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Modal-Based Nonlinear Model Predictive Control
for 3D Very Flexible Structures

Marc Artola, Andrew Wynn, Rafael Palacios

Abstract—In this paper a novel NMPC scheme is derived,
which is tailored to the underlying structure of the intrinsic
description of geometrically exact nonlinear beams (in which
velocities and strains are primary variables). This is an important
class of PDE models whose behaviour is fundamental to the
performance of flexible structural systems (e.g., wind turbines,
High-Altitude Long-Endurance aircraft). Furthermore, this class
contains the much-studied Euler-Bernoulli and Timoshenko beam
models, but has significant additional complexity (to capture
3D effects and arbitrarily large displacements) and requires
explicit computation of rotations in the PDE dynamics to account
for orientation-dependent forces such as gravity. A challenge
presented by this formulation is that uncontrollable modes
necessarily appear in any finite dimensional approximation to the
PDE dynamics. We show, however, that an NMPC scheme can be
constructed in which the error introduced by the uncontrollable
modes can be explicitly controlled. Furthermore, in challenging
numerical examples exhibiting considerable deformation and
nonlinear effects, it is demonstrated that the asymptotic error
can be made insignificant (from a practical perspective) using
our NMPC scheme and excellent performance is obtained even
when applied to a highly resolved numerical simulation of the
PDEs. We also present a generalisation of Kelvin-Voigt damping
to the intrinsic description of geometrically-exact beams. Finally,
special emphasis is placed on constructing a framework suitable
for real-time NMPC control, where the particular structure of
the underlying PDEs is exploited to obtain both efficient finite-
dimensional models and numerical schemes.

Index Terms—Nonlinear MPC, optimal control, real-time con-
trol, adjoint-based sensitivity analysis, flexible structures.

I. INTRODUCTION

H IGHLY flexible structures are challenging to control,
since linear models fail to capture their fundamental

kinematics. In this paper, we consider geometrically-exact
beam theories for three-dimensional slender structures [1,2],
in which velocities and strains are primary variables. The
governing PDE, described in §II, includes nonlinearities to
describe geometric couplings arising from arbitrarily large de-
formations. Importantly, the linearised form of this description
contains both the classical Euler-Bernoulli and Timoshenko
flexible beam theories, as discussed in §II-D.

Geometrically nonlinear beam models capture the following
features absent from linear descriptions, which typically as-
sume small displacements: (i) The geometric stiffening effect,
where structural stiffness is increased due to a reorienta-
tion of the stress field, of relevance to slender beams and
thin plates which possess higher in-plane than out-of-plane
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stiffness. (ii) Changes to global inertia properties, due to
large deflections: a fundamental consequence is that vibration
modes and frequencies around deformed configurations can
exhibit significant variations from those around unloaded and
undeformed equilibria. (iii) The follower force effect, required
to describe forces whose orientation is fixed with respect
the local orientation of the structure such as aerodynamic
forcing. Such geometrically nonlinear effects arise due to
couplings between different beam motions, i.e, rigid-body,
axial, bending and twisting deformation, and are therefore of
particular importance for fully 3D dynamics (see § V-B). In
contrast, much work to-date regarding modelling and control
of flexible structures has focused on planar cases [3–5]. 3D
scenarios have received less interest, with early works based
on uncoupled equations for different transverse motions [6,7].
Geometrically-nonlinear models have only recently attracted
more attention [8].

Accurate modelling and control of geometrically nonlinear
beams is of significance in aerospace applications, in which
increasingly slender, and hence flexible, aircraft wings and
wind turbine blades are employed for aerodynamic efficiency.
Capturing fluid-structure interactions correctly or predicting
changes in rigid-body dynamics due to a highly deformed
configuration, is crucial for successful vehicle control. In-
deed, the lack of accurate nonlinear models was identified as
contributing to the failure of NASA’s solar-powered Helios
prototype aircraft [9,10].

Model predictive control, which can explicitly employ
model nonlinearities [11, ch. 9], presents a compelling ap-
proach for the control of highly flexible structures, since all the
previously mentioned effects are captured. Another advantage
of MPC is the direct handling of state hard constraints, which
are typical in many flexible structure application problems
(e.g. maximum allowable stresses to alleviate fatigue, max-
imum allowable displacements to prevent collision of flexible
components, etc). However, NMPC has not yet been fully
exploited in this setting due to its prohibitive computational
cost. Indeed, the classical approach of modelling highly
flexible geometrically-nonlinear structures with displacement
and rotations as primary variables typically requires models
with O(102) states for simple geometries [12] to accurately
capture the underlying dynamics. To date, this has restricted
MPC approaches to employ sequential linearisation of the
discretised state-space representation of the system [13,14].

In this paper, we show instead that accurate reduced-order
models of highly-flexible structures, using the intrinsic for-
mulation, can be constructed with significantly fewer (O(10))
states. This opens the door to efficient NMPC: we exploit the
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model structure inherited from the intrinsic formulation and
an adjoint-based sensitivity analysis to implement the real-time
iteration scheme of [15] at low computational cost. It is shown
that this approach outperforms NMPC methods which use
Automatic Differentiation for sensitivity computations, such
as ACADOS [16] or CasADi [17].

A drawback, however, of using the intrinsic formulation
is that rotations appear as derived variables. A sufficiently-
accurate description of rotations is required, for example, if
forces in a fixed global frame (e.g., gravity) are exerted on
the structure. To address this, we introduce a modal-based
approximation of rotations which maintains the underlying
model structure exploited by our NMPC implementation and
does not require a significant increase in model order. A further
implication of rotations being secondary variables is that
linearly unstabilisable modes are introduced in the state-space
representation, making it challenging to apply conventional
MPC frameworks [18], where stabilisability of the underlying
linearised system is required. However, we propose a new
NMPC scheme tailored to this particular partially stabilisable
structure of modal approximations to the intrinsic beam equa-
tions. Specifically, we present LMI conditions for the design
of the NMPCs stage cost and terminal constraint. If satisfied,
provable bounds are then implied on the asymptotic behaviour
of both stabilisable and unstabilisable modes under the closed-
loop NMPC dynamics. Furthermore, convergence is observed
to be robust when the NMPC scheme is applied to a highly
resolved simulation of the full PDEs, even in challenging
numerical examples. To our knowledge, no such scheme which
takes advantage of the internal structure of geometrically exact
nonlinear beam models exists in the literature.

The paper is structured as follows: we first introduce the
nonlinear PDEs used to describe dynamics of very flexible
structures, explain its relation to classical linear beam models,
and show in § II-E how Kelvin-Voigt damping can be nat-
urally included in this formulation. Subsequently, in §III, we
introduce the modal-based finite dimensional approximation of
the intrinsic beam equations [19], and extend it to efficiently
approximate finite rotations, studying the unit-norm preser-
vation properties of different approximation schemes. The
implementation of the modal-based optimal control problem
framework in a nonlinear model predictive control strategy,
potentially implementable in real time, is depicted in §IV.
The focus is placed on deriving an alternative MPC setup
which exploits the particular structure of the underlying system
and constitutes the main theoretical contribution of the paper.
The computational improvements facilitated by the analytical
sensitivity analysis of the nonlinear systems arising from
our modal formulation are studied. Supported by numerical
examples in §V, the resulting framework paves the way for
the application of a real-time-implementable NMPC scheme
to control very flexible structures.

II. STRUCTURAL MODEL

A. Intrinsic beam equations

The geometrically exact, fully-intrinsic nonlinear beam the-
ory of [2] is used. The dynamics of the structure are described
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Fig. 1: Fixed frame of reference (black) and local frame of references at
s = 0 (blue) and at an arbitrary location s (red) in an unconstrained beam
configuration. Elastic axis displayed in thick, solid, black line.

by two intrinsic vector states: the vector of linear and angular
inertial velocities x1(s, t) := [v>,ω>]> : [0, L] × R+ → R6

and the vector of force and moment sectional resultants
x2(s, t) := [f>,m>]> : [0, L] × R+ → R6, where s is the
curvilinear spatial coordinate that defines the elastic axis and t
denotes time. The arclength of the undeformed and unloaded
structure1 is L. The equations with no structural damping read

M
∂x1

∂t
− ∂x2

∂s
−Ex2+L1(x1)Mx1+L2(x2)Cx2 =fe, (1)

C
∂x2

∂t
− ∂x1

∂s
+ E>x1 − L>1 (x1)Cx2 = 0, (2)

where all variables and matrices involved are expressed in a
local, body-attached, frame of reference (e1, e2, e3 in Fig. 1),
with origin at the beam elastic axis and first component of the
basis, e1 =[1, 0, 0]>, tangent to it. Here, M(s) : R → S6

++

and C(s) : R → S6
+ are the mass and compliance matrices2,

while E(s) : R → R6×6 is the initial curvature and pre-twist
matrix:

E =

[
κ̃0 0
ẽ1 κ̃0

]
, (3)

where κ0 is the vector of initial curvatures and pre-twist
(for beams with curvature in an unloaded configuration, e.g.,
arched structures). The linear operators L1 : R6 → R6×6 and
L2 : R6 → R6×6 are defined as

L1(x1) =

[
ω̃ 0
ṽ ω̃

]
, L2(x2) =

[
0 f̃

f̃ m̃

]
. (4)

The matrix operator denoted by the tilde superscript ã is the
skew symmetric operator defined as ãb = a×b, for a, b ∈ R3.

The vector fe : [0, L] × R+ → R6 accounts for external
forcing, comprising the forces and moments per unit length
acting on the structure (e.g., aerodynamic or gravity forces).
Natural boundary conditions (i.e, no internal damping and no
boundary forcing) for (1) and (2) satisfy

x1i(s∂ , t)x2i(s∂ , t) = 0, i = 1, . . . , 6, (5)

meaning that either the velocity or force component i can
be prescribed to be zero at a boundary s∂ ∈ {0, L}, while

1The intrinsic formulation is not limited to a single beam configuration but
can be directly applied to multibody configuration and beam networks.

2S6++ and S6+ denote the set of positive definite and semi-definite sym-
metric matrices of R6×6, respectively.
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forced motions or prescribed forces at a boundary are simply
enforced as x1i(s∂ , t) = x1∂(t) or x2i(s∂ , t) = x2∂(t). The
total energy (kinetic and potential) of the system is given by

ε(t) =
1

2
〈x1,Mx1〉+

1

2
〈x2, Cx2〉 , (6)

where 〈x,y〉 =
∫ L

0
x>yds denotes the L2([0, L],R6)-inner

product. If (5) holds, then it is easy to show that the energy
satisfies ε̇ = 〈x1,fe〉.

B. Intrinsic beam equations in quasi-linear hyperbolic form

An alternative way to write the intrinsic equations (1)–(2),
assuming x1 and x2 are sufficiently smooth, is as second-
order quasi-linear hyperbolic partial differential equations, for
which results on the convergence of finite-dimensional approx-
imations using the Galerkin Method are readily available in the
literature.

We start by defining a new state-space variable

y =

[
y1

y2

]
=

[
Mx1

Cx2

]
: [0, L]× R+ → R12, (7)

which allows us to write (1)–(2) in port-Hamiltonian form,
similarly to the description of [8],

∂y

∂t
(t, s) =

(
P1

∂

∂s
+ P0(y, s)

)
H(s)y(t, s), (8)

with

H =

[
M−1 0

0 C−1

]
, P1 =

[
0 I6
I6 0

]
(9)

and skew-symmetric nonlinear term

P0(y) =

[
L2(y1) L1(y2) + E

−L>1 (y2)− E> 0

]
. (10)

We note that (8) can also be written as a second-order
abstract differential equation

∂2y

∂t2
+Ay = B(y, ẏ). (11)

By letting P0,E = P0(0, s) and P0,y = P0(y, s) − P0,E , the
linear operator in (11) is

Ay :=− P1
∂

∂s

(
HP1

∂

∂s
(Hy)

)
− P0,EHP1

∂

∂s
(Hy)

− P1
∂

∂s
(HP0,EHy)− P0,EHP0,EHy

(12)

with

D(A) :=

{
y ∈ H2([0, L])12 :

[Hy]i

[
P1H

(
P1

∂

∂s
(Hy) + P0,EHy

)]
i

(s∂)= 0 i = 1, . . . , 12

}
(13)

endowed with inner product

〈x,y〉 =

∫ L

0

x>Hy, ds. (14)

Boundary conditions in (13) are obtained by differentiating
(5) with respect to t and replacing the intrinsic variables x1

and x2 by the new state y. The nonlinear term reads

B(y, ẏ) := P0,EHP0,yHy + P0,yHP0,EHy + P0,yHP0,yHy

P1
∂

∂s
(HP0,y)Hy +

∂P0,y

∂t
Hy + P0,yHP1

∂

∂s
(Hy) .

(15)

The results shown below follow from standard arguments
directly from the definitions above.

Proposition 1. Under definitions (12) and (13), then
(i) For any pair y, z ∈ D(A), then 〈Ay, z〉 = 〈y, A∗z〉 and
D(A) = D(A∗), i.e, operator A is a self-adjoint operator.

(ii) For any y ∈ D(A), then 〈Ay,y〉 ≥ 0, that is, the linear
operator A is positive definite.

It is explained in §III that these conditions imply desirable
convergence properties of finite dimensional approximations
to the underlying PDE (1)–(2).

C. Displacements and rotations

Displacements and rotations appear as secondary variables
in the intrinsic formulation and, unless the external forcing fe
depends on them (e.g., gravity), are not needed to solve (1)
and (2).

A transformation matrix T (s, t) : [0, L] × R+ → R3×3

from the local to the inertial frame (e∗1, e∗2, e∗3 in Fig. 1) is
defined and quaternions are employed to parametrise rotations
ξ(s, t) = [ξ0, ξ

>
v ]> : [0, L] × R+ → R4, with ξ0 ∈ R and

ξv ∈ R3. They satisfy [20, ch. 26]:

∂ξ

∂s
= U(κ+ κ0)ξ,

∂ξ

∂t
= U(ω)ξ, (16)

where κ is the vector of curvatures and twist (i.e, the three last
components of the product Cx2) and U is the skew-symmetric
operator

U(a) =
1

2

[
0 −a>
a −ã

]
, a ∈ R3. (17)

Given quaternions ξ, the corresponding coordinate transfor-
mation matrix is [20, ch. 6]

T (ξ) = (1− 2 ‖ξv‖
2
)I3 + 2ξvξ

>
v + 2ξ0ξ̃v, (18)

where I3 is the identity matrix in R3. The displacement field
r can be computed similarly by solving either of the equations

∂r

∂s
= T (e1 + γ),

∂r

∂t
= Tv, (19)

where γ is the strain vector (i.e, the three first components of
Cx2).

D. Intrinsic beam equations and standard formulations

A distinctive characteristic of the intrinsic formulation (1)-
(2) is that it is a Hamiltonian description, which extends
the structure of rigid-body dynamics into infinite-dimensional
systems [19], via the use of derivatives (strains and veloci-
ties) as primary variables avoiding use of displacements and
rotations (see, for example, the model of a geometrically
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nonlinear flexible link in strain/momenta coordinates of [21]
or the linear Euler-Bernoulli and Timoshenko beam models in
[22]). Indeed, in the case of an infinitely rigid structure (i.e,
C → 0 and x2 → 0) the Euler equations for the motion of an
unconstrained rigid-body in 3D are recovered [23].

When an isotropic beam is considered, with its principal
axes aligned with the local frame of reference, no elastic
couplings exist and the compliance matrix is diagonal C =
diag(EA,GA2, GA3, GJ,EI2, EI3)−1, with E and G denot-
ing, here, the structure’s Young and shear moduli (material
properties), and A, A2, A3, J , I2 and I3 are the area, the shear
areas, the torsion constant and the second moments of area of
the structure’s cross-section (geometrical properties). Further,
if the sectional centre of mass coincides with the elastic axis3,
it is also the case that no geometrical couplings arise and
the mass matrix is diagonal M =diag(µ, µ, µ, i2 + i3, i2, i3),
where µ is the mass per unit length and i2 and i3 are the second
moments of inertia of the beam’s cross-section. For such
uncoupled cases, the classical linear Euler-Bernoulli beam
description [24] is recovered by setting both the axial and
shear stiffness EA,GA3 → ∞ and removing all quadratic
terms in (1)-(2). The much-studied Timoshenko model [25],
is analogously obtained, but with GA3 finite.

E. Damping

We now show how a generalised Kelvin-Voigt model ac-
counting for internal dissipation in the structure [25] can
be considered in the geometrically-nonlinear intrinsic-beam
model. In particular, consider the following modification of
the constitutive relations[
f
m

]
= C−1

[
γ
κ

]
+ CτC

−1 ∂

∂t

[
γ
κ

]
= x2 + Cτ

∂x2

∂t
. (20)

Here, CτC−1 ∈ S6
+, where Cτ is a matrix with dimensions

of time, providing time scales that characterise the damping
of the viscoelastic material. Substituting the new constitutive
law into (1) and (2), intrinsic beam equations with nonlinear
damping are obtained

M ẋ1−(x2+ Cτ ẋ2)′−E(x2+Cτ ẋ2)+L1(x1)Mx1+

L2(x2+Cτ ẋ2)Cx2 = fe,
(21)

Cẋ2 − x′1 + E>x1 − L>1 (x1)Cx2 = 0, (22)

where, for brevity, partial derivatives with respect to s and t
are denoted by (•)′ and ˙(•), respectively.

Note that the term Cx2 in the last nonlinear term of (21) and
in (22) is unmodified; it accounts for strains and curvatures,
and not forces or moments, and is hence unaffected by the new
material model (20). The boundary conditions (5) are replaced
by

x1i(s∂ , t) [x2(s∂ , t) + Cτ ẋ2(s∂ , t)]i = 0, i = 1, . . . , 6,
(23)

3The sectional centre of mass is the point of the beam’s cross section
in which the gravity resultant force is applied (i.e, depends on the density
distribution of the cross section), while the elastic axis is the application point
of the resultant elastic forces (i.e, the point in which applied linear forces do
not generate torques). For uniform cross sections with two symmetry axes
both points coincide, but they do not in U-shaped sections or conventional
aircraft wing sections, for instance.

to account for the internal damping affecting the force and
moment distributions.

We now describe conditions under which the damping
model (20) implies energy dissipativity of the nonlinear struc-
tural equations. For the remainder of the section we assume
that classical solutions (i.e, that x1 and x2 are absolutely
continuous in space and differentiable in time) exist for t ≥ 0.
Well-posedness of (1) will be studied in future work.

Proposition 2. Suppose that (x1,x2) is a solution to the
intrinsic beam equations (21)-(23) with damping defined as in
(20), and that fe = 0 and CτC−1 ∈ S6

+. Then ε̇(t) ≤ 0, t ≥ 0.

Proof. Differentiating (6) and using (21), (22),

ε̇ = 〈x1,M ẋ1〉+ 〈x2, Cẋ2〉
=
〈
x1, (x2 + Cτ ẋ2)

′〉
+ 〈x1, E (x2 + Cτ ẋ2)〉−

〈x1,L1(x1)Mx1 + L2 (x2 + Cτ ẋ2)Cx2〉+
〈x2,x

′
1〉 −

〈
x2, E

>x1

〉
+
〈
x2,L>1 (x1)Cx2

〉
.

By definition of E, L1 and L2, it is the case that for any
x1,x2 ∈ R6, 〈x1, Ex2〉 −

〈
x2, E

>x1

〉
= 0, x>1 L1(x1) = 0

and x>2 L>1 (x1) = x>1 L2(x2). Consequently,

ε̇ =
〈
x1,(x2+Cτ ẋ2)

′〉
+〈x1,ECτ ẋ2〉−〈x1,L2 (Cτ ẋ2)Cx2〉

+ 〈x2 + Cτ ẋ2,x
′
1〉 − 〈Cτ ẋ2,x

′
1〉

= x>1 (x2 + Cτ ẋ2)
∣∣L
0

+ 〈x1, ECτ ẋ2〉
− 〈x1,L2 (Cτ ẋ2)Cx2〉 − 〈Cτ ẋ2,x

′
1〉 .

By (23), substituting x′1 using (22), noting that the terms
involving E vanish again and using the previously employed
property of the L operators gives

ε̇ = −〈Cτ ẋ2, Cẋ2〉 ≤ 0. (24)

We now describe a linear version of the damping equations,
for which solutions are still energy dissipative, even when
coupled with the nonlinear structural model. In particular,
taking a first order expansion of the newly obtained damping
terms (Cτ ẋ2 = CdCẋ2 ≈ Cd(x

′
1 −E>x1)), the nonlinear

intrinsic beam equations with linear damping read

M ẋ1 − x′2 − Ex2 + L1(x1)Mx1 + L2(x2)Cx2

= D0x1 +D1x
′
1 +D2x

′′
1 + fe,

(25)

Cẋ2 − x′1 + E>x1 − L>1 (x1)Cx2 = 0, (26)

together with boundary conditions

x1i(s∂ , t)
[
x2(s∂ , t)+Cd(s∂)

(
x′1(s∂ , t)−E>x1(s∂ , t)

)]
i
=0,
(27)

where Cd = CτC
−1 and

D0 = −(CdE
>)′ − ECdE>,

D1 = C ′d − CdE> + ECd, D2 = Cd.
(28)

Proposition 3. Suppose now that (x1,x2) is a solution to the
intrinsic beam equations with linear damping as defined in
(25)-(28), that Cd ∈ S6

+ and fe = 0. Then ε̇(t) ≤ 0, t ≥ 0.
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Proof. We start by using the result

ε̇ = x>1 x2

∣∣L
0

+ 〈x1, D0x1 +D1x
′
1 +D2x

′′
1〉 , (29)

which can be proven as in proposition 2. Now,

x>1 x2

∣∣L
0

= − x>1 Cd
(
x′1 − E>x1

)∣∣L
0
, (30)

〈x1, D0x1〉 = −
〈
x1, ECdE

>x1

〉
+
〈
x′1, CdE

>x1

〉
+〈

x1, CdE
>x′1

〉
− x>1 CdE>x1

∣∣L
0
,

(31)

〈x1, D1x
′
1〉 = 〈x1, C

′
dx
′
1〉 −

〈
x1, CdE

>x′1
〉

+

〈x1, ECdx
′
1〉 ,

(32)

〈x1, D2x
′′
1〉 = −〈x1, C

′
dx
′
1〉 − 〈x′1, Cdx′1〉+

x>1 Cdx
′
1

∣∣L
0
,

(33)

where boundary conditions (27) have been used to get (30)
and integration by parts has been applied to obtain (31) and
(33). Substituting into (29) gives

ε̇ = −

〈[
x1

x′1

]
,

[
0 −EC

1
2

d

0 C
1
2

d

][
0 −EC

1
2

d

0 C
1
2

d

]>[
x1

x′1

]〉
≤ 0.

(34)

Remark 4. By LaSalle’s Invariance Principle [26], trajecto-
ries converge to the largest invariant set in {x1,x2 | ε̇ = 0}.
Under the assumption that trajectories x1(s, t) and x2(s, t)
are precompact, Propositions 2 and 3 indicate that solu-
tions to (21)-(23) converge to trajectories given by x′1 =
E>x1 − L>1 (x1)Cx2 while solutions to (25)-(27) converge
to x′1 = E>x1. These are rigid-body type steady trajectories
(i.e, ẋ1 = ẋ2 = 0) with constant energy ε, where the structure
is allowed to have some remaining stress distribution in the
first case (i.e, due to gyroscopic forces appearing from steady
rotations) but limited to pure translational (and/or rotation
about the longitudinal axis, where no initial curvature is
present, i.e, κ0 = 0) rigid-body motions in the second. If one
of the boundaries is clamped (i.e, x1(s∂) = 0), then x1 → 0
as t→∞ in both cases.

III. FINITE DIMENSIONAL APPROXIMATION

A. Modal-based reduced order model

In order to construct a finite-dimensional approximation, the
natural modes of the structure are employed [27]. These are the
eigenfunctions φ1j(s), φ2j(s) : [0, L]→ R6 of the linearised
system (25) and (26) around the unloaded and undeformed
configuration (i.e, fe=x1 =x2 =0) with no damping (Di =
0). Using Nm eigenfunctions (also referred to as mode shapes),
approximate state variables are defined by

x1(s, t) = φ1j(s)q1j(t), x2(s, t) = φ2j(s)q2j(t), (35)

where q1j(t), q2j(t) :R+→R are the temporal coefficients of
the expansion (unless otherwise stated, Einstein’s summation
convention for index j=1, ..., Nm is used). The reduced order
model is obtained by a Galerkin projection, in which evolution
equations for q1j and q2j are obtained by substituting (35) into

(25) and (26), with full nonlinear terms, pre-multiplying by
each eigenfunction and integrating over the spatial domain.

The resulting reduced order model is nonlinear and has the
form

q̇ = Wq +N(q)q +

[
η
0

]
, (36)

where the expansion temporal coefficients are gathered in a
column vector q(t) : R+ → R2Nm . The modes around the
unloaded configuration are orthogonal [23], and, if they are
normalised so that 〈φ1i,Mφ1i〉 = 〈φ2i, Cφ2i〉 = 1, the
matrix W has the form

W =

[
Σ Ω
−Ω 0

]
, (37)

where Ω is a diagonal matrix whose entries are the eigenvalues
of the linearised system and Σ is the modal damping matrix

[Σ]ij =
〈
φ1i, D0φ1j+D1φ

′
1j+D2φ

′′
1j

〉
. (38)

Matrix N(q) is linear in q,

N(q) =

[
−q1lΓ

l
1 −q2lΓ

l
2

q2l(Γ
l
2)> 0

]
, (39)

with constant coefficients[
Γl1
]
ij

= 〈φ1i,L1(φ1j)Mφ1l〉 , (40)[
Γl2
]
ij

= 〈φ1i,L2(φ2j)Cφ2l〉 . (41)

The entries of the forcing term vector are

[η]i = 〈φ1i,fe〉 , (42)

including boundary forcing or control. Full details of the
derivation are contained in [19]. The instantaneous energy of
the system (6) written in modal coordinates is, simply,

ε(t) =
1

2
q>q, (43)

with ε satisfying ε̇ = q>1 η + q>1 Σq1.

Remark 5. Given that the linear operator of the intrinsic
beam equations (12) is self-adjoint and positive, and under
mild assumptions on the nonlinear operator (15), convergence
and bounds on approximation errors of finite-dimensional sys-
tems based on the Galerkin Method, as the one we introduce
to get to (36), can be established [28].

Namely, for a modal-based approximation such as ours,
where the solution function basis is built up using the eigen-
functions of the linear operator A, the error is bounded by
the inverse square root of the first truncated eigenvalue after
approximation (35).

Numerical evidence on the convergence of our modal-based
finite-dimensional systems has been previously addressed in
[29]. This evidence suggests that the first few modes of the
structure are usually enough to provide successful control,
since the main nonlinear effects that drive the dynamics
are well-captured. As previously shown, the fact that the
modes are orthogonal allows a very good approximation to
the nonlinear terms of the full PDEs (25) and (26), which
are all of cross-product nature. This superior approximation
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capability is clearly demonstrated when the NMPC controller
is consistently able to stabilise a highly resolved system in
each of the tested examples in section V-B.

B. Rotation field approximation

If the local orientation of the structure is required, the
evolution equation for the quaternions (16) needs to be added
to equations (25) and (26), since rotations are not part of
the primary variables. Taking gravity as an example of an
orientation-dependent forcing term, its contribution to the
momentum balance equation (25) reads

fg(s, t) = µ(s)

[
I3

r̃cm(s)

]
T (s, t)>g, (44)

where rcm is the offset distance between the sectional centre
of mass and the elastic axis (rcm is a fixed parameter and
depends on the beam’s cross sectional properties), which
produces a torque about the latter. The vector g is the gravity
acceleration expressed in the global frame of reference.

A finite-dimensional approximation to the quaternions is
required if (36) is to be employed. A consequence of using
quaternions to parametrise rotations is that ‖ξ‖ = 1 is neces-
sary for T to be orthogonal [20, ch. 6]. Hence, it is desirable
that the employed approximations are unit-norm preserving.
An interpolation scheme using a Catmull-Rom spline has
already been shown to accurately reproduce arbitrarily large
rotations [29]. However, this approach might introduce a large
number of extra state variables, easily exceeding dim(q).
An alternative which might be more suitable for models
constructed with a low number of modes is one that uses modal
expansions for the quaternions, which results in lower-order
approximate models appropriate for NMPC. Both approaches
are now described.

1) Spline interpolation: The time-evolution of quaternions
is tracked at certain spatial points along the 1D structure and
a Catmull-Rom interpolation scheme is constructed between
these points [29]

ξ(s, t) = S(s)ξ(t), (45)

where ξ(t) = [ξ>1 , . . . , ξ
>
Nξ+1]> : R+ → R4(Nξ+1) gathers

the set of quaternions at the nodes of a uniform spatial
grid with Nξ intervals. The matrix S(s) ∈ R4×4(Nξ+1) con-
tains cubic piece-wise polynomials ensuring smooth matching
(C1([0, L])) of all the tracked quaternions.

With this approach, the resulting system of equations reads

q̇ = Wq +N(q)q +

[
ηg(ξ)
0

]
, (46)

ξ̇k = U(Φω(sk)q1)ξk, k = 1, . . . , Nξ + 1, (47)

where Φω(sk) ∈ R3×Nm is the horizontal concatenation of the
angular velocity components of velocity modes φ1j , evaluated
at grid points sk, and ηg in (46) reads

ηg(ξ) = ηg0 + ξlΓ
l
gξ, (48)

with constant coefficient matrices

[
Γlg
]
ij

=

〈
φ1i, µ

[
I3
r̃cm

]
Tjl(Sj , Sl)

>g

〉
, (49)

where Sj is the jth column of S(s) and

Tab(ξ
(a), ξ(b)) = −2ξ(a)>

v ξ(b)
v I3 + 2ξ(a)

v ξ(b)>
v + 2ξ

(a)
0 ξ̃(b)

v .
(50)

The constant term ηg0 can be obtained by setting Tjl = I3 in
(49).

Remark 6. The accuracy of the spline approach depends
on the refinement of the spatial grid used, with an absolute
error of the order O(h3

ξ) [30], where hξ = L/Nξ is the
grid interval length. Errors are kept within (time) integration
accuracy at grid points. The Nyquist criterion, based on the
spatial frequency of the angular velocity modes, provides a
lower bound on the number of grid points to choose for the
error estimate O(h3

ξ) to hold valid.

2) Modal-based expansion: An alternative approximation,
analogous to the construction of (36), involves a modal ex-
pansion of the quaternions:

ξ(s, t) = ξ̄(s) + φξj(s)qξj(t), (51)

for chosen quaternion mode shapes φξj : [0, L] → R4, with
coefficients qξj : R+ → R, and where ξ̄(s) defines the
undeformed rotation field, that is, ξ̄′ = U(κ0)ξ̄.

We now define mode shapes φξj to be the eigenfunctions
of the linearised time evolution equation (16) around the
unloaded and undeformed condition,

∆ξ̇ = Uω(ξ̄)∆ω, (52)

where

Uω(ξ̄) =
∂

∂ω

(
U(ω)ξ̄

)
=

[
−ξ̄>v

ξ̄0I3 + ˜̄ξv
]
. (53)

Finally, mode shapes for the quaternions are obtained from
(52) using the velocity modes φ1j

φξj = Uω(ξ̄)φωj , (54)

where φωj = Πωφ1j , and Πω = [03, I3] is a projection
operator used to retrieve the angular velocity components.
However, a more favourable approximation, concerning unit-
norm preservation, is obtained if an augmented modal expan-
sion is used, that is, one in which ξ̄ is removed from (51) and
employed as a shifting equilibrium mode φξ0 = ξ̄:

ξ(s, t) = φξj(s)qξj(t), j = 0, 1, . . . , Nm. (55)

We construct a time evolution system for qξ applying a
Galerkin projection to the time evolution equation (16) using
mode shapes (54) and φξ0 = ξ̄:

Aξq̇ξ = Uξ(ω)qξ, (56)

where Aξ and Uξ(t) are matrices independent of the spatial
coordinate s

[Aξ]ij =
〈
φξi(s),φξj(s)

〉
, (57)

[Uξ(ω)]ij =
〈
φξi(s),U(ω(s, t))φξj(s)

〉
. (58)
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Here, the notation 〈·, ·〉 is used to denote the L2-inner
product in L2([0, L],R4). Note that Uξ = −U>ξ for all t, since
the skew-symmetry of U is inherited, and Aξ = A>ξ . Now, we
present the following unit-norm preservation property of such
approximation.

Proposition 7. Suppose that qξ is a solution to the time
evolution equation (56) and initial conditions ‖ξ(s, 0)‖22 = 1

for all s, then
∫ L

0
‖ξ(s, t)‖22 ds/L = 1, t ≥ 0. That is, the

space-average unit-norm is preserved4.

Proof. First, we use expansion (55) to compute

1

2

d

dt
‖ξ(s, t)‖22 = qξ(t)

>Φξ(s)
>Φξ(s)q̇ξ(t), (59)

where Φξ(s) is a matrix formed by the horizontal concatena-
tion of all modes shapes φξj .

Next, using (56)

1

2

d

dt
‖ξ(s, t)‖22 = q>ξ Φ>ξ ΦξA

−1
ξ Uξ(ω)qξ. (60)

Integrating (60) along space we get

1

L

∫ L

0

d

dt
‖ξ(s, t)‖22 ds =

1

L

∫ L

0

2q>ξ Φ>ξ ΦξA
−1
ξ Uξ(ω)qξds

=
2

L
q>ξ AξA

−1
ξ Uξ(ω)qξ = 0,

where the definition (57) and the skew-symmetry property of
Uξ have been used.

With this approach, the forcing term (48) is written now in
terms of the quaternion modal coefficients ηg = ηg0+qξlΓ

l
gqξ,

where[
Γlg
]
ij

=

〈
φ1i, µ

[
I3
r̃cm

]
Tjl(φξj ,φξl)

>g

〉
, (61)

and the evolution equation for the quaternion approximation
is

q̇ξ = Nξ(q1)qξ, (62)

where
Nξ(q1) = q1lΓ

l
ξ, (63)

Γlξ = A−1
ξ Uξ(φωl). (64)

Note that a system where expansion (51) is used can always
be recovered by imposing qξ0(t) = 1 , achieved by zeroing the
first row of Nξ(qξ) in (64), which breaks the skew-symmetry
and the average unit-norm preservation property is hence lost.

3) Augmented system: The nonlinear, modal-based finite-
dimensional approximation to the intrinsic equations (36)
coupled with the quaternion approximation is described by
the following augmented system

q̇a=

[
W 0
0 0

]
qa+

[
N(q) ηg(qξ)

0 Nξ(q1)

]
qa+

ηg00
0

 . (65)

Here, qa refers to the augmented state vector qa =
[q>1 , q

>
2 , ξ

>]> : R+ → R2Nm+4(Nξ+1), if the spline method is

4Note that, to achieve ‖ξ(s, 0)‖22 = 1 with the proposed basis (55), the time
coefficient corresponding to the shifting equilibrium satisfies qξ0(0) =

√
L

(where the modes have been conveniently normalised so that [Aξ]ii = 1)

chosen, or qa = [q>1 , q
>
2 , q

>
ξ ]> : R+ → R3Nm+1, if the modal

approximation for the quaternions is employed. Note that an
equivalent matricial expression ξ̇ = Nξ(q1)ξ = q1lΓ

l
ξξ to

(47) can always be found, meaning that both approximations
have a similar (quadratic) structure and hence we express the
coupled system generically by (65).

IV. NONLINEAR MPC SETUP

A. Nonlinear optimal control problem

We follow the conventional discrete-time MPC formulation
of [18] for (state and input) constrained nonlinear systems,
where full state feedback and no disturbances are assumed.
Specifically, we solve the following nonlinear optimal control
problem over a time horizon τp at each sampling point ti,
where the prediction horizon is split into N intervals,

min
qka,u

k

k=N−1∑
k=0

1

2
q̂k>a Qq̂ka +

1

2
ûk>Rûk

+
1

2
q̂N>a P q̂Na

(66a)

s.t. q0
a = qa0, (66b)

qk+1
a = f(qka,u

k), k = 0, . . . , N − 2, (66c)

ul ≤ ûk ≤ uu, k = 0, . . . , N − 1, (66d)
1

2
q̂N>a P q̂Na ≤ a, (66e)

where Q > 0 and R > 0 and the perturbations q̂a = qa − q̄a
and û = u − ū refer to a reference state q̄a and control ū.
As seen, the optimal control problem is subject to initial con-
ditions (66b) and nonlinear, discrete-time evolution equation
(66c), obtained by Runge-Kutta 4th order integration of (65). If
Q is set equal to the identity, the control can be interpreted to
act via energy-shaping, since the state penalty is the perturbed
energy of the system.

Two important challenges arise from the application of
NMPC to nonlinear systems, describing very flexible struc-
tures, such as (65). On the one hand, the smallest system
that typically results from describing the motion of a very
flexible structure in three dimensions (see §V) is of the order
of O(50). To avoid solving an NLP of impractical size (due to
the fact that the numerical integration time step of (65) may
be required to be very small, since it is linked to the highest
frequency of the retained modes) the discrete-time system
(66c) is constructed using several (typically ranging from tens
to hundreds) time steps of RK4 integration to maintain the
number of MPC sub-intervals to computationally tractable
N ∼ O(10). This is in contrast to typical MPC setups, where
one (or very few) time steps of a chosen time-integrator [16]
are employed to construct (66c).

The second challenge concerns the addition of rotations
as states of our system, which are required to evaluate
orientation-dependent forcing terms such as gravity. This
introduces a set of linearly unstabilisable states, creating a
control challenge and necessitates alternative NMPC stability
results to standard approaches [18]. Linearisation of (65)
around an equilibrium point, where q1 = 0, transforms the
perturbation equation for the quaternions into pure integration
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of the angular velocities, expressed by means of q1, causing
rank deficiency of the linearised state matrix. Since this is
a recurrent problem encountered every time rotations are
included as part of the state-space, we formulate a specific
NMPC design strategy with associated convergence results
in the following section. Its performance is highlighted with
numerical demonstrations in §V-B, where the controller is also
shown to perform remarkably well when applied to a high-
order finite-element discretisation of the full PDEs.

B. NMPC convergence for partially unstabilisable systems
arising from geometrically nonlinear beam dynamics

We consider discrete time systems of the form

xk+1 = f(xk,uk) = Axk +Buk + f̃(xk,uk) (67)

where xk ∈ Rn and uk ∈ Rm. The linear part of the system is
governed by matrices A ∈ Rn×n, B ∈ Rn×m and the function
f̃ : Rn × Rm → Rn defines quadratic and higher-order terms
of the nonlinear dynamics.

System (67) has the particular form

A =

[
Aw Ad
0 In2

]
, B =

[
Bw
0

]
, (68)

corresponding to a decomposition of state x =
[
w> d>

]>
into stabilisable w and unstabilisable d modes. In particular
Aw ∈ Rn1×n1 and Bw ∈ Rn1×m form a stabilisable pair
and w ∈ Rn1 , while Ad ∈ Rn1×n2 and d ∈ Rn2 . A system
with this structure is obtained after applying a staircase and
a Schur decomposition to the linearised discrete-time system
(66c) (constructed using several RK4 integration steps of the
continuous-time nonlinear system (65)) about a reference,
equilibrium point (q̄, ū) of (65). Then, x in (67) defines
perturbations about that reference point.

To implement a model predictive control algorithm to
exploit the particular structure of (67), let Pw ∈ Sn1

++, Pd ∈
Sn2

++, R ∈ Sm++ and β > 0. Define a stage ` : Rn×Rm → R+

and a terminal Vf : Rn → R+ cost by

`(x,u) :=
β

4
‖w‖2Pw+‖u‖2R, Vf (x) := ‖w‖2Pw , x = ( w

d ) .

(69)
The MPC cost function that we employ can now be defined.

Definition 8. Let N ∈ N and U ⊆ Rm be the set of admissible
control inputs. Then the MPC cost function VN : Rn×UN →
R is given by

VN (x,u) :=

N−1∑
k=0

`(xk,uk) + Vf (xN ),

where x0 = x and xk = φ(k;x,u). Here, φ(k;x,u) denotes
the state of the system after k steps under the dynamics
xk+1 = f(xk,uk).

We will optimize the MPC cost function over input se-
quences that drive the state, in N steps, to compact subsets of
the form

χ(ω, δ) :=
{
x = ( w

d ) ∈ Rn : ‖w‖2Pw ≤ ω, ‖d‖
2
Pd
≤ δ
}
,

where ω, δ > 0 will be chosen later. To this end, denoting
φN,x(u) = φ(N ;x,u) : UN → Rn, we define for each
x ∈ Rn the set (possibly empty) of control sequences that can
drive the system to χ(ω, δ) by

UN,ω,δ(x) = φ−1
N,x(χ(ω, δ)), x ∈ Rn,

and the set of states that can reach χ(ω, δ) in N steps by
XN,ω,δ = {x ∈ Rn : UN,ω,δ(x) 6= ∅}.

Assumption 9. For any N ∈ N, there exists ω0, δ0 > 0 such
that:

(i) (Invariance) For any 0 < ω < ω0 and 0 < δ < δ0, the
sets χ(ω, δ) are control invariant.

(ii) (Regularity) For any ε > 0, there exists η > 0 such that
for any ω < ω0, δ < δ0 and x ∈ XN,ω,δ ,

dH (UN,ω,δ(x),UN,ω,δ+η(x)) ≤ ε.

Here, dH(·, ·) is the Hausdorff distance between compact
subsets.

Condition (i) states that for any x ∈ χ(ω, δ), there
exists u ∈ U such that f(x,u) ∈ χ(ω, δ). Consequently,
UN,ω,δ(x) 6= ∅ for any x ∈ χ(ω, δ) with ω < ω0, δ < δ0
and XN,ω,δ 6= ∅. Hence, there exist initial states from which
χ(ω, δ) can be reached in N steps. Condition (ii) is a mild
regularity condition stating that a small relaxation in the
terminal constraint corresponds to a small increase in the set
of admissible control inputs.

Finally, we define the optimal cost functions

V ∗N,ω,δ(x) := min
u∈UN,ω,δ(x)

VN (x,u), x ∈ XN,ω,δ.

and denote the first value of an optimising input trajectory
κN,ω,δ(x), meaning that the closed-loop MPC system evolves
according to x+ = f(x,κN,ω,δ(x)).

1) Design of weighting matrices: Design of the stage cost
`, terminal cost Vf , and terminal constraint set χ(ω, δ) relies
on appropriate construction, namely conditions (70), (71), of
the matrices Pw, Pd and R. The following Lemma implies
that appropriate choices always exist and can be constructed
by solving LMIs.

Lemma 10. Let Aw, Ad and Bw be the system matrices from
(68). Then there exist Pw ∈ Sn1

++, Pd ∈ Sn2
++, R ∈ Sm++,

a constant 0 < β < 1 and control gain matrices Kw ∈
Rm×n1 ,Kd ∈ Rm×n2 such that

X =


[
(1− β)P−1

w 0
0 P−1

d

] [
P−1
w (Aw +BwKw)> 0
P−1
d (Ad +BwKd)

> 0

]
[∗]

[
P−1
w 0
0 P−1

d

]
 � 0,

(70)
and

Y =

[β4P−1
w 0

0 1
2P
−1
d

] [
P−1
w K>w
P−1
d K>d

]
[∗] R−1

 � 0. (71)

Proof. See Appendix.

Note that (70) and (71) can be imposed as LMI conditions
for fixed 0 < β < 1. The importance of these conditions is
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that they guarantee existence of a linear controller, namely
u = Kww +Kdd, under which the final stage cost Vf (x) =
‖w‖2Pw can be appropriately controlled.

2) Application to MPC algorithm: We are now in position
to present the main result of the paper, which shows that the
MPC trajectory converges to a known compact subset of state
space.

Theorem 11. Suppose that Assumption 9 holds and (70),
(71) are satisfied. Let (xk)k≥0 denote the closed-loop MPC
trajectory xk+1 = f(xk,κN,ω,δ(x)) and let ε > 0. Then
there exists ω > 0, δ > 0 such that whenever x0 ∈ XN,ω,δ , it
follows that

xk0 ∈ χ(ω∗, δ),

for some k0 ∈ N, where ω∗ := 4β−1(2δ+ ε). Furthermore, if
ω∗ ≤ ω,

lim sup
k→∞

‖wk‖2Pw ≤
4

β
(2δ + ε)

+
4

β
max

{
V ∗N,ω,δ(x) : x ∈ χ (ω∗, δ)

}
Proof. See Appendix.

The practical implication of Theorem 11 is that the LMI
conditions (70), (71) can be used to impose as large as possible
value of β, in order to improve the final bound. It is shown
in §V-B that, in practice, the corresponding value of δ may
be very small (compared to β), while maintaining feasibility
for a relatively large value of ω. This corresponds to widening
the set of states from which the NMPC scheme will converge
asymptotically. Moreover, the performance of the controller
when applied to a highly resolved simulation of the full PDEs
is remarkably similar to the nominal case (where there is no
plant/model mismatch), highlighting the inherent robustness
of the implementation. We note finally, that the bound on the
eventual state tends to zero as ε, δ → 0. That is, if a control
exists which can drive the linearly uncontrollable states close
to the origin, then the controllable states can also be made
arbitrarily small.

C. Numerical implementation

Since the nonlinear optimal problem defined by (66) is
already discretised into N sub-intervals, the multiple shoot-
ing approach of [31] is used and steps ∆p of a Sequen-
tial Quadratic Programming (SQP) [32, ch. 18] strategy are
employed to solve the nonlinear optimal control problem
iteratively:

min
∆p

∆p>gi +
1

2
∆p>Hi∆p (72a)

s.t. ∆q0
a+
(
q0
a

)
i
=qa0 , (72b)

∆qk+1
a +

(
qk+1
a

)
i
=
df(qka,u

k)

dpk
∆p+f(qka,u

k)i, (72c)

ul ≤ (ûk)i + ∆uk ≤ uu, (72d)∣∣∣∣(1

2
q̂N>a P q̂Na

)
i

+
(
q̂Na

)>
i
P∆qNa

∣∣∣∣ ≤ a, (72e)

where p> = [. . . , qka, . . . ,u
m, . . . ] is the set of all opti-

misation parameters and the subscript i denotes the current
optimisation iterate. This quadratic program is constructed
using the gradient gi and the Hessian, Hi, of the Laplacian
of the constrained minimisation problem, L = F + λ>C,
where F is the cost function (66a) and C(qka,u

k) ≤ 0 is
the set of constraints (66b)-(66e), with λ its corresponding
multipliers. Note that linearisation of a positive quadratic
constraint such as (66e) requires the use of absolute value in
(72e) for consistency. Also, linearisation of (66c) might lead
to discontinuous, unfeasible intermediate iterates. The Hessian
is approximated by the BFGS update formula.

The use of multiple shooting allows speed up of the
implementation, since the computational bottleneck of the
methodology (time-integration of (66c) and the evaluation of
its sensitivities to construct its linearised version (72c) as re-
quired by the SQP approach) can be parallelised. Furthermore,
multiple shooting has been shown to improve convergence of
NLPs.

In the following section we analyse this computational
burden, and we show that analytically deriving the adjoint
equations of the continuous-time system to evaluate the sen-
sitivities required to construct (72c) offers a computational
advantage over black-box solutions. We will also explore real-
time application in §V-B, using the initial-value embedding
real-time scheme of [15], where intermediate solutions of the
SQP iteration (72) are fed back to the system instead of
reaching convergence of (66) at each sampling time.

D. Sensitivity analysis

As seen in the previous section, it becomes paramount to
evaluate the derivatives involved in the linearisation of the
continuity constraints (72c) as efficiently as possible. Applying
the adjoint method [33], they are evaluated by means of

df
(
qka,u

k
)

dpk
=
[
Λ>(tk−1) 0

]
+
[
0
∫ tk
tk−1

Λ> ∂h∂udt
]
, (73)

where h denotes the continuous-time system (65) and where
the matrix of multipliers Λ ∈ Rdim(qka)×dim(qka) is subject to
the ODE and final condition

Λ̇ = − ∂h

∂qa

>
Λ, Λ(tk) = I. (74)

Relevant terms to solve the adjoint system (73) are easily
obtained due to the compact structure of (36):

∂h

∂qa
=

Σ−q1lΓ
l
1−q1jΓ

j
1 Ω−q2lΓ

l
2−q2jΓ

j
2 qξlΓ

l
g+qξjΓ

j
g

−Ω+q2l(Γ
>
2 )l q1j(Γ

>
2 )j 0

qξlΓ
l
ξ 0 q1jΓ

j
ξ

,
(75)

where the superscript j in the matrices Γ (differing from the
usual notation Γl) implies a permutation of indices j and l
and subsequent summation over j.

The associated cost of computing all the necessary deriva-
tives to construct (72), which include derivatives of all final
states with respect to initial states and control inputs, is
roughly constant for the nonlinear equations (i.e, the sensitivity
analysis cost remains proportional to the cost of one forward
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simulation, independently of the problem’s size). Observing
the structure of (65), we identify that the computational bot-
tleneck lays with the evaluation of the nonlinear terms N(q),
Nξ(qξ) and ηg(qξ). These computations have a complexity,
based on the total number of product operations, of the order
O(N3

m), which predominate over the rest of matrix-vector
multiplications which scale with O(N2

m). We see that solving
the sensitivity analysis (73)-(74) involves the matrix multipli-
cation ∂h

∂qa

>
Λ in (74), with a cost of the order O(N3

m) (note
that usually dim(uk) � Nm). The evaluation of coefficients
in (75) has also a complexity O(N3

m). Therefore, we can
conclude that the cost of solving the adjoint equations and
computing the sensitivity analysis is proportional to solving
one forward simulation, regardless of the dimension of the
problem.

Most of the current available real-time optimal control
packages use Automatic Differentiation, which offers machine
precision sensitivities. In our particular case, due to the non-
linear terms present in (65), even the cost of the backward
mode, where 3Nm+1 sweeps are necessary, would scale with
O(N4

m). This reveals the competitive advantage of adjoint-
based methods over AD based implementations for this kind
of nonlinear systems. Besides, our adjoint equations can be
derived analytically in a straightforward manner as it has been
shown.

V. NUMERICAL EXAMPLES

A. Computational complexity of adjoint system

Here, the scaling of the complexity of the adjoint system
and the sensitivity analysis relative to the forward simula-
tion is assessed. In order to do so, the execution time of
integrating system (65) along a simulation time of 2s of a
three dimensional pendulum with gravity (such as case 3 in
§V-B) is divided by the total number of time-steps taken (time
integration is performed using a RK4 scheme with a time
step of 0.25 times the smallest period of the modes included
in the expansion, which suffices convergence criteria). Thus,
an approximation of the execution time of a single time-
integration step is obtained, smoothing possible fluctuations
in the performance. This is repeated for a modal basis with a
varying size (from 20 modes to 80). The same procedure is
applied when solving the complete adjoint system (73)-(74),
necessary to linearise the continuity constraints. Execution
times correspond to a Matlab script running on an Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40GHz processor.

As observed in figure 2, the execution times per RK4
iteration, of the forward simulation and the adjoint system
scale with the number of modes to a power which lays within 2
and 3. As previously shown, the theoretical complexity of both
systems scales with N3

m. Execution time and computational
complexity are closely related, though not fully equivalent.
The former is highly dependent on the internal architecture
and algorithmic functioning of the in-built functions, while
the later is assumed to be roughly the number of product
operations. Nonetheless, and most importantly, we note that
the cost of the adjoint problem and of the forward simulation
remain proportional, regardless of the size of the system which
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Fig. 2: Execution time per time step of the forward (solid line) and adjoint
(dashed line) problems, with dotted lines showing the +2 and +3 slopes.

proves our size-independence claim. The adjoint problem is,
at worst, five times more expensive than the forward one.

B. Nonlinear control of a very flexible inverted pendulum

Three different implementations of the controller are tested:
(i) A linear implementation, LMPC, which uses a linearisation
of (65) around the reference q̄a, constructing and solving a QP
(linear dynamics plus quadratic cost function) at each sampling
time, (ii) the converged nonlinear controller, NMPC, and a
(iii) real-time iteration, RTI-NMPC, where one SQP iteration
(72) is solved at each sampling time, without shifting of the
optimisation variables.

For the system plant we test two scenarios. We either use
the same system as the internal model of the MPC (referred
to as the nominal case), so we can make use of standard
MPC convergence guarantees and of the results obtained in
§IV. However, we also demonstrate that excellent performance
is achieved when the NMPC scheme is applied to the true
system, i.e., the full PDE. The full PDE is implemented using
a high-order finite-element discretisation of the intrinsic beam
equations (25)–(26), similar to that in [12], and a spline inter-
polation scheme where rotation information is required, since
both discretisations have errors that are known to be bounded
by the grid size. All the presented cases assume slight damping
with D0 = D1 = 0 and D2 = 10−4diag(1, 0, 0, 1, 1, 1).
Finally, cases 1 and 2 below use results from standard NMPC
[18], since the system is linearly stabilisable around the desired
equilibrium, while in the more complex case 3, which includes
simulation of gravity forces, we put our novel NMPC scheme
to the test.

1) 2D clamped case: For the 2D case (1− 3 plane), a
clamped, straight uniform beam of L = 1 is considered,
with mass and compliance matrices M=diag(1, 1, 1, 0, 8.33 ·
10−5, 0) and C = diag(100,∞, 105,∞, 0.5,∞)−1, all with
appropriate units.

The beam is initially in a straight equilibrium position
(light grey line in figure 3b) and the controller is required
to bring the structure to a deformed position (black line in
figure 3b), described by a reference state q̄ in (66a). This
deformed configuration is the steady solution to a follower
transverse force, of magnitude F0 = 2 N, applied at the tip.
The controller, however, is set up to act via two degrees of
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Fig. 3: (a) Control input comparison for the nominal case of all the linear
and converged MPC controllers and (b) snapshots every 0.2 s of the control
action of the NMPC controller (with resultant applied force in green).

freedom u = [f1, f3]>, where f3 and f1 are transverse and
axial follower point forces:

x2(L, t) = [f1(t), 0, f3(t), 0, 0, 0]>. (76)

All the considered controllers use a basis with Nm = 4,
including the first two axial and bending modes. The sampling
time is τs = 0.2 s and the prediction horizon is τp = 2 s
(0.079 and 0.79 times the period of the first bending mode,
respectively), giving N = 10 subintervals. Finally, control
saturation (66d) is set as up = −ul = 2.5F0 and the cost
function (66a) is constructed with Q = blkdiag(INm , INm)
and control penalty R = 0.01I2.

Regarding the nominal case, a terminal penalty weight P
has been found and a terminal region (66e) with a = 1.98 has
been estimated following [18] MPC design for constrained
nonlinear systems (since the system is linearly stabilisable
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Fig. 4: Control input comparison of all the three controllers acting on the true
system

around q̄). Attending to the obtained results, both linear and
nonlinear implementations exhibit fairly similar behaviour, as
seen in figure 3a, albeit with LMPC producing a notably higher
oscillatory response and settling time.

It is interesting to note that both controllers exploit non-
linear buckling, to bring the structure closer to the reference
condition in a shorter time (which effectively decreases the
cost function (66a)): the controller applies a compression axial
force, depicted by negative values of the blue lines in figure 3a
which effectively causes the beam to buckle, as the increase
in curvature of the lower section of the beam in figure 3b
suggests.

It is also very interesting to look at the case where the con-
troller is applied to the true system, shown in figure 4. At first
glance, results provided by the LMPC and NMPC appear very
similar to the previous case, especially for NMPC. However,
for the LMPC implementation the oscillations already present
in the previous case are further amplified, due to the addition
of uncertainty corresponding to the lack of knowledge of the
nonlinear effects. From this numerical exploration, it is implied
that, firstly, the NMPC implementation appears robust to plant
uncertainty, and secondly, that just a few modes (2 modes per
motion) suffice to control the actual system. We also note that
the RTI implementation opts for a smoother and somewhat
slower response which consists of applying a transverse force
progressively, maintaining the control axial input close to zero.

2) 3D clamped case: In the three-dimensional case, a
similar problem has been tested. Again, a clamped, straight
uniform beam of the same length with mass matrix M =
diag(1, 1, 1, 1.67 · 10−4, 8.33 · 10−5, 8.33 · 10−5) and compli-
ance matrix C = diag(100, 105, 105, GJ, 0.5, 1)−1 is consid-
ered, where we will use two different values for GJ = 0.33EI
and 0.67EI , where EI = (EI2+EI3). The deformed, target
configuration is the steady solution to two transverse follower
forces, of magnitude F0 = 2 N each, applied at the tip.
The non-symmetric equilibrium position (due to EI2 6= EI3),
shown in figure 5, will entail geometrical couplings between
the bending modes in the two transverse directions and torsion.
By using different values of GJ , the influence of the nonlin-
earities on the performance of the different controllers will be

Fig. 5: Target position for the less flexible (thin stroke) and more flexible
(thicker stroke) beams, where projections onto each plane have been included
and where the width of the beam specifies the direction of higher stiffness.
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Fig. 6: Control input comparison of LMPC and NMPC for the nominal case
for a torsion stiffness of (a) GJ = 0.67EI and of (b) GJ = 0.33EI .

revealed. Note how in the more flexible case (thick line) in
figure 5, the target solution shows an increase in twist, laying
further away from the symmetric solution that EI2 = EI3
would produce.

The controller inputs are, here, three follower forces applied
at the tip u = [f1, f2, f3]>:

x2(L, t) = [f1(t), f2(t), f3(t), 0, 0, 0]>. (77)

The controller parameters (prediction horizon and intervals)
are the same as in the 2D case except for the number of
modes (now Nm = 8): two torsion modes and two bending
modes corresponding to the other transverse direction are
added. Similarly to the previous 2D case, the system is fully
stabilisable around q̄, and a much smaller terminal region of
a = 0.03 is estimated to satisfy the necessary conditions [18].

It is in this 3D case that the nonlinear effects become more
relevant when compared to the 2D one, since the follower
forces at the tip are very sensitive to the overall twist of
the beam. This is observed in figure 6, which shows how
the LMPC controller becomes more oscillatory and starts to
diverge from the NMPC response, particularly the transverse
force inputs, as the beam becomes more flexible in torsion
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Fig. 7: Control input comparison of the three controllers on the true system
for the flexible beam case.

(Fig. 6b), eventually leading to failure for values of GJ /
0.167EI , where the NMPC still shows convergence. The
NMPC shows more effective control, even reaching saturation
on the control input u1 for the more flexible beam case.

Similarly, we include simulations of the more flexible case
(GJ = 0.33EI) where the three different MPC implemen-
tations are set to control the true system. The corresponding
obtained control inputs are gathered in figure 7. The difference
between the results on the nominal system and on the true
system is larger in the 3D scenario, where even the more
robust NMPC shows higher oscillations throughout most of
the simulation, however it successfully stabilises the system.
The RTI-NMPC implementation follows the same tendency as
in the 2D case and achieves stabilisation, producing a smooth
solution by increasing gradually the control input until the
target configuration is reached.

3) 3D case on a moving base with gravity effects: Finally,
a case including gravity is presented, and hence, the rotation
field needs to be simulated. It is in this case where the bespoke
MPC setup described in §IV is required. The problem is now
a disturbance rejection one, where an inverted pendulum is to
be stabilised via control of the moving base using follower
force inputs in every direction u = [f1, f2, f3]>

x2(0, t) = −[f1(t), f2(t), f3(t), 0, 0, 0]>, (78)

where the minus sign arises from the distinct sign convention
between internal (x2 variable) and external forces (input) for
s = 0. The system is perturbed with an initial rigid-body
angular velocity of

√
2 rad/s with equal components in both

transverse directions, with the similar aim as in the previous
3D case to trigger nonlinear behaviour.

The pendulum is a straight beam with L = 1, with free
boundary conditions on both ends except that the structure is
prevented from spinning around its longitudinal axis only at
the base (twisting deformations are still allowed). The beam
has a mass matrix M = diag(1, 1, 1, 9 · 10−5, 6 · 10−5, 3 ·
10−5) and compliance matrix C = diag(500, 5 · 104, 5 ·
104, 0.05, 2, 1)−1, with appropriate units.

To set up the MPC controller we use a sampling period of
τs = 0.2 s and a prediction time horizon of τp = 4 s (0.12
and 9.8 times the period of the first bending mode in the 3-
direction), which results in N = 20 intervals. The controller’s
model uses 13 mode shapes which include two axial, four
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Fig. 8: Control input in the nominal case using the present NMPC design for
δ = 0.0001.
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Fig. 9: Fifteen snapshots for t ∈ [0.1, 6] s, with logarithmic spacing in time,
of the controlled pendulum in the (a) 1–2 and the (b) 1–3 planes, with shade
darkening for increasing time.

bending (two for each direction), two torsion and the five rigid-
body modes corresponding to the described configuration.

For a first test case, we use the spline approach to
parametrise rotations described in §III-B using a grid with
two intervals within the internal model. This results in a state
space with 36 states: 13 q1–states, 8 q2–states, 12 quaternion
components and 3 extra states which correspond to the base
displacement in the global reference

ṙb = T (ξ1)Φ1v(0)q1, (79)

where Φ1v is a matrix constructed by horizontally concatenat-
ing the three first components (translational velocity) of the
velocity mode shapes φ1. As discussed previously, linearisa-
tion of (65) gives unstabilisable modes (in this case 10), which
have components in both the quaternion field, the four bending
q2–states and the three displacements of the base.
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Fig. 10: Control input for both the (a) spline and the (b) modal finite-
dimensional approximations for the quaternions applied to the true system

This means that the structure can be brought to a state
where velocities are zero (i.e, equilibrium) but with remaining
deformed configurations due to the presence of gravitational
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Fig. 11: Control input on the true system using the present NMPC design for
δ = 0.0001 and constraint on vertical base displacement.

forces and with the base at a location different from the origin.
However, we want to shrink the set of all these possible
undesired equilibrium points, that is, the control objective is
to stabilise the system to a point where velocities are zero, and
the remaining stress configuration is minimum, also returning
the base of the pendulum as close as possible to the origin. To
achieve this, we make use of the NMPC machinery described
in § IV.

Initially, we have to solve the LMI system (70) and (71) for
a fixed β. We are interested in the highest value of β possible,
since it is linked with desirable decay rates, and we obtain for
this particular system, a value of β = 0.0092, together with
weight matrices Pw and Pd with 1.05 ≤ σ(Pw) ≤ 66.12,
1.25 ≤ σ(Pd) ≤ 22.06, and R = 10−4diag(1.35, 1.05, 1.23).

Next, by Lemma A.2, the existence of (possibly very small)
constants δ and ω which lead to decay of the MPC cost
function is assured. We estimate values of δ and ω for which
the condition (85) of Lemma A.2 is satisfied, at least for a
large cloud of points within the corresponding balls that δ and
ω define. We are interested in attaining the lowest possible
values for δ and the highest possible for ω (i.e., to minimise
the effect of unstabilisable modes and widen the set of stable
modes from where convergence is assured), achieving very
reasonable values of δ = 0.0001 and ω = 0.178. These
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Fig. 12: Fifteen snapshots for t ∈ [0.1, 10] s, with logarithmic spacing in
time, of the controlled pendulum in the (a) 1–2 and the (b) 1–3 planes, with
shade darkening with time for the vertical displacement constrained case.
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terminal constraints are imposed as in (66e), however splitting
the constraint into one for the stabilisable modes and a second
for the unstabilisable ones.

Very good performance is achieved, as suggested by the
obtained control input trajectories shown in figure 8, with
stabilisation achieved efficiently and inputs close to zero
for t ≥ 4. Snapshots showing how the control achieves
stabilisation of the structure are provided in figure 9.

We now show how even when applied to the true system
(i.e. a resolved numerical simulation of the PDE), stabilisation
is achieved using both the modal and the spline approaches.
The system constructed with the modal approach for the
quaternions has exactly the same structure, as represented by
(65), resulting in the same number of stabilisable modes as the
spline approximation model. Although the same β = 0.0092
is obtained for this new system, different parameters result
from the MPC design: δ = 0.0001 is chosen to be the same,
however we need a smaller ω = 0.068 and weight matrices Pw
and Pd have 1.06 ≤ σ(Pw) ≤ 139.87, 1.25 ≤ σ(Pd) ≤ 69.00,
and R = 10−4diag(2.74, 1.72, 2.17). Indeed, both internal
models achieve stabilisation showing only a slight increase in
oscillatory response due to the uncertainty arising from the
plant/model mismatch. This gives evidence that the modal
approach performs as efficiently as the spline method also
when applied to the true system.

We go even further to exploit MPC’s potential to place
constraints on the states to simulate a case where we constrain
the vertical displacement of the base to be zero, emulating the
scenario where the pendulum has to be controlled maintaining
the base in a horizontal 2D plane. Employing the internal
model equipped with the spline approximation and using
the previously obtained MPC parameters applied to the true
system, the obtained results are again very satisfactory. Despite
a slower stabilisation of the pendulum as observed in figure
11 due to the extra constraints that the control inputs must
satisfy, we see that the vertical displacement of the base in
figure 12 is effectively suppressed.

VI. CONCLUSIONS

An NMPC strategy to control very flexible structures has
been successfully demonstrated. The use of a modal-based
finite-dimensional approximation to the intrinsic beam equa-
tions allows us to retain geometrically nonlinear phenomena
characteristic of structures that undergo large deformations.
This nonlinear, but low-frequency behaviour, can be easily
captured in our formulation by using a model constructed with
just a few modes, which is of great significance since this can
be attained at a low computational cost. Through an extensive
numerical investigation it is demonstrated that an NMPC
scheme underpinned by such minimal finite-dimensional de-
scriptions can successfully stabilise the highly-resolved PDE,
providing evidence that the error produced in the modal
approximation does not hinder the convergence and stability
properties of the scheme. Proving rigorous bounds on this error
will be the focus of future research.

We have shown that since the PDE class considered in
this paper contains Euler-Bernoulli and Timoshenko beams,

our NMPC results apply to a wide class of flexible structure
models. Furthermore, damping models which have been typi-
cally expressed under the Euler-Bernoulli or Timoshenko beam
hypotheses are translated into our more general formulation.

To integrate rotations within the intrinsic description, we
have introduced two parametrisations that yield computation-
ally efficient, yet alternative, approaches. These have been
shown to underpin successful NMPC control strategies. Prop-
erties of the two quaternion parametrisations, which ensure
that the nature of the associated rotation transformation is pre-
served, have been also investigated. The use of a continuous-
time adjoint-based sensitivity analysis, exploiting the compact
structure of the resulting finite-dimensional approximation, has
also been shown to provide a computational advantage over
standard sensitivity analysis strategies.

For these reasons, the proposed NMPC framework offers,
for the first time, a viable strategy for real-time nonlinear
control of very flexible structures.

APPENDIX

The purpose of this section is to prove Theorem 11, which
requires a series of preliminary Lemmas.

Proof of Lemma 10

Since [Aw, Bw] are stabilisable, there exists 0 < β <
1, Pw ∈ Sn1

++ and Kw ∈ Rm×n1 such that (Aw +
BwKw)>Pw(Aw +BwKw)−Pw � −βPw. Now, by a Schur
complement argument X � 0 is equivalent to[

Â>wPwÂw Â>wPwÂd
[∗] Â>d PwÂd

]
�
[
(1− β)Pw 0

0 Pd

]
,

where Âw=Aw+BwKw and Âd=Ad+BwKd. Consequently,
for β, Pw,Kw as above and fixed Kd, it is clear that there
exists Pd ∈ Sn2

++ sufficiently large and R ∈ Sm++ sufficiently
small such that X � 0 and Y � 0.

Lemma A.1. Suppose that (70) and (71) hold. Let Âw and
Âd be as above and let K =

[
Kw Kd

]
. Then for any x =

( w
d ) ∈ Rn

‖Âww + Âdd‖2Pw − ‖w‖
2
Pw ≤ −β‖w‖

2
Pw + ‖d‖2Pd . (80)

and
`(x,Kx) ≤ β

2
‖w‖2Pw +

1

2
‖d‖2Pd . (81)

Proof. Follows from a Schur complement argument.

Lemma A.2. Suppose (70) and (71) hold. Let η > 0. There
exists ω > 0 such that for any 0 < δ < ωβ

3 the following is
true: for any x ∈ χ(ω, δ), if x+ = (A+BK)x+ f̃(x,Kx)
is one step of the nonlinear dynamics (67) under the linear
control u = Kx, then

Vf (x+)− Vf (x) + `(x,Kx) ≤ 2‖d‖2Pd (82)

and x+ ∈ χ(ω, δ + η).

Proof. Letting f̃ =
[
f̃w
f̃d

]
and x+ =

[
w+

d+

]
we have that

‖w+‖2Pw = ‖Âww + Âdd‖2Pw + ‖f̃w‖2Pw
+ 2x>(A+BK)>Π>wPwf̃w(x,Kx),

(83)
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where Πw = [In1
, 0n1

] gives the stabilisable part w of x and

‖d+‖2Pd = ‖d‖2Pd + ‖f̃d(x,Kx)‖2Pd + 2d>Pdf̃d(x,Kx).
(84)

Now, since f̃ contains higher-than-linear terms, there exist
sufficiently small ω, δ > 0 such that both

‖f̃w(x,Kx)‖2Pw + 2x>(A+BK)>Π>wPwf̃w(x,Kx)

≤ β

2
‖w‖2Pw +

1

2
‖d‖2Pd

(85)
and

‖f̃d(x,Kx)‖2Pd + 2d>Pdf̃d(x,Kx) ≤ η, (86)

hold for any x ∈ χ(ω, δ).

Now, using (80) from Lemma A.1 gives

Vf (x+)− Vf (x) = ‖Âww + Âdd‖2Pw − ‖w‖
2
Pw + ‖f̃w‖2Pw

+ 2x>(A+BK)>Π>wPwf̃w(x,Kx)

≤ −β
2
‖w‖2Pw +

3

2
‖d‖2Pd .

Equation (82) then follows from (81) of Lemma A.1.

We now show that x+ ∈ χ(ω, δ+ η), given that x ∈ χ(ω, δ).
From (84) and (86),

‖d+‖2Pd ≤ ‖d‖
2
Pd

+ ε ≤ δ + η.

Finally, using (83), (85) and (80),

‖w+‖2Pw = Vf (x+) ≤
(

1− β

2

)
‖w‖2Pw +

3

2
‖d‖2Pd

≤
(

1− β

2

)
ω +

3δ

2
≤ ω

where the final inequality holds with the additional assumption
δ ≤ βω

3 .

Lemma A.3. Suppose that Assumption 9 holds and (70), (71)
are satisfied. For any ε > 0, there exist 0 < ω < ω0 and
0 < δ < δ0 such that for any x ∈ XN,ω,δ , we have x+ =
f(x,κN,ω,δ(x)) ∈ XN,ω,δ and

V ∗N,ω,δ(x
+) ≤ V ∗N,ω,δ(x)− β

4
‖w‖2Pw + 2δ + ε.

Proof. Let ε > 0. First note that since VN is continuously
differentiable and χ(ω0, δ0) is compact, there exists LV > 0
such that

|VN (y,u)− V (y,v)| ≤ LV ‖u− v‖uN−1 (87)

for u,v ∈ uN−1,y ∈ χ(ω0, δ0). By Assumption 9 there exists
η > 0 such that

dH (UN,ω,δ(y),UN,ω,δ+η(y)) ≤ ε

LV
, (88)

for any ω < ω0, δ < δ0 and and y ∈ XN,ω,δ .
Next, pick ω < ω0 and δ < ωβ/3 such that the conse-

quences of Lemma A.2 are true for η > 0. Let x ∈ XN,ω,δ

and let u∗ = (u0
∗, . . . ,u

N−1
∗ ) be an optimizing sequence

for V ∗N,ω,δ(x). Let xk∗ = φ(k;x,u∗) be the associated state

trajectory. Then xN∗ ∈ χ(ω, δ) and, by the assumption of
control invariance,

x1
∗ = f(x,κN,ω,δ(x)) ∈ XN,ω,δ.

Now, since xN∗ ∈ χ(ω, δ), Lemma A.2 implies that
f(xN∗ ,Kx

N
∗ ) ∈ χ(ω, δ + η) and

Vf (f(xN∗ ,Kx
N
∗ ))− Vf (xN∗ ) + `(xN∗ ,Kx

N
∗ ) ≤ 2‖dN∗ ‖2Pd .

(89)
Furthermore, since f(xN∗ ,Kx

N
∗ ) ∈ χ(ω, δ+η), it follows that

the input sequence ũ = (u1
∗, . . . ,u

N−1
∗ ,KxN∗ ) satisfies

ũ ∈ UN,ω,δ+η(x1
∗).

By (88), there exists v ∈ UN,ω,δ(x1
∗) such that ‖ũ−v‖uN−1 ≤

ε/LV . By (87),

|VN (x1
∗,v)− VN (x1

∗, ũ)| ≤ ε.

By optimality and the above inequality,

V ∗N,ω,δ(x
1
∗) ≤ VN (x1

∗,v) ≤ VN (x1
∗, ũ) + ε.

Using the definitions of ũ and V ∗N,ω,δ(x),

VN (x1
∗, ũ) ≤

N−1∑
k=1

`(xk∗,u
k
∗) + `(xN∗ ,Kx

N
∗ )

+ Vf (f(xN∗ ,Kx
N
∗ ))

=

[
N−1∑
k=0

`(xk∗,u
k
∗) + Vf (xN∗ )

]
− `(x,u0

∗)− Vf (xN∗ )

+ Vf (f(xN∗ ,Kx
N
∗ )) + `(xN∗ ,Kx

N
∗ )

= V ∗N,ω,δ(x)− `(x,u0
∗)− Vf (xN∗ )

+ Vf (f(xN∗ ,Kx
N
∗ )) + `(xN∗ ,Kx

N
∗ )

(by (89)) ≤ V ∗N,ω,δ(x)− `(x,κN,ω,δ(x)) + 2‖dN∗ ‖2Pd
(xN∗ ∈χ(ω, δ)) ≤ V ∗N,ω,δ(x)− `(x,κN,ω,δ(x)) + 2δ

(by def. of `) ≤ V ∗N,ω,δ(x)− β

4
‖w‖2Pw + 2δ.

Hence, since x1
∗ = f(x,κN,ω,δ(x)) = x+ it follows that

V ∗N,ω,δ(x
+) ≤ V ∗N,ω,δ(x)− β

4
‖w‖2Pw + 2δ + ε.

Proof of Theorem 11
By Lemma A.3, there exist ω < ω0, δ < δ0 such that for

any k ∈ N,

V ∗N,ω,δ(x
k) ≤ V ∗N,ω,δ(x0)− β

4

k−1∑
i=0

‖wi‖2Pw + k(2δ + ε).

Now, suppose that there exists ρ > 0 such that ‖wk‖2Pw ≥
(4/β)(2δ + ε) + ρ for all k ∈ N. Then

0 ≤ V ∗N,ω,δ(xk) ≤ V ∗N,ω,δ(x0)− ρk, k ∈ N,

which is a contradiction. Hence, there exists k0 ∈ N such
that ‖wk0‖2Pw ≤

4
β (2δ+ ε). The eventual bound follows from

estimating the maximum increase in ‖wk‖Pw after the first
time its value is less than (4/β)(2δ + ε).
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