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Abstract. We consider the fundamental problem of assigning distinct labels to
agents in the probabilistic model of population protocols. In this distributed model,
during each consecutive step the random scheduler draws uniformly at random a
pair from the population of n identical agents. The two chosen agents interact
and on the conclusion of the step they update their states according to the prede-
fined transition function. This function is designed to allow agents to solve the
considered shared computational task.
Our protocols operate under the assumption that the size n of the population is
embedded in the transition function. In addition, our solutions rely on a unique
leader which can be precomputed with a negligible impact on our upper bounds.
The efficiency of our protocols is expressed in terms of the number of states
utilized by agents, the size of the range from which the labels are drawn, and the
expected number of interactions required by our solutions.
Among other things, we consider silent labeling protocols, where eventually each
agent reaches its final state and remains in it forever, as well as safe labeling pro-
tocols which (i) can produce a valid agent labeling in a finite number of interac-
tions, and (ii) guarantee that at any step of the protocol no two agents have the
same label.
We first focus on labeling silent or safe protocols which use very small number of
states and labels from range 1, . . . , n.We provide a silent and safe protocol which
uses only n+ 5

√
n+ 4 states. The expected number of interactions required by

the protocol isO(n3). On the other hand, we show that any safe protocol, as well
as any silent protocol which provides a valid labeling with probability > 1− 1

n
,

uses at least n+
√
n−1 states. It follows that our protocol is almost state-optimal.

In addition, we present a variant of this protocol which uses n(1 + ε) states. The
expected number of interactions required by this variation is O(n2/ε2), where
ε = Ω(n−1/2). On the other hand, we show that for any safe labeling protocol
utilizing n+t < 2n states the expected number of interactions required to achieve
a valid labeling is at least n2

t+1
. We show also an analogous lower bound on the

expected number of interactions for any silent labeling protocol which provides
a valid labeling with probability 1.
Next, we present a fast labeling protocol for which the required number of inter-
actions is asymptotically optimal, i.e., O(n logn), with high probability. It uses
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O(n) states and draws labels from the range 1, . . . , 2n. In addition, we provide
a generalization of the protocol requiring O(n logn/ε) interactions with high
probability, utilizing (2 + ε)n + O(logn) states and drawing labels from the
range 1, . . . , (1 + ε)n, where ε = Ω(n−1). On the other hand, we consider a
natural class of labeling, the so-called pool protocols, that includes our fast pro-
tocol and its generalization. We show that the expected number of interactions
required by any pool protocol is at least n2

r+1
, when the label range is limited to

1, . . . , n+ r < 2n. Our fast labeling protocols are also silent and safe.

1 Introduction

The problem of assigning and further maintaining unique identifiers for entities
in distributed systems is one of the core problems related to network integrity. In
addition, a solution to this problem is often an important preprocessing step for
more complex distributed algorithms. The tighter the range that the identifiers
are drawn from, the harder the assignment problem becomes.

In this paper we adopt the probabilistic population protocol model in which
we study the problem of assigning to all agents distinct identifiers which we
refer to as labels. The adopted model was originally intended to model large
systems of agents with limited resources (state space) [5]. In this model the
agents are prompted to interact with one another towards a solution of a shared
task. The execution of a protocol in this model is a sequence of pairwise inter-
actions between randomly chosen agents. During an interaction, each of the two
agents: the initiator and the responder (the asymmetry assumed in [5]) update
its state in response to the observed state of the other agent according to the
predefined (global) transition function.

Designing our population protocols for the problem of assigning unique la-
bels to the agents (labeling problem), we make a natural assumption that the
number n of agents is known in advance. Our protocols would also work if only
an upper bound on the number of agents is known to agents. In fact, in such
case the problem becomes easier as the range from which the labels are drawn
is larger. Our labeling protocols also use the concept of a leader, i.e., an agent
singled out from the population, which improves coordination of more com-
plex tasks and processes. A good example is synchronization via phase clocks
propelled by leaders. More examples of leader-based computation can be found
in [6].

In the original model of population protocol proposed and studied in [5],
the state space of agents was assumed to be constant. Subsequently, by allowing
the number of utilized states to grow with the number n of agents a larger num-
ber of problems became solvable in this model. Another important feature of
this model is the space/time trade-off where larger state space can dramatically
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decrease the expected number of interactions needed to solve the considered
task.

For instance, any protocol for the exact majority problem (where the bias
between competing opinions is very small or equal to zero) utilizing a constant
number of states results in the expected number of interactions Ω(n2). In con-
trast, in the protocols utilizing O(poly(log n)) states the expected number of
interactions drops to O(n · poly(log n)) [20]. This is important as the expected
number of interactions O(n log n) is a natural lower bound to solve any non-
trivial problem by a population protocol. The main reason is that Ω(n log n) in-
teractions are needed to achieve a positive constant probability that each agent
is involved in at least one interaction [11]. In fact, there is already an informally
agreed class of fast population protocols which require O(n · poly(log n)) in-
teractions. This class can be defined in terms of the notion of parallel time in
probabilistic population protocols which refers to the total number of interac-
tions divided by the number of agents n. Namely, fast population protocols have
polylogarithmic parallel execution time. Similar development with respect to the
space/time trade-off can be found in relation to leader election [1,10,12]. The
newest results [14,22,23] elaborate on state-optimal leader election protocols
utilizing O(log log n) states. These include the fastest possible protocol [14]
based on O(n log n) interactions in expectation, and a slightly slower proto-
col [22] requiring O(n log2 n) interactions with high probability.

In the unique labeling problem adopted here, the number of utilized states
needs to reflect the number of agents n. Perhaps the simplest protocol for unique
labeling in population networks is as follows [17] (cf. [15]). Initially, all agents
hold label 1 which is equivalent with all agents being in state 1. In due course,
whenever two agents with the same label i interact, the responder updates own
label to i + 1. The advantage of this simple protocol is that it does not need
any knowledge of the population size n and it utilizes only n states and assigns
labels from the smallest possible range [1, n]4. The severe disadvantage is that it
needs at least a cubic in n number of interactions (getting rid of the last multiple
label i, for all i = 1, . . . n − 1, requires a quadratic number of interactions
in expectation) to achieve the configuration in which the agents have distinct
labels.

In the following two examples of protocols for unique labeling, we assume
that the population size n is embedded in the transition function, such protocols
are commonly used and known as non-uniform protocols [4], and one of the
agents is distinguished as the leader, see leader based protocols [6].

In the first of the two examples, we instruct the leader to pass labels n, n−
1, ..., 2 to the encountered subsequently unlabeled yet agents and finally assign

4 We shall denote a range [p, · · · , q] by [p, q] further.
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1 to itself. The protocol uses only 2n − 1 states (n states utilized by the leader
and n − 1 states by other agents) and it assigns unique labels in the smallest
possible range [1, n] to the n agents. Unfortunately, this simple protocol requires
Ω(n2 log n) interactions because as more agents get their labels, interactions
between the leader and agents without labels become less likely. The probability
of such an encounter drops from 1

n at the beginning to 1
n(n−1) at the end of the

process.
By using randomization, we can obtain a much faster simple protocol as

follows. We let the leader to broadcast the number n to all agents. It requires
O(n log n) interactions with high probability (w.h.p. for short) [20]. When an
agent gets the number n, it uniformly at random picks a number in [1, n3] as
its label. The probability that a given pair of agents gets the same label is only
1
n3 . Hence, this protocol assigns unique labels to the agents with probability at
least1− 1

n . It requires only O(n log n) interactions w.h.p. The drawback is that
it uses O(n3) states and the large range [1, n3]. This method also needs a large
number of random bits independent for each agent.

Besides the efficiency and population size aspects, there are also other deep
differences between the three examples of labeling protocols. An agent in the
first protocol never knows whether or not it shares its label with other agents.
This deficiency cannot happen in the case of the second protocol but it takes
place in the third protocol although with a small probability,

In this paper we consider among other things silent labeling protocols and
safe labeling protocols. We say that a (non-necessarily labeling) protocol is
silent if eventually each agent reaches its final state and remains in it forever. We
say that a labeling protocol is safe if, for any given set of agents: (i) there exists
a finite run of the protocol that produces a valid agent labeling; and (ii) at any
time step in any run of the protocol, no two agents have the same label. While
the concept of a silent population protocol is well established in the literature
[16], the concept of a safe labeling protocol is new. Note that a safe labeling
protocol is partially correct in a strong sense since at any time step of its run, the
assigned labels form a valid partial labeling. This in particular might be useful
in the situation where the protocol has to be terminated before completion due
to some unexpected emergency or running out of time.

Observe that among the three examples of labeling protocols, only the sec-
ond one is both silent and safe. The first example protocol is silent [16] but not
safe. Finally, the third (probabilistic) one is silent and almost safe as it violates
the condition (ii) only with small probability.

Two natural questions arise under the assumption that the number n of
agents is known at the beginning to exactly one of the agents only (an implicit
leader).
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1. Can one design a safe or silent protocol for the labeling problem utilizing
substantially smaller number of states than 2n and possibly the minimal
label range [1, n] ?

2. Can one design a protocol for the labeling problem requiring an asymptoti-
cally optimal number ofO(n log n) interactions w.h.p., utilizingO(n) states
and the label range of size O(n) ?

We provide positive answers to both questions. We also discuss the relevant
lower bounds.

We first provide a silent and safe protocol which uses only n + 5
√
n + 4

states and the label range [1, n]. The expected number of interactions required
by the protocol is O(n3). On the other hand, we show that any safe labeling
protocol, as well as any silent protocol which provides a valid labeling with
probability larger than 1− 1

n , uses at least n+
√
n− 1 states. It follows that our

protocol is almost state-optimal. In addition, we present a variant of this protocol
which uses n(1+ε) states. The expected number of interactions required by this
variation is O(n2/ε2), where ε = Ω(n−1/2). On the other hand, we show that
for any safe labeling protocol utilizing n + t < 2n states the expected number
of interactions required to achieve a valid labeling is at least n2

t+1 . We show also
an analogous lower bound on the expected number of interactions for any silent
protocol which provides a valid labeling with probability 1.

Next, we present a population protocol that w.h.p. requires an asymptoti-
cally optimal number of O(n log n) interactions to assign distinct labels from
the range [1, 2n]. Only O(n) states are used by the protocol. We also present a
more involved generalization of the protocol, where the range of assigned labels
is [1, (1 + ε)n]. The generalized protocol requires O(n log n/ε) interactions in
order to complete the assignment of distinct labels from [1, (1 + ε)n] to the n
agents, w.h.p. It uses (2 + ε)n + O(log n) states. Both protocols are silent and
safe.

Finally, we consider a natural class of population protocols for the unique
labeling problem, the so-called pool protocols, including our fast labeling pro-
tocols. We show that for any protocol in this class that picks the labels from the
range [1, n+ r], the expected number of interactions is Ω( n

2

r+1).

Importantly, a unique leader can be efficiently computed as a preprocess-
ing to our protocols without substantially increasing our upper bounds, see the
discussion in the third paragraph of subsection 1.2 (Related work).

Our results are summarized in Tables 1 and 2.
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Theorem # states # interactions Range
Theorem 1 n+ 5 ·

√
n+ 4 expected O(n3) [1, n]

Theorem 2 (1 + ε)n expected O(n2/ε2) [1, n]

Theorem 3 O(n) O(n logn) w.h.p. [1, 2n]

Theorem 4 (2 + ε)n+O(logn) O(n logn/ε) w.h.p. [1, (1 + ε)n]

Table 1. Upper bounds on the number of states, the number of interactions and the range required
by the safe labeling protocols presented in this paper. In Theorem 2, ε is Ω(n−0.5) while in
Theorem 4.9 Ω(n−1).

Protocol type # states # interactions Theorem
any* n Ω(n logn) w.h.p. Theorem 5
safe n+

√
n− 1 - Theorem 6 (1st part)

safe, n+ t < 2n states - expected n2

t+1
Theorem 6 (2nd part)

silent** n+
√
n− 1 - Theorem 7 (1st part)

silent***, n+ t < 2n states - expected n2

t+1
Theorem 7 (2nd part)

pool, range [1, n+ r] - expected n2

r+1
Theorem 8

Table 2. Lower bounds on the number of states or/and the number of interactions required by
labeling protocols. (*) Any labeling protocol that is capable to produce a valid labeling. (**) The
silent protocol in Theorem 7 (first part) is assumed to produce a valid labeling with probability
greater than 1 − 1

n
. (***) The silent protocol in Theorem 7 (2nd part) is assumed to produce a

valid labeling with probability 1

.

1.1 The computational model of population protocols

There is given a population of n agents that can pairwise interact in order to
change their states and in this way perform a computation. A population pro-
tocol can be formally specified by providing a set Q of possible states, a set O
of possible outputs, a transition function δ : Q × Q → Q × Q, and an output
function o : Q → O. The current state q ∈ Q of an agent is updated during
interactions. Consequently, the current output o(q) of the agent also becomes
updated during interactions. The current state of the set of n agents is given by a
vector inQn with the current states of the agents. A computation of a population
protocol is specified by a sequence of pairwise interactions between agents. In
every time step, an ordered pair of agents is selected for interaction by a proba-
bilistic scheduler independently and uniformly at random. The first agent in the
selected pair is called the initiator while the second one is called the responder.
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The states of the two agents are updated during the interaction according the
transition function δ.

We can specify a problem to solve by a population protocol by providing the
set of input configurations, the set O of possible outputs, and the desired output
configurations for given input configurations. For the unique labeling problem,
all agents but one are initially in the same state q0 while a single agent called the
leader is in a special state corresponding to the number n. The set O is just the
set of positive integers. A desired configuration is when all agents output their
distinct labels. The stabilization time of an execution of a protocol is the number
of interactions until the states of agents form a desired configuration from which
no sequence of pairwise interactions can lead to a configuration outside the set
of desired configurations.

1.2 Related Work

There are several papers concerning labeling of processing units (also known as
renaming) in different communication models [18]. E.g., Berenbrink et al. [9]
present efficient algorithms for the so-called lose and tight renaming in shared
memory systems improving on or providing alternative algorithms to the earlier
algorithms by Alistarh et al. [2,3]. The lose renaming where the label space is
larger that the number of units is shown to admit substantially faster algorithms
than the tight renaming [3,9].

The problem of assigning unique labels to agents has been studied in the
model of population protocols solely in the works of Beauquier et al. [8,15]. In
[15], the emphasis is on estimating the minimum number of states which are
required by apparently non-safe protocols. In [8], the authors provide among
other things a generalization of a leader election protocol to include a distribu-
tion of m labels among n agents, where m ≤ n. In the special case of m = n,
all agents will receive unique labels. No analysis on the number of interactions
required by the protocol is provided in [8]. Their focus was on the feasibility
of the solution, i.e., that the considered process eventually stabilizes in the fi-
nal configuration. Their protocol seems inefficient in the state space aspect as it
needs many states/bits to keep track of all the labels.

The labeling problem has been also studied in the context of self-stabilizing
protocols where the agents start in arbitrary (not predefined) states, see [16,17].
In [17], Cai et al. propose a solution which coincides with our first example of
labeling protocols presented in the introduction. In a very recent work [16], Bur-
man et al. study both slow and fast labeling protocols focusing mainly on the
asymptotic bounds, and with the latter utilizing exponential number of states.
The protocols in both papers require the exact knowledge of n and they are
not safe. In our paper, thanks to the predefined leader in addition to the safety
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and silence properties we also obtain tight exact results on the number of uti-
lized states and labels. Please note that by utilizing extra O(log log n) initial-
ization states and leader election results from [14] and [22] one can compute
and confirm the leader in O(n log n) iterations with constant probability and in
O(n log2 n) iterations with high probability. However, if a protocol can utilize
Θ(nc) states, for any constant c < 1, a unique leader can be elected with high
probability in O(n log n) iterations, as described in [11,19]. In other words, one
can precede our labeling protocols with leader election which makes a negligi-
ble impact on the main results in this paper.

The most closely related problem more studied in the literature is that of
counting the population size, i.e., the number of agents. It has been recently
studied by Aspnes et al. in [7] and Berenbrink et al. in [11]. We assume that
the population size is initially known to one of the agents. Alternatively, it can
be computed by using the protocol counting the exact population size given in
[11]. The aforementioned protocol computes the population size in O(n log n)
interactions w.h.p., using Õ(n) states. Another possibility is to use the protocol
computing the approximate population size, presented in [11]. The latter pro-
tocol requires O(n log2 n) interactions to compute the approximate size w.h.p.,
and it uses only a poly-logarithmic number of states. For references to earlier
papers on protocols for counting or estimating the population size, see [11]. To
combine a protocol for counting population size with our protocols for unique
labeling assuming the knowledge of n, one needs to run a protocol for leader
typically being already a part of the former protocol. There is a vast literature
on population protocols for leader election [14,19,20,22]. For the aforemen-
tioned purpose, the most relevant is the recent time- and state-optimal leader
election protocol due to Berenbrink et al. requiring O(n log n) interactions and
O(log log n) states [14] (see also [22]). Our population protocols for unique
labeling use the known population protocol for (one-way) epidemics, or broad-
casting. It completes spreading a message in Θ(n log n) interactions w.h.p. and
it uses only two states [20] (see also Fact 4).

1.3 Organization of the Paper

In the next section, we provide basic facts on probabilistic inequalities and pop-
ulation protocols for broadcasting and counting. Section 3 is devoted to the al-
most state-optimal safe protocol with the label range [1, n] and its variation. In
Section 4, we present our fast safe protocol for unique labeling in the range
[1, 2n] and its generalization to include the range [1, n(1 + ε)]. Section 5 is de-
voted to lower bounds on the number of states or the number of interactions for
safe, silent and the so-called pool protocols for unique labeling. We conclude
with final remarks
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2 Preliminaries

2.1 Probabilistic bounds

Fact 1 (The union bound) For a sequenceA1, A2, ...., Ar of events, Prob(A1∪
A2 ∪ ......Ar) ≤

∑r
i=1 Prob(Ai).

Fact 2 (multiplicative Chernoff lower bound) Suppose X1, ..., Xn are indepen-
dent random variables taking values in {0, 1}. Let X denote their sum and let
µ = E[X] denote the sum’s expected value. Then, for any δ ∈ [0, 1],

P rob(X ≤ (1 − δ)µ) ≤ e
δ2µ
2 holds. Similarly, for any δ ≥ 0, P rob(X ≤

(1 + δ)µ) ≤ e
δ2µ
2+δ holds.

Fact 3 [20] For all C > 0 and 0 < δ < 1, during Cn log n interactions, with
probability at least 1 − n−O(δ2C) , each agent participates in at least 2C(1 −
δ) log n and at most 2C(1 + δ) log n interactions.

2.2 Broadcasting and counting

We shall refer to the following broadcast process which can be completed during
Θ(n log n) interactions w.h.p. Each agent is either in a sate of M-type (got the
message) or in a state of ¬M-type. Whenever an agent in a state of M-type
interacts with an agent in a state of ¬M-type, the latter changes its state to a
state of M-type (gets the message). The process starts when the first agent gets
the message and completes when all agents have the message.

Fact 4 There is a constant c0 , such that for c ≥ c0, the broadcast process
completes in cn log n interactions with probability at least 1− n−Θ(c).

Berenbrink et al. [11] obtained among other things the following results on
counting the population size, i.e., the number of agents.

Fact 5 There is a protocol for a population of an unknown number n of agents
such that w.h.p., after O(n log2 n) interactions the protocol stabilizes and each
agent holds the same estimation of the population size which is either dlog ne
or blog nc. The protocol uses O(log2 n log log n) states.

Fact 6 There is a protocol for a population of an unknown number n of agents
such that w.h.p., after O(n log n) interactions the protocol stabilizes and each
agent holds the exact population size. The protocol uses Õ(n) states.
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3 State- and range-optimal labeling

In this section we propose and analyze state-optimal safe protocols which uti-
lize labels from the smallest possible range [1, n]. We assume that the number
of agents n is known and the leader is given. We propose a safe labeling proto-
col Single-Cycle which utilizes n+5

√
n+4 states and the expected number of

interactions required by the protocol is O(n3). We show later that any safe pro-
tocol operating under the adopted assumptions requires n+

√
n− 1 states, see

Theorem 6, indicating that this protocol is almost state-optimal. Finally we pro-
pose a partial parallelization of Single-Cycle protocol called k-Cycle protocol
which utilizes (1 + ε)n states and O((n/ε)2) interactions for ε = Ω(n−1/2).

3.1 Labeling protocol

The main idea behind the state efficient labeling protocol is to use two agents:
the initial leader A and a nominated (by A) agent B, as partial label dispensers.
These two agents jointly dispense unique labels for the remaining free (non-
labeled yet) agents in the population where agentA dispenses the first and agent
B the second part of each individual label. For the simplicity of presentation,
we assume that n is a square of some integer. During execution of the protocol
agent A uses partial labels label(a) ∈ {0, . . . ,

√
n − 1} and B uses partial

labels label(b) ∈ {1, . . . ,
√
n}. The two dispensers label every agent by a

unique pair of partial labels (label(a), label(b)) where the combination (i, j)
is interpreted as the integer label i ·

√
n + j. The protocols labels first all free

(different to dispensers unlabeled) agents and eventually give labels (0, 2) to
agent B and (0, 1) to agent A.

In a nutshell, the labeling process is based on a single cycle of interactions
between dispensers A and B and the free agents. Agent A awaits an interaction
with a free agent F when A dispenses to F its current partial label label(a).
Now F awaits an interaction with B in order to receive the second part of its
label. And when this happens agent F concludes with the combined label and
agent B awaits an interaction with A to inform that the next free agent needs to
be labeled. On the conclusion of this interaction if label(b) > 1 agentB adopts
new partial label label(b)− 1, otherwise B adopts label(b) =

√
n and agent

A adopts new label label(a) − 1. The only exception is when label(a) = 0
and label(b) = 2 when agent B adopts label (0, 2) and agent A adopts label
(0, 1) and both agents conclude the labeling process. State utilization in Single-

Cycle protocol

[AgentA] Since label(a) ∈ {0, . . .
√
n−1} dispenserA utilizes 2·

√
n+2

states including:

10



– A.init = (1) # the initial (leadership) state of dispenser A,
– A[label(a), await(F )] # dispenser A carrying partial label label(a) awaits in-

teraction with a free agent F,
– A[label(a), await(B)] # dispenser A carrying partial label label(a) awaits in-

teraction with dispenser B,
– A.final = (0, 1) # the final state of A.

[Agent B] Since label(b) ∈ {0, . . .
√
n} dispenser B utilizes 2 ·

√
n + 3

states including:

– B[label(b), await(F )] # dispenser B carrying partial label label(b) awaits in-
teraction with a free agent F,

– B[label(b), await(A)] # dispenser B carrying partial label label(b) awaits in-
teraction with dispenser A

– B.final = (0, 2) # the final state of B.

[Agent F ] Since free agents carry partial labels label(a) ∈ {0, . . .
√
n−1}

and eventually adopt one of the n− 2 destination labels (excluding dispensers)
they utilize n+

√
n− 1 states including:

– F.init = (0) # the initial (non-leader) sate of F
– F [label(a), await(B)] # free agent F carrying partial label label(a) awaits in-

teraction with dispenser B,
– F.final = (label(a), label(b)) # the final state of F.

In total Single-Cycle protocol requires n+ 5 ·
√
n+ 4 states.

Transition function in Single-Cycle protocol

[Step 0] Initialization During the first interaction of A with a free agent the
second dispenser B is nominated. Both dispensers adopt their largest labels.
Agent A awaits a free agent in the initial state while agent B awaits a free agent
carrying a partial label obtained from A.

– (A.init, F.init)
→ (A[label(a) =

√
n−1, await(F )], B[label(b) =

√
n, await(F )]),

The three steps C1, C2, and C3 of the labeling cycle are given below.
[Step C1] Agent A dispenses partial label During an interaction of agent A
with a free agent F the current partial label label(a) is dispensed to F . Both
agents await interactions with dispenser B which is ready to interact with par-
tially labeled F but not A.

– (A[label(a), await(F )], F.init)
→ (A[label(a), await(B)], F [label(a), await(B)]) # Go to Step

C2
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[Step C2] Agent B dispenses partial label During an interaction of agent B
with a free agent F which carries partial label label(a), the complementary
current partial label label(b) is dispensed to F . Agent F concludes in the final
state with the combined label (label(a), label(b)). Agent B is now ready for
interaction with A.

– (B[label(b), await(F )], F [label(a), await(B)])
→ (B[label(b), await(A)], F.final = (label(a), label(b))) #

Go to Step C3

[Step C3] Agent A and B negotiate a new label or conclude In the case when
label(a) = 0 and label(b) = 2 the dispensers A and B conclude in states
(0, 1) and (0, 2) respectively, see the first transition. Otherwise a new combina-
tion of partial labels is agreed and the protocol goes back to Step C1.

– (A[label(a) = 0, await(B)], B[label(b) = 2, await(A)])
→ (A.final = (0, 1), B.final = (0, 2)) # Conclude the labeling pro-

cess
– (A[label(a) = 0, await(B)], B[label(b) > 2, await(A)]) or

(A[label(a) > 0, await(B)], B[label(b) > 1, await(A)])
→ (A[label(a), await(F )], B[label(b) − 1, await(F )]) # Go to

Step C1

– (A[label(a) > 0, await(B)], B[label(b) = 1, await(A)])
→ (A[label(a) − 1, await(F )], B[label(b) =

√
n, await(F )]) #

Go to Step C1

Theorem 1. Single-cycle protocol is silent and safe, it utilizes n + 5 ·
√
n + 4

states and the minimal label range [1, n]. The expected number of interactions
required by the protocol is O(n3).

Proof. The protocol is silent by its definition. It is also safe as all labels are dis-
pensed in the sequential manner and the labeling process concludes when the
two dispensers finalize their own labels. In particular, as soon as the two dis-
pensers A and B are established they operate in a short cycle formed of steps
C1, C2 and C3 labeling one by one all free agents in the population. One can
observe that the sequence of cycles mimics the structure of two nested loops
where the external loop iterates along the partial labels ofA and the internal one
along partial labels of B. In total, we have n − 2 iterations where the expected
number of interactions required by each iteration is O(n2). Thus one can con-
clude that the expected number of interactions required by the whole labeling
process is O(n3). By the definition of the protocol the range of assigned labels
is [1, n]. Finally, as indicated earlier in this section the number of all states uti-
lized by the protocol is equal to n+ 5 ·

√
n+ 4. ut
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Observe that when the exact value of n is embedded in the transition function
on the conclusion all agents become dormant, i.e., they stop participating in
the labeling process. One could redesign the protocol such that the labels are
dispensed in the increasing order using a diagonal method where agent A gets
label (0, 0), agent B gets label (0, 1), the first labeled free agent gets (1, 0), the
second (0, 2), then (1, 1) and (2, 0),whenA andB start using the next diagonal,
etc. In this case the size of the population does not need to be known in advance,
however, the two dispensers will never stop searching for free agents yet to be
labeled.
Faster Labeling We observe that one can partially parallelize Single-Cycle pro-
tocol by instructing leaderA to form k pairs of dispensers where each pair labels
agents in a distinct range of size n/k. In such case the new k-cycle protocol re-
quires extra 2k states to allow leader A initialize the labeling process (create
two dispensers) in all k cycles. Thus the total number of states is bounded by
n+2k+k·(5

√
n/k+4) = n+6k+5k·

√
n/k < n+6(k+

√
nk) < n+12

√
nk,

as k <
√
nk.As we need to pick k for which n+12

√
nk ≤ n+nεwe conclude

that k ≤ nε2/144.
One can show that for k = nε2/144, the expected number of interactions

required by the k-cycle protocol is O(n2/ε2). Note that in order to initialize
k cycles the leader A has to communicate with 2k − 1 free agents. As k is
at most a small fraction of n during the search for dispensers for each cycle
the number of free agents is always greater than n/2 (in fact it is very close
to n). Thus the probability of forming a new dispenser during any interaction
is greater than 1/2n, i.e., the product of the probability 1/n that the random
scheduler selects leader A as the initiator, times the probability greater than 1/2
that the responder is a free agent. In order to finish the initialization, we need
to create new dispensers 2k − 1 times. Using Chernoff bound, we observe that
after O(kn) = O(n2/ε2) interactions all k cycles have their two dispensers
formed. As each cycle dispenses n/k = 144/ε2 labels and the expected number
of interactions required to dispense a single label isO(n2) with high probability,
the expected number of interactions required by a specific cycle to generate all
labels is O(n2/ε2) also with high probability. Hence, the expected number of
interactions required to conclude the labeling process isO(n2/ε2). Finally, note
that for small values of ε approaching n−1/2 k-cycle protocol reduces to Single-
cycle protocol.

Theorem 2. For k = nε2/144, where ε = Ω(n−1/2), and the minimal la-
bel range [1, n], the proposed k-cycle labeling protocol provides a space-time
trade-off in which utilization of (1 + ε)n states permits the expected number of
interactions O(n2/ε2).
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4 Labeling with asymptotically optimal number of interactions,
nearly optimal number of states and range

In this section, we provide a silent and a safe labeling protocol that assigns
unique labels from the range [1, 2n] to n agents inO(n log n) interactions w.h.p.
Then, we generalize the protocol to include the range [1, (1+ε)n].We show that
the generalized protocol assigns unique labels from [1, (1+ε)n] inO(n log n/ε)
interactions w.h.p. In the first protocol, the agents useO(n) states, in the second
protocol only (2 + ε)n+O(log n) states.

4.1 Range [1, 2n]

The protocol runs in two main phases. The idea of the first phase resembles
that of load balancing [11], the difference is that tokens (in our case labels and
interval sub-ranges) are distinct.

We assume that at the beginning of the first phase, a leader agent knows
the number n of agents in the population network. The leader assigns the label
1 and also temporarily the interval [2, n] to itself. Next, whenever two agents
interact, one with label and a temporarily assigned interval [q, r] where r > q
and the other without label, the former agent shrinks its interval to [q, b q+r2 c]
and it gives away the label b q+r2 c + 1 and if b q+r2 c + 2 ≤ r also the sub-
interval [b q+r2 c+ 2, r] to the latter agent. Furthermore, whenever an agent with
label and a temporarily assigned singleton interval [q, q] interacts with an agent
without label, the former agent cancels its interval and gives the label q to the
latter agent. In the remaining cases, interactions have no effect. Note that during
the first phase a sub-tree of the binary tree of the partition of the start interval
[1, n] with n leaves determined by the protocol rules is formed, see Fig. 1. Also
observe that when an agent at an intermediate node of the tree interacts with an
agent without label then the former agent migrates to the left child of the node
while the latter agent lands at the right child of the node.

In the second phase, when an agent with a label i ∈ [1, n] at a leaf of the tree
interacts with an agent without label for the first time then the latter agent gets
the label i+n. Interactions between agents (if any) at intermediate nodes of the
tree and agents without labels are defined as in the first phase. The following
lemma is central in showing that O(n log n) interactions are sufficient w.h.p. to
implement our protocol.

Lemma 1. There is a constant c such that after cn log n interactions in the first
phase the number of agents without labels drops below n/4 w.h.p.
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Fig. 1. An example of the partition tree of the start interval.

Proof. The proof is by contradiction. Suppose that a set F of at least n/4 agents
without labels survives at least cn log n interactions, where the constant c will
be specified later.

Consider first the leader agent starting with the interval [2, n] during the
aforementioned interactions. When the agent interacts with an agent without
label its interval is roughly halved. We shall call such an interaction a success.
The probability of success is at least 1

4n . The expected number of successes is
at least c4 log n. By using Chernoff multiplicative bound given in Fact 2, we can
set c to enough large constant so the probability of at least log2 n+ 1 successes
will be at least 1 − 1

n2 . This means that the leader will end up without any
interval with so high probability during the cn log n interactions. The leader
chooses the leftmost path in the binary partition tree of the start interval [1, n].
Consider an arbitrary path P from the root to a leaf in the tree. Note that several
agents during distinct interactions can appear on the path. Define as a success
an interaction in which an agent currently on P interacts with an agent without
label. The expected number of successes is again at least c

4 log n and again we
can conclude that there are at least log2 n+1 successes with probability at least
1 − 1

n2 . Simply, the probabilities of interacting with an agent without label are
the same for all agents with labels, i.e., on some paths in the tree. Another way
to argue is that the leader could make other decisions as to which roughly half
of interval to preserve and the path choice. By the union bound (Fact 1), we
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conclude that all the n paths from the root to the leaves in the tree could be
developed during the cn log n interactions, so all agents would get a label, with
probability at least 1− 1

n . We obtain a contradiction with the so long existence
of the set F. ut

Lemma 2. If the second phase starts after cn log n interactions, where c is the
constant from Lemma 1, then only O(n log n) interactions are needed to assign
labels in [1, 2n] to the remaining agents without labels, w.h.p.

Proof. The number of agents without labels at the beginning of the second phase
is at most n/4 w.h.p. Hence, at the beginning of this phase the number of agents
with labels is at least 3

4n w.h.p. An agent with label i ≤ n at a leaf of the tree
can give the label i + n to an agent without label only once. Since this can
happen at most n4 times, the number of agents with labels in [1, n] that can give
a label is always at least n2 w.h.p. We conclude that for an agent without label
the probability of an interaction with an agent that can give a label is is at least
almost 1

2n . Hence, after each O(n) interactions the expected number of agents
without label halves. It follows that the expected number of such interactions
rounds is O(log n). Consequently, the number of the rounds is also O(log n)
w.h.p. by Chernoff bound (Fact 2).

An alternative way to obtain theO(n log n) bound on the number of interac-
tions w.h.p. is to use Fact 3 with C = O( 1

1/2) and δ = 1
2 . Then, each agent will

interact with at least C log n agents w.h.p. during Cn log n interactions. Con-
sequently, the probability that a given agent does not interact with any agent
that can give a label during the aforementioned interactions is (1− 1

2)
O(2) logn.

Hence, by picking enough large C, we conclude that each agent (in particular
without label) will interact with at least one agent that can give a label during
the Cn log n interactions w.h.p. ut

Lemma 3. During both phases, no pair of agents gets the same label.

Proof. The uniqueness of the label assignments in the first phase follows from
the disjointedness of the labels and intervals assigned to agents before and af-
ter each interaction. This argument also works for the labels not exceeding n
assigned later in the second phase. Finally, the uniqueness of the labels of the
form i+n follows from the uniqueness of the labels of the agents passing these
labels. ut

Theorem 3. There is a silent and safe protocol for population of n agents that
w.h.p. assigns unique labels in the range [1, 2n] to the agents equipped with
O(n) states in O(n log n) interactions.
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Proof. The correctness of label assignment in both phases and the fulfilling the
condition (ii) in the definition of a safe protocol follows from Lemma 3. Both
phases require O(n log n) interactions w.h.p. by Lemmata 1, 2.

To put the two phases described in Lemmata 1, 2 together, we let the leader
agent to count its interactions. When the number of interactions of the leader in
the first phase exceeds an appropriate multiplicity of log n, the total number of
interactions in the first phase achieves the required lower bound from Lemma 1
w.h.p. by Fact 3. Therefore, then the leader starts broadcasting the message on
the transition to the second phase to the other agents. By Fact 4, the broadcasting
increases the number of interactions only by O(n log n) w.h.p. (The leader can
also stop the second phase in a similar fashion.) It follows in particular that the
condition (i) in the definition of a safe protocol is satisfied.

To save on the number of states, instead of having states corresponding to all
possible sub-intervals of [1, n], we consider states corresponding to the nodes
of the interval partition tree (see Fig. 1) whose sub-tree is formed in the first
phase. More precisely, we associate two states with each intermediate node of
the binary tree on n leaves and n−1 intermediate nodes. They indicate whether
or not the agent at the intermediate node has already received the message about
the transition to the second phase. Next, we associate four states to each leaf of
the tree. They indicate similarly whether or not the agent at the leaf has already
received the phase transition message and whether or not the agent has already
passed a label to an agent without label in the second phase, respectively. With
each label in the range [n+1, 2n],we associate only a single state. Additionally,
there areO(log n) states used by the leader to count interactions in order to start
the second phase. Thus the total number of states does not exceed 2n + 4n +
n+O(log n). ut

By combining the protocol of Theorem 3 with that of Berenbrink et al. for
exact counting the population size (Fact 6), we obtain the following corollary
on unique labeling when the population size is unknown to agents initially.

Corollary 1. There is a silent and a safe protocol for a population of n agents
that assigns unique labels in the range [1, 2n] to the agents initially not knowing
the number n, equipped with Õ(n) states, in O(n log n) interactions w.h.p.

Proof. We run first the protocol for exact counting (Fact 6) and then our pro-
tocol for unique labeling (Theorem 3) using the leader elected by the counting
protocol. We can synchronize the three protocols in a similar fashion as we
synchronized the two phases of our protocol additionally using O(n log n) in-
teractions and O(log n) states. ut

By using the method of approximate counting from [11] (Fact 5) instead of
that for exact counting (Fact 6), we can decrease the number of states to O(n)
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at the cost of increasing the label range to [1, 8n] and the number of interactions
required to O(n log2 n).

4.2 Range [1, (1 + ε)n]

The new protocol is obtained by the following modifications in the previous one.
The leader which counts the number of own interactions starts broadcasting the
phase transition message when the number of agents without labels drops be-
low nε/4 w.h.p. (see Lemma 4). The information about the transition to the
second phase affects only the agents at the leaves of the interval partition tree,
corresponding to labels in [1, nε]. When they get the message about the phase
transition, they know that they can pass a label which is the sum of their own
label and n to the first agent without label they interact with. For this reason,
only the agents at the leaves corresponding to labels in [1, nε] as well as the
agents that are at the nodes that are ancestors of the aforementioned leaves par-
ticipate in the broadcasting of the phase transition message. (Observe that the
number of agents at these ancestors is O(nε) and an agent at such an ancestor
also has a label in [1, nε].) In the second phase, besides the agents at the leaves
corresponding to labels in [1, nε] and the agents without labels, also the agents
at the intermediate nodes of the tree (if any) can really interact, in fact as in the
first phase.

The following generalization of Lemma 1 is straightforward.

Lemma 4. Let c be the constant from the statement of Lemma 1. During cn log n/ε
interactions in the first phase the number of agents without label drops below
nε/4 w.h.p.

Proof. The proof is a generalization of that for Lemma 1. Define Fε as a set
of at least εn/4 agents without labels that survive at least cn log /ε interactions
in the first phase. Note that for an arbitrary agent, the probability of interaction
with a member in Fε is at least ε

4n . The rest of the proof is analogous to that
of Lemma 1. It is sufficient to replace F by Fε and the probability 1

4n of an
interaction with a member in F with that ε

4n of an interaction with a member in
Fε. ut

Having Lemma 4, we can easily generalize Lemma 2 to the following.

Lemma 5. If the second phase starts after cn log n/ε interactions, where c is
the constant from Lemmata 1, 4 , then onlyO(n log n/ε) interactions are needed
to assign labels in [1, (1 + ε)n] to the remaining agents without labels, w.h.p.

Proof. The number of agents without labels at the beginning of the second phase
is smaller than εn/4 w.h.p. Hence, at the beginning of the second phase the
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number of agents with labels in the range [1, εn] is at least 3εn
4 w.h.p. Recall

that such an agent at a leaf of the tree can give a label to an agent without label
only once. It follows that the number of agents with labels in [1, εn] that can
give a label to an agent without label is always at least εn2 w.h.p. We conclude
that for an agent without label the probability of an interaction with an agent
that can give a label is at least almost ε

2n . Hence, after each O(n/ε) interactions
the expected number of agents without labels halves. It follows that the expected
number of such interactions rounds is O(log n). Consequently, the number of
the rounds is also O(log n) w.h.p. by Fact 2.

An alternative way to obtain the O(n log n/ε) bound on the number of in-
teractions w.h.p. is to use Fact 3 analogously as in the proof of Lemma 2. The
difference is that C is set to O(2ε ) instead of O(2) since the set of agents that
can give a label is of size at least nε2 now. ut

We also need the following auxiliary lemma on broadcasting constrained to
a subset of agents.

Lemma 6. The leader can informΘ(nε) agents with labels not exceedingO(nε)
about the phase transition using only these agents in O(n log n/ε) interactions.

Proof. During the initial part of the broadcasting process, after every O(n/ε)
interactions, the expected number of agents participating in the broadcasting
process doubles. Hence, after O(n log /ε) interactions, the expected number
of informed agents will be Ω(nε). Then, the expected number of uninformed
agents will be halved for every O(n/ε) interactions. So the expected number of
rounds, each consisting of O(n/ε) interactions, needed to complete the broad-
casting is O(log n). It remains to turn the latter bound to a w.h.p. one. This can
be done by using the Chernoff bounds (Fact 2).

Alternatively, we can define for the purpose of the analysis of the doubling
part, a binary broadcast tree. An informed agent at an intermediate node of the
tree after an interaction with an uninformed agent moves to a child of the node
while the other agent now informed places at the other child (cf. the partition
tree in the proofs of Lemmata 1, 4). Then, we can use the technique from the
proofs of Lemmata 1, 4 to show that only O(n log n/ε)interactions are required
w.h.p. to achieve a configuration where only a constant fraction of the agents
participating in the broadcasting is uninformed. To derive the same asymptotic
upper bound on the number of interactions required by the halving part w.h.p.,
we can use Fact 3 with C = O(ε−1) analogously as in the proofs of Lemmata
2, 5. ut

The proof of the following theorem is analogous to that of Theorem 3 with
Lemmata 1, 2 replaced by Lemmata 4, 5.
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Theorem 4. Let ε > 0. There is a silent and safe protocol for a population of n
agents that assigns unique labels in the range [1, (1+ε)n] to n agents equipped
with (2 + ε)n+O(log n) states in O(n log n/ε) interactions w.h.p.

Proof. The distinctness of the labels assigned in both phases and fulfillment
of the condition (ii) in the definition of a safe protocol follows by the same
arguments as in the proof of Lemma 3.

By Lemmata 4, 5, both phases require O(n log n/ε) interactions w.h.p. The
broadcasting about the phase transition starts when the number of agents with-
out labels in the first phase drops below nε/4 w.h.p. By Lemma 6, it requires
O(n log n/ε) interactions w.h.p. since only the Θ(nε) agents in states corre-
sponding to labels in [1, nε] are involved in it. It follows in particular that the
condition (i) in the definition of a safe protocol is satisfied.

The estimation of the number of needed states is more subtle than in The-
orem 3. With each intermediate node of the interval partition tree that does not
correspond to a label in [1, nε] (equivalently, that is not an ancestor of a leaf
corresponding to a label in [1, nε]), we associate a single state. (Recall here
that if an agent at an intermediate node of the tree encounters an agent with-
out label then the former agent moves to the left child of the node.) With each
intermediate node corresponding to a label in [1, nε], we associate two states.
They indicate whether or not the agent at the node has already got the message
about phase transition. Next, with each leaf of the tree corresponding to a label
i in [1, nε], we associate four states. They indicate whether or not the agent at
the leaf has already got the message about the phase transition, and whether or
not the agent has already passed the label i + n to some agent without label,
respectively. To each of the remaining leaves, we associate only a single state.

We also needO(log n/ε) additional states for the leader to count the number
of own interactions in order to start broadcasting the message on transition to
phase two at a right time step. In fact, we can get rid of the O(1ε ) factor here
by letting the leader to count approximately each Θ(1/e) interaction. Simply,
the leader can count only interactions with agents which have got labels not
exceeding O(εn).

Finally, we have nε states corresponding to the labels in [n + 1, (1 + ε)n].
Thus, totally only (2 + O(ε))n + O(log n) states are sufficient. To get rid of
the constant factor at ε, it is sufficient to run the protocol for a smaller ε′ =
Ω(ε). It does not change the asymptotic upper bound on the number of required
interactions w.h.p. and even it decreases the range of the labels. ut

Note that ε in Theorem 4 does not have to be a constant, it can be even so
small as O(n−1).
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By combining the protocol of Theorem 4 with that of Berenbrink et al. for
exact counting the population size (Fact 6), we obtain the following corollary
on unique labeling when the population size is unknown to agents initially. The
proof is analogous to that of Corollary 1.

Corollary 2. Let ε > 0. There is a silent and safe protocol for a population
of n agents that assigns unique labels in the range [1, (1 + ε)n] to the agents
initially not knowing the number n, equipped with Õ(n) states in O(n log n/ε)
interactions w.h.p.

5 Lower bounds

In this chapter, we derive several lower bounds in the number of states or the
number of interactions required by safe, silent or the so-called pool protocols
for unique labeling. Importantly, these lower bounds also hold in our model
assuming that the population size is known to exactly one of the agents initially.

The following general lower bound valid for any range of labels follows
immediately from the definitions of a population protocol and the problem of
unique labeling, respectively.

Theorem 5. The problem of assigning unique labels to n agents requiresΩ(n log n)
interactions w.h.p. and the agents have to be equipped with at least n states.

Proof. Ω(n log n) interactions are needed w.h.p. since each agent has to interact
at least once, see, e.g., the introduction in [11]. The lower bound on the number
of states follows from the symmetry of agents, so any agent (different from the
leader if this is given a priori) has to be prepared to be assigned an arbitrary
label with at least a logarithmic bit representation. ut

5.1 A sharper lower bound on the number of states

Recall that a labeling protocol is safe if, for any given set of agents: (i) there
exists a finite run of the protocol that produces a valid agent labeling; and (ii) at
any time step in any run of the protocol, no two agents have the same label.

Theorem 6. A safe protocol for assigning unique labels to n agents requires at
least n +

√
n − 1 states. Also, if a safe protocol uses n + t states where t < n

then the expected number of interactions required by the protocol to achieve a
valid labeling is n2

t+1 .

Proof. Consider a finite run (i.e., a finite sequence of interactions) of the safe
protocol in which each agent gets assigned a distinct label at the end. There
exists such a finite run by the condition (i).
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Let F be the set of final (i.e., last) states achieved by the agents at the end of
the run, where distinct labels are assigned to them. We have |F | ≥ n. Also, let
R stand for the set of remaining states used in this run. Observe that if an agent
is in a state in F then it has a label.

For an agent x, let f(x) ∈ F be the last state achieved by the agent in the
run, and let pred(x) be the next to the last state achieved by the agent x in the
run.

Next, let A be the set of agents x that achieved their final state in the run by
an interaction of x in the state pred(x) with an agent in a final state in F. We
claim that for two distinct agents x, y ∈ A, pred(x) 6= pred(y). Simply, other-
wise there exists another run of the protocol that assigns the same final state in
F and consequently the same label to both agents x, y, which contradicts con-
dition (ii) of the definition of a safe protocol. Namely, we may assume w.l.o.g.
that x gets its final state f(x) in an interaction with an agent x′ that already
achieved its final state f(x′), and in a later interaction y gets its final state f(y),
in the original run. Then, if we replace the latter interaction by the interaction
between y and the agent x′ in the state f(x′) , it will result in achieving by y the
state f(x) since pred(x) = pred(y). We obtain a contradiction with the con-
dition (ii) since y is in the same state in F as x and hence both have the same
label at the same time step directly after reaching the state f(x) by y. Hence,
|R| ≥ |A| holds.

Let B be the set of remaining agents z that got their final state in F in an
interaction where both agents have been in states outside F, i.e., in R. Since the
agents in B achieved distinct final states with distinct labels in the aforemen-
tioned interactions, we infer that |R|2 ≥ |B| and thus |R| ≥

√
|B|. (Note that

if |R|2 < |B| then there would be a pair of agents in B that would achieve the
same last state in the run and hence it would have the same label at the end of
the considered run.)

Thus, we obtain |R| ≥ max{|A|,
√
n− |A|} ≥

√
n− 1 by straightforward

calculations. This completes the proof of the first part.
To prove the second part, we may assume w.l.o.g. that |A| < n since oth-

erwise t ≥ |R| ≥ |A| ≥ n. Hence, the set B of agents is non-empty. Let x
be a last agent in B that being in the state pred(x) gets its final state f(x) by
an interaction with another agent y in a state s. If y belongs to B then both x
and y are the two last agents in B that simultaneously get their final states in
F in the same interaction. The probability of the interaction between them is
only 1

n2 . Suppose in turn that y belongs to A. We know that t ≥ |R| ≥ |A|
from the previous part. Thus, there are at most t agents in B in the state s with
which the agent x in the state pred(x) could interact. The probability of such
an interaction is at most t

n2 . We conclude that the probability of an interaction
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between the agent x and the agent y after which x gets its final state f(x) is at
most t+1

n2 which proves the second part. ut

We can also obtain an analogous lower bound on the number of states re-
quired by a silent protocol which provides a valid labeling w.h.p. The general
proof idea is analogous to that of Theorem 6. However, showing the existence a
finite run Z for which |R| ≥ |A| requires a substantial effort.

Theorem 7. A silent protocol which assigns unique labels to n agents with
probability larger than 1 − 1

n requires at least n +
√
n − 1 states. Also, if a

silent protocol provides a valid labeling with probability 1 and uses n+ t states
where t < n then the expected number of interactions required by the protocol
to provide a valid labeling is n2

t+1 .

Proof. Let I be the set of ordered pairs of the n agents. I can be interpreted as
the set of possible pairwise interactions between the agents.

Let Z be a finite run of the protocol, i.e., a finite sequence of pairs in I.
Suppose that after the execution of Z, each agent reaches a final state with a
distinct label.

Let FZ be the set of final states achieved by the agents after the execution of
the run Z. We have |FZ | ≥ n. Also, let RZ stand for the set of remaining states
used in this run. Observe that if an agent is in a state in FZ then it has a label.

For an agent x, let fZ(x) ∈ FZ be the last state achieved by the agent in the
run Z, and let predZ(x) be the next to the last state achieved by the agent x in
the run.

Next, letAZ be the set of agents x that achieved their final state in the run Z
by an interaction of x in the state predZ(x) with an agent in a final state in FZ .
We claim that there is a finite run Z of the protocol such that after the execution
of Z, each agent is in a final state with a distinct label and for any pair of distinct
agents x, y ∈ AZ , pred(x) 6= pred(y).

The proof of the claim is by a contradiction. The general intuition is that if
predZ(x) = predZ(y) for two agents x, y ∈ AZ then we can associate with
a prefix of Z a slightly modified equally likely run Z ′ which assigns the same
label to a pair of agents.

To obtain the contradiction, we assume that for each finite run Z in which
the agents achieve final states with distinct labels, there is a pair of agents x, y ∈
AZ , where predZ(x) = predZ(y). Let us consider such a pair of agents x, y ∈
AZ that minimizes the length of the prefix of Z in which both agents achieve
their final stages in FZ . We may assume w.l.o.g. that x gets its final state fZ(x)
in an interaction i1 with an agent x′ that already achieved its final state fZ(x′),
and in a later interaction i2, y gets its final state fZ(y), in the run Z. Thus,
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the shortest prefix of Z in which both x and y get their final stages has the
form Z1i1Z2i2. Then, if we replace the latter interaction i2 by the interaction
i3 between y and the agent x′ in the state fZ(x′) analogous to i1, it will result
in achieving by y the state fZ(x) since predZ(x) = predZ(y). Thus, neither
the run Z1i1Z2i3 nor any of its extensions yield valid labeling of the agents.
Importantly, the runs Z1i1Z2i2 and Z1i1Z2i3 are equally likely (*).

We initialize two sets Svalid and Sinvalid of strings (sequences) over the
alphabet I. Then, for each run Z in which the agents achieve final states with
distinct labels, we insert the prefix Z1i1Z2i2 into Svalid and the corresponding
sequence Z1i1Z2i3 into Sinvalid. Note that by the choice of i1, i2, no string
in Svalid is a prefix of another string in Svalid. The analogous property holds
for Sinvalid. By the construction of the sets, each run Z in which the agents
achieve final states with distinct labels has to overlap or be a lengthening of a
string in Svalid. Furthermore, no run of the protocol that overlaps with a string
in Sinvalid or it is a lengthening of a string in Sinvalid results in a valid labeling.
Define the function g;Svalid → Sinvalid by g(Z1i1Z2i2) = Z1i1Z2i3. By the
property (*), the probability that a string over I is equal to Z1i1Z2i2 or it is a
lengthening of Z1i1Z2i2 is not greater than the probability that a string over I
is equal to g(Z1i1Z2i2) or it is a lengthening of g(Z1i1Z2i2). The function g is
not necessarily a bijection. Suppose that g(Z1i1Z2i2) = g(Z ′1i

′
1Z
′
2i
′
2). Then, we

have Z1i1Z2i3 = Z ′1i
′
1Z2i3. Consequently, the strings Z1i1Z2i2 and Z ′1i

′
1Z
′
2i
′
2

may only differ in the last interaction, i.e., i2 may be different from i′2.However,
i2 and i′2 have to include the same agent (y in the earlier construction) that
appears in i3. We conclude that the aforementioned two strings in Svalid can
differ by at most one agent in the last interaction. It follows that g maps at most
n−1 strings in Svalid to the same string in Sinvalid. Consequently, the event that
the agents eventually achieve their final states yielding a valid labeling is at most
n − 1 times more likely than the complement event. We obtain a contradiction
with theorem assumptions.

Thus, we may assume that we have a finite runZ in which the agents achieve
final states with distinct labels and for any pair of agents x, y ∈ AZ , predZ(x 6=
predZ(y) holds. Consequently, we have |RZ | ≥ |AZ |.

The remaining part of the proof of the theorem goes exactly along the lines
of the corresponding part of the proof of the first statement in Theorem 6. It is
sufficient to replace A, B, F, R, f, pred by AZ , BZ , FZ , RZ fZ , predZ in
the aforementioned part.

Also the proof of the second statement of the theorem can be obtained from
the proof of the second statement of Theorem 6 by the aforementioned replace-
ment. For this purpose however, we need |RZ | ≥ |AZ | to hold for any run Z
resulting in a valid labeling of the agents. The existence of such a run Z showed
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in the proof of the first statement is not sufficient to obtain a lower bound on the
expected number of required iterations. The stronger assumption on the silent
protocol in the second statement in the theorem requiring the protocol to provide
always a valid labeling solves the problem. Simply, if predZ(x) = predZ(y)
for x, t ∈ AZ then neither Z1i1Z2i3 nor any of its lengthening can provide a
valid labeling. We obtain a contradiction with the aforementioned assumption.
Thus, the inequality |RZ | ≥ |AZ | holds for arbitrary run Z ending with a valid
labeling. ut

Corollary 3. If there exist ε > 0 and a safe or silent protocol which assigns
unique labels to n agents (the latter with probability larger than 1 − 1

n ) such
that the protocol uses only n + O(n1−ε) states then the expected number of
interactions required by the protocol to achieve a valid labeling is Ω(n1+ε).

5.2 A lower bound for the range [1, n + r]

Our fast protocols presented in Sections 4 are examples of a class of natural
protocols for the unique labeling problem that we term pool protocols.

During each step of a pool protocol a subset of agents owns explicit or im-
plicit pools of labels which are pairwise disjoint and whose union is included in
the assumed range of labels. When two agents interact, they can repartition the
union of their pools among themselves. Before the start of a pool protocol, only
a single agent (the leader) owns a pool of labels. This initial pool corresponds
to the assumed range of labels. An agent can be assigned only a label from own
pool. After that the label is removed from the pool and it cannot be charged.
Finally, an agent without assigned label cannot give away the whole own pool
during an interaction with another agent without getting some part of the pool
belonging to the other agent.

Note that a pool protocol in particular satisfies the second condition in the
definition of a safe labeling protocol.

Theorem 8. The expected number of interactions required by a pool protocol
to assign unique labels in the range [1, n + r], where r ≥ 0, to the population
of n agents is at least n2

r+1 .

Proof. We shall say that an agent has the P property if the agent owns a non-
empty pool or a label has been assigned to the agent. Observe that if an agent
accomplishes the P property during running a pool protocol then it never loses
it. Also, all agents have to accomplish the P property sooner or later in order to
complete the assignment task. During each interaction of a pool protocol at most
one more agent can get the P property. Since at the beginning only one agent has
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the P property, there must exist an interaction after which only one agent lacks
this property. By the disjointedness of the pools and labels, the assumed label
range, and the definition of a pool protocol, there are at most r+1 agents among
the remaining ones that could donate a sub-pool or label from own pool to the
agent missing the P property. The expected number of interactions leading to
an interaction between the agent missing the P property and one of the at most
r + 1 agents is n2

r+1 . ut

6 Final Remarks

Our upper bound of n + 5 ·
√
n + 4 on the number of states required by a

silent and safe protocol for unique labeling almost matches our lower bound of
n+
√
n− 1.

Our generalized fast safe protocol needsO(n log n/ε) interactions to assign
unique labels from [1, (1 + ε)n] to the n agents, w.h.p under the assumption
that one of the agents knows n initially. It uses (2 + ε)n+O(log n) states. For
a small fixed ε, the number of required interactions is asymptotically optimal,
and the size of label range is close to optimal. Also, the number of states used
by the protocol is close to optimal. Note that the additive term O(log n) can
be shadowed by nε as long as ε = ω( lognn ) by the trick of decreasing ε by a
constant multiplicative factor. In fact, one can modify the generalized protocol
to get rid of the additiveO(log n) completely. The idea is to use assigning labels
to a subset of agents of logarithmic size for counting simultaneously.

We can combine our protocols for unique labeling with the recent protocols
for counting or approximating the population size due to Berenbrink et al. [11]
in order to get rid of the assumption that the population size is known to one of
the agents initially. Since the aforementioned protocols from [11] either require
Õ(n) states or O(n log2 n) interactions, the resulting combinations lose some
of the near-optimality or optimality properties of our protocols (cf. Corollaries
1, 2). The related question if one can design a protocol for counting or closely
approximating the population size simultaneously requiring O(n log n) interac-
tions w.h.p. and at most cn states, where c is a low constant, is of interest in its
own rights.
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