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We consider the problem of minimizing social cost in atomic congestion games and show, perhaps surprisingly,

that efficiently computed taxation mechanisms yield the same performance achievable by the best polynomial

time algorithm, even when the latter has full control over the players’ actions. It follows that no other tractable

approach geared at incentivizing desirable system behavior can improve upon this result, regardless of whether

it is based on taxations, coordination mechanisms, information provision, or any other principle. In short:

Judiciously chosen taxes achieve optimal approximation.

Three technical contributions underpin this conclusion. First, we show that computing the minimum social

cost isNP-hard to approximate within a given factor depending solely on the admissible resource costs. Second,

we design a tractable taxation mechanism whose efficiency (price of anarchy) matches this hardness factor,

and thus is optimal. As these results extend to coarse correlated equilibria, any no-regret algorithm inherits

the same performances, allowing us to devise polynomial time algorithms with optimal approximation.
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1 INTRODUCTION
In many of today’s networked systems, e.g., road-traffic networks, the overall performance greatly

depends on the interaction between the users’ individual behaviour and the underlying infrastruc-

ture. A major issue emerging in these settings is the performance degradation that arises when

users act with their sole individual interests in mind [49]. A prototypical example is road-traffic

routing: When drivers choose routes that minimize their own travel time, the aggregate congestion

could be much higher compared to that of a centrally-imposed routing.

While improved performances could be attained if a coordinator was able to dictate the choices of

each user, imposing such control is often infeasible or impossible, with traffic routing providing just

one illustration. Hence, different approaches including coordination mechanisms [20], Stackelberg

strategies [26], taxation mechanisms [12], information provision [7], and alternative methods for

sharing resource costs [28] have been proposed as indirect interventions to influence the resulting

outcome. Amongst these, taxation mechanisms have attracted significant attention, as witnessed

by the growing literature on the topic. Unfortunately, in spite of the scientific interest, it remains

largely unclear, if, and to what extent, the use of indirect interventions reduces the best achievable

system performance, thus prompting a natural question:

Is there any performance degradation incurred when moving from centrally imposed

decision making to the use of indirect interventions, such as taxation mechanisms?

Here, we answer this question in relation to the well-studied class of atomic congestion games,

commonly utilized to model a variety of resource allocation problems including traffic routing

[51], machine scheduling [32], sensor allocation [45, 46], and minimum power routing [2]. Within

this context, we show, perhaps surprisingly, that no performance degradation arises if taxation

mechanisms are judiciously designed. Specifically, we derive tractable taxation mechanisms ensur-

ing that any equilibrium outcome yields the same performance achievable by the best centralized

polynomial time algorithm, even when the latter has full control over the users’ decisions. The

upshot of our contribution can be summarized as follows:

In congestion games, judiciously designed taxes achieve optimal approximation, and no
other tractable intervention, whether based on coordination mechanisms, information
provision, or any other principle can improve upon this result.

Our manuscript contains three contributions that lead to this conclusion. First, we show that

computing the minimum social cost in congestion games is NP-hard to approximate within an

explicitly given factor depending solely on the class of admissible resource costs. Second, we

show how to design tractable taxation mechanisms, through the solution of a convex optimization

problem, ensuring that any corresponding equilibrium outcome has an efficiency (price of anarchy)

matching the hardness factor previously derived. While this result applies to pure/mixed Nash

equilibria, it also extends to correlated/coarse correlated equilibria, and thus to any online learning

algorithm where players update their actions and achieve low regret, in the same spirit of the

“total price of anarchy” pioneered by Blum et al. [10]. We build upon this observation to derive

polynomial time algorithms achieving the optimal approximation factor.

Comparison with existing results. Our work connects with, and generalizes a number of existing

results, in addition to closing different open questions, as we briefly highlight next. We refer to

Section 1.3 for a more detailed literature review.

The problem of determining computational lower bounds for minimizing the social cost in atomic

congestion game has been initially studied byMeyers and Schulz [43]. Since then, a number of works

have pursued a similar line of research [13, 48, 52], though no tight bounds were known, even for

linear congestion games. Our work provides the best possible inapproximability results, completely

settling the hardness question for congestion games with general underlying resource costs.
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The study of taxation mechanisms has recently received growing attention, especially within the

literature of congestion games. Nevertheless, prior to this work, a general methodology to design op-

timal taxation mechanisms (i.e., mechanisms minimizing the price of anarchy) has been unavailable,

with [9, 12] providing interesting results limitedly to polynomial congestion games. Extending the

work of Caragiannis et al. [12], Bilò and Vinci [9] propose taxes whose efficiency can be quantified a

priori conjecturing that their design is optimal, albeit no computational lower bounds are given. Our

work resolves the problem of determining optimal taxes for the broader class of congestion games

with non-decreasing and semi-convex resource costs, proving the conjecture of [9] as a special

case. Recently, Paccagnan et al. [44] designed optimal local taxation mechanisms, i.e., optimal

taxation mechanisms whose tax levied on each resource must rely solely on the local properties of

that resource. Interestingly, our work shows that the performance of optimal local mechanisms

almost matches that achievable by the best polynomial time algorithm. Roughgarden [52] studies

how lower bounds on the price of anarchy can be derived from computational lower bounds. For

congestion games with optimal taxes, we show that such an approach does provide tight bounds.
The study of approximation algorithms for minimizing the social cost in congestion games has

beenmotivated by scheduling and routing problems, e.g., [2, 5]. Makarychev and Sviridenko [41] pro-

vide the best known approximation algorithm, based on a natural linear programming relaxation and

randomized rounding. While their result applies to the more general class of optimization problems

with a “diseconomy of scale”, the algorithmswe propose here enjoy an equal or strictly better approx-

imation ratio, and can not be further improved, owing to the matching hardness result presented.

1.1 Congestion games and taxation mechanisms
Congestion games were introduced in a landmark paper by Rosenthal approximately 50 years ago

[50]. Since then, they have found applications in numerous fields, including network design [3],

machine scheduling [55], vehicle-target assignment [17], wireless data networks [56]. Most notably,

congestion games are utilized to model selfish routing on a traffic network [51]. In a congestion

game we are given a set of players {1, . . . , 𝑁 }, and a set of resources R. Each player can choose a

subset of the set of resources which she intends to use. We list all feasible choices for player 𝑖 in the

set A𝑖 ⊆ 2
R
. The cost for using each resource 𝑟 ∈ R depends only on the total number of players

concurrently selecting that resource, and is denoted with ℓ𝑟 : N→ R>0. Once all players have made

a choice 𝑎𝑖 ∈ A𝑖 , each player incurs a cost obtained by summing the costs of all resources she

selected. Finally, the social cost represents the sum of the resource costs incurred by all players

SC(𝑎) =
𝑁∑︁
𝑖=1

∑︁
𝑟 ∈𝑎𝑖

ℓ𝑟 ( |𝑎 |𝑟 ), (1)

where |𝑎 |𝑟 denotes the number of players selecting resource 𝑟 in allocation 𝑎 = (𝑎1, . . . , 𝑎𝑛). We

denote with G the set of all congestion games where all resource costs {ℓ𝑟 }𝑟 ∈R belong to a given

set of cost functions L . Given an instance 𝐺 = (𝑁,R, {A𝑖 }𝑁𝑖=1
, {ℓ𝑟 }𝑟 ∈R) of congestion game, we

denote with MinSC the problem of globally minimizing the social cost in (1).

Taxation mechanisms. As self-interested decision making often deteriorates the system perfor-

mance, taxation mechanisms have been proposed to ameliorate this issue. Formally, a taxation

mechanism 𝑇 : 𝐺 × 𝑟 → 𝜏𝑟 associates an instance 𝐺 , and a resource 𝑟 ∈ R to a taxation function

𝜏𝑟 : N→ R≥0. Note that each taxation function 𝜏𝑟 is congestion-dependent, that is, it associates

the number of players in resource 𝑟 to the corresponding tax. As a consequence, each player 𝑖

experiences a cost factoring both the cost associated to the chosen resources, and the tax, i.e.,

𝐶𝑖 (𝑎) =
∑︁
𝑟 ∈𝑎𝑖

[ℓ𝑟 ( |𝑎 |𝑟 ) + 𝜏𝑟 ( |𝑎 |𝑟 )] .
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As typical in the literature, we measure the performance of a given taxation mechanism 𝑇 using

the ratio between the social cost incurred at the worst-performing outcome, and the minimum

social cost. Given the self-interested nature of the players, an outcome is commonly described by

any of the following classical equilibrium notions: pure or mixed Nash equilibria, coarse or coarse

correlated equilibria.
1
When considering pure Nash equilibria, for example, the performance of a

taxation mechanism 𝑇 is gauged using the notion of price of anarchy [39], i.e.,

PoA(𝑇 ) = sup

𝐺 ∈G

NeCost(𝐺,𝑇 )
MinCost(𝐺) , (2)

where MinCost(𝐺) = min𝑎∈A 𝑆𝐶 (𝑎) is the minimum social cost for instance 𝐺 , and NeCost(𝐺,𝑇 )
denotes the highest social cost at a Nash equilibrium obtained when employing the mechanism𝑇 on

the game 𝐺 . By definition, PoA(𝑇 ) ≥ 1 and the lower the price of anarchy, the better performance

𝑇 guarantees. While it is possible to define the notion of price of anarchy for each and every equilib-

rium class mentioned, we do not pursue this direction, as we will show that all these metrics coincide

within our setting. Thus, we will simply use PoA(𝑇 ) to refer to the efficiency values of any and all
these equilibrium classes. Finally, we observe that, while taxation mechanisms influence the players’

perceived cost, they do not impact the expression of the social cost, which is still of the form in (1).

1.2 Our contributions
The resounding message contained in this work can be summarized as follows: In congestion

games, optimally designed taxation mechanisms can be tractably computed, and achieve the same

performance as the best centralized polynomial time algorithm. Three technical contributions

substantiate this claim, and are further discussed in the ensuing paragraphs:

i) We prove a tight NP-hardness result for approximating the minimum social cost;

ii) We design a tractable taxation mechanism whose price of anarchy matches the hardness factor;

iii) We obtain a polynomial time algorithm with the best possible approximation by combining the

previous results with existing algorithms (e.g., no-regret dynamics).

All our results hold for the widely studied case of non-decreasing semi-convex resource costs.
2

Results ii) and iii) extend to network congestion games, as we discuss in the conclusions.

Inapproximability of minimum social cost. Our first contribution is concerned with determin-

ing tight inapproximability results for the problem of minimizing social cost in congestion games.

Our hardness result applies already in the setup where all resources feature the same cost.

Theorem 1. In congestion games where all resources feature the same cost 𝑏 : N→ R>0 and 𝑏 is
non-decreasing semi-convex, MinSC is NP-hard to approximate within any factor smaller than

𝜌𝑏 = sup

𝑥 ∈N

E𝑃∼Poi(𝑥) [𝑃𝑏 (𝑃)]
𝑥𝑏 (𝑥) , (3)

where we define 𝑏 (0) = 0. If 𝜌𝑏 = ∞, then MinSC is NP-hard to approximate within any finite factor.3

Naturally, Theorem 1 applies directly to richer classes of congestion games, whereby resource costs

can differ. For example, if the cost on each resource can be constructed by non-negative linear

combination of given functions {𝑏1, . . . , 𝑏𝑚}, then MinSC is NP-hard to approximate within any

factor smaller than max𝑗 ∈{1,...,𝑚} 𝜌𝑏 𝑗
, i.e., smaller than that produced by the worst function.

1
It is worth observing that each class of equilibria appearing in this list is a superset of the previous [53]. Therefore, since

pure Nash equilibria are guaranteed to exist even in congestion games where taxes are used (they are, in fact, potential

games), all mentioned equilibrium’s sets are non-empty and thus the notion of price of anarchy introduced in (2) well defined.

2 𝑓 : N→ R>0 is semi-convex if 𝑥 𝑓 (𝑥) is convex, i.e., (𝑥 + 1) 𝑓 (𝑥 + 1) − 𝑥 𝑓 (𝑥) ≥ 𝑥 𝑓 (𝑥) − (𝑥 − 1) 𝑓 (𝑥 − 1) ∀𝑥 ∈ N, 𝑥 ≥ 2.

3
Throughout the manuscript, Poi(𝑥) denotes a Poisson distribution with parameter 𝑥 .
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As a special case, we obtain hardness results for the thoroughly studied class of polynomial

congestion games with maximum degree 𝑑 , corresponding to non-negative linear combinations

of {1, 𝑥, . . . , 𝑥𝑑 }. In this case, the highest degree monomial 𝑥𝑑 determines the worst factor, which

reduces to the (𝑑 + 1)’st Bell number (see Section 3.4), as summarized in the next statement.

Corollary 1. In congestion games with resource costs obtained by non-negative combinations of
{1, . . . , 𝑥𝑑 }, MinSC is NP-hard to approximate within a factor smaller than the (𝑑 + 1)’st Bell number.

Taxes achieve optimal approximation. Our second contribution provides a technique to effi-

ciently design taxation mechanisms matching the hardness result. The following statement is a

succinct variant of that in Theorem 3 where we also give an expression for the taxation mechanism.

Theorem 2. Consider the class of congestion games with resource costs obtained by non-negative
combinations of functions 𝑏1, . . . , 𝑏𝑚 , each positive, non-decreasing, semi-convex in N. For any given
𝜀 > 0, it is possible to efficiently compute a taxationmechanismwhose price of anarchy is upper bounded
by max𝑗 𝜌𝑏 𝑗

+ 𝜀. The result holds for pure/mixed Nash and correlated/coarse correlated equilibria.

The extension to coarse correlated equilibria is significant as it gives performance bounds that

apply not only to Nash equilibria, but also whenever players revise their action and achieve low

regret. This imposes much weaker assumptions on both the game and its participants’ behaviour

[53]. Whilst the theorem applies to a broad class of resource costs, when specialized to polynomial

congestion games of degree 𝑑 , it allows to efficiently design taxation mechanisms whose price of

anarchy equals the (𝑑 + 1)’st Bell number plus 𝜀, for any arbitrarily small choice of 𝜀 > 0.

Tight polynomial algorithms. Since the result in Theorem 2 holds also for correlated/coarse cor-

related equilibria, we can leverage existing polynomial time algorithms to compute such equilibria,

and inherit an approximation ratio matching the corresponding price of anarchy. The following

statement summarizes this result, while the ensuing discussion provides two possible approaches

to do so. We remark that Corollary 2 is a direct consequence of Theorem 2 and polynomial com-

putability of correlated equilibria [34]. The fact that the resulting approximation factor we obtain

always matches or strictly improves upon that of [41] is shown in Section 4.1.

Corollary 2. Consider congestion games with resource costs obtained by non-negative combinations
of functions 𝑏1, . . . , 𝑏𝑚 , each positive, non-decreasing, semi-convex. For any 𝜀 > 0, there exists a polyno-
mial time algorithm to compute an allocation with a cost lower than (max𝑗 𝜌𝑏 𝑗

+ 𝜀) · min𝑎∈A SC(𝑎).

The approximation ratio presented in Corollary 2 can be achieved, for example, as follows.

Given a desired tolerance 𝜀 > 0, we design a taxation mechanisms ensuring a price of anarchy of

max𝑗 𝜌𝑏 𝑗
+ 𝜀/2, which can be done in polynomial time thanks to Theorem 2. We use such taxation

mechanisms, and compute an exact correlated equilibrium in polynomial time leveraging the result

of Xin Jiang and Leyton-Brown [34], who propose a variation of Papadimitriou and Roughgarden’s

Ellipsoid Against Hope algorithm [47]. Remarkably, [34] guarantees that the resulting correlated

equilibrium has polynomial-size support, i.e., it places non-zero probability only over a polynomial

number of pure strategy profiles. Hence, we compute a correlated equilibrium and enumerate all

pure strategy profiles in its support, identifying with 𝑎∗ that with lowest cost. Since the price of

anarchy bounds of Theorem 2 hold for correlated equilibria, the pure strategy profile 𝑎∗ inherits a
matching (or better) approximation ratio.

Alternatively, one can employ the same taxation mechanism as in the above, and let players si-

multaneously revise their action for 𝑡 rounds employing a no-regret algorithm. Well-known families

of such algorithms include multiplicative-weights, and Follow the Perturbed/Regularized Leader

whereby the average regret decays to an arbitrary 𝜀 in a polynomial number of rounds, see [14, 36].
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We then focus on the pure strategy profile 𝑎∗𝑡 with the lowest social cost encountered during the 𝑡

rounds of any such algorithm t. Owing to [53, Thm 3.3], its approximation ratio is upper bounded

by the corresponding price of anarchy plus an error term that goes to zero with the same rate of

the average regret. Waiting for polynomially many rounds suffices to reduce the error as desired.

1.3 Further related work
As our work provides tight computational lower bounds, optimal taxation mechanisms, and poly-

nomial time algorithms with the best possible approximation, we review the relevant literature

connected with these three areas in the ensuing paragraphs.

Computational lower bounds. The study of computational lower bounds for minimizing the

social cost in congestion games has been pioneered by Meyers and Schulz [43], though remarkable

precursors include Chakrabarty et al. [15], as well as Blumrosen and Dobzinski [11] who considered

a notably different model whereby player-specific cost functions are utilized. Relative to the classical

model of congestion games with convex non-decreasing resource costs, Meyers and Schulz show

that minimizing the social cost is strongly NP-hard, and it is hard to approximate within any finite

factor, unless P=NP. Identical results are shown for network congestion games. Whilst this might

feel as a contradiction of our results, it is worth noting that their analysis allows for resource costs

to be adversarily selected amongst any convex non-decreasing function. On the contrary, our result

can be thought of as a refined version of theirs, whereby the computational lower bound we derive is

parametrized by the class of admissible resource costs. Naturally, we recover their inapproximability

result when resource costs can be arbitrarily selected amongst convex non-decreasing functions.
4

Motivated by the possibility to translate computational lower bounds to lower bounds on the

price of anarchy, Roughgarden [52] also studied this problem. Relative to polynomial resource costs

of maximum degree 𝑑 and non-negative coefficients, he showed that minimizing the social cost is

inapproximable within any factor smaller than (𝛽𝑑)𝑑/2
, for some constant 𝛽 > 0. In this setting,

even without taxes, equilibria with much better performances are guaranteed to exist. In particular,

the price of stability (measuring the quality of the best-performing equilibrium) is known to grow

only linearly with the degree 𝑑 [18]. While coordinating the players to one such good equilibrium

is highly desirable, our hardness result implies that this cannot be achieved in polynomial time.

Spurred by the inapproximability results of Meyers and Schulz, and Roughgarden, a number of

works have focused on restricting the allowable class of problems: Del Pia et al. [48] consider totally

unimodular congestion games (and generalizations thereof) and show NP-hardness for the asym-

metric case; Castiglioni et al. [13] showNP-hardness even in singleton congestion games with affine

resource costs. Similar questions have been explored for online versions of the problem by Klimm

et. al. [38], and for congestion games with positive externalities by de Keijzer and Schäfer [21].

Taxation mechanisms. Different approaches, such as coordination mechanisms [20], Stackelberg

strategies [26], taxation mechanisms [12], signalling [7], cost-sharing strategies [28], and many

more, have been proposed to cope with the performance degradation associated to selfish decision

making. Amongst them, taxation mechanism have attracted significant attention thanks to their

ability to indirectly influence the resulting system performance. While the study of taxation

mechanisms in road-traffic networks was initiated by Pigou [49], who utilized a continuous flow

model, the design of taxation mechanisms in (atomic) congestion games was pioneered much more

recently by Caragiannis et al. [12]. In this respect, [12] and many of the subsequent works, build

on the solid theoretical ground developed in the years subsequent to the definition of the price of

4
For example MinSC is NP-hard to approximate within any finite factor when 𝑏 (𝑥) = 𝑒𝑥 . This is an immediate consequence

of Theorem 1 and the fact that 𝜌𝑏 = ∞ for exponentially increasing resource costs.
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anarchy [39], including exact knowledge of the price of anarchy in congestion games with linear

[4, 19] and polynomial [1] resource costs, the advent of the smoothness framework [53], as well as

primal dual approaches [8, 16].

While these results provide us with a strong theory to quantify the price of anarchy, prior to

this work, the design of optimal taxation mechanism (i.e., taxation mechanisms minimizing the

price of anarchy) has been an open question even when restricting attention to linear resource

costs. Most notably, Caragiannis et al. [12] considers linear congestion games and designs taxation

mechanisms achieving a price of anarchy of 2 for mixed Nash equilibria. More recently, Bilò and

Vinci [9] extend their results to polynomial congestion games of degree 𝑑 achieving a price of

anarchy (for coarse correlated equilibria) equal to the (𝑑 + 1)’st Bell number. Our work resolves

the problem of designing optimal taxation mechanisms for congestion games with semi-convex

non-decreasing resource costs, and, as a special case, shows that the mechanisms proposed for

linear [12] and polynomial [9] resource costs are optimal, as conjectured by the authors.

Perhaps closest in spirit to our work, is the recent result by Paccagnan et al. [44], whereby the

authors leverage a tractable linear programming formulation to design optimal taxationmechanisms

that utilize solely local information. Naturally, the corresponding values of the optimal price of

anarchy they achieve are inferior to ours (here, we design optimal taxation mechanisms without

any restrictions on what type of information we use), though the efficiency values derived in [44]

are remarkably close to the optimal values obtained here. For example, for affine (resp. quadratic)

congestion games, they achieve an optimal price of anarchy of 2.012 (resp. 5.101), to be compared

with a value of 2 (resp. 5). This suggests that restricting the attention to taxation mechanisms

utilizing solely local information is sufficient to match almost exactly the performance of the best

polynomial time algorithm.

We conclude observing that similar questions have been considered for variants of the classical

setup studied here. For example, [27] focuses on symmetric network congestion games, [29, 31, 33]

focus on taxing a subset of the resources. Finally, we remark that optimal taxation mechanisms

can be easily derived for non-atomic congestion games, where players have only an infinitesimal

impact on the congestion. In this setting, it is known that marginal cost taxes incentivize optimal

behaviour [49]. On the contrary, in the atomic regime the same marginal cost taxes do not improve

- and instead significantly deteriorate - the resulting system efficiency [44].

Approximation algorithms. A number of polynomial time algorithms have been proposed for

approximating the minimum social cost in congestion games and their network counterpart as

discussed in [2, 30, 41] and references therein. The best known approximation is due to Makarychev

and Sviridenko [41] who use randomization to round the solution of a natural linear programming

relaxation. They provide a general expression for the resulting approximation factor as a function

of the allowable resource costs. Related works have also considered modifications of the classical

setup: Harks et al. [30] provide approximation algorithms for polymatroid congestion games,

whereas Kumar et al. [40] considers scheduling problems on unrelated machines. While the result

of [41] hold for the more general class of optmization problems with “diseconomy of scale”, the

approximation ratios we obtain here always match or strictly improve upon that of [41].

2 TECHNIQUES AND HIGH LEVEL IDEAS
Two technical contributions are at the core of this manuscript: a tight inapproximability result for

minimizing the social cost, and a methodology to design taxation mechanisms whose efficiency

matches the hardness factor. Armed with these results, the design of efficient algorithms with opti-

mal approximation falls from the polynomial computability of correlated equilibria, as anticipated.
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NP-hardness of approximation. Our computational lower bounds are shown reducing the problem

of minimizing the social cost in congestion games from the classical label cover problem [25] (more

specifically from the gap variant of this problem). A central tool we utilize in our reduction is a

gadget called partitioning system, extending that originally defined by Feige in [25]. Conceptually,

the expression of the hardness factor (3) falls from the very definition of such object, which is

duplicated multiple times and properly arranged in our construction. Partitioning systems have

been recently studied also by Dudycz et al. [23] and Barman et al. [6] in the context of approval

voting, and for a generalization of the maximum coverage problem.We are not aware of applications

of these gadgets to cost minimization problems. Finally, we observe (at least informally) that a

sightly better approximation factor and matching hardness result can also be obtained if the number

of agents 𝑁 is finite and taken into account, whereby the Poisson distribution appearing in (3) is

replaced by the binomial distribution Bin(𝑁, 𝑥/𝑁 ).

Taxes achieve optimal approximation. We derive taxes matching the hardness factor leveraging

two chief ingredients: a parametrized class of taxation mechanisms satisfying a key recursion, and

a suitably defined convex optimization program. The convex optimization problem we consider

corresponds to a modification of the original MinSC, whereby we relax the integrality constraints

and replace the cost 𝑥ℓ𝑟 (𝑥) produced by each resource with E𝑃∼Poi(𝑥) [𝑃ℓ𝑟 (𝑃)], see (9). The solution
vector of this program (which is provably convex) is used as set of parameters for the class of

mechanisms previously defined. The performance bound on the price of anarchy is finally shown

through a smoothness-like approach, where we leverage both the expression of the mechanisms

and the solution vector of the convex program. We observe that, for the case of polynomial resource

costs, convex programs have been used before to design suitable taxation mechanisms [9]. Our

result, instead, applies to general semi-convex non-decreasing resource costs.

3 NP-HARDNESS OF APPROXIMATION
In this section we prove Theorem 1, i.e., we show that approximating the minimum social cost

below the factor 𝜌𝑏 defined in (3) is NP-hard already for congestion games where all resource costs

are identical to 𝑏. The proof is based on a reduction from GapLabelCover, where we make use of a

generalization of Feige’s partitioning system [25]. We proceed as follows: In Section 3.1 we introduce

GapLabelCover and, independently, the partitioning system. In Section 3.2 we present the reduction

and in Section 3.3 prove Theorem 1. Section 3.4 shows thatmax𝑗 𝜌𝑏 𝑗
reduces to the (𝑑+1)’st Bell num-

ber when resource costs are polynomials of maximum degree 𝑑 , as claimed in Corollary 1. Through-

out, we use [𝑚] to denote the set {1, . . . ,𝑚}, and N0 for the set of natural numbers including zero.

3.1 Background tools
We start by introducing GapLabelCover, a commonly utilized NP-hard problem to obtain tight

inapproximability results. We employ the weak-value formulation of the problem, implicitly used

in Feige [25] and also defined in Dudycz et al. [23].

A LabelCover instance is described by a tuple (𝐿, 𝑅, 𝐸, ℎ, [𝛼], [𝛽], {𝜋𝑒 }𝑒∈𝐸), where
- 𝐿 and 𝑅 are sets of left and right vertices of a bi-regular bipartite graph with edge set 𝐸 and right

degree ℎ (i.e., the degree of all vertices in 𝑅 equals ℎ),

- [𝛼] and [𝛽] represent left and right alphabets, and

- for every edge 𝑒 ∈ 𝐸, a constraint function 𝜋𝑒 : [𝛼] → [𝛽] maps left labels to right labels.

Given a left labeling L : 𝐿 → [𝛼], i.e., a map that associates a left label to every left vertex, we say

that a right vertex 𝑢 ∈ 𝑅 is

- strongly satisfied if for every pair of neighbors 𝑣, 𝑣 ′ ∈ 𝐿 of 𝑢 it is 𝜋 (𝑣,𝑢) (L(𝑣)) = 𝜋 (𝑣′,𝑢) (L(𝑣 ′));
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- weakly satisfied if there exist two distinct neighbors 𝑣, 𝑣 ′ ∈ 𝐿 of𝑢, s.t. 𝜋 (𝑣,𝑢) (L(𝑣))= 𝜋 (𝑣′,𝑢) (L(𝑣 ′)).
For any𝛿 > 0,ℎ ∈ N let GapLabelCover(𝛿, ℎ) denote the following problem: Given a LabelCover in-
stance (𝐿, 𝑅, 𝐸, ℎ, [𝛼], [𝛽], {𝜋𝑒 }𝑒∈𝐸), distinguish between

YES: there exists a labeling that strongly satisfies all right vertices;

NO: no labeling weakly satisfies more than a fraction 𝛿 of the right vertices.

When the right alphabet is sufficiently large, GapLabelCover is NP-hard, as recalled next.

Proposition 1 ([23, 25]). ∀𝛿 > 0, ℎ ∈ N, ℎ ≥ 2, and 𝛽 sufficiently large (depending on 𝛿, ℎ),
GapLabelCover(𝛿, ℎ) is NP-hard.

Similarly to Barman et al. [6] and Dudycz et al. [23], we generalise a combinatorial object

introduced by Feige [25], called partitioning system, which we also equip with a cost function.

Given a ground set of elements [𝑛], integers 𝛽, ℎ, 𝑘 such that 𝑘𝑛/ℎ ∈ N, 𝛽 ≥ ℎ ≥ 𝑘 , a cost functions

𝑐 : N → R>0, and 𝜂 > 0, a partitioning system with parameters (𝑛, 𝛽, ℎ, 𝑘, 𝜂) is a collection of

partitions P1, . . . ,P𝛽 of [𝑛] such that:

P1) Every partition P𝑗 is a collection of subsets 𝑃 𝑗,1, . . . , 𝑃 𝑗,ℎ ⊆ [𝑛] each with 𝑘𝑛/ℎ elements and

such that each element from [𝑛] is selected by 𝑘 sets in 𝑃 𝑗,1, . . . , 𝑃 𝑗,ℎ . Observe that, for any

P𝑗 we have |P𝑗 | = ℎ, and the above implies∑︁
𝑟 ∈[𝑛]

𝑐 ( |P𝑗 |𝑟 ) = 𝑐 (𝑘)𝑛,

where |P𝑗 |𝑟 denotes the number of sets in the collection P𝑗 to which element 𝑟 belongs, and

we extended the definition of the function 𝑐 to include 𝑐 (0) = 0, to ease the notation.

P2) for any 𝐵 ⊆ [𝛽] with |𝐵 | = ℎ and for any function 𝑖 : [𝛽] → [ℎ], let 𝑄 = {𝑃 𝑗,𝑖 ( 𝑗) , 𝑗 ∈ 𝐵}. It is∑︁
𝑟 ∈[𝑛]

𝑐 ( |𝑄 |𝑟 ) ≥
(
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] − 𝜂

)
𝑛.

To gain some intuition on properties P1 and P2, we provide a graphical representation of a partition-

ing system in Fig. 1, whereby each box contains 𝑘𝑛/ℎ elements from the ground set [𝑛]. Property 1

asserts that every time we select and entire row, we are guaranteed to cover every element in [𝑛]
precisely 𝑘 times, Property 2 asserts that every time we select one and only one set from each row,

for a total of ℎ rows, many sets cover the same elements so that the resulting cost is high.

P1

P2

.

.

.

PV

1 2 . . . ⌘

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

%1,1 %1,2 %1,⌘

%2,1 %2,2 %2,⌘

%V,1 %V,2 %V,⌘

P1

P2

.

.

.

PV

1 2 . . . ⌘

.

.

.
.
.
.

.

.

.

. . .

. . .

. . .

%1,1 %1,2 %1,⌘

%2,1 %2,2 %2,⌘

%V,1 %V,2 %V,⌘

Fig. 1. A partitioning system with parameters (𝑛, 𝛽, ℎ, 𝑘, 𝜂). Each box contains 𝑘𝑛/ℎ elements from the ground
set [𝑛]. Property P1 ensures that selecting an entire row results in low cost (left, in green). Property P2 ensures
that selecting one and only one box per each row, for a total of ℎ rows, results in a high cost (right, in red).

At this stage, we recall that the probability mass function of the binomial distribution Bin(ℎ, 𝑘/ℎ)
converges pointwise for fixed 𝑘 ≥ ℎ to the probability mass function of the Poisson distribution



Dario Paccagnan and Martin Gairing 10

Poi(𝑘) as ℎ grows large [24]. Hence, we informally observe that, when 𝜌𝑏 < ∞,∑
𝑟 ∈𝑄 𝑐 ( |𝑄 |𝑟 )∑
𝑟 ∈P𝑗

𝑐 ( |P𝑗 |𝑟 )
=
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] − 𝜂

𝑐 (𝑘)
ℎ→∞−−−−→

E𝑋∼Poi(𝑘) [𝑐 (𝑋 )] − 𝜂

𝑐 (𝑘) ,

see Lemma 3 in Appendix A.1.1 for a proof. If we choose 𝑐 (𝑥) = 𝑥𝑏 (𝑥), let ℎ → ∞ and consider

the worst case over 𝑘 , this ratio precisely matches the inapproximability result we aim to derive

(cfr. the previous expression and 𝜌𝑏 in (3)). We are thus left to piece these elements together in the

ensuing section. Before doing so, we remark that partitioning systems do exist for every choice of

𝜂 > 0 as long as 𝑛 is taken sufficiently large as stated in the next proposition. Its proof follows the

same approach of that in [6], and is included in Appendix A.1.2 for completeness. We remark that,

when used in the upcoming reduction, we will be able to compute a partitioning systems in a time

that is independent on the size of the instance we reduce from.

Proposition 2. Let 𝑐 : N→ R>0 non-decreasing be given. For every choice of 𝛽 ≥ ℎ ≥ 𝑘 integers
with 𝑘𝑛/ℎ ∈ N, 𝜂 ∈ (0, 1), and 𝑛 ≥ 𝑐 (𝑘)2

2𝜂2
[log(10) +𝛽 log(ℎ+1)] a partitioning system with parameters

(𝑛, 𝛽, ℎ, 𝑘, 𝜂) and cost function 𝑐 exists. It can be found in time depending solely on ℎ, 𝑛 and 𝛽 .

3.2 Reduction
We first provide the reduction and prove the hardness result in the case when 𝜌𝑏 < ∞. We consider

the case 𝜌𝑏 = ∞ separately at the end of Section 3.3. Starting from the resource cost function 𝑏 and

a fixed 𝜀 > 0, we will first construct a partitioning system with parameters (𝑛, 𝛽, ℎ, 𝑘, 𝜂). We then re-

duce an instance of LabelCover C = (𝐿, 𝑅, 𝐸, ℎ, [𝛼], [𝛽], {𝜋𝑒 }𝑒∈𝐸) to an instance of congestion game

𝐺 = (𝑁,R, {A𝑖 }𝑁𝑖=1
, {ℓ𝑟 }𝑟 ∈R) with identical resource cost. The idea is to define𝐺 by creating a copy

of the partitioning system for every right vertex and use that to define the players’ allocations A𝑖 .

Formally, given 𝑏 and 𝜀 > 0, let 𝑘 be the maximizer
5
of (3), 𝑐 the cost function defined from 𝑏 as

in 𝑐 (𝑥) = 𝑥𝑏 (𝑥) for all 𝑥 ∈ N and 𝑐 (0) = 0. We choose 𝜂 < min{𝜀𝑐 (𝑘)/4, 1}, 𝛿 ≤ 𝜀/(2𝜌𝑏), and ℎ ≥ 𝑘

such that |E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑋𝑏 (𝑋 )] −E𝑋∼Poi(𝑘) [𝑋𝑏 (𝑋 )] | ≤ 𝜀𝑐 (𝑘)/4 (which exists thanks to the conver-

gence result in Lemma 3 in Appendix A.1.1). Consequently, we fix 𝛽 large enough to ensure hardness

in Proposition 1, and choose 𝑛 so that 𝑘𝑛/ℎ ∈ N and 𝑛 is large enough to have existence of the parti-

tioning system from Proposition 2. Owing to the same proposition, since ℎ and 𝑛, 𝛽 are now fixed, a

partitioning system can be computed in time independent of the size of the LabelCover instance.

Now we take an instance of LabelCover C = (𝐿, 𝑅, 𝐸, ℎ, [𝛼], [𝛽], {𝜋𝑒 }𝑒∈𝐸) where ℎ, 𝛽 are defined

above and thus Proposition 1 (NP-hardness) holds. For each right vertex 𝑢 ∈ 𝑅 we use the local par-

titioning system with parameters (𝑛, 𝛽, ℎ, 𝑘, 𝜂). We refer to the resources in the partitioning system

corresponding to the right vertex 𝑢 ∈ 𝑅 with {1𝑢, . . . , 𝑛𝑢}. Similarly we use P𝑢
𝑗 = {𝑃𝑢𝑗,1, . . . , 𝑃𝑢𝑗,ℎ}

for the local partitions. The congestion game 𝐺 = (𝑁,R, {A𝑖 }𝑁𝑖=1
, {ℓ𝑟 }𝑟 ∈R) is defined as follows

- each left vertex corresponds to a player, so that the number of players is 𝑁 = |𝐿 |;
- the ground set of resources is the union of the resources introduced by each local partitioning

system on every right vertex, i.e., R = ∪𝑢∈𝑅{1𝑢, . . . , 𝑛𝑢};
- each resource cost is equal to 𝑏, i.e., ℓ𝑟 (𝑥) = 𝑏 (𝑥) for all 𝑟 ∈ R, 𝑥 ∈ N;
- as each left vertex 𝑣 ∈ 𝐿 corresponds to one and only one player 𝑖 ∈ [𝑁 ], we refer to a left
vertex as to 𝑖 ∈ [𝑁 ] instead of as 𝑣 ∈ 𝐿 to ease the notation. For player 𝑖 ∈ [𝑁 ] we construct
each pure strategy 𝑎𝑖 ∈ A𝑖 as follows. We let the left vertex 𝑖 select a label 𝑙 ∈ [𝛼], and
correspondingly take the union over all right vertices 𝑢 ∈ N (𝑖) neighbouring with 𝑖 , of the

5
For ease of exposition, we show the result when the supremum is attained at some value 𝑘 ∈ N. If this is not the case, then
the supremum must be achieved at 𝑘 → ∞. One then fixes 𝑘 ∈ N and proceeds with the reasoning as is. This will give

rise to an additional error term 𝜈 (𝑘) with lim𝑘→∞ 𝜈 (𝑘) = 0 in the ensuing Equation (4), where the right hand side will be

replaced by (𝜌𝑏 + 𝜈 (𝑘))𝑐 (𝑘) . Nevertheless one can select 𝑘 sufficiently large and control such error to a desired accuracy.
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resources belonging to the block 𝑃𝑢𝑗,𝑖 , where 𝑗 = 𝜋 (𝑖,𝑢) (𝑙). Repeating over all left labels we

obtain the strategy set A𝑖 . Formally

A𝑖 =
{
∪𝑢∈N(𝑖)𝑃

𝑢
𝑗,𝑖 , where 𝑗 = 𝜋 (𝑖,𝑢) (𝑙), ∀𝑙 ∈ [𝛼]

}
.

The following figure exemplifies the construction. We conclude remarking that the above procedure

implicitly defines a map associating a profile of left labels (𝑙1, . . . , 𝑙𝑁 ) (one per each left vertex) to an

allocation (𝑎1, . . . , 𝑎𝑁 ) ∈ A, and that spanning through all possible choices of (𝑙1, . . . , 𝑙𝑁 ) produces
all possible allocations in A. This observation will be useful in proving the hardness result.

D0 D . . .8

! '

.

.

.
.
.
.

%D1,1 %D1,2

%D2,1 %D2,2

%DV,1 %DV,2

.

.

.
.
.
.

%D
0

1,1 %D
0

1,2

%D
0

2,1 %D
0

2,2

%D
0

V,1 %D
0

V,2

Fig. 2. Given a label cover instance C = (𝐿, 𝑅, 𝐸, ℎ, [𝛼], [𝛽], {𝜋𝑒 }𝑒∈𝐸 ), our reduction associates every left
vertex in 𝐿 to a player in the game 𝐺 . Here we exemplify how the action set A𝑖 is generated for player
𝑖 ∈ 𝐿. To ease the presentation, we consider a left alphabet of size 2 and use blue and orange to identify
the left labels. Since 𝑖 has two right neighbours, 𝑢 and 𝑢 ′, we construct two partitioning systems with
ground set of resources {1

𝑢 , . . . , 𝑛𝑢 } and {1
𝑢′
, . . . , 𝑛𝑢

′}. Constraints 𝜋 (𝑖,𝑢) (blue) = 1, 𝜋 (𝑖,𝑢) (orange) = 2 and
𝜋 (𝑖,𝑢′) (blue) = 𝛽 , 𝜋 (𝑖,𝑢′) (orange) = 1 are given, and we represent them graphically with the fact that on
the left partitioning system, the label blue (resp. orange) is associated to the block in row 1 = 𝜋 (𝑖,𝑢) (blue)
(resp. row 2 = 𝜋 (𝑖,𝑢) (orange)). Similarly for the right partitioning system using 𝜋 (𝑖,𝑢′) to determine the row.
The set A𝑖 is readily constructed as A𝑖 = {𝑃𝑢

1,2
∪ 𝑃𝑢

′

𝛽,1
, 𝑃𝑢

2,2
∪ 𝑃𝑢

′
1,1

}, where the first (resp. second) allocation
corresponds to a blue (resp. orange) left label.

3.3 Proof of the result
As anticipated, we first prove the result for the case of 𝜌𝑏 < ∞. At the end of this section, we turn

the attention to 𝜌𝑏 = ∞. For any given instance of LabelCover C = (𝐿, 𝑅, 𝐸, ℎ, [𝛼], [𝛽], {𝜋𝑒 }𝑒∈𝐸),
resource cost 𝑏, and 𝜀 > 0, we consider an instance of congestion game𝐺 = (𝑁,R, {A𝑖 }𝑁𝑖=1

, {ℓ𝑟 }𝑟 ∈R)
constructed as in the previous section. We will now show that

- completeness (Section 3.3.1): If the instance C is a YES, then min𝑎∈A 𝑆𝐶 (𝑎) ≤ 𝑛 |𝑅 |𝑐 (𝑘),
- soundness (Section 3.3.2): If the instance C is a NO, then min𝑎∈A 𝑆𝐶 (𝑎) > (𝜌𝑏 − 𝜀)𝑛 |𝑅 |𝑐 (𝑘).

An algorithm solving MinSC with an approximation ratio smaller than 𝜌𝑏 − 𝜀 will be able to

distinguish between YES/NO of an NP-hard promise problem. This will conclude the proof.

3.3.1 Completeness. We intend to show that if C is a YES, then min𝑎∈A SC(𝑎) ≤ 𝑛 |𝑅 |𝑐 (𝑘). This
follows readily. In fact, if C is a YES, there exists a labeling that strongly satisfies all right vertices.

This implies that there exists an allocation 𝑎∗ ∈ A whereby, for any given right vertex, all neigh-

bouring left vertices (players) have selected blocks belonging to an entire row of the corresponding

partitioning system. Thanks to property P1 the cost of the allocation 𝑎∗ on every local partition is
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equal to 𝑛𝑐 (𝑘). Since the total cost is additive over the local partitions, we obtain the result

𝑆𝐶 (𝑎∗) = 𝑛 |𝑅 |𝑐 (𝑘) =⇒ min

𝑎∈A
𝑆𝐶 (𝑎) ≤ 𝑛 |𝑅 |𝑐 (𝑘).

3.3.2 Soundness. We intend to show that if C is a NO, then min𝑎∈A SC(𝑎) ≥ (𝜌𝑏 −𝜀)𝑛 |𝑅 |𝑐 (𝑘) which
is equivalent to showing SC(𝑎) ≥ (𝜌𝑏−𝜀)𝑛 |𝑅 |𝑐 (𝑘) for all𝑎 ∈ A. Towards this goal, we build upon the

last observation presented in Section 3.2, i.e., the fact that our construction associates each profile of

left labels to an allocation, and that spanning through all possible choices of (𝑙1, . . . , 𝑙𝑁 ) produces all
possible allocations inA. Hence, it suffices to prove the desires property by considering all possible

combinations of profiles (𝑙1, . . . , 𝑙𝑁 ) and the corresponding induced cost, instead of considering all

𝑎 ∈ A. Since C is a NO instance, for any possible choice of (𝑙1, . . . , 𝑙𝑁 ), no more than 𝛿 fraction of the

right vertices are weakly satisfied. Owing to property P2, each partitioning system corresponding

to a non weakly satisfied right vertex has a cost larger than

(
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] − 𝜂

)
𝑛. Thus, since

at least (1 − 𝛿) |𝑅 | right vertices are not weakly satisfied, it is

SC(𝑎) ≥
(
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] − 𝜂

)
(1 − 𝛿)𝑛 |𝑅 |, ∀𝑎 ∈ A .

We conclude with some cosmetic manipulation. In particular, we recall that the binomial distribution

converges to the Poisson distribution when the number of trials grows large and the success

probability of each trial goes to zero [24]. In our settings, this corresponds to the fact that the

probability mass function of Bin(ℎ, 𝑘/ℎ) converges pointwise for fixed 𝑘 to that of Poi(𝑘) as ℎ → ∞.

Since 𝜌𝑏 < ∞, we observe that

lim

ℎ→∞
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] = E𝑋∼Poi(𝑘) [𝑐 (𝑋 )] = 𝜌𝑏𝑐 (𝑘), (4)

where equality holds thanks to Lemma 3 in Appendix A.1.1. This implies the existence of a function

𝜃 (ℎ) with 𝜃 (ℎ) → 0 as ℎ → ∞ allowing to control the error, and for which E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] ≥
𝜌𝑏𝑐 (𝑘) − 𝜃 (ℎ). In other words the LHS can be made arbitrarily close to 𝜌𝑏𝑐 (𝑘) by selecting ℎ

sufficiently large. Thanks to the choice of ℎ, it is 𝜃 (ℎ) ≤ 𝜀𝑐 (𝑘)/4. Hence,

SC(𝑎) ≥ (𝜌𝑏𝑐 (𝑘) − 𝜃 (ℎ) − 𝜂) (1 − 𝛿)𝑛 |𝑅 |

=

[
𝜌𝑏 −

𝜃 (ℎ)
𝑐 (𝑘) − 𝜂

𝑐 (𝑘) −
(
𝜌𝑏 −

𝜃 (ℎ)
𝑐 (𝑘) − 𝜂

𝑐 (𝑘)

)
𝛿

]
𝑛 |𝑅 |𝑐 (𝑘)

≥
[
𝜌𝑏 −

𝜃 (ℎ)
𝑐 (𝑘) − 𝜂

𝑐 (𝑘) − 𝜌𝑏𝛿

]
𝑛 |𝑅 |𝑐 (𝑘)

>

[
𝜌𝑏 −

𝜀

4

− 𝜀

4

− 𝜀

2

]
𝑛 |𝑅 |𝑐 (𝑘) = (𝜌𝑏 − 𝜀)𝑛 |𝑅 |𝑐𝑘 .

(5)

The last inequality holds by the choice of parameters, ensuring that
𝜃 (ℎ)
𝑐 (𝑘) ≤ 𝜀

4
,

𝜂

𝑐 (𝑘) < 𝜀
4
, 𝜌𝑏𝛿 ≤ 𝜀

2
.

Case of 𝜌𝑏 = ∞. As anticipated, we treat the case of unbounded 𝜌𝑏 separately. Towards this

goal, we follow the same reduction of section Section 3.2, with minor modification on the choice

of parameters. We replace 𝜌𝑏 with a fixed (and conceptually large) constant 𝑀 . Since 𝜌𝑏 = ∞,

we note that E𝑋∼Poi(𝑘) [𝑐 (𝑋 )]/𝑐 (𝑘) is unbounded at some 𝑘 (possibly infinity). Since the proba-

bility mass functions of Bin(ℎ, 𝑘/ℎ) and Poi(𝑘) converge, we can choose the pair ℎ and 𝑘 so that

E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] ≥ 𝑀𝑐 (𝑘). Finally, we set 𝛿 ≤ 𝜀/(2𝑀). One then follows the same proof as in

the case of bounded 𝜌𝑏 , whereby (5) is replaced with SC(𝑎) ≥ (𝑀 − 𝜂/𝑐 (𝑘)) (1 − 𝛿)𝑛 |𝑅 |𝑐 (𝑘) ≥
(𝑀 − 𝜂

𝑐 (𝑘) −𝑀𝛿)𝑛 |𝑅 |𝑐 (𝑘) ≥ (𝑀 − 𝜀/4 − 𝜀/2)𝑛 |𝑅 |𝑐 (𝑘) > (𝑀 − 𝜀)𝑛 |𝑅 |𝑐 (𝑘). Since𝑀 can be taken to

be arbitrarily large, the problem is NP-hard to approximate within any finite ratio. □
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3.4 Hardness factor 𝜌𝑏 for polynomial resource cost
Corollary 1 claims that, when resource costs are obtained by non-negative combinations of polyno-

mials of maximum degree 𝑑 > 0, MinSC is hard to approximate within any factor smaller than the

(𝑑 + 1)’st Bell number. Note that this is a direct consequence of Theorem 1, which we can apply

since for 𝑑 ≥ 0, each monomial 𝑥𝑑 is positive, non-decreasing, semi-convex for 𝑥 ∈ N. We are only

left to calculate the value of 𝜌𝑏 for each 𝑥𝑑 . We begin with the case of 𝑏 (𝑥) = 𝑥𝑑 and 𝑑 ∈ N0 as the

derivation is straightforward and illustrative. Using the definition of 𝜌𝑏 in (3) it is

𝜌𝑏 = sup

𝑥 ∈N

E𝑃∼Poi(𝑥) [𝑃𝑑+1]
𝑥𝑑+1

= sup

𝑥 ∈N

𝑑+1∑︁
𝑖=0

𝑥𝑖−(𝑑+1)
{
𝑑 + 1

𝑖

}
=

𝑑+1∑︁
𝑖=0

{
𝑑 + 1

𝑖

}
= B(𝑑 + 1).

In the second equality we used the fact that the (𝑑 + 1)’st moment of the Poisson distribution

Poi(𝑥) equals ∑𝑑+1

𝑖=0
𝑥𝑖

{
𝑑+1

𝑖

}
, where

{
𝑑+1

𝑖

}
is a Stirling number of the second kind [42, p. 63]. The

third equality holds because each function 𝑥𝑖−(𝑑+1)
is non-increasing, owing to 𝑖 ≤ (𝑑 + 1), and

thus the supremum is attained at 𝑥 = 1. The last one is due to the definition of the (𝑑 + 1)’st Bell
number, which we denote with B(𝑑 + 1), see [42, Eq. 1.2].

One can repeat a similar reasoning also when 𝑑 ≥ 0 is not integer and show that the expression

inside the supremum is non-increasing in 𝑥 ≥ 1, e.g., by computing its derivatives. If follows that

the supremum is attained at 𝑥 = 1, and the definition of 𝜌𝑏 gives

𝜌𝑏 =
1

𝑒

∞∑︁
𝑖=0

𝑖𝑑+1

𝑖!
. (6)

The latter expression is sometimes referred to as the fractional Bell number. Note that using

Dobiński’s formula [42, Eq. 1.25], one recovers the Bell number B(𝑑 + 1) when 𝑑 ∈ N0. Observing

that the expression in (6) is increasing in 𝑑 , one concludes that, when multiple monomials are

utilized, the value max𝑗 𝜌𝑏 𝑗
is attained by the monomial with highest degree.

4 TAXES ACHIEVE OPTIMAL APPROXIMATION
In this section we show how to compute a taxation mechanism whose price of anarchy matches the

hardness factor. Since taxation mechanisms can be utilized to derive polynomial time algorithms

with an approximation factor matching the price of anarchy (Section 1.2), in the ensuing Section 4.1

we compare the optimal price of anarchy with the best known polynomial approximation of [41].

We start by introducing a parameterised family of taxation mechanisms for which we will

later provide (efficiently computable) parameters that achieve the desired result. Our taxation

mechanisms take as input a congestion game 𝐺 , where all resource costs can be obtained by a

non-negative combination of functions 𝑏1, . . . , 𝑏𝑚 , each positive, non-decreasing, semi-convex in N.
For each 𝑏 𝑗 : N→ R>0 given, we extend its definition to 𝑏 𝑗 : N0 → R≥0 by setting 𝑏 (0) = 0. This is

without loss of generality andmerely needed to ease the notation. Let 𝑝 𝑗 : R≥0 → R≥0 be defined as

𝑝 𝑗 (𝑣) = E𝑃∼Poi(𝑣) [𝑃𝑏 𝑗 (𝑃)] =
( ∞∑︁
𝑖=0

𝑖𝑏 𝑗 (𝑖)
𝑣𝑖

𝑖!

)
𝑒−𝑣 . (7)

Definition 1 (Parameterised Taxation Mechanisms). Given a parameter vector (𝑣𝑟 )𝑟 ∈R with
𝑣𝑟 ∈ R≥0 and a set of resources R with cost function ℓ𝑟 (𝑥) =

∑𝑚
𝑗=1

𝛼𝑟𝑗𝑏 𝑗 (𝑥) for 𝑟 ∈ R, define a
parameterised taxation function 𝜏𝑟 : N0 × R≥0 → R≥0, with 𝜏𝑟 (𝑥) = 𝜏𝑟 (𝑥, 𝑣𝑟 ) =

∑𝑚
𝑗=1

𝛼𝑟𝑗 [𝑓𝑗 (𝑥, 𝑣𝑟 ) −
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𝑏 𝑗 (𝑥)] where 𝑓𝑗 (𝑥, 0) = 𝑏 𝑗 (𝑥), 𝑓𝑗 (0, 𝑣) = 0, and

𝑓𝑗 (𝑥, 𝑣) =
(𝑥 − 1)!

𝑣𝑥

𝑥−1∑︁
𝑖=0

𝑝 𝑗 (𝑣) − 𝑖𝑏 𝑗 (𝑖)
𝑖!

𝑣𝑖 , 𝑥 ∈ N0, 𝑣 ∈ R>0 . (8)

The following lemmas provide three important properties of the above taxation mechanisms.

Lemma 1 ensures that taxes are non-negative and that modified resource costs after applying taxes

are non-decreasing. Lemma 2 shows that the 𝑓𝑗 ’s defined in Definition 1 satisfy a recursion which

will be crucial later on. The proof of both lemmas can be found in Appendices A.2.2 and A.2.3.

Lemma 1. For all 𝑣 ∈ R≥0, the taxation mechanism introduced in Definition 1 satisfies: (a) 𝑓𝑗 (𝑥 +
1, 𝑣) ≥ 𝑓𝑗 (𝑥, 𝑣) for all 𝑥 ∈ N0 and 𝑗 ∈ [𝑚], and (b) 𝜏𝑟 (𝑥, 𝑣) ≥ 0 for all 𝑥 ∈ N0 and all 𝑟 ∈ R.

Lemma 2. For all 𝑗 ∈ [𝑚], 𝑣 ∈ R≥0, and 𝑥 ∈ N0, we have 𝑥𝑏 𝑗 (𝑥) −𝑥 𝑓𝑗 (𝑥, 𝑣) + 𝑣 𝑓𝑗 (𝑥 + 1, 𝑣) = 𝑝 𝑗 (𝑣).

For ease of presentation, we let 𝑠𝑖 = |A𝑖 |, and refer to the 𝑘-th action available to player 𝑖 as to

𝑎𝑖,𝑘 , 𝑘 ∈ [𝑠𝑖 ]. We use Δ(𝑠) to denote the 𝑠-th dimensional simplex. The taxation mechanism that

optimises the price of anarchy makes use of the following convex program

min

∑︁
𝑟 ∈R

𝑚∑︁
𝑗=1

𝛼𝑟𝑗 𝑝 𝑗 (𝑣𝑟 )

subject to 𝑣𝑟 =

𝑁∑︁
𝑖=1

∑︁
𝑘∈[𝑠𝑖 ] : 𝑟 ∈𝑎𝑖,𝑘

𝑦𝑖,𝑘 for all 𝑟 ∈ R,

𝑦𝑖 ∈ Δ(𝑠𝑖 ) for all 𝑖 ∈ [𝑁 ] .

(9)

We are now ready to state our main result of this section, which is an extension of Theorem 2.

We state the result when max𝑗 𝜌𝑏 𝑗
< ∞, else the problem is inapproximable as seen in Theorem 1.

Theorem 3. Consider a congestion game 𝐺 with resource costs obtained by non-negative combina-
tion of functions 𝑏1, . . . , 𝑏𝑚 , each positive, non-decreasing, semi-convex in N. Let max𝑗 𝜌𝑏 𝑗

< ∞ and
denote with (𝑦𝑖 )𝑖∈[𝑁 ], (𝑣𝑟 )𝑟 ∈R a solution of the convex program (9).

• The taxation mechanism introduced in Definition 1 with parameter vector (𝑣𝑟 )𝑟 ∈R has a price
of anarchy no-higher than max𝑗 𝜌𝑏 𝑗

.
• Moreover, for any choice of 𝜀 > 0 one can design in polynomial time, through the approximate
solution of (9), a taxation mechanism whose price of anarchy is no-higher than max𝑗 𝜌𝑏 𝑗

+ 𝜀.

Proof. Given a congestion game𝐺 , we consider the corresponding program (9). Let us verify that

(9) is indeed convex. Since the constraints are linear and the objective function is a (non-negative)

linear combination of univariate functions 𝑝 𝑗 it suffices to show that each 𝑝 𝑗 (𝑣) is convex in 𝑣 . This
holds true as 𝑝 𝑗 is defined in (7) as the expectation of a convex function over a Poisson distributed

random variable. For completeness we provide a proof of this fact in Lemma 4 in Appendix A.2.1.

Let (𝑦𝑖 )𝑖∈[𝑁 ], (𝑣𝑟 )𝑟 ∈R be an optimal solution of the convex program (9) and consider the taxation

mechanism from Definition 1 with parameter vector (𝑣𝑟 )𝑟 ∈R .
To complete the proof we will use a smoothness approach, with a minor modification: Instead of

comparing an action profile 𝑎 (e.g., an equilibrium allocation) with another action profile 𝑎′ (e.g., an
optimal allocation), we will compare an action profile 𝑎 against a mixed profile 𝑦 = (𝑦1, . . . , 𝑦𝑁 ) ∈
Δ(𝑠1) × · · · × Δ(𝑠𝑁 ). Specifically, we will choose the mixed profile 𝑦 solving (9), and show that

𝑁∑︁
𝑖=1

𝑠𝑖∑︁
𝑘=1

𝑦𝑖,𝑘 [𝐶𝑖 (𝑎) −𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎−𝑖 )] ≥ SC(𝑎) − 𝜌𝑏SC(𝑎opt), ∀𝑎 ∈ A . (10)
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where 𝐶𝑖 (𝑎) denotes the modified cost function 𝐶𝑖 (𝑎) =
∑

𝑟 ∈𝑎𝑖 ℓ̄𝑟 ( |𝑎 |𝑟 ) =
∑

𝑟 ∈𝑎𝑖
∑𝑚

𝑗=1
𝛼𝑟𝑗 𝑓𝑗 ( |𝑎 |𝑟 , 𝑣𝑟 ),

and 𝑎′
𝑖,𝑘

the 𝑘-th action available to agent 𝑖 . Once (10) is shown, the desired bound on the price

of anarchy follows readily for pure Nash equilibria and more generally extends all the way to

coarse correlated equilibria [53]. In the former case, substituting the profile 𝑎 with any pure Nash

equilibrium 𝑎ne
, and summing the equilibrium conditions 0 ≥ 𝐶𝑖 (𝑎ne) −𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎

ne

−𝑖 ), one obtains
0 ≥ ∑𝑁

𝑖=1

∑𝑠𝑖
𝑘=1

𝑦𝑖,𝑘 [𝐶𝑖 (𝑎ne) −𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎
ne

−𝑖 )], so that

0 ≥
𝑁∑︁
𝑖=1

𝑠𝑖∑︁
𝑘=1

𝑦𝑖,𝑘 [𝐶𝑖 (𝑎ne) −𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎
ne

−𝑖 )] ≥ SC(𝑎ne) − 𝜌𝑏SC(𝑎opt),

from which one concludes. Since (10) holds for all 𝑎 ∈ A, the same bound on the price of an-

archy holds for the much broader class of coarse correlated equilibrium. To see this, let 𝜎 be

any coarse correlated equilibrium over A1 × · · · × A𝑁 , and consider the expected value of (10).

Due to linearity of the expectation and the definition of coarse correlated equilibria, we have

0 ≥ E𝑎∼𝜎
[∑𝑁

𝑖=1

∑𝑠𝑖
𝑘=1

𝑦𝑖,𝑘 [𝐶𝑖 (𝑎) −𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎−𝑖 )]
]
, from which one concludes.

We are thus left to prove the smoothness condition (10). Given an optimal allocation 𝑎opt ∈
arg min𝑎∈A SC(𝑎), let 𝑣opt

𝑟 = |𝑎opt |𝑟 . Inequality (10) follows from

𝑁∑︁
𝑖=1

𝑠𝑖∑︁
𝑘=1

𝑦𝑖,𝑘 [𝐶𝑖 (𝑎) −𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎−𝑖 )] =
𝑁∑︁
𝑖=1

𝐶𝑖 (𝑎) −
𝑁∑︁
𝑖=1

𝑠𝑖∑︁
𝑘=1

𝑦𝑖,𝑘𝐶𝑖 (𝑎′𝑖,𝑘 , 𝑎−𝑖 )

(ℓ̄𝑟 is non-decreasing by Lemma 1(a)) ≥
𝑁∑︁
𝑖=1

𝐶𝑖 (𝑎) −
𝑁∑︁
𝑖=1

𝑠𝑖∑︁
𝑘=1

𝑦𝑖,𝑘

∑︁
𝑟 ∈𝑎′

𝑖,𝑘

ℓ̄𝑟 ( |𝑎 |𝑟 + 1)

(changing order of summation) =
∑︁
𝑟 ∈𝑎

[
|𝑎 |𝑟 ℓ̄𝑟 ( |𝑎 |𝑟 ) − 𝑣𝑟 ℓ̄𝑟 ( |𝑎 |𝑟 + 1)

]
(substitute ℓ̄𝑟 ( |𝑎 |𝑟 ) =

𝑚∑︁
𝑗=1

𝛼𝑟𝑗 𝑓𝑗 ( |𝑎 |𝑟 , 𝑣𝑟 )) =
∑︁
𝑟 ∈𝑎

𝑚∑︁
𝑗=1

𝛼𝑟𝑗
[
|𝑎 |𝑟 𝑓𝑗 ( |𝑎 |𝑟 , 𝑣𝑟 ) − 𝑣𝑟 𝑓𝑗 ( |𝑎 |𝑟 + 1, 𝑣𝑟 )

]
(recursion in Lemma 2) =

∑︁
𝑟 ∈𝑎

𝑚∑︁
𝑗=1

𝛼𝑟𝑗
[
𝑐 𝑗 ( |𝑎 |𝑟 ) − 𝑝 𝑗 (𝑣𝑟 )

]
(𝑣𝑟 optimal solution of (9)) ≥

∑︁
𝑟 ∈𝑎

𝑚∑︁
𝑗=1

𝛼𝑟𝑗 [𝑐 𝑗 ( |𝑎 |𝑟 ) − 𝑝 𝑗 (𝑣opt

𝑟 )]

(by def. of 𝜌𝑏 , it is 𝑝 𝑗 (𝑣opt

𝑟 ) ≤ 𝜌𝑏𝑐 𝑗 (𝑣opt

𝑟 )) ≥
∑︁
𝑟 ∈𝑎

𝑚∑︁
𝑗=1

𝛼𝑟𝑗 [𝑐 𝑗 ( |𝑎 |𝑟 ) − 𝜌𝑏𝑐 𝑗 (𝑣opt

𝑟 )]

= SC(𝑎) − 𝜌𝑏SC(𝑎opt).

(11)

Since (9) is a convex program with polynomially many decision variables and constraints, it can

be solved to arbitrary precision in polynomial time. The argument in Eq. (11) will go through

with a minor change on the fifth line, where one pays a multiplicative factor 1 + 𝛿 with 𝛿 > 0.

Correspondingly, we obtain a price of anarchy of (1 + 𝛿)𝜌𝑏 in place of 𝜌𝑏 . Selecting 𝛿 sufficiently

small, one obtains a price of anarchy of (1 + 𝛿)𝜌𝑏 ≤ 𝜌𝑏 + 𝜀 for any choice of 𝜀 > 0. □

We conclude observing that the expression of 𝑝 𝑗 (𝑣) in (7) can be computed analytically for

many commonly studied classes of resource costs. Nevertheless, if this is not the case, one can

approximate 𝑝 𝑗 (𝑣) to arbitrary precision by truncating the sum at a finite value. One can then
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verify the same properties shown in Lemmas 1 and 2 and apply a reasoning identical to that in (11).

An additional multiplicative error will arise in (11), although this can be made as small as desired.

4.1 Comparison with existing approximations
A strength of the approach followed thus far is that optimally designed taxes can be used to

derive polynomial time algorithms matching the hardness factor. This can be done relying on

existing algorithms, e.g., no-regret dynamics, as discussed in Section 1.2. For this reason, we

now turn the attention to comparing the optimal price of anarchy of Theorem 3 with the best

known approximation ratio of Makarychev and Sviridenko [41]. Specifically, when all resource

costs are identical to 𝑏, [41] gives a randomized algorithm with an approximation ratio of 𝜇𝑏 =

sup𝑥 ∈R>0

E𝑃∼Poi(1) [(𝑥𝑃)𝑏 (𝑥𝑃)]/(𝑥𝑏 (𝑥)). While their result applies to the broader class of optimiza-

tion problems with a “diseconomy of scale”, the approximation ratio in Corollary 2 always matches

or strictly improves upon theirs. This follows from

𝜌𝑏 = sup

𝑥 ∈N

E𝑃∼Poi(𝑥) [𝑃𝑏 (𝑃)]
𝑥𝑏 (𝑥) ≤ sup

𝑥 ∈N

E𝑃∼Poi(1) [(𝑥𝑃)𝑏 (𝑥𝑃)]
𝑥𝑏 (𝑥) ≤ 𝜇𝑏 .

The last inequality follows trivially by replacing N with R>0 and using the definition of 𝜇𝑏 , while

the first inequality can be shown using the notion of convex ordering between distributions.
6
An

example where the approximation ratios coincide is given by 𝑏 (𝑥) = 𝑥𝑑 , in which case 𝜌𝑏 = 𝜇𝑏 equal

the (𝑑+1)’st Bell number, while an instance where the inequality is strict is provided by 𝑏 (𝑥) = 𝑥 +1,

in which case 𝜌𝑏 = sup𝑥 ∈N (𝑥 + 2)/(𝑥 + 1) = 3/2 < 2 = sup𝑥 ∈R>0

(2𝑥 + 1)/(𝑥 + 1) = 𝜇𝑏 .

5 DISCUSSION AND CONCLUSIONS
Interventions, such as those based on taxes, information provision, and other principles, are a

commonly utilized approach to improve the system welfare when direct control over the individuals

is infeasible or impossible. Whilst thoroughly studied, it is often unclear whether such indirect forms

of control are unavoidably associated with reduced performances as compared to that achievable

with full/dictatorial control over the individuals.

Focusing on congestion games, this paper shows that no such performance degradation arises.

On the contrary, judiciously designed interventions can be efficiently computed and achieve the

same performance of the best centralized polynomial time algorithm. We achieve this result by

providing a tight computational lower bound for the problem of minimizing the system cost in

congestion games, and by designing suitable taxation mechanisms. We thus obtain polynomial

time algorithms based on taxes matching the hardness factor.

There remain many opportunities for further work on interventions in congestion games. One

important research direction is to shed further light on the interplay between (more general) inter-

ventions and the achievable performances. It is interesting to understand whether other approaches

based on, e.g., information provisioning, or cost-sharing mechanisms are equally powerful. In other

words, does the positive result obtained here hold for other classes of interventions?

There are also a number of open questions arising from our work and possible refinements

thereof. An interesting direction is that of considering the variant of network congestion games,
whereby each strategy setA𝑖 is implicitly given as the set of paths connecting an origin/destination

node in an underlying graph. On its own, this more succinct representation of the strategy space

would only increase the computational complexity, but on the other hand the graph also imposes

6
To see this, we leverage the result in [54, Thm 3.A.36] with 𝑋𝑖 = 𝑌 ∼ 𝑥Poi(1) , 𝑎𝑖 = 1/𝑥 , and 𝑖 = 1, . . . , 𝑥 ∈ N. Theorem
3.A.36 in [54] applies ensuring that

∑𝑥
𝑖=1

𝑎𝑖𝑋𝑖 ≤cx 𝑌 , which reads as

∑𝑥
𝑖=1

𝑃 ≤cx 𝑥𝑃 , where 𝑃 ∼ Poi(1) . Here ≤cx denotes

the convex ordering between distributions [54]. Recalling that

∑𝑥
𝑖=1

𝑃 ∼ Poi(𝑥) , it is Poi(𝑥) ≤cx 𝑥Poi(1) which implies

E𝑃∼Poi(𝑥 )𝑃𝑏 (𝑃 ) ≤ E𝑃∼Poi(1) (𝑥𝑃 )𝑏 (𝑥𝑃 ) , as 𝑥𝑏 (𝑥) is convex.
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more structure. The results in Theorem 3 (design of optimal taxes) extend to network congestion

games by replacing the constraint set in the convex program in (9) with the set of feasible flows

on the graph. Similarly, Corollary 2 (polynomial time algorithms) also extends provided that one

utilizes no-regret algorithms, such as Follow the Perturbed Leader, that do not require explicit

description of all possible paths (which might be exponential in the size of the graph). On the

contrary, our reduction in the proof of Theorem 1 (inapproximability of minimum cost) induces a

general congestion game. The existence of a reduction to network congestion games remains open.
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A APPENDIX
Throughout the appendix we extend the definition of resource costs 𝑏 𝑗 : N→ R>0 to 𝑏 𝑗 : N0 → R≥0

by setting 𝑏 (0) = 0. This is without loss of generality, and only used to ease the notation.

A.1 Additional material for Section 3
A.1.1 Binomial expected value converges to Poisson expected value.

Lemma 3. Let 𝑏 : N0 → R≥0 non-decreasing, semi-convex, and assume 𝜌𝑏 < ∞. Then ∀𝑘 ∈ N

lim

ℎ→∞
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑋𝑏 (𝑋 )] = E𝑋∼Poi(𝑘) [𝑋𝑏 (𝑋 )] .

Proof. We begin noting that the limiting operation is delicate since we do not want to assume

boundedness of 𝑐 (𝑥) = 𝑥𝑏 (𝑥) for 𝑥 → ∞, as this would disqualify interesting cases such as that of

polynomials. Since 𝜌𝑏 < ∞ by assumption, then E𝑋∼Poi(𝑘) [𝑐 (𝑋 )]/𝑐 (𝑘) < ∞ for any 𝑘 ∈ N, and thus
E𝑋∼Poi(𝑘) [𝑐 (𝑋 )] < ∞ too. Fix 𝑘 , and let 𝑓ℎ (𝑖) and 𝑓 (𝑖) denote the probability mass function corre-

sponding to Bin(ℎ, 𝑘/ℎ) and Poi(𝑘), and recall that 𝑓ℎ (𝑖) → 𝑓 (𝑖) for all 𝑖 . The result follows from

E𝑋∼Poi(𝑘) [𝑐 (𝑋 )]=
∞∑︁
𝑖=0

lim

ℎ→∞
𝑓ℎ (𝑖)𝑐 (𝑖) ≤ lim

ℎ→∞

∞∑︁
𝑖=0

𝑓ℎ (𝑖)𝑐 (𝑖)= lim

ℎ→∞
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] ≤E𝑋∼Poi(𝑘) [𝑐 (𝑋 )],

where the first equality holds by definition of expected value and by replacing 𝑓 (𝑖) = limℎ→∞ 𝑓ℎ (𝑖).
The following inequality holds by Fatou’s lemma and existence of the limit (which hold as this is a

series with non-negative terms). As a result, we can interchange the limiting operation with the

infinite sum. The next equality is due to the definition of expected value. The last inequality is a

consequence of the fact that 𝑐 is a convex function and the Poisson distribution Poi(𝑘) dominates

the binomial distribution Bin(ℎ, 𝑘/ℎ) in the sense of the convex ordering [54], ensuring that

E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] ≤ E𝑋∼Poi(𝑘) [𝑐 (𝑋 )] for all ℎ. One way to see this is to utilize the fact that the

ratio between the probability mass functions 𝑓ℎ (𝑖)/𝑓 (𝑖) is unimodal as shown in [37, Sec 2.7], and

that 𝑓ℎ and 𝑓 are not ordered by the usual stochastic order, thus concluding thanks to [54, Thm.

3.A.53]. Alternatively, one can compare the two expectations directly. □

A.1.2 Proof of Proposition 2.

Proof. Existence of partitioning system is proved through a probabilistic approach similarly

to that in [25]. The idea is to construct each P𝑖 independently from a uniform distribution. More

formally, each element in [𝑛] gets assigned to 𝑘 of the 𝑃 𝑗,𝑖 uniformly at random. This ensures

that, by construction, each element in [𝑛] appears in exactly 𝑘 different sets of P𝑗 . Thus the first

property of the partitioning system holds trivially. Let 𝑐 (𝑥) = 𝑥𝑏 (𝑥). In order to prove the second

property, we fix 𝐵 ⊆ [𝛽] with |𝐵 | = ℎ and correspondingly consider 𝑄 = {𝑃 𝑗,𝑖 ( 𝑗) , 𝑗 ∈ 𝐵}. We intend

to show that with high probability

∑
𝑟 ∈𝑄 𝑐 ( |𝑄 |𝑟 ) ≥

(
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] − 𝜂

)
𝑛 holds. This would

imply that, among all possible ways of constructing {P𝑖 }𝑟𝑖=1
there exists at least one that satisfies

the property. To prove that

∑
𝑟 ∈𝑄 𝑐 ( |𝑄 |𝑟 ) ≥

(
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] − 𝜂

)
𝑛 holds with high probability,

we compute the expected cost that arises from the probabilistic choice outlined above for {P𝑖 }𝑟𝑖=1
.

In particular

E[𝑐 ( |𝑄 |𝑟 )] = E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋𝑟 )],
since the number of sets in which each resource appears is given by the random variable 𝑋𝑟 =∑

𝑗 ∈𝐵 1𝑟 ∈𝑃 𝑗,𝑖 ( 𝑗 ) ∼ Bin(ℎ, 𝑘/ℎ), owing to the fact that 1𝑟 ∈𝑃 𝑗,𝑖 ( 𝑗 ) ∼ Ber(𝑘/ℎ) are independent (here 1 de-

notes the indicator function).We then use Chernoff-Hoeffding bound on the total cost

∑
𝑟 ∈[𝑛] 𝑐 ( |𝑄 |𝑟 ),
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where each term is bounded by 0 ≤ 𝑐 ( |𝑄 |𝑟 ) ≤ 𝑐 (ℎ) owing to the non-decreasingness and non-

negativity of 𝑐 . 7 Thus, with probability smaller or equal to 2𝑒−2𝑛𝜂2/(𝑐 (ℎ))2

, it is |∑𝑟 ∈[𝑛] 𝑐 ( |𝑄 |𝑟 ) −
E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] | ≥ 𝜂𝑛. Since there are

(𝛽
ℎ

)
· ℎℎ ≤ (1 + ℎ)𝛽 possible choices for 𝐵 and 𝑄 , a union

bound guarantees that with probability higher than 1 − 2(1 + ℎ)𝛽 · 𝑒−2𝑛𝜂2/(𝑐 (ℎ))2

, the cost of all

𝐵,𝑄 satisfies |∑𝑟 ∈[𝑛] 𝑐 ( |𝑄 |𝑟 ) − E𝑋∼Bin(ℎ,𝑘/ℎ) [𝑐 (𝑋 )] | < 𝜂𝑛. With the specific choice of 𝑛 as in the

statement, we are guaranteed this property with a probability of at least 4/5. This shows that a

partitioning system always exists. One such object can be computed by simple enumeration over

all possible choices, which are only a function of ℎ and 𝑛 and 𝛽 . □

A.2 Additional material for Section 4
A.2.1 Convexity of Poisson expected value.

Lemma 4. Let 𝑏 : N→ R>0 be non-decreasing, semi-convex, and 𝑝 : R≥0 → R≥0 be

𝑝 (𝑣) = E𝑃∼Poi(𝑣) [𝑃𝑏 (𝑃)] =
( ∞∑︁
𝑖=0

𝑖𝑏 (𝑖) 𝑣
𝑖

𝑖!

)
𝑒−𝑣 .

Assume 𝜌𝑏 defined in (3) is finite. Then, 𝑝 is convex and differentiable infinitely many times in R≥0.

Proof. We start by showing that if 𝜌𝑏 < ∞, then 𝑝 (𝑣) is well defined, i.e., the series converges
to a finite value for any choice of 𝑣 ∈ R≥0 (as standard, R does not include infinity). To see this,

let 𝑐 (𝑣) = 𝑣𝑏 (𝑏) and observe that 𝜌𝑏 < ∞ implies 𝑝 (𝑣)/𝑐 (𝑣) < ∞ for all fixed 𝑣 ∈ N thanks to the

definition of 𝜌𝑏 , so that 𝑝 (𝑣) < ∞ since 𝑐 (𝑣) < ∞ for finite 𝑣 . Therefore also
∑∞

𝑖=0
𝑐 (𝑖) 𝑣𝑖

𝑖!
< ∞ for all

𝑣 ∈ N. Since ∑∞
𝑖=0

𝑐 (𝑖) 𝑣𝑖
𝑖!
is increasing in 𝑣 ≥ 0, boundedness over the naturals, immediately implies

boundedness of the same expression over the non-negative reals. Exploiting the fact that also 𝑒−𝑣 is
bounded, we have shown that 𝑝 (𝑣) is well defined, and converges to a finite value for any choice of

𝑣 ∈ R≥0. As a result 𝑝 is differentiable infinitely many times in its domain, since it is the product of

a convergent power series, and of 𝑒−𝑣 . We can therefore prove convexity by computing the second

order derivative and verifying that it is non-negative. The first derivative reads as

𝑝 ′(𝑣) = − 𝑒−𝑣

( ∞∑︁
𝑖=0

𝑐 (𝑖) 𝑣
𝑖

𝑖!

)
+ 𝑒−𝑣

( ∞∑︁
𝑖=0

𝑐 (𝑖) 𝑖𝑣
𝑖−1

𝑖!

)
= − 𝑒−𝑣

( ∞∑︁
𝑖=0

𝑐 (𝑖) 𝑣
𝑖

𝑖!

)
+ 𝑒−𝑣

( ∞∑︁
𝑖=0

𝑐 (𝑖 + 1) 𝑣
𝑖

𝑖!

)
=𝑒−𝑣

∞∑︁
𝑖=0

𝑣𝑖

𝑖!
Δ𝑐 (𝑖),

where we defined Δ𝑐 (𝑖) = 𝑐 (𝑖 + 1) − 𝑐 (𝑖). Following an identical approach the second derivative is

𝑝 ′′(𝑣) = 𝑒−𝑣
∞∑︁
𝑖=0

𝑣𝑖

𝑖!
[Δ𝑐 (𝑖 + 1) − Δ𝑐 (𝑖)] .

7
Observe that the random variables {𝑐 ( |𝑄 |𝑟 ) }𝑟∈[𝑛] = {𝑐 (𝑋𝑟 ) }𝑟∈[𝑛] are negatively associated, which is enough to conclude

thanks to [22] and 𝜂 ∈ (0, 1) . Since 𝑐 (𝑋𝑟 ) = 𝑐 (∑𝑗∈𝐵 𝑋𝑟,𝑗 ) , where 𝑋𝑟,𝑗 = 1𝑟∈𝑃 𝑗,𝑖 ( 𝑗 ) , is non-decreasing in {𝑋𝑟,𝑗 } 𝑗∈[𝛽 ] ,
negative association of {𝑐 (𝑋𝑟 ) }𝑟∈[𝑛] can be shown by proving negative association of {𝑋𝑟,𝑗 }𝑟∈[𝑛], 𝑗∈[𝛽 ] [35, Property 6]. For
fixed 𝑗 ∈ [𝛽 ], the variables {𝑋𝑟,𝑗 }𝑟∈[𝑛] are negatively associated as they are a permutation distribution of (0, . . . , 0, 1, . . . , 1)
with 𝑛 − 𝑘𝑛/ℎ zeros and 𝑘𝑛/ℎ ones [35, Def. 2.10 and Thm. 2.11]. Owing to this, and thanks to [35, Property 7] negative

association of {𝑋𝑟,𝑗 }𝑟∈[𝑛], 𝑗∈[𝛽 ] follows from the above, and from the fact that {𝑋𝑟,𝑗 }𝑟∈[𝑛] are mutually independent.
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The summand corresponding to 𝑖 = 0 reads as 𝑐 (2) − 2𝑐 (1) = 2(𝑏 (2) − 𝑏 (1)) > 0 since 𝑏 non-

decreasing. The summands corresponding to 𝑖 ≥ 1 are non-negative as semi-convexity of 𝑏 implies

convexity of 𝑐 . Hence, 𝑝 ′′(𝑣) ≥ 0 for all 𝑣 ∈ R≥0 as desired. □

A.2.2 Proof of Lemma 1.
Lemma 1 consists of two parts. We prove part (a) in Lemma 5 and part (b) in the ensuing Lemma 6.

Lemma 5. Define 𝑝 𝑗 as in (7) and 𝑓𝑗 as in (8), then 𝑓𝑗 (𝑥 +1, 𝑣) ≥ 𝑓𝑗 (𝑥, 𝑣) for all 𝑥 ∈ N0 and 𝑣 ∈ R≥0.

Proof. For simplicity of notation, we drop the subscript 𝑗 , i.e., we show that 𝑓 (𝑥 + 1, 𝑣) ≥ 𝑓 (𝑥, 𝑣)
for all 𝑥 ∈ N0 and 𝑣 ∈ R≥0. When 𝑣 = 0, then 𝑓 (𝑥, 0) = 𝑏 (𝑥), which is non-decreasing as 𝑏 (𝑥) is so.
Thus, in the following we restrict to the case of 𝑣 ∈ R>0. When, in addition, 𝑥 = 0 the inequality

reduces to 𝑓 (1, 𝑣) ≥ 𝑓 (0, 𝑣) ⇐⇒ 𝑝 (𝑣)/𝑣 ≥ 0, which holds as 𝑝 (𝑣) > 0 for 𝑣 ∈ R≥0. We are thus

left to consider the case of 𝑥 ∈ N and 𝑣 ∈ R>0. Substituting the expression for 𝑓 (𝑥 + 1, 𝑣) and 𝑓 (𝑥, 𝑣)
in the latter inequality and isolating 𝑝 (𝑣) results in

𝑝 (𝑣)
(
𝑥

𝑥∑︁
𝑖=0

𝑣𝑖

𝑖!
− 𝑣

𝑥−1∑︁
𝑖=0

𝑣𝑖

𝑖!

)
≥

(
𝑥

𝑥∑︁
𝑖=0

𝑐 (𝑖)
𝑖!

𝑣𝑖 − 𝑣

𝑥−1∑︁
𝑖=0

𝑐 (𝑖)
𝑖!

𝑣𝑖

)
. (12)

The term in brackets on the left hand side can be equivalently written as

𝑥∑︁
𝑖=0

𝑥
𝑣𝑖

𝑖!
−

𝑥−1∑︁
𝑖=0

𝑣𝑖+1

𝑖!
=

𝑥∑︁
𝑖=0

𝑥 − 𝑖

𝑖!
𝑣𝑖 .

Similarly, term in the right hand side brackets, with 𝑐 (0) = 0, is equivalent to

𝑥∑︁
𝑖=1

𝑥
𝑐 (𝑖)
𝑖!

𝑣𝑖 −
𝑥−1∑︁
𝑖=0

𝑐 (𝑖)
𝑖!

𝑣𝑖+1 =

𝑥∑︁
𝑖=1

𝑥𝑐 (𝑖) − 𝑖𝑐 (𝑖 − 1)
𝑖!

𝑣𝑖 .

Thus, inequality (12) reduces to

𝑝 (𝑣) ≥
∑𝑥

𝑖=1

𝑥𝑐 (𝑖)−𝑖𝑐 (𝑖−1)
𝑖!

𝑣𝑖∑𝑥
𝑖=0

𝑥−𝑖
𝑖!
𝑣𝑖

, (13)

whereby we used the fact that the denominator is positive since 𝑥 ≥ 𝑖 , 𝑥 ≥ 1. Thus, we require

(13) to hold for all 𝑥 ∈ N and 𝑣 ∈ R>0. Lemma 7, ensures that the right hand side of the previous

inequality is non-decreasing in 𝑥 ∈ N, for each fixed 𝑣 ∈ R>0. Therefore, (13) holds, if it holds when

𝑥 is arbitrarily large, that is if

𝑝 (𝑣) ≥ lim

𝑥→∞

∑𝑥
𝑖=0

𝑐 (𝑖)
𝑖!
𝑣𝑖∑𝑥

𝑖=0

𝑣𝑖

𝑖!

. (14)

Notice, though, that the right hand side in the last expression is precisely equal to
𝑝 (𝑣)𝑒𝑣
𝑒𝑣

= 𝑝 (𝑣),
thanks to the definition of 𝑝 (𝑣) in (7) and to the fact that

∑∞
𝑖=0

𝑣𝑖

𝑖!
= 𝑒𝑣 . Therefore (14) holds (with

equality), which completes the proof of the lemma. □

Lemma 6. The taxation mechanism introduced in Definition 1 is non-negative, i.e., 𝜏𝑟 (𝑥) ≥ 0

∀𝑥 ∈ N0, 𝑟 ∈ R.

Proof. We will show that 𝑓𝑗 (𝑥, 𝑣) ≥ 𝑏 𝑗 (𝑥) for any 𝑥 ∈ N, 𝑣 ∈ R≥0, 𝑗 ∈ [𝑚], as this suffices to

conclude. We do so separately for each 𝑏 𝑗 , and thus drop the index 𝑗 in the following. The case of
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𝑣 = 0 follows readily, since 𝑓 (𝑥, 0) = 𝑏 (𝑥). Similarly, for 𝑥 = 0, it is 𝑓 (0, 𝑣) = 0 ≥ 𝑏 (0) = 0. In the

remaining cases, we are left to prove

𝑓 (𝑥, 𝑣) = (𝑥 − 1)!
𝑣𝑘

𝑥−1∑︁
𝑖=0

𝑝 (𝑣) − 𝑖𝑏 (𝑖)
𝑖!

𝑣𝑖 ≥ 𝑏 (𝑥) 𝑥 ∈ N, 𝑣 ∈ R>0 .

We let 𝑐 (𝑥) = 𝑥𝑏 (𝑥) to ease the notation, and solve for 𝑝 (𝑣). The latter inequality holds if 𝑝 (𝑣) ≥
(∑𝑥

𝑖=0
𝑐 (𝑖) 𝑣𝑖

𝑖!
)/(∑𝑥−1

𝑗=0

𝑣 𝑗

𝑗 !
) for all 𝑥 ∈ N, 𝑣 ∈ R>0. We complete the proof showing that the right hand

side in the previous expression is non-decreasing in 𝑥 , so that the desired property holds for any

𝑥 ∈ N if it holds for 𝑥 arbitrarily large, i.e., if

𝑝 (𝑣) ≥ lim

𝑥→∞

∑𝑥
𝑖=0

𝑐 (𝑖) 𝑣𝑖
𝑖!∑𝑥−1

𝑗=0

𝑣 𝑗

𝑗 !

, ∀𝑣 ∈ R>0,

which is indeed satisfied (with equality), as it reduces to 𝑝 (𝑣) ≥ (𝑝 (𝑣)𝑒𝑣)/𝑒𝑣 , owing to the definition
of 𝑝 (𝑣) and ∑∞

𝑗=0

𝑣 𝑗

𝑗 !
= 𝑒𝑣 . To conclude, we thus need to prove that for all 𝑥 ∈ N, 𝑣 ∈ R>0, it is∑𝑥+1

𝑖=0
𝑐 (𝑖) 𝑣𝑖

𝑖!∑𝑥
𝑗=0

𝑣 𝑗

𝑗 !

≥
∑𝑥+1

𝑖=0
𝑐 (𝑖) 𝑣𝑖

𝑖!∑𝑥
𝑗=0

𝑣 𝑗

𝑗 !

⇐⇒
𝑥+1∑︁
𝑖=0

𝑥−1∑︁
𝑗=0

𝑐 (𝑖) 𝑣
𝑖+𝑗

𝑖! 𝑗 !
≥

𝑥∑︁
𝑖=0

𝑥∑︁
𝑗=0

𝑐 (𝑖) 𝑣
𝑖+𝑗

𝑖! 𝑗 !

⇐⇒
𝑥−1∑︁
𝑗=0

𝑐 (𝑥 + 1) 𝑣𝑥+1+𝑗

(𝑥 + 1)! 𝑗 ! ≥
𝑥∑︁
𝑖=0

𝑐 (𝑖) 𝑣
𝑖+𝑥

𝑖!𝑥 !

⇐⇒
𝑥∑︁
𝑗=1

𝑐 (𝑥 + 1) 𝑣𝑥+𝑗

(𝑥 + 1)!( 𝑗 − 1)! ≥
𝑥∑︁
𝑖=1

𝑐 (𝑖) 𝑣
𝑖+𝑥

𝑖!𝑥 !

⇐⇒
𝑥∑︁
𝑗=1

[
𝑐 (𝑥 + 1)

(𝑥 + 1)!( 𝑗 − 1)! −
𝑐 ( 𝑗)
𝑥 ! 𝑗 !

]
𝑣 𝑗+𝑥 ≥ 0

⇐⇒
𝑥∑︁
𝑗=1

[𝑏 (𝑥 + 1) − 𝑏 ( 𝑗)]𝑣 𝑗+𝑥 ≥ 0

which follows from the above chain of implications, and the fact that 𝑏 (𝑥) is non-decreasing. □

A.2.3 Proof of Lemma 2.

Proof. Using the definition of 𝑓𝑗 in (8), observe that

𝑣 𝑓𝑗 (𝑥 + 1, 𝑣) − 𝑥 𝑓𝑗 (𝑥, 𝑣) = 𝑣
𝑥 !

𝑣𝑥+1

𝑥∑︁
𝑖=0

𝑝 𝑗 (𝑣) − 𝑖𝑏 𝑗 (𝑖)
𝑖!

𝑣𝑖 − 𝑥
(𝑥 − 1)!

𝑣𝑥

𝑥−1∑︁
𝑖=0

𝑝 𝑗 (𝑣) − 𝑖𝑏 𝑗 (𝑖)
𝑖!

𝑣𝑖

=
𝑥 !

𝑣𝑥

𝑝 𝑗 (𝑣) − 𝑥𝑏 𝑗 (𝑥)
𝑥 !

𝑣𝑥

= 𝑝 𝑗 (𝑣) − 𝑥𝑏 𝑗 (𝑥),
or equivalently 𝑥𝑏 𝑗 (𝑥) − 𝑥 𝑓𝑗 (𝑥, 𝑣) + 𝑣 𝑓𝑗 (𝑥 + 1, 𝑣) = 𝑝 𝑗 (𝑣) as needed. □

A.2.4 Technical Lemma used to prove Lemma 1.

Lemma 7. Let 𝑐 : N→ R≥0 be convex, 𝑐 (0) = 0. Then, the function 𝑔 : N × R>0 → R≥0,

𝑔(𝑥, 𝑣) =
∑𝑥

𝑖=1

𝑥𝑐 (𝑖)−𝑖𝑐 (𝑖−1)
𝑖!

𝑣𝑖∑𝑥
𝑖=0

𝑥−𝑖
𝑖!
𝑣𝑖
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is non-decreasing for all 𝑥 ∈ N, for any fixed 𝑣 ∈ R>0.

Proof. Proving the claim amounts so showing that for all 𝑣 ∈ R>0, 𝑥 ∈ N it is∑𝑥+1

𝑖=1
𝑎(𝑥 + 1, 𝑖) 𝑣𝑖

𝑖!∑𝑥+1

𝑗=0
𝑏 (𝑥 + 1, 𝑗) 𝑣 𝑗

𝑗 !

≥
∑𝑥

𝑖=1
𝑎(𝑥, 𝑖) 𝑣𝑖

𝑖!∑𝑥
𝑗=0

𝑏 (𝑥, 𝑗) 𝑣 𝑗
𝑗 !

, (15)

where we let 𝑎(𝑥, 𝑖) = 𝑥𝑐 (𝑖)−𝑖𝑐 (𝑖−1) and𝑏 (𝑥, 𝑗) = 𝑥− 𝑗 to ease the notation. Since the denominators

on the left and right hand side are positive, and since 𝑏 (𝑥 + 1, 𝑥 + 1) = 0, (15) is equivalent to

𝑥∑︁
𝑖=1

𝑥∑︁
𝑗=0

𝑎(𝑥 + 1, 𝑖)𝑏 (𝑥, 𝑗) 𝑣
𝑖+𝑗

𝑖! 𝑗 !
+

𝑥∑︁
𝑗=0

𝑏 (𝑥, 𝑗)𝑎(𝑥 + 1, 𝑥 + 1) 𝑣 𝑗+𝑥+1

𝑗 !(𝑥 + 1)! −
𝑥∑︁
𝑖=1

𝑥∑︁
𝑗=0

𝑎(𝑥, 𝑖)𝑏 (𝑥 + 1, 𝑗) 𝑣
𝑖+𝑗

𝑖! 𝑗 !
≥ 0,

which we rewrite

𝑥∑︁
𝑖=1

𝑥∑︁
𝑗=0

(𝑎(𝑥 + 1, 𝑖)𝑏 (𝑥, 𝑗) − 𝑎(𝑥, 𝑖)𝑏 (𝑥 + 1, 𝑗)) 𝑣
𝑖+𝑗

𝑖! 𝑗 !︸                                                             ︷︷                                                             ︸
1

+
𝑥∑︁
𝑗=0

𝑏 (𝑥, 𝑗)𝑎(𝑥 + 1, 𝑥 + 1) 𝑣 𝑗+𝑥+1

𝑗 !(𝑥 + 1)!︸                                        ︷︷                                        ︸
2

≥ 0. (16)

We now turn our attention to each of the two terms appearing in the previous inequality. In

particular, we will show that collecting all the contributions corresponding to the same power of 𝑣

significantly simplifies the expressions, and allows us to conclude.

We beginwith the second term, and substitute the definitions of𝑎,𝑏 in𝑏 (𝑥, 𝑗)𝑎(𝑥 + 1, 𝑥 + 1) so that

2 =

𝑥∑︁
𝑗=0

𝑥 − 𝑗

𝑗 !𝑥 !

(𝑐 (𝑥 + 1) − 𝑐 (𝑥))𝑣 𝑗+𝑥+1. (17)

We now focus on the first term, and observe that

𝑎(𝑥 + 1, 𝑖)𝑏 (𝑥, 𝑗) − 𝑎(𝑥, 𝑖)𝑏 (𝑥 + 1, 𝑗)= ((𝑥 + 1)𝑐 (𝑖) − 𝑖𝑐 (𝑖 − 1)) (𝑥 − 𝑗)−(𝑥𝑐 (𝑖) − 𝑖𝑐 (𝑖 − 1)) (𝑥 + 1 − 𝑗)
=− 𝑗𝑐 (𝑖) + 𝑖𝑐 (𝑖 − 1),

where we made use of the definitions of 𝑎 and 𝑏. Hence, we can utilize indices 𝑖 and 𝑞 = 𝑖 + 𝑗 in

place of 𝑖 , 𝑗 to rewrite the first term appearing in (16) as

1 =

𝑥∑︁
𝑖=1

𝑥∑︁
𝑗=0

(𝑖𝑐 (𝑖 − 1) − 𝑗𝑐 (𝑖)) 𝑣
𝑖+𝑗

𝑖! 𝑗 !

=

2𝑥∑︁
𝑞=1

∑︁
𝑖∈[𝑥 ]

s.t. 𝑞−𝑥≤𝑖≤𝑞

𝑖𝑐 (𝑖 − 1) − (𝑞 − 𝑖)𝑐 (𝑖)
𝑖!(𝑞 − 𝑖)! 𝑣𝑞

=

2𝑥∑︁
𝑞=𝑥+1

𝑥∑︁
𝑖=𝑞−𝑥

𝑖𝑐 (𝑖 − 1) − (𝑞 − 𝑖)𝑐 (𝑖)
𝑖!(𝑞 − 𝑖)! 𝑣𝑞 +

𝑥∑︁
𝑞=1

𝑞∑︁
𝑖=1

𝑖𝑐 (𝑖 − 1) − (𝑞 − 𝑖)𝑐 (𝑖)
𝑖!(𝑞 − 𝑖)! 𝑣𝑞

=

2𝑥∑︁
𝑞=𝑥+1

𝑥∑︁
𝑖=𝑞−𝑥

𝑖𝑐 (𝑖 − 1) − (𝑞 − 𝑖)𝑐 (𝑖)
𝑖!(𝑞 − 𝑖)! 𝑣𝑞

=

2𝑥∑︁
𝑞=𝑥+1

𝑐 (𝑞 − 𝑥 − 1) − 𝑐 (𝑥)
𝑥 !(𝑞 − 𝑥 − 1)! 𝑣𝑞

=

𝑥−1∑︁
𝑗=0

1

𝑗 !𝑥 !

(𝑐 ( 𝑗) − 𝑐 (𝑥))𝑣 𝑗+𝑥+1

(18)
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where the second line is obtained using the fact that 𝑞 runs from 1 to 2𝑥 , 𝑖 ∈ [𝑥] and 𝑗 = 𝑞 − 𝑖

belongs to 0 ≤ 𝑞 − 𝑖 ≤ 𝑥 . The third line follows upon distinguishing the case of 𝑥 + 1 ≤ 𝑞 ≤ 2𝑥 and

𝑞 ∈ [𝑥]. The fourth line is due to the fact that the second summand in the third line vanishes, since

𝑞∑︁
𝑖=1

𝑖𝑐 (𝑖 − 1) − (𝑞 − 𝑖)𝑐 (𝑖)
𝑖!(𝑞 − 𝑖)! 𝑣𝑞 =

𝑞∑︁
𝑖=2

𝑐 (𝑖 − 1)
(𝑖 − 1)!(𝑞 − 𝑖)! −

𝑞−1∑︁
𝑖=1

𝑐 (𝑖)
𝑖!(𝑞 − 𝑖 − 1)! = 0.

The fifth line follows from

𝑥∑︁
𝑖=𝑞−𝑥

𝑖𝑐 (𝑖 − 1) − (𝑞 − 𝑖)𝑐 (𝑖)
𝑖!(𝑞 − 𝑖)! =

𝑥∑︁
𝑖=𝑞−𝑥

𝑐 (𝑖 − 1)
(𝑖 − 1)!(𝑞 − 𝑖)! −

𝑥∑︁
𝑖=𝑞−𝑥

𝑐 (𝑖)
𝑖!(𝑞 − 𝑖 − 1)!

=
𝑐 (𝑞 − 𝑥 − 1)
(𝑞 − 𝑥 − 1)!𝑥 !

+
𝑥∑︁

𝑖=𝑞−𝑥+1

𝑐 (𝑖 − 1)
(𝑖 − 1)!(𝑞 − 𝑖)! −

𝑥−1∑︁
𝑖=𝑞−𝑥

𝑐 (𝑖)
𝑖!(𝑞 − 𝑖 − 1)! −

𝑐 (𝑥)
𝑥 !(𝑞 − 𝑥 − 𝑖)!

=
𝑐 (𝑞 − 𝑥 − 1) − 𝑐 (𝑥)

𝑥 !(𝑞 − 𝑥 − 1)!
The final line is derived reverting to the original indices 𝑖 and 𝑗 .

Thus, in light of (18) and (17), the inequality (15) we need to show reduces to

𝑥−1∑︁
𝑗=0

[𝑐 ( 𝑗) − 𝑐 (𝑥) + (𝑥 − 𝑗) (𝑐 (𝑥 + 1) − 𝑐 (𝑥))] 𝑣
𝑗+𝑥+1

𝑗 !𝑥 !

≥ 0 ∀𝑣 ∈ R>0, 𝑥 ∈ N.

The summand corresponding to 𝑗 = 0 reads as 𝑥𝑐 (𝑥 + 1) − (𝑥 + 1)𝑐 (𝑥) = 𝑥 (𝑥 + 1) (𝑏 (𝑥 + 1) − 𝑏 (𝑥)),
and it is non-negative since 𝑏 is non-decreasing. All other summands are non-negative thanks to

the convexity of 𝑐 , that guarantees 𝑐 (𝑥 + 1) − 𝑐 (𝑥) ≥ (𝑐 (𝑥) − 𝑐 ( 𝑗))/(𝑥 − 𝑗) as 1 ≤ 𝑗 < 𝑥 , so that

𝑐 ( 𝑗) − 𝑐 (𝑥) + (𝑥 − 𝑗) (𝑐 (𝑥 + 1) − 𝑐 (𝑥)) ≥ 0. One concludes using these observations and 𝑣 > 0. □
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