing local haemorrhage,
499	eosinophilia and skeletal muscle, hepatic and renal morphological damage. However, it
500	is worth noting that NAC was not able to reverse the changes in ALT, either alone or in
501	the presence of antivenom which may suggest that, in this regard, the mechanism of
502	action of the venom does not result in the production of ROS and is refractory to the
503	effects of NAC.
504	In accordance with these findings, Sunitha et al. (2011) demonstrated that NAC

505 successfully prevented the occurrence of subcutaneous haemorrhage in mice exposed to

21

506	the Asian vipers Echis carinatus and Vipera russelli (=Daboia russelii) (Viperidae:
507	Viperinae) venoms. The same group also reported that NAC inhibited efficiency the
508	hyaluronidase activity of <i>Echis carinatus</i> venom (Sunitha et al., 2013). This biological
509	property of NAC may be associated to its protective action on the local damage
510	produced by Viperidae venoms, since the degradation of hyaluronic acid in the
511	extracellular matrix by venoms hyaluronidase represent a primordial factor to promote
512	the diffusion of the venom and, consequently, potentializing their toxins and increasing
513	the local damage (Girish et al., 2002; Kemparaju and Girish, 2006; Bala et al., 2018). In
514	addition, Barone et al. (2014) showed that NAC prevented the increase of serum
515	creatinine in mice exposed to Crotalus durissus terrificus (Viperidae: Crotalinae)
516	venom, although it failed to prevent the increase of serum creatinine in those animals
517	exposed to Bothrops jararaca (Viperidae: Crotalinae) venom.
518	In conclusion, the antioxidant drug N-acetyl-L-cysteine (NAC) shows potential as
519	a supporting therapeutic agent to attenuate the local effects of the acute envenomation
520	by Lachesis m. muta. We have shown that this approach offers some additional
521	protection preventing the occurrence of local haemorrhage and extension of
522	myonecrosis. NAC also contributes to minimize some systemic aspects of
523	envenomation, e.g., hepatotoxicity and inflammation, caused by this venom. This study
524	is the first to show the value of NAC when treating Lachesis envenomation. Together,
525	these findings may further support the notion of the use of a drug intervention following
526	envenomation that would ameliorate the effects of envenomation in the absence of
527	antivenom therapy.
528	

529 Conflicts of Interest

- 530 The authors declare that there are no conflicts of interest.
- 531

532 Acknowledgment

- 533 The authors thank Ana Maria S. S. Wehbe, Cleonice Trevisan and Gracielle V.
- 534 Gonçalves for technical assistance. This work was funded by institutional resources
- 535 from University of Western São Paulo (UNOESTE, Presidente Prudente, SP, Brazil).
- 536 CVP was supported by a studentship from Fundação de Amparo à Pesquisa do Estado
- de São Paulo (FAPESP, São Paulo, SP, Brazil, grant no. 2019/20737-4). NJS is
- supported by a research fellowship from Conselho Nacional de Desenvolvimento
- 539 Científico e Tecnológico Brasil (CNPq, Brasília, DF, Brazil, Grant No. 309320/2016-
- 540 0).
- 541

542 **References**

- 543 Aldini, G., Altomare, A., Baron, G., Vistoli, G., Carini, M., Borsani, L., Sergio, F.,
- 544 2018. *N*-Acetylcysteine as an antioxidant and disulphide breaking agent: the
- reasons why. Free Radical Research 52(7), 751–762.
- 546 Alves, C.D., 2010. Estudo dos efeitos renais do veneno da serpente *Lachesis muta muta*.
- 547 M.Sc. dissertation. Universidade Federal de Ceará, Fortaleza, CE, Brazil.
- 548 Available from:
- 549 <u>https://www.repositorio.ufc.br/bitstream/riufc/2269/1/2010_dis_cdalves.pdf.</u>
- 550 Angel-Camilo, K.L., Guerrero-Vargas, J.A., de Carvalho, E.F., Lima-Silva, K., de
- 551 Siqueira, R.J.B, Freitas, L.B.N., de Sousa, J.A.C., Mota, M.R.L., dos Santos,
- 552 A.A., Neves-Ferreira, A.G.C., Havt, A., Leal, L.K.A.M., Magalhães, P.J.C., 2020.

- 553 Disorders on cardiovascular parameters in rats and in human blood cells caused
- by *Lachesis acrochorda* snake venom. Toxicon 184, 180–191.
- 555 Atkuri, K.R., Mantovani, J.J., Herzenberg, L.A., Herzenberg, L.A., 2007. N-
- 556 Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr. Opin.
- 557 Pharmacol. 7(4), 355–359.
- 558 Bala, E., Hazarika, R., Singh, P., Yasir, M., Shrivastava, R., 2018. A biological
- 559 overview of hyaluronidase: a venom enzyme and its inhibition with plants

560 materials. Materials Today: Proceedings 5(2), 6406–6412.

- 561 Barone, J.M., Frezzatti, R., Silveira, P.F., 2014. Effects of *N*-acetyl-L-cysteine on redox
- status and markers of renal function in mice inoculated with *Bothrops jararaca*and *Crotalus durissus terrificus* venoms. Toxicon 79, 1–10.
- 564 Bessman, J.D., 1990. Reticulocytes. In: Walker, H.K., Hall, W.D., Hurst, J.W., editors.
- 565 Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd
- edition. Boston, MA: Butterworths. Chapter 156. Available from:
- 567 <u>https://www.ncbi.nlm.nih.gov/books/NBK264</u>.
- 568 Brandow, A.M., 2018. Pallor and Anemia. In: Kliegman, R.M., Lye, P.S., Bordini, B.,
- 569 Toth, H., Basel, D., editors. Nelson Pediatric Symptom-Based Diagnosis. 20th

570 edition. Philadelphia, PA: Elsevier. Chapter 37. Available from:

- 571 <u>https://www.sciencedirect.com/science/article/pii/B9780323399562000376</u>.
- 572 Bregge-Silva, C., Nonato, M.C., de Albuquerque, S., Ho, P.L., Junqueira de Azevedo,
- 573 I.L., Vasconcelos Diniz, M.R., Lomonte, B., Rucavado, A., Díaz, C., Gutiérrez,
- 574 J.M., Arantes, E.C., 2012. Isolation and biochemical, functional and structural
- 575 characterization of a novel L-amino acid oxidase from *Lachesis muta* snake
- 576 venom. Toxicon 60(7), 1263–1276.

- 577 Briguori, C., Quintavalle, C., De Micco, F., Condorelli, G., 2011. Nephrotoxicity of
- 578 contrast media and protective effects of acetylcysteine. Arch. Toxicol. 85, 165–
- 579 173.
- 580 Campbell, J.A., Lamar, W.W., 2004. Venomous Reptiles of the Western Hemisphere,
- 581 vol. 2. Comstock Publishing Associates/Cornell University Press, Ithaca.
- 582 Chippaux, J.P., 2017. Snakebite envenomation turns again into a neglected tropical
- 583 disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 23, 1–2.
- 584 Cordeiro, F.A., Coutinho, B.M., Wiezel, G.A., Bordon, K.C.F., Bregge-Silva, C., Rosa-
- 585 Garzon, N.G., Cabral, H., Ueberheide, B., Arantes, E.C., (2018). Purification and
- 586 enzymatic characterization of a novel metalloprotease from *Lachesis muta*
- 587 *rhombeata* snake venom. J. Venom Anim. Toxins Incl. Trop. Dis. 24, 32.
- 588 Costa, H.C., Bérnils, R.S., 2018. Répteis do Brasil e suas Unidades Federativas: lista de
 589 espécies. Herpetologia Brasileira 8, 11–57.
- 590 Damico, D.C.S., Bueno, L.G.F., Rodrigues-Simioni, L., Marangoni, S., Cruz-Höfling,
- 591 M.A., Novello, J.C., 2006. Functional characterization of a basic D49
- 592phospholipase A2 (LmTX-I) from the venom of the snake Lachesis muta muta
- 593 (bushmaster). Toxicon 47, 759–765.
- 594 Damico, D.C.S., Nascimento, J.M., Lomonte, B., Ponce-Soto, L.A., Joazeiro, P.P.,
- 595 Novello, J.C., Marangoni, S., Collares-Buzato, C.B., 2007. Cytotoxicity of
- 596 *Lachesis muta muta* snake (bushmaster) venom and its purified basic
- 597 phospholipase A₂ (LmTX-I) in cultured cells. Toxicon 49, 678–692.
- 598 Damico, D.C.S., Cruz-Höfling, M.A., Cintra, M., Leonardo, M.B., Calgarotto, A.K.,
- 599 Silva, S.L., Marangoni, S., 2008. Pharmacological study of edema and
- 600 myonecrosis in mice induced by venom of the bushmaster snake (*Lachesis muta*

- *muta*) and its basic Asp49 560 phospholipase A₂ (LmTX-I). Protein J. 27, 384–
 339.
- 603 Damico, D.C.S., Vassequi-Silva, T., Torres-Huaco, F.D., Nery-Diaz, A.C.C., Souza,
- 604 R.C.G., Da Silva, S.L., Vicente, C.P., Mendes, C.B., Antunes, E., Werneck, C.C.,
- 605 Marangoni, S., 2012. LmrTX, a basic PLA₂ (D49) purified from *Lachesis muta*
- 606 *rhombeata* snake venom with enzymatic-related antithrombotic and anticoagulant
- 607 activity. Toxicon 60, 773–781.
- 608 De Oliveira, E.C., Fernandes, C.P., Sanchez, E.F., Rocha, L., Fuly, A.L., 2014.
- Inhibitory effect of plant *Manilkara subsericea* against biological activities of *Lachesis muta* snake venom. Biomed. Res. Int. 2014, 408068.
- 611 De Oliveira, E.C., Cruz, R.A.S., Amorim, N.M., Santos, M.G., Pereira Jr, L.C.S.,
- 612 Sanchez, E.O.F., Fernandes, C.P., Garrett, R., Rocha, L.M., Fuly, A.L., 2016.
- 613 Protective effect of the plant extracts of *Erythroxylum* sp. against toxic effects
- 614 induced by the venom of *Lachesis muta* snake. Molecules 21(10), E1350.
- 615 De Oliveira, E.C., Junior, L.C.S.P., Sanchez, E.O., Fuly, A.L., 2020. Gallic and tannic
- acids potential against *Lachesis muta* venom toxic activities. Toxicon 177 Suppl1:S29.
- 618 Dias, L., Rodrigues, M.A.P., Rennó, A.L., Stroka, A., Inoue, B.R., Panunto, P.C.,
- 619 Melgarejo, A.R., Hyslop, S., 2016a. Hemodynamic responses to *Lachesis muta*
- 620 (South American bushmaster) snake venom in anesthetized rats. Toxicon 123, 1–
 621 14.
- 622 Dias, L., Rodrigues, M.A.P., Inoue, B.R., Rodrigues, R.L., Rennó, A.L., Souza, V.B.,
- 623 Torres-Huaco, F.D., Sousa, N.C., Stroka, A., Melgarejo, A.R., Hyslop, S., 2016b.

624	Pharmacological analysis of hemodynamic responses to Lachesis muta (South
625	American bushmaster) snake venom in anesthetized rats. Toxicon 123, 25-44.
626	Diniz-Sousa, R., Caldeira, C.A.S., Kayano, A.M., Paloschi, M.V., Pimenta, D.C.,
627	Simões-Silva, R., Ferreira, A.S., Zanchi, F.B., Matos, N.B., Grabner, F.P.,
628	Calderon, L.A., Zuliani, J.P., Soares, A.M., 2018. Identification of the molecular
629	determinants of the antibacterial activity of LmutTX, a Lys49 phospholipase A2
630	homologue isolated from Lachesis muta muta snake venom (Linnaeus, 1766).
631	Basic Clin. Pharmacol. Toxicol. 122(4), 413-423.
632	Diniz-Sousa, R., Moraes, J.N., Rodrigues-da-Silva, T.M., Oliveira, C.S., Caldeira,
633	C.A.S., 2020. A brief review on the natural history, venomics and the medical
634	importance of bushmaster (Lachesis) pit viper snakes. Toxicon X 25(7), 100053.
635	Diniz, M.R., Oliveira, E.B., 1992. Purification and properties of a kininogenin from the
636	venom of Lachesis muta (bushmaster). Toxicon 30, 247-258.
637	El-Hafiz, A.M.A., El-Wakeel, L.M., El-Hady, H.M., Mourad, A.E.R., 2013. High dose
638	N-acetyl cysteine improves inflammatory response and outcome in patients with
639	COPD exacerbations. Egypt. J. Chest Dis. Tuberc. 62, 51-57.
640	Estevão-Costa, M.I., Diniz, C.R., Magalhães, A., Markland, F.S., Sanchez, E.F., 2000.
641	Action of metalloproteinases mutalysin I and II on several components of the
642	hemostatic and fibrinolytic systems. Thromb. Res. 99, 363-376.
643	Faioli, C.N., Domingos, T.F., De Oliveira, E.C., Sanchez, E.F., Ribeiro, S., Muricy, G.,
644	Fuly, A.L., (2013). Appraisal of antiophidic potential of marine sponges against
645	Bothrops jararaca and Lachesis muta venom. Toxins 5(10), 1799–1813.
646	Ferreira, T., Camargo, E.A., Ribela, M.T.C.P., Damico, D.C., Marangoni, S., Antunes,
647	E., De Nucci, G., Landucci, E.C.T., 2009. Inflammatory oedema induced by

- 648 *Lachesis muta muta* (surucucu) venom and LmTX-I in the rat paw and dorsal
- 649 skin. Toxicon 53, 69–77.
- Fok, T.F., 2009. Adjunctive pharmacotherapy in neonates with respiratory failure.
- 651 Semin. Fetal. Neonatal Med. 14, 49–55.
- 652 Fuly, A.L., Machado, O.L., Alves, E.W., Carlini, C.R., 1997. Mechanism of inhibitory
- action on platelet activation of a phospholipase A₂ isolated from *Lachesis muta*
- 654 (bushmaster) snake venom. Thromb. Haemost. 78, 1372–1380.
- Fuly, A.L., Calil-Elias, S., Zingali, R.B., Guimarães, A., Melo, P.A., 2000. Myotoxic
- activity of an acidic phospholipase A₂ isolated from *Lachesis muta* (bushmaster)
 snake venom. Toxicon 38, 961–972.
- Fuly, A.L., Calil-Elias, S., Martinez, A.M.B., Melo, P.A., Guimarães, J.A., 2003.
- 659 Myotoxicity induced by an acidic Asp-49 phospholipase A₂ isolated from
- 660 *Lachesis muta* snake venom: comparison with lysophosphatidylcholine. Int. J.
- 661 Biochem. Cell Biol. 35, 1470–1481.
- 662 Gerez, J.R., Pinton, P., Callu, P., Grosjean, F., Oswald, I., Bracarense, A.P.L., 2015.
- 663 Deoxynivalenol alone or in combination with nivalenol and zearalenone induce
- systemic histological changes in pigs. Exp. Toxicol. Pathol. 67, 89–98.
- Gillissen, A., Nowak, D., 1998. Characterization of *N*-acetylcysteine and ambroxol in
 anti-oxidant therapy. Respiratory Medicine 92, 609–623.
- 667 Giovanni-De-Simone, S., Aguiar, A.S., Gimenez, A.R., Novellino, K., Soares de
- 668 Moura, R., 1997. Purification, properties, and N-terminal amino acid sequence of
- a kallikrein-like enzyme from the venom of *Lachesis muta rhombeata*
- 670 (bushmaster). J. Protein Chem. 16, 809–818.

- 671 Girish, K.S., Jagadeesha, D.K., Rajeev, K.B., Kemparaju, K., 2002. Snake venom
- hyaluronidase: an evidence for isoforms and extracellular matrix degradation.
- 673 Molecular and Cellular Biochemistry 240, 105–110.
- 674 Graham, R.L., Graham, C., McClean, S., Chen, T., O'Rourke, M., Hirst, D., Theakston,
- D., Shaw, C., 2005. Identification and functional analysis of a novel bradykinin
- 676 inhibitory peptide in the venoms of New World Crotalinae pitvipers. Biochem.
- 677 Biophys. Res. Commun. 23, 1587–1592.
- 678 Grenier, B., Loureiro-Bracarense, A.P., Lucioli, J., Pacheco, G.D., Cossalter, A.M.,
- 679 Moll, W.D., Schatzmayr, G., Oswald, I.P., 2011. Individual and combined effects
- 680 of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol. Nutr. Food
- 681 Res. 55, 761–771.
- 682 Gutiérrez, J.M., Castillo, L., Diaz de Naves, K.M., Masís, J., Alape-Girón, A., 2020.
- Epidemiology of snakebites in El Salvador (2014–2019). Toxicon 186, 26–28.
- 684 Holdiness, M.R., 1991. Clinical Pharmacokinetics of N-Acetylcysteine. Clinical
- 685 Pharmacokinetics 20, 123–134.
- Hurst, G.A., Shaw, P.B., LeMaistre, C.A., 1967. Laboratory and clinical evaluation of
- the mucolytic properties of acetylcysteine. Am. Rev. Respir. Dis. 96(5), 962–970.
- 588 Jorge, M.T., Sano-Martins, I.S., Tomy, S.G., Castro, S.C.B., Ferrari, R.A., Ribeiro,
- L.A., Warrel, D.A., 1997. Snake bite by the bushmaster (*Lachesis muta*) in Brazil:
 case report and review of the literature. Toxicon 35, 545–554.
- 691 Junqueira-de-Azevedo, I.L.M., Ching, A.T.C., Carvalho, E., Faria, F., Nishiyama Jr.,
- 692 M.Y., Ho, P.L., Diniz, M.R.V., 2006. *Lachesis muta* (Viperidae) cDNAs reveal
- 693 diverging pit viper molecules and scaffolds typical of cobra (Elapidae) venoms:
- 694 implications for snake toxin repertoire evolution. Genetics 173, 877–889.

- 695 Kemparaju, K., Girish, K.S., 2006. Snake venom hyaluronidase: a therapeutic target.
- 696 Cell Biochem. Funct. 24(1), 7 12.
- 697 Madrigal, M., Sanz, L., Flores-Díaz, M., Sasa, M., Núñez, V., Alape-Girón, A., Calvete,
- 598 J.J., 2012. Snake venomics across genus *Lachesis*. Ontogenetic changes in the
- 699 venom composition of *Lachesis stenophrys* and comparative proteomics of the
- venoms of adult *Lachesis melanocephala* and *Lachesis acrochorda*. J. Proteom.
- 701 77, 280–297.
- 702 Madrigal, M., Pla, D., Sanz, L., Barboza, E., Arroyo-Portilla, C., Corrêa-Netto, C.,
- 703 Gutiérrez, J.M., Alape-Girón, A., Flores-Díaz, M., Calvete, J.J., 2017. Cross-
- reactivity, antivenomics, and neutralization of toxic activities of *Lachesis* venoms
- by polyspecific and monospecific antivenoms. PLoS Negl. Trop. Dis. 11(8),
 e0005793.
- 707 Magalhães, S.F.V., Maia Peixoto, H., Moura, N., Marcelo Monteiro, W., Regina
- 708Fernandes de Oliveira, M., 2018. Snakebite envenomation in the Brazilian
- Amazon: a descriptive study. Trans. R. Soc. Trop. Med. Hyg. 113, 143–151.
- 710 Marques, T.R., Braga, M.A., Cesar, P.H.S., Marcussi, S., Corrêa, A.D., 2019.
- Jabuticaba (*Plinia jaboticaba*) skin extracts as inhibitors of phospholipases A₂ and
 proteases. Anais da Academia Brasileira de Ciências 91(2), e20180248.
- 713 Martinez-Losa, M., Cortijo, J., Juan, G., O'Connor, J.E., Sanz, M.J., Santangelo, F.,
- 714 Morcillo, E.J., 2007. Inhibitory effects of *N*-acetylcysteine on the functional
- responses of human eosinophils in vitro. Clin Exp Allergy 37(5), 714–722.
- 716 McDiarmid, R.W., Campbell, J.A., Touré, T.A., 1999. Snake species of the world: a
- taxonomic and geographic reference. Herpetologists' League. D. C. Washington.

- 718 Mokhtari, V., Afsharian, P., Shahhoseini, M., Kalantar, S.M., Moini, A., 2017. A
- review on various uses of *N*-acetyl cysteine. Cell Journal 19(1), 11–17.
- 720 Moroz, N., Maes, K., Leduc-Gaudet, J.P., Goldberg, P., Petrof, B.J., Mayaki, D.,
- 721 Vassilakopoulos, T., Rassier, D., Gayan-Ramirez, G., Hussain, S.N., 2019.
- 722 Oxidants regulated diaphragm proteolysis during mechanical ventilation in rats.
- 723 Anesthesiology 131(3), 605–618.
- 724 Nicoletta, N., Sven-Erik, R., Niels, M., Börje, H., Ulf, N., Samar, B., Gregor, G., 2006.
- *N*-acetylcysteine attenuates kidney injury in rats subjected to renal ischaemia-
- reperfusion. Nephrol. Dial. Transpl. 21, 1240–1247.
- 727 Nogueira, C.C., Argôlo, A.J.S., Arzamendia, V., Azevedo, J.A., Barbo, F.E., Bérnils,
- 728 R.S., Bolochio, B.E., Borges-Martins, M., Brasil-Godinho, M., Braz, H.,
- Buononato, M.A., Cisneros-Heredia, D.F., Colli, G.R., Costa, H.C., Franco, F.L.,
- 730 Giraudo, A., Gonzalez, R.C., Guedes, T., Hoogmoed, M.S., Marques, O.A.V.,
- 731 Montingelli, G.G., Passos, P., Prudente, A.L.C., Rivas, G.A., Sanchez, P.M.,
- 732 Serrano, F.C., Silva Jr, N.J., Strüssmann, C., Vieira-Alencar, J.P.S., Zaher, H.,
- 733 Sawaya, Rj, Martins, M., 2019. Atlas of Brazilian snakes: verified point-locality
- maps to mitigate the Wallacean shortfall in a megadiverse snake fauna. South
- American Journal of Herpetology 14 (1), 1–274.
- 736 Ochoa-Avilés, A., Heredia-Andino, O.S., Escandón, S.A., Celorio-Carvajal, C.A.,
- 737 Arias-Peláez, M.C., Zaruma-Torres, F., Caldeira, C.A.S., Soares, A.M., Da Silva,
- 738 S.L., 2020. Viperidae snakebites in Ecuador: a review of epidemiological and
- ecological aspects. Toxicon:X 7, 100051.

- 740 Oliveira Filho, L.D., Saad, K.R., Saad, P.F., Koike, M.K., Silva, S.M., Montero, E.F.S.,
- 741 2015. Effect of *N*-acetylcysteine in hearts of rats submitted to controlled
- hemorrhagic shock. Braz. J. Cardiovasc. Surg. 30(2), 173–181.
- 743 Paller, M.S., Patten, M., 1984. Protective effects of glutathione, glycine, or alanine in an
- in vitro model of renal anoxia. J. Am. Soc. Nephrol. 2, 1338–1344.
- Palma, P.C., Villaça Júnior, C.J., Netto Júnior, N.R., 1986. *N*-acetylcysteine in the
- 746 prevention of cyclophosphamide induced haemorrhagic cystitis. Int. Surg. 71(1),
- 747 36–37.
- 748 Pinheiro-Júnior, E.L., Boldrini-França, J., de Campos Araújo, L.M.P., Santos-Filho,
- N.A., Bendhack, L.M., Cilli, E.M., Arantes, E.C., 2018. LmrBPP9: a synthetic
- bradykinin-potentiating peptide from *Lachesis muta rhombeata* venom that
- inhibits the angiotensin-converting enzyme activity in vitro and reduces the blood
 pressure of hypertensive rats. Peptides 102, 1–7.
- 753 Pla, D., Sanz, L., Molina-Sánchez, P., Zorita, V., Madrigal, M., Flores-Díaz, M., Alape-
- Girón, A., Núñez, V., Andrés, V., Gutiérrez, J.M., Calvete, J.J., 2013. Snake
- venomics of *Lachesis muta rhombeata* and genus-wide antivenomics assessment
- of the paraspecific immunoreactivity of two antivenoms evidence the high
- 757 compositional and immunological conservation across *Lachesis*. J. Proteom. 89,
 758 112–123.
- Portella, A.O.V., Montero, E.F.S., Poli de Figueiredo, L.F., Bueno, A.S., Thurow, A.A.,
- 760 Rodrigues, F.G., 2004. Effects of *N*-acetylcysteine in hepatic ischemia-
- reperfusion injury during hemorrhagic shock. Transplantation Proceedings 36,
- 762 846-848.

763 Prescott, L.F., 1983. New approaches in managing drug overdosage and poisoning. Br.

- 764 Med. J. 287(6387), 274–276.
- 765 Rogliani, P., Matera, M.G., Page, C., Puxeddu, E., Cazzola, M., Calzetta, L., 2019.
- 766 Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive
- pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and
- *N*-acetylcysteine. Respir Res. 20(1), 104.
- 769 Rucavado, A., Sánchez, E.F., Franceschi, A., Magalhães, A., Gutiérrez, J.M., 1999.
- 770 Characterization of the local tissue damage induced by LHFII, a metalloproteinase
- 771 with weak hemorrhagic activity isolated from *Lachesis muta muta* snake venom.
- 772 Toxicon 37, 1297–1312.
- 573 Sánchez, E.F., Magalhães, A., Diniz, C.R., 1987. Purification of haemorrhagic factor
- (LHF-I) from the venom of the bushmaster snake, *Lachesis muta muta*. Toxicon
 25, 611–619.
- Sánchez, E.F., Magalhães, A., Mandelbaum, F.R., Diniz, C.R., 1991. Purification and
 characterization of the hemorrhagic factor II from the venom of the bushmaster
 snake (*Lachesis muta muta*). Biochim. Biophys. Acta 1074, 347–356.
- 779 Sánchez, E.F., Costa, M.I.E., Chávez-Olórtegui, C., Assakura, M.T., Mandelbaum,
- F.R., Diniz, C.R., 1995. Characterization of a hemorrhagic factor, LHF-I, isolated
 from the bushmaster snake (*Lachesis muta muta*) venom. Toxicon 33, 1653–1667.
- 782 Sanz, L., Escolano, J., Ferretti, M., Biscoglio, M.J., Rivera, E., Crescenti, E.J., Angulo,
- 783 Y., Lomonte, B., Gutiérrez, J.M., Calvete, J.J., 2008. Snake venomics of the
- 784 South and Central American bushmasters. Comparison of the toxin composition
- 785 of *Lachesis muta* gathered from proteomic versus transcriptomic analysis. J.
- 786 Proteom. 71, 46–60.

- 787 SINAN, (2020). Sistema de Informação de Agravos de Notificação (SINAN),
- 788 Ministério da Saúde, Brasil. Available from:
- 789 <u>http://portalsinan.saude.gov.br/acidente-por-animais-peconhentos.</u>
- 790 Soares, M.R., Oliveira-Carvalho, A.L., Wermelinger, L.S., Zingali, R.B., Ho, P.L.,
- Junqueira-de-Azevedo, I.L., Diniz, M.R., 2005. Identification of novel bradykinin
- potentiating peptides and C-type natriuretic peptide from *Lachesis muta* venom.
- **793** Toxicon 46(1), 31–38.
- Solano, G., Gómez, A., Corrales, G., Chacón, D., Estrada, R., León, G., 2018.
- 795 Contributions of the snake venoms of *Bothrops asper*, *Crotalus simus* and
- 796 *Lachesis stenophrys* to the paraspecificity of the Central American polyspecific
- antivenom (PoliVal-ICP). Toxicon 144, 1–6.
- 798 Stephano, M.A., Guidolin, R., Higashi, H.G., Tambourgi, D.V., Sant'Anna, O.A., 2005.

The improvement of the therapeutic anti-*Lachesis* muta serum production in
horses. Toxicon 45(4), 467–473.

- 801 Sun, Z., Fu, Q., Cao, L., Jin, W., Cheng, L., Li, Z., 2013. Intravenous N-acetylcysteine
- 802 for prevention of contrast-induced nephropathy: a meta-analysis of randomized,

controlled trials. PLoS One 8(1), e55124.

- 804 Sunitha, K., Hemshekhar, M., Sebastian-Santhosh, M., Suresh-Kumar, M., Kemparaju,
- 805 K., Girish, K.S., 2011. Inhibition of hemorrhagic activity of viper venoms by *N*-
- acetyl cysteine: involvement of *N*-acetyl and thiol groups. Curr. Top. Med. Chem.
- 807 11, 2589–2600.
- 808 Sunitha, K., Suresh, P., Sebastian-Santhosh, M., Hemshekhar, M., Thushara, R.M.,
- 809 Marathe, G.P., Thirunavukkarasu, C., Kemparaju, K., Suresh-Kumar, M., Girish,

810	KS	2013	Inhibition	of hy	valuror	idase ł	v l	N-acety	1 c	vsteine	and	glutathione.	role
010	т х .ю.,	2015.	minontion	OI II	y arar or.	nuuse i	JYI	i acci,		ysteme	ana	gratatione.	1010

- of thiol group in hyaluronan protection. Int. J. Biol. Macromol. 55, 39–46.
- 812 Thielemann, L.E., Rosenblut, E.W., 1990. Sulfur-containing amino acids that increase
- 813 renal glutathione protect the kidney against papillary necrosis induced by 2-

bromothylamine. Cell. Biochem. Funct. 8, 19–24.

- 815 Torres-Huaco, F.D., Werneck, C.C., Vicente, C.P., Vassequi-Silva, T., Nery-Diez, A.C.,
- 816 Mendes, C.B., Antunes, E., Marangoni, S., Damico, D.C., 2013. Rapid
- 817 purification and procoagulant and platelet aggregating activities of rhombeobin: a
- 818 thrombin-like/gyroxin-like enzyme from *Lachesis muta rhombeata* snake venom.
- Biomed. Res. Int. 2013, 903292.
- 820 Weinberg, M.L.D., Felicori, L.F., Bello, C.A., Magalhães, H.P.B., Almeida, A.P.,
- 821 Magalhães, A., Sanchez, E.F., 2004. Biochemical properties of a bushmaster
- 822 snake venom serine proteinase (LV-Ka), and its kinin releasing activity evaluated

in rat mesenteric arterial rings. J. Pharmacol. Sci. 96, 333–342.

- 824 Whitehouse, L.W., Wong, L.T., Paul, C.J., Pakuts, A., Solomonraj, G., 1985.
- 825 Postabsorption antidotal effects of *N*-acetylcysteine on acetaminophen-induced
- hepatotoxicity in the mouse. Can. J. Physiol. Pharmacol. 63(5), 431–437.
- 827 Wiezel, G.A., Bordon, K.C., Silva, R.R., Gomes, M.S., Cabral, H., Rodrigues, V.M.,
- 828 Ueberheide, B., Arantes, E.C., (2019). Subproteome of *Lachesis muta rhombeata*
- venom and preliminary studies on LmrSP-4, a novel snake venom serine
- 830 proteinase. J. Venom Anim. Toxins Incl. Trop. Dis. 25, e147018.
- 831 Zanotty, Y., Álvarez, M., Perdomo, L., Sánchez, E.E., Giron, M.E., Jimenez, J.C.,
- 832 Suntravat, M., Guerrero, B., Ibarra, C., Montero, Y., Medina, R., Navarrete, L.F.,
- 833 Rodríguez-Acosta, A., 2019. Mutacytin-1, a new C-type lectin-like protein from

- the Venezuelan Cuaima (*Lachesis muta muta* Linnaeus, 1766) (Serpentes:
- 835 Viperidae) snake venom inducing cardiotoxicity in developing zebrafish (Danio
 836 rerio) embryos. Zebrafish 16(4), 379–387.
- 837 Zhang, Y., Ding, S., Li, C., Wang, Y., Chen, Z., Wang, Z., 2017. Effects of *N*-
- 838 acetylcysteine treatment in acute respiratory distress syndrome: a meta-analysis.
- 839 Exp. Ther. Med. 14(4), 2863–2868.
- 840
- 841 Legends
- Figure 1. *Lachesis muta muta* and its distribution throughout Amazon river basin in

843 South America (green area); the blue area along the east coast shows the distribution of

the subspecies *L. m. rhombeata* fount in the Atlantic rainforest, as essentially described

elsewhere (Nogueira et al., 2019). Photos: Marcus Buononato.

- 846
- Figure 2. Representation of the experimental design for this investigation. In groups G4,

848 G5 and G6, "+" indicates the combined action of venom vs. AV, venom vs. NAC or

849 venom vs. NAC and AV, respectively. AV: antivenom, NAC: *N*-acetyl-L-cysteine.

850

Figure 3. Local haemorrhage, oedema and myonecrosis formation induced by *L. m.*

852 *muta* venom in rats and treatment with antivenom and NAC. (A) Venom (1.5 mg/kg)

- 853 produced significant oedema formation (expressed as a percentage of the RHL
- dimension observed in control animals 'G1', considered 100%), being reduced by
- antivenom alone or associated with NAC. (B) Antivenom and NAC administered
- 856 individually prevented the venom-induced myonecrosis formation, with their
- association also reducing remarkably the points of subcutaneous haemorrhage [B1

858	(control), B_2 (NAC), B_3 (venom), B_4 (venom + antivenom), B_5 (venom + NAC) and B_6
859	(venom + NAC + antivenom)]. In A, the columns are the mean \pm SEM ($n = 6$); * $p <$
860	0.05 compared to control 'saline' group 'G1', $p^{\#} < 0.05$ compared to venom group 'G3'
861	and $^{\diamond}p < 0.05$ compared to venom + NAC group 'G5'. RHL: right hind limb (ventral
862	view), LHL: left hind limb (ventral view), filled white arrow: indicates myonecrosis
863	formation, opened white arrow: indicates points of haemorrhage (in B3, the points of
864	haemorrhage are unclear on the extensive myonecrosis formation).
865	
866	Figure 4. Examination of blood-derived plasma protein biomarkers for systemic toxicity
867	induced by L. m. muta venom in rats and treatment with antivenom and NAC. (A)
868	Venom produced pronounced myotoxicity characterized by the increase of creatine
869	kinase (CK) release, which was prevented by antivenom and NAC or by combination of
870	both agents. (B) There was no evidence for cardiotoxicity as assessed through CK-MB
871	'myocardial band' release into the blood. (C) Venom caused hepatotoxicity
872	characterized by increase of alanine aminotransferase (ALT) release, with only the
873	antivenom being able to prevent the release of this biomarker. (D) Venom induced
874	nephrotoxicity characterized by increase of serum creatinine (Cr), with both of agents
875	failing to produce significant protection. The columns are the mean \pm SEM ($n = 6$). * $p <$
876	0.05 compared to control 'saline' group 'G1', $p^{\#} < 0.05$ compared to venom group 'G3'
877	and $^{\diamond}p < 0.05$ compared to venom + NAC group 'G5'.

878

Figure 5. Leukocyte changes induced by *L. m. muta* venom in rats and treatment with

antivenom and NAC. (A) Venom significantly increased the total leukocyte which was

partially prevented by antivenom and NAC or combining both of agents. (B) Venom

882	also promoted an increase of neutrophils, with the treatments producing partial
883	protection. (C) The increase of eosinophils induced by venom was significantly
884	prevented by NAC itself or associated with antivenom; note that NAC has a property to
885	avoid the expression of eosinophil cells when administered alone. (D) Antivenom and
886	NAC or their association failed to prevent the increase of monocytes induced by venom.
887	The columns are the mean \pm SEM ($n = 6$). * $p < 0.05$ compared to control 'saline' group
888	'G1', ${}^{\#}p < 0.05$ compared to venom 'alone' group 'G3' and ' $p < 0.05$ compared to
889	venom + antivenom group 'G4'.
890	
891	Figure 6. Morphological aspects of tissues isolated from rats exposed to L. m. muta
892	venom and treated with antivenom and NAC. (A) Lesional score of right 'local of
893	venom injection' (1) and left 'contralateral' (2) gastrocnemius muscles; venom
894	produced pronounced myotoxicity which was prevented mainly associating antivenom
895	and NAC. (B) Lack of morphological changes in lung. (C) Lack of morphological
896	changes in heart. (D) Venom caused moderate changes in lesional score of liver, being
897	mostly prevented by NAC and its association with antivenom. (E) Venom caused severe
898	nephrotoxicity, with antivenom and NAC producing partial protection whereas their
899	association was effective at preventing the renal changes induced by venom. The
900	columns are the mean \pm SEM ($n = 6$). * $p < 0.05$ compared to control 'saline' group
901	'G1', $p^{\#} < 0.05$ compared to venom 'alone' group 'G3', $p^{\#} < 0.05$ compared to venom +
902	antivenom group 'G4' and $^{\diamond}p < 0.05$ compared to venom + NAC group 'G5'.