
BIOLOGICALLY-INSPIRED RADAR SENSING
by

GALEN MAXWELL REICH

A thesis submitted to the University of Birmingham for the degree of
DOCTOR OF PHILOSOPHY

Department of Electrical Engineering
School of Engineering

College of Engineering and Physical Sciences
University of Birmingham

September 2019



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Abstract

The natural world has an unquantifiable complexity and natural life exhibits remarkable

techniques for responding to and interacting with the natural world. This thesis aims to

find new approaches to radar systems by exploring the paradigm of biologically-inspired

design to find effective ways of using the flexibility of modern radar systems. In particu-

lar, this thesis takes inspiration from the astonishing feats of human echolocators and the

complex cognitive processes that underpin the human experience. Interdisciplinary re-

search into human echolocator tongue clicks is presented before two biologically-inspired

radar techniques are proposed, developed, and analyzed using simulations and experi-

ments. The first radar technique uses the frequency-diversity of a radar system to localize

targets in angle, and the second technique uses the degrees-of-freedom accessible to a mo-

bile robotic platform to implement a cognitive radar architecture for obstacle avoidance

and navigation.
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Chapter 1

Introduction

There are as many worlds as there are kinds of days, and

as an opal changes its colors and its fire to match the

nature of a day, so do I.

— John Steinbeck

Travels with Charley: In Search of America, 1962
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1.1 Overview

A man stands on the side of a busy street, head cocked, listening to the bustle around

him. He describes the wooden facade of the buildings behind him as a tour guide would.

Pausing a moment, he waits for a gap in the traffic before crossing the road, avoiding

a car parked in his path. On the other side he points to the low bushes surrounding a

play park and, after opening the gate, explains the layout of the metal play equipment

inside it. Throughout the tour, this man has been clicking purposefully; a series of tongue

clicks illuminating his environment, allowing this blind expert echolocator to perceive and

interact with his environment.

Fundamentally, radar is echolocation, and there is much that radar engineers can learn

from natural echolocators. The hope for this thesis is that, by understanding the differ-

ent ways that nature approaches the task of perception using echolocation, novel radar

techniques can be developed. This thesis sets out natural approaches to echolocation and

localization, and it then presents research that developed the fundamental understanding

of human echolocation. Building on these ideas, the thesis will go on to present and

develop two biologically-inspired approaches to radar: the first taking inspiration from

the frequency diversity of echolocator calls, and the second taking inspiration from the

cognitive processes seen in humans and other echolocating mammals.

Figure 1.1: Visualization of a human echolocator tongue click.
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1.2 Motivation and Aims

Traditionally, designers of radar systems have sought to increase the operational range

of their systems, pushing the limits of hardware and signal processing to achieve systems

with low false alarm rates and high signal-to-noise ratios (SNRs). In pushing the fron-

tiers of radar, the transmit power of radar systems has generally increased and antennas

have been increasingly optimized to maximize gain and balance power budgets, ultimately

achieving optimal performance characteristics for the task at hand. However, as radar

technology develops into smaller form factor systems that operate at higher frequencies,

there is a dramatically increasing number of potential applications. Ranging from au-

tonomous vehicles to gesture recognition, mobile robotics to structural analysis, the field

of radar is further from its origins than ever before. This wide variety of short-range sens-

ing applications brings with it new goals and constraints that are no longer satisfied by

historic optimizations. As radar diversifies, so too should its design paradigms: increasing

detection range and decreasing false alarm rate should no longer be the motivation for

these new short-range technologies for which a new paradigm may be better suited.

That is not to say that this thesis eschews historic radar principles; traditional prin-

ciples and techniques provide a solid foundation on top of which new approaches can be

built. Because of the wide variety of adverse environments involved with traditional radar

approaches, high performance hardware was developed that provides modern short-range

systems with more flexibility than was previously possible. When combined with the ad-

vances of digital signal processing that have made trialling, tweaking, and implementing

new sensing approaches easier and more dynamic than ever before, this increased flexi-

bility provides scope for exploration of new techniques to solve the challenges of a new

generation of radar systems.

But, even with the increased flexibility of modern systems, how should researchers

address the varied and complex challenges that modern radar systems and applications

require?

The natural world has an unquantifiable complexity and natural life exhibits remark-
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able techniques for responding to and interacting with the natural world. These techniques

have often evolved over millennia, and the evolutionary process has overcome a plethora

of natural optimization challenges. From ants that optimize routing from food sources to

their colonies, to the streamlined beaks of kingfishers that optimize quiet entry into water,

we are surrounded by natural systems that are able to excel in complex environments. By

taking inspiration from these incredible biological systems, researchers can gain a fresh

perspective and insight into modern engineering challenges.

The research presented in this thesis aims to find and develop new approaches to radar

systems by exploring the paradigm of biologically-inspired design to find effective ways

of using the potential of modern radar systems. Others have taken this approach in the

field of radar and many interesting and powerful techniques have been developed as a

result, demonstrating the efficacy of the approach. Part of the challenge of this thesis is

to develop techniques that are novel and take inspiration from relatively unexplored areas

of the natural world (from the perspective of a radar engineer).

This author takes inspiration from the astonishing feats of human echolocators and

the complex cognitive processes that underpin the human experience. If it is possible

to gain insight into the varied mechanisms of human perception that result in a rich

understanding of our environments, then perhaps it is possible to develop radar systems

that achieve a richer perception of their environments.

1.3 Thesis Layout

This thesis finds biological inspiration in the passive techniques used for sound localization

by humans (and other mammals) as well as the active techniques for localization used by

mammalian echolocators. Accordingly, a review of research into different approaches to

localization is presented in Chapter 2. Both passive and active localization approaches

are considered, as well as existing approaches to biologically-inspired radar to outline the

research landscape in which this work is placed.
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Throughout this thesis, various theoretical ideas and approaches are used, some are

standard in radar research and some are alien to it. The details of these ideas and

approaches is not part of the novel contribution of this research, but explanations of them

are provided for completeness in Chapter 3.

Human echolocation is an area of relatively new research in acoustics, psychology, and

engineering. Chapter 4 provides the first detailed description of the properties of human

echolocator tongue clicks. This description is then used to synthesize artificial tongue

clicks that share the key properties of the echolocator tongue clicks and can be easily

used by others.

Variants of a novel wideband target localization technique are introduced in Chapter 5,

which also presents simulated and experimental results of using these techniques. These

approaches are inspired by the properties of human echolocator tongue clicks and the

human echolocation process, utilizing radar analogues of human sound localization cues.

A cognitive radar system is introduced in Chapter 6. This system takes biological

inspiration from the cognitive structures of human brains, and implements a closed-loop

autonomous control system for a mobile robotic platform. Simulated and experimental

results into the use of memory in cognitive radar systems are also detailed, and allows

initial observations about the use of memory in cognitive radar systems to be made.

Finally, Chapter 7 outlines conclusions from the preceding chapters, and draws con-

clusions based on the aggregation of research in this thesis. It also provides a series of

suggestions for future avenues of research work which naturally extend from the presented

material.
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1.4 Novel Contributions

Novel parametrization of human echolocator tongue clicks was conducted which allowed

an analytical click model to be derived, and open access synthetic human echolocator

tongue clicks to be constructed and released. This parametrization was based on original

analysis of a large database of human echolocator tongue clicks which was conducted in

unprecedented detail [1, 2]. This analysis allowed several observations to be made. Firstly,

that the frequency-components of the clicks have a constant frequency as a function of time

and span the 2-13 kHz band, with a primary spectral peak in the 2-4 kHz band. Secondly,

that the time domain profile of the clicks has a rapid onset and a typical duration of 3 ms.

Thirdly, that the clicks have a broad beamwidth and illuminate a wide area before the

echolocator. Finally, that the clicks have a good range resolution of approximately 2 cm,

but are ambiguous in Doppler. This research is detailed in Chapter 4.

The theoretical basis for a family of closely-related radar techniques was developed

and is presented in Chapter 5 [3, 4, 5]. These techniques use a combination of waveform

frequency diversity and spatial encoding by the receiver antennas to localize a target. The

techniques were verified through simulation and experiment, confirming the fundamental

possibility that they can operate successfully using single measurements. Furthermore,

analysis of each technique’s performance is provided.

An autonomous cognitive radar system architecture for navigation was developed and

tested using simulated and experimental results to assess its performance [6, 7]. To the

author’s best knowledge this work, presented in Chapter 6, is the first investigation into

the effects of using memory in cognitive radar systems. This work finds that some memory

is useful for a cognitive radar, but that too much memory can hinder such a system.

6



1.5 Publications Arising

The novel contributions presented in the previous section led to the following publications.

[1] L. Thaler, G. Reich, X. Zhang, D. Wang, G. Smith, M. Cherniakov, C. Baker,

D. Kish, and M. Antoniou, “Mouth-clicks used by blind expert human echolocators

- signal description and model based signal synthesis,” PLoS Computational Biology,

vol. 13, Aug. 2017

[2] X. Zhang, G. M. Reich, M. Antoniou, M. Cherniakov, C. J. Baker, L. Thaler,

D. Kish, and G. E. Smith, “Human echolocation: waveform analysis of tongue

clicks,” Electronics Letters, vol. 53, no. 9, pp. 580–582, 2017

[3] G. M. Reich, M. Antoniou, and C. J. Baker, “Biologically-inspired wideband target

localisation,” Sonar Navigation IET Radar, vol. 12, no. 12, pp. 1410–1418, 2018

[4] G. M. Reich, M. Antoniou, and C. J. Baker, “Bio-inspired techniques for target

localization,” in 2018 IEEE Radar Conference (RadarConf18), pp. 1239–1244, Apr.

2018

[5] G. M. Reich, M. Antoniou, and C. J. Baker, “Frequency-dependent target localiza-

tion,” in International Conference on Radar Systems (Radar 2017), pp. 1–6, Oct.

2017

[6] G. M. Reich, M. Antoniou, and C. J. Baker, “Memory-Enhanced Cognitive Radar

for Autonomous Navigation,” 2019. Manuscript submitted for publication

[7] G. M. Reich, M. Antoniou, and C. J. Baker, “MIMO Radar for Cognitive Robot Plat-

form Control and Navigation,” in 2019 International Radar Conference (RADAR),

pp. 1–6, 2019. In Press
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Chapter 2

Approaches to Localization

The clearest way into the Universe is through a forest

wilderness.

— John Muir

Diary Entry, July 1890
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2.1 Introduction

Because this research aims to develop novel biologically-inspired radar techniques, this

chapter provides overviews of the mechanisms for sound localization seen in nature;

the current state of research into echolocation in bats and humans; and the existing

biologically-inspired approaches developed by the radar community.

By understanding the acoustic approaches taken by creatures in the natural world and

the overlap with existing radar techniques, we can attempt to incorporate these techniques

and designs into the engineering of electromagnetic systems. Initially, this chapter will

consider the ‘passive’ situation that the majority of humans experience on a daily basis:

locating the position of a sound source. Secondly, the ‘active’ case of echolocation and

the additional information that it provides will be explored. Finally, existing biologically-

inspired radar and sonar techniques will be examined.

This chapter does not provide a general overview of acoustics as this is beyond the

scope of this thesis. However many good acoustic reference books are available for the

interested reader [8, 9, 10, 11]. Although this chapter is primarily a literature review,

it does not aim to provide a comprehensive review of all bat and human echolocation

research, but does examine key aspects that are relevant to the research presented in this

thesis.

2.2 Psychoacoustics: Passive Localization

In our daily lives as humans we encounter many situations where we are required to

locate the origin of a sound. For example, a lost mobile phone may be found by ringing

it and listening to the sounds it produces. We are not the only animals to localize

sounds; many birds of prey are reliant on sound localization for hunting, and must be

able to determine the precise location of prey from the faint sounds that they produce.

This section investigates the mechanisms for sound localization, particularly focusing on

humans, but drawing on evidence from the wider natural world where appropriate.
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2.2.1 Binaural Cues for Localization

The psychology of perception of sound by humans has been a subject of much interest and

investigation by scientists and philosophers who have been eager to better understand how

we, as humans, perceive our environments. Some of the earliest formal scientific investi-

gations of human perception of sound sources were carried out by John William Stutt,

3rd Baron Rayleigh, more commonly referred to as Lord Rayleigh. Rayleigh conducted

a series of open-air experiments in the 1870s which asked that an observer with their

eyes closed, point towards the source of a sound. Many different sources of sound were

used, including normal speech; individual consonants and vowels; and tuning forks with

resonant boxes to amplify the purest of tones possible. Rayleigh’s acoustical observations

were extensive and go far beyond the scope of this chapter, but he did identify several

cues which are examined in more detail in the following sections, and they are:

• Inter-aural level difference (ILD)

• Inter-aural time difference (ITD)

• Inter-aural phase difference (IPD)

• Binaural timbre difference (BTD)

Rayleigh came to several deeply insightful conclusions about binaural localization cues

(those reliant on a difference between the ears) which persisted through the development

of psychoacoustics and are still relevant today [12, 13, 14, 15, 16].

2.2.2 Inter-aural Level Difference

Rayleigh concluded that “[there] could be no doubt but that relative intensities at the

two ears play an important part in the localization of sound” [16, p.218]. This conclusion

was reached through the observation that the location of a tuning fork could be reliably

determined if the observer was asked to discriminate between fork positions to their right

and to their left, but that the same confidence in fork position was absent when the
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positions were before and behind the observer. Rayleigh deduced that the observer had

no way to tell the difference between signals arriving from forks placed before and behind

because the intensity difference between the sound arriving at the ears would be identical.

It is worth noting that the observer initially plugged their ears to try and remove any

possibility of the sound onset delay at the ears influencing their decision. Once the sound

was started, the observer unplugged their ears. The relative difference in intensity of a

sound source is widely recognized today as one of the important cues for the localization of

sound sources and is often referred to as the ILD or inter-aural intensity difference (IID).

Further, Rayleigh observed that, due to the size of the human head, the ILD should only

be an effective cue for localizing the source of high-pitched tones, which have a wavelength

much smaller than the dimensions of the head and are therefore significantly attenuated by

it. This is shown by Equation (2.1), which is given by Rayleigh to estimate the maximum

intensity difference between the two ears for a sound of wavelength, λ, and a person of

head circumference, 2πc [16, p.216]. For a tone of 128 Hz, Equation (2.1) indicates that

the ILD should be less than 1% of the signal intensity, which Rayleigh believed would be

imperceptable to the human ear.

∆I =
3

4

(

2πc

λ

)4

(2.1)

Subsequent research on the sound field at the ears by Sivian and White [17] showed

that the ILD varied as a function of frequency and azimuth which indicated that the ILD

would be an effective cue for frequencies above 300Hz [18]. Work by Feddersen et al. [19]

describes the difficulty associated with making accurate measurements of the ILD due to

difficulties in reliably positioning a microphone within the ear. Their work controlled for

this however, and they were able to publish some of the first reliable ILD measurements

for different frequencies and angles. When a sound is presented directly to one side of an

observer the ILD varies according to the data given in Table 2.1 which is consistent with

the work by Sivian and White, and supports Rayleigh’s conclusion that low-frequency

localization using an ILD cue is unlikely [19].
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Table 2.1: ILD measurements for a sound source positioned to one side of a subject [19,
Fig 2.].

Frequency (kHz) ILD (dB)

0.2 0
0.5 3
1 4
1.8 9
2.5 9
3 9
4 8
5 14
6 14

2.2.3 Inter-aural Time Difference

Rayleigh knew that the commencement of a sound source could also be used as a cue

for localization, and it was a cue that he sought to remove from his experiments into

ILD by temporarily plugging his participants’ ears for the moment of sound onset. The

ITD is the second important cue used in sound localization and is particularly useful for

localizing sound sources in the azimuth plane, discriminating between the left and right

directions reliably [18, pp.520-522]. For reference, Figure 2.1 shows the orientation of the

planes that are referred to in this thesis.

A first-order approximation of the ITD is a situation analogous to optical parallax.

Figure 2.2 shows the geometry for a sound source located sufficiently far away from the

listener for the wavefront to be considered parallel, which gives Equation (2.2)[18, p.521]

for the distance difference for a sound to arrive at both ears.

Ds = r (θ + sin θ) (2.2)

Research by Woodworth found that in the horizontal plane the ITD could be used

to discriminate between sound sources separated by 3o which corresponded to an ITD

of 30µs, indicating that very small time differences can be used by humans for sound

localization [18, p.522].

Work by Kuhn [20] investigated the frequency-dependence of the ITD by using a
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Figure 2.1: The azimuth and elevation planes defined relative to head orientation.
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Figure 2.2: ITD geometry for a sound source sufficiently far from the observer for the
wavefront to be considered parallel. Adapted from [18, Fig. 143. p.521].

mannequin, resulting in data which shows that at low frequencies (below 500 Hz) the

ITD is proportional to 3 sin θ due to diffraction effects of low-frequency waves around the

head. At high frequencies (above 3 kHz) the ITD becomes proportional to 2 sin θ due to

the creeping wave effects around the head, which corresponds to Woodworth’s geometrical

model. Over a mid-range of frequencies the proportionality of the ITD varies between 3
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and 2 times the sine of the incident angle [20].

For low frequencies the ITD is largest and varies straightforwardly with angle. In the

mid-region of frequencies the ITD is frequency-dependent and localization performance

using the ITD alone decreases. At high frequencies the ITD is shorter than at low fre-

quencies, but returns to a frequency-independent behaviour. Kuhn’s observations show

that Woodworth’s model, Equation (2.2), is a frequency-independent model that is valid

for high frequency ITDs and those for transient clicks where detection is made on the

leading edge, both of which rely on the creeping wave phenomena across the surface of

the head [20].

2.2.4 Inter-aural Phase Difference

In contrast to the ITD, the IPD refers specifically to the difference of phases at the

two ears, not the time difference of sound onset (though many publications draw an

equivalence between them as they are closely related and often equivalent). Rayleigh

reluctantly concluded that when “a pure tone of low pitch is recognized as being on

the right or the left, the only alternative to the intensity theory is to suppose that the

judgement is founded upon the difference of phases at the two ears” [16, p.218]. The path

difference between the ears introduces a phase difference between them, in addition to a

time difference of arrival, which can manifest as a beat between the sounds received at the

two ears. By using two tuning forks of slightly different frequencies producing sound in

each ear of a participant, Rayleigh was able to control out the ILD and ITD, he observed

that the perceived location of the sound source shifted from side to side, corresponding

to the phase of the beat frequency. In this way Rayleigh’s experiments showed that the

perception of left and right could be derived solely by the beat resulting from the IPD.

The extent to which humans directly use the IPD cue on a regular basis is unknown,

but there is evidence to suggest that the IPD can be used indirectly by causing an ILD,

which can then be used for localization [21].
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2.2.5 Binaural Timbre Difference

The final cue used by humans for sound source localization is the BTD, which was alluded

to by Rayleigh in his work when he observed “that the possibility of detecting whether

a source of sound was in front or behind depended [...] upon the compound character of

the sound” [12, p.76]. The “compound character” of a sound refers to a sound that is a

combination of multiple tones, or alternatively one with a wide frequency bandwidth. It

would appear that the complex spectrum of a wide bandwidth sound improves localization

ability, but the exact mechanism of this was not known to Rayleigh. One of Rayleigh’s

contemporaries, a Dr. Stone remarked that Rayleigh’s work did not investigate “the pinna,

which was a very powerful guiding apparatus [...] to distinguish where a sound came

from.”[12, p.82]. Dr. Stone’s words were extremely insightful as subsequent investigation

into how humans localize sound sources revealed that the frequency-dependent effects of

the head and the pinna (which is the outer ear) were of vital importance for localizing

sound sources in elevation [22, 23].

Experiments into the effects of the pinna showed that, in the absence of ILD and ITD

cues for a sound source on the elevation plane (where there is no path length difference

between the ears), that participants with their pinna occluded are unable to localize the

sound source with any certainty; participants with different degrees of pinna occlusion

were able to localize sound sources with performance increasing as occlusion decreased,

indicating that the spectral filtering effects of the pinna are vital for this type of sound

localization [23, 24].

Research into the precise effects of the pinna, mostly conducted within the field of

acoustics, revealed a function termed the head-related transfer function (HRTF) which

describes how the bulk of the head and shape of the pinna alter the magnitude of sound

signals arriving at the ears as a function of frequency [25, 26, 27]. Because of the 3D

structure of the head and pinna, the HRTF is not strictly independent of the range to a

sound source. However, the effects of range are negligible compared to the angular effects,

and vanish completely if the sound source satisfies the far field approximation that the
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incident wavefronts are parallel.

Figure 2.3 shows an example HRTF for a human’s left ear, and captures how the

gain of the ear varies with frequency and azimuth angle of the incident plane wave. For

example, a tone of 10 kHz located at −50o has a normalized gain of 0 dB, the peak of

the HRTF, whereas a tone of 10 kHz located at 90o (placing it on the far side of the head

from the ear) undergoes around 25 dB of attenuation. The spectral features in the HRTF

modulate a sound signal with information about its angle of origin. By comparing the

tone of an incoming sound received at the ears, information about the sound location can

be extracted.
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Figure 2.3: The HRTF of the left ear of a human, taken from the CIPIC HRTF Database
(Subject 3) [27]

The spectral filtering introduced by the HRTF is very interesting, and is the basis of a

monaural sound localization cue discussed in the following section. However, researchers

have found that the brain also compares the spectral cues at each ear for determining

the elevation of a sound source, and that the brain weights the comparison based on

the perceived azimuth angle to the sound source [28]. This work highlights one particular

approach to integrating the perception of timbre at the two ears to localize a sound source.
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The term ‘binaural timbre difference’ is used by Woodworth [29, p. 525] and is the

term preferred by the author to distinguish this cue from the ILD which is treated as a

narrow bandwidth cue only. Many authors prefer to use a wide bandwidth version of the

ILD which is equivalent to the BTD. For clarity in this work the ILD refers only to a

narrow bandwidth cue, whereas the BTD refers only to a wide bandwidth cue.

These different binaural cues are processed simultaneously in the brain, and there is

evidence to suggest that these different cues may be combined in higher-level processing

to form an improved perception of a sound source [30, 31, 32]. However, the mechanisms

and details of binaural cue integration is an area of active research in psychoacoustics and

is beyond the scope of this work.

2.2.6 Other Cues for Localization

The previous section focused on binaural cues for sound localization which will be used

heavily in the rest of this thesis. However, it is also useful to note the presence of other

cues and cue combinations for sound localization that are less central to the thesis.

Early work into monaural localization by Angell and Fite found that pure tones were

unlocalized using monaural hearing, but that complex sounds could be localized with

accuracy [33, 34]. They speculated that the pinna was an important factor in the local-

ization process, indicating that it altered the quality of the incoming sound in a way that

enabled localization of wide bandwidth sound sources. Further research confirmed the

role of the pinna in monaural localization of wide bandwidth sounds. Artificially remov-

ing a person’s pinna inhibits their monaural localization ability, while the addition of an

artificial pinna improves it [22, 23].

Research into the bandwidth necessary for monaural sound localization using spectral

cues found that a spectral ‘notch’ is introduced by the shape of the pinna, and that the

frequency at which this notch occurs corresponds to the elevation of the sound source.

Because of this correspondence, the notch could be used by an observer to localize a sound

source in elevation, provided that the sound source consisted of a wide bandwidth signal
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(such as the white noise used by the researchers) [35].

The idea of creatures using a notch in the perceived spectrum of a sound source for

localization is an important one, and researchers found that the ears of domestic cats

introduce a notch into the received spectrum in the same way to the human ear. The

cat’s ear however, does not encode the notch at a frequency that is purely dependent

on elevation. Rather, the frequency of the notch introduced by the ear is a function of

both azimuth and elevation. This coupling appears counter-intuitive but considering the

integration of both ears reveals a remarkable effect shown in Figure 2.4: the frequency at

which the notches in the left and right occur in the spectra act as a coordinate system

that uniquely corresponds to the azimuth and elevation of a sound source [36].

Another important cue is introduced by the use of head movements by listeners to

localize different types of sound source. By moving the head a listener alters the ITD,

ILD, and BTD of a sound, gaining information about the scene which usually leads to an

increase in localization performance [37, 38, 39, 40, 41].

2.2.7 Neural Correlates

With the development of modern neuroscience, research into sound localization has in-

creasingly turned to searching for neural correlates to the previously discussed cues. Re-

searchers have found evidence for ILD and ITD cues in the owl’s auditory pathway [42, 43];

the integration of binaural cues in owls [44, 45]; direction sensitive neurons in the cat [46];

binaural cue tuned neurons in the cat [47]; ITD sensitive neurons in rabbits [48]; and

spatially sensitive neurons in rhesus monkeys [49]. For a review of sound localization in

the brain see [50].

2.2.8 Localization by Blind Humans

In the context of monaural localization, research indicates that blind people have better

monaural localization abilities than sighted individuals [51], which indicates the impor-

tance of spectral-based monaural cues for localization in blind individuals. In general
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Figure 2.4: Iso-frequency contours for the notch introduced to the spectrum by the shape
of the ears of a domestic cat. Solid lines correspond to the contours for the right ear, and
dashed lines correspond to the contours of the left ear. The frequency at which the notches
occur in the left and right spectra act as a coordinate system that uniquely corresponds
to the azimuth and elevation of a sound source. Reprinted from Hearing Research, 58/2,
Rice et al., Pinna-based spectral cues for sound localization in cat, 132-152, Copyright
1992, with permission from Elsevier. [36]

however, when all cues are available there is no performance difference in laboratory

conditions between blind and sighted individuals [52]. Indeed, in some circumstances,

performance of blind individuals in sound localization tasks is poorer on average than the

average performance of sighted individuals [53].

2.3 Natural Echolocation: Active Localization

Echolocation is an ability developed by many creatures in the natural world which gives

them a unique perception of their environment that is not reliant on the visual senses.
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The passive reception of sound signals and localization of their origins using the auditory

senses has already been discussed, but echolocation is an active technique that, as with

radar and sonar, requires the active transmission of a sound signal into the environment.

The transmitted signal propagates into the environment and reflects from objects therein,

returning to the ears of the echolocating creature as a series of echoes that may be blurred,

distorted, and overlapped. The echolocator must interpret these echoes in order to make

sense of their environment, and this process occurs in the complex neural circuitry of the

brain.

Understanding the techniques used by natural echolocators and the types of perception

that they can form is important for taking a biologically-inspired approach to designing

radar systems. The following sections briefly explore some of the key ideas of natural

echolocation to complement and support the analysis presented in Chapter 4, and aims

to identify to the reader the key ideas from which inspiration will be drawn in Chapter 5

and Chapter 6.

2.3.1 Bats

One of the most prolific echolocating animals is the bat; famed for their high-frequency

echolocation calls, bats are able to navigate around caves, forests, and scrub. There are

many different types of bats with different echolocation calls, but many bat species use

short duration calls that use a wide band of frequencies with frequency modulation over

the duration of the call, and often with multiple harmonics within the call. Many bats

also possess the ability to control the parameters of their calls, such as duration, pitch,

chirp rate, and pulse interval, depending on the situation in which they are placed. For

example, the big brown bat increases its pulse repetition frequency, pitch, and chirp rate

as it approaches its prey [54].

Another dynamic behaviour of bats is their ability to alter pulse intervals in order to

mitigate the effects of overlapping pulse reflections [55]. By varying the pulse interval,

real targets will still be perceived as having a constant position, but spurious targets
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(resulting from the overlapping reflections) will instantaneously vary in position, allowing

the bat to distinguish between real and spurious auditory images. The use of cognitive

parameter control is an active area of interest within the radar community [56, 57].

Research into the neural mechanisms of bat echolocation have shown that bats pos-

sess delay-tuned neurons which selectively respond to echoes at particular time delays

[58, 59, 60]. These neurons also selectively respond to different elements of the bat’s

echolocation calls, indicating that different features of the calls could be used for different

purposes. One of the descriptions of the processing of bat echolocation calls that mim-

ics the delay-tuned neurons is the spectrogram correlation and transformation (SCAT)

model [61], which approaches the computational modelling of the echolocation process

using functional blocks which relate to the physiology and neural structures of the bat.

Some bats also appear to have a remarkable tolerance to overlapping echoes from target

and clutter sources, and are still able to successfully intercept prey in close proximity to

vegetation [62]. One of the explanations for this exceptional ability to separate target and

clutter is the wide bandwidth calls that the bats transmit. These calls have a beamwidth

that narrows as the frequency of transmission increases. This change in beamwidth means

that objects directly in front of the bat are strongly ensonified by all of the transmission

spectrum whereas objects away from the transmission axis are strongly ensonified by the

lower frequencies only. The higher frequency components are still present in the trans-

mission off-axis, but the losses introduced by signal propagation cause these frequency

components to fall below the bat’s hearing threshold. It is possible that the perceived

absence of high-frequency components causes the bat’s perception of an echo to defocus,

indicating echoes away from the boresight direction [63].

In addition to being able to avoid collisions with clutter in their environments, bats

also posses the ability to identify sources of food, often in the form of flowers for nectar-

feeding bats. It has been suggested that this ability is a result of the spectral composition

of the echoes that those bats receive as they approach the flower [64, 65, 66]. Research

into the use of wideband spectral content in echoes for classification of targets found that
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performance of a classifier of both flowers and classical radar targets improved significantly

with multiple look angles [67, 68, 69].

The use of wide bandwidth signals by bats is also interesting for radar because of the

reliance on broadband signals for the pinna-related cues discussed previously. Experiments

have been conducted to assess the impact of impairing bats’ pinnae. These experiments

found that the localization performance of the bats suffered when their pinnae were oc-

cluded, and that they altered their strategy to compensate for the pinna impairment [70].

The use of wideband signals and pinna-type cues is of significant importance for the work

presented in Chapter 5.

Some bats also appear to adopt strategies for target interception that are consistent

with an acoustic flow model of behaviour [71]. This model has been used for research

into echoic flow for radar, sonar, and mobile robotics [72, 73, 74, 75, 76], and provides the

inspiration for the work presented in Chapter 6.

2.3.2 Humans

In addition to commonly known and researched echolocating species, some humans have

developed the ability to echolocate. In general, there are three categories of echolocating

humans: early-blind individuals who have been expert echolocators for much of their lives;

late-blind individuals who have learnt echolocation after losing their sight; and sighted

individuals who have been taught some elements of echolocation, often while blindfolded.

Of the blind echolocators, many regularly use tongue clicks and other self-generated

noises in order to perceive and navigate their environments. These sounds for human

echolocation vary, with the most common types being the tongue click and a noise-like

hissing sound. A detailed examination of novel research into the properties of human

echolocation tongue clicks is presented in Chapter 4, but an overview of human echolo-

cation is given here. Detailed reviews into human echolocation are available and cover a

variety of themes including: early research and acoustics [77]; contemporary research and

echolocation cues [78]; and contemporary neuroscientific research [79].
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Early investigation into the ranging abilities of blind human echolocators showed that

echolocators were able to discriminate between closely-spaced targets with a reliability

much better than sighted subjects, who performed only slightly better than chance [80].

More recent experiments have shown that human echolocators are able to separate objects

spaced as close as 2−3.5o [81]. Experimental results also indicate that human echolocators

perceive size consistently, regardless of the absolute range to an object [82].

There is evidence that echolocation can be taught to sighted individuals [83], indicating

that the ability to echolocate is not predicated on blindness. However, some early-blind

echolocators have been shown to exhibit signals in the brain that correspond to the shape

of the object they are perceiving through echolocation. These neural signals were not

observed for late-blind echolocators, suggesting that the brains of early-blind echolocators

are performing additional processing, not present in other echolocators[84].

Researchers into the localization abilities of blind and sighted humans using echolo-

cation carefully emphasize the importance of not over-generalizing the conclusions of

experiments conducted under laboratory or other restricted conditions [85, p.63].

Human echolocators appear to use head motion in conjunction with tongue clicks in

order to increase the quality of their perception of their environments, and in some cases

to enable object identification [86, 87, 88]. It is possible that this is comparable to the

multiple look angles used by bats to correctly identify flowers.

While there has been a significant volume of research into the capabilities of human

echolocators, the body of work focused on the properties of human echolocator tongue

clicks is very restricted. Chapter 4 presents novel research focused on understanding hu-

man echolocator tongue-click properties with a view to increase the overall understanding

of human echolocation.

23



2.4 Biologically-Inspired Radar and Sonar Approaches

Throughout the following chapters of this thesis, novel biologically-inspired approaches to

radar systems are presented. This section sets out some of the pre-existing approaches to

biologically-inspired radar and sonar that helped to guide the development of this thesis.

2.4.1 Spectrum-Based Localization with Sonar

A binaural spectrum-based approach to localization relies on an understanding of the BTD

introduced in Section 2.2.1. Researchers working with acoustic transducers in the sonar

domain showed that they could achieve angular localization of a target by considering the

BTD between two angularly offset receiving transducers [89].

The spectrogram of a wideband acoustic signal at the output of a receiver is modulated

by the beampattern of the receiver. As the beampattern changes significantly as a function

of frequency, the received signal is modulated in a manner unique to that angle. If a

monaural spectrum is considered, the received signal is strongly dependent on the range

to the target and the reflective properties of the target itself. However, researchers found

that considering a binaural cue caused the target-dependent effects to cancel out, leaving

a spectral cue that was theoretically only a function of the receiver beampatterns.

By comparing the ratio of received signal spectrograms to the system’s prior knowledge

about the beampatterns of the receivers, researchers were able to localize a single target

in angle over an angular range of operation of ±30o from the transducer pointing direction

and at a range of 1m. The approach presented in Chapter 5 is structurally similar to this

acoustic approach. However, Chapter 5 presents research which focuses on a radar system

built to operate with electromagnetic waves, and contends with the fundamental physical

challenges and opportunities that this presents.

Other researchers have proposed a related family of techniques which rely on the infor-

mation encoded in the audio signal by the receiving transducer. This approach estimates

the angle to the target independently for each receiver for a set of frequency extents that
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comprise the total bandwidth, and extracts the angle to the target based on the most

frequently estimated position common to both receivers and across all frequency extents

[90]. This method assumes that there is no significant spectral modulation introduced by

the target.

2.4.2 Spectrogram Transformation and Correlation

SCAT is a computational model of the functional processes that govern perception of

echolocation calls in certain bat species [61]. It treats the steps used for echolocation in

three functional blocks: cochlear processing, spectrogram correlation, and spectrogram

transformation.

The cochlear processing step consists of a bank of band pass filters tuned to centre

frequencies corresponding to the frequency range of interest. The filters feed into half-

wave rectifiers, and then into a bank of low pass filters with a cut-off frequency lower than

the lowest frequency of interest. This cochlear bank emulates the tonotopic organization

of hair cells and neurons in the auditory cortex, which respond selectively to particular

frequency bands [91, p.213].

The spectrogram correlation block operates in the time-domain and performs a cross

correlation between the transmitted and reflected signals (after the processing of the

cochlear block). This correlation process mimics the function of delay-tuned neurons in

bat brains [58, 59, 60], which can be modelled as tapped delay lines in the brain [92].

The cross correlation process results in sharp peaks corresponding to the echo delay (and

hence the range to the target) for well-separated echoes. However, when there is overlap

between echoes, the response is less sharp and can have spurious peaks in the region of

the targets.

The spectrogram transformation block transforms regions of the signal of interest into

the time-domain. The region of interest could be an area where there is a response from the

spectrogram correlation block that is not clear (as is the case for closely-spaced targets).

This process is equivalent to performing an inverse fast Fourier transform (IFFT) over
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the time delays of interest. By transforming into the time domain, closely-spaced targets

may be resolved, with a performance equivalent to the output of a matched filter.

More recent work on SCAT [93] has developed a baseband version that can be used with

the very high frequencies involved in radar systems (in contrast to the lower frequencies

in sonar systems). Development of the radar-based technique found that it is possible to

improve the resolution capabilities of the spectrogram transformation block in the case of

two closely-spaced targets [94]. The baseband SCAT model has led to the development

of an equivalent receiver based on the matched filter [95].

2.4.3 Adaptive Waveforms

As introduced in Section 2.3, some bats alter the waveforms that they transmit as they

approach a target [54]. In a similar way, radar systems can be designed that adapt their

waveforms as a target is approached [96]. Balleri et al. designed a radar system that

adapted its waveforms on a pulse-by-pulse basis to optimize the system’s ability to track

and intercept a target, and minimize the energy cost to the system.

The approach combined a technique for intercepting a target in the presence of noise

[97] and a technique for optimising the transmitted waveform to maximise tracking per-

formance [98]. By using these strategies on a pulse-by-pulse basis in simulation, the

interceptor was able to intercept a moving target in the required time frame. Over the

course of the flight the interceptor decreases its pulse duration, which sacrifices Doppler

resolution for accuracy in the time delay measurement which helps to reduce the covari-

ance of target in range and Doppler [96]. This strategy has some correspondence with

the terminal buzz of certain bat species [54], which are also seen to reduce their call pulse

duration.

2.4.4 Echoic Flow

Echoic flow is a flow theory that is adapted for use in Radar and Sonar systems. Flow

theory was first introduced for optical flow [99, 100], and was later developed into a
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general model of flow theories [101]. The central parameter of flow theories is tau, τ , which

represents the time to close a gap in an arbitrary coordinate, X, as given in Equation (2.3).

Further, the taus for different parameters may be coupled to force gaps in each parameter

to close simultaneously. An example of coupled taus is given in Equation (2.4), where m

is a coupling constant that relates the kinematics of the two parameters.

τX =
X

Ẋ
(2.3)

τY = mτX (2.4)

While optical flow is of interest in the field of computer vision, the focus for radar

research was into acoustic flow, which bats have been shown to use when navigating their

environments [71, 102]. The bats in the experiments were found to close the angular gap

and the range gap simultaneously when approaching a perch location, consistent with

acoustic flow models. Echoic flow was introduced to radar in the context of braking

strategies when approaching a target [74], and has since been used to perform target

interception [73] and robotic guidance [76].

In the context of mobile robotics, echoic flow was implemented using a robot equipped

with ultrasonic transducers. The robot always attempted to equalize the tau measured

between two lateral sensors. This simple control rule led to sophisticated behaviour which

allowed the robot to navigate successfully through a corridor and to avoid obstacles placed

before it [76].

Echoic flow is powerful in its simplicity and allows the emergence of relatively complex

behaviours from apparently simple control rules, a hallmark of cognitive systems. Echoic

flow is limited when it comes to objects that remain a fixed distance away from the

platform, such as a target matching the robot’s speed, or walls running parallel to the

robot’s motion vector. Chapter 6 explores some of the ideas of echoic flow, and presents

a related set of control rules that enables a cognitive radar platform to avoid obstacles
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and reach a goal position.

2.4.5 Cognitive Target Tracking

One of the more recent developments in cognitive radar is the Cognitive Radar Experi-

mental Workspace (CREW) based at Ohio State University. The CREW is a powerful

system with 4 transmitters and 4 receivers that can use an arbitrary waveform on a

pulse-to-pulse basis and operate coherently across the 92-96 GHz frequency band [57].

Researchers working on the CREW used a Bayesian approach to implementing a

cognitive radar architecture. By describing the current state of observations and the

costs of using various parts of the system, the processor decides which parameters and

combination of sensors to use for the task at hand. In a simple target tracking case, the

system developed its own strategy for maintaining a track of the target [56]. In other

experiments, the radar was able to alter its pulse repetition frequency (PRF) and number

of integrated pulses to reduce the range and Doppler errors while preventing the target

from aliasing [103]. The use of cognitive processes to optimize performance metrics has

been shown to outperform more conventional optimization techniques [104].

This approach favours a dynamic response of the system to its environment over a

static set of parameters chosen at the radar design stage. This approach has the advantage

of the radar being able to respond to a variety of situations dynamically and without the

need for human operation, with the radar able to strategically allocate its resources to

achieve a goal. A disadvantage of this approach is that it requires the system hardware

to be highly adaptable compared to traditional systems. This disadvantage is lessening

with the advance of digital approaches and technologies such as field programmable gate

arrays (FPGAs), that make highly reconfigurable radar systems more widely available.
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2.5 Conclusion

This chapter has explored some of the approaches to localization in nature and in elec-

trical engineering. Active and passive mechanisms for sound localization in nature have

been examined and the use of wideband binaural cues, such as the BTD, have been iden-

tified as important and potentially useful for a radar system. An overview of research

into echolocation in nature has been presented which indicated significant connections

to existing radar approaches, highlighted the use of wide bandwidth waveforms by bats,

and identified that a detailed description of human echolocator tongue click properties is

absent from the literature.

A review of biologically-inspired radar and sonar techniques has been presented, and

this included multiple techniques in the acoustic domain which consider the spectral

content of echo signals. The review also identified that equivalent techniques in the radar

domain are absent. Existing research into cognitive radar was briefly presented, which

shows the potential for cognitive systems to out-perform conventional systems, but that

systems that explicitly implement a memory function are absent.

These related observations provide the foundations of, and biological-inspiration for,

the research presented in the later chapters of this thesis, with Chapter 4 exploring human

echolocator tongue click properties, Chapter 5 investigating a radar version of some acous-

tic techniques related to the BTD, and Chapter 6 developing a cognitive radar system

that explicitly makes use of memory to improve performance.
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Chapter 3

Foundational Ideas and Approaches

L’étude approfondie de la nature est la source la plus

féconde de découvertes mathématiques.

Profound study of nature is the most fertile source of

mathematical discoveries.

— Joseph Fourier

Théorie De La Chaleur, 1822
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Table 3.1: Reference for mathematical symbols.

Symbol Definition Units

f frequency Hertz

PRx signal power received at the receiving antenna Watts

PTx signal power transmitted to the transmitting antenna Watts

GTx gain of the transmitting antenna -

GRx gain of the receiving antenna -

θ′ angle to target rads

c speed of light in a vacuum m s−1

σ radar cross section (RCS) of the target m2

L losses -

3.1 Introduction

This chapter aims to present the theoretical foundations of this thesis, which are a variety

of distinct techniques and mathematical tools. All of these ideas are relied on in subse-

quent chapters and an understanding of them is useful for a complete understanding of

this thesis. This chapter does not attempt to cover the foundational principles of radar

in general, for which many excellent reference books exist [105, 106, 107, 108].

3.2 The Radar Equation

4𝜋

4𝜋
4𝜋

𝐿

Figure 3.1: Schematic to show the physical significance of terms in the radar equation.
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The radar equation is one of the cornerstone mathematical descriptions used when

approaching the design of a radar system, and is introduced in many radar textbooks

[109]. The research presented in Chapter 5 relies on a modified form of the radar equation,

and so the conventional free space form of the equation is presented here and developed

into the modified version for use later in this thesis.

The radar equation describes the power received by a radar system as a function of

system and target parameters and is usually written as some variant of Equation (3.1) for

a bistatic radar configuration [108, p.631]. Figure 3.1 shows the different factors present

in the radar equation and the point in the signal journey that they occur.

PRx =
PTxGTx(θ)GRx(θ)c

2σ(θ)

(4π)3R2
TxR

2
Rxf

2L
(3.1)

The signal with transmit power, PTx, is passed to an antenna. The antenna amplifies

the signal by a factor corresponding to the antenna gain, GTx, in the direction of the target.

The signal propagates through the air from the antenna and incurs attenuation due to

the inverse-square law over the distance to the target, RTx. The signal is reflected by the

target, which has an effective area described by the radar cross-section (RCS), σ. The

signal travels to the receive antenna and incurs inverse-square law attenuation over the

distance to the receiver, RRx. The effective area of the receiving antenna, A, determines

how much of the signal power is received and is a function of the receive antenna gain,

GRx, and the frequency of the signal, f . With the addition of a loss term, L, which

arises due to propagation losses (such as scattering and absorption) and imperfections in

hardware, the signal’s journey is complete and is received with a power, PRx.

Normally, radar systems operate with a narrow bandwidth relative to their centre

frequency, and in this form of the radar equation, the antenna gains, GTx and GRx, and

RCS, σ, are considered to be functions of angle only. However, in Chapter 5 a wideband

signal will be used that spans a 2-16 GHz band of frequencies. In this instance, the

frequency-dependence of terms in the radar equation become vital for understanding how

to process the return signals. This section introduces a modified version of the radar
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equation, which is suitable for working with arbitrarily wide bandwidth signals such as

the ones used in Chapter 5.

3.2.1 Frequency-dependent Radar Cross-Section

The RCS of a target, denoted by σ, describes the effective cross-sectional area of the

target for reflection of an incident electromagnetic signal. The RCS is related to, but

is not purely a function of, the physical size of an object. Other factors that interact

to affect a target’s RCS include its material and structure, and all of these factors can

introduce complex frequency dependence to the RCS.

For example, a target that is an ideal metal sphere has an RCS that varies with

frequency as shown in Figure 3.2. Here, the low-frequency region exhibits Rayleigh scat-

tering, the high-frequency region exhibits optical scattering, and the intermediate region

exhibits Mie scattering [110]. In this situation the RCS of the sphere is a function of

frequency.

Due to the relative orientation of the radar and the target, the angle of incidence also

influences the RCS. To capture frequency-dependence is straightforward; it is possible to

rewrite the RCS, σ(θ) from Equation (3.1), as a function of frequency, σ(θ, f).

3.2.2 Frequency-dependent Antenna Gain

As with the the reflectivity of a target, it is often convenient to approximate the behaviour

of an antenna as being frequency-independent. Equation (3.2) gives the antenna gain for

an ideal antenna, where A is the effective antenna area, which shows how the gain of the

antenna is frequency-dependent [111, p.104]. When using a narrowband signal however,

the change in antenna pattern across the frequency band is often negligible compared

to other experimental factors, and so the assumption of frequency-independence is both

useful and valid. However, because of physical factors of antenna design, antenna patterns
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Figure 3.2: The normalized RCS (blue) of an ideal metallic sphere as a function of the
ratio of circumference and wavelength; as the frequency increases, the ratio increases.
The dashed lines represent the low-frequency Rayleigh scattering limit (cyan) and the
high-frequency optical limit (magenta) [110].

must be treated as frequency-dependent when using a large bandwidth.

G (f) =
4πAf 2

c2
(3.2)

Antennas have a fixed geometry and the different structures within the antenna re-

sult in different propagation characteristics for different frequency electro-magnetic (EM)

waves. As a result, different frequency EM waves are focused by different amounts and

result in different beam patterns. In principle, the beam pattern of an antenna can be

determined analytically by solving Maxwell’s equations for the antenna design. However,

for real antennas this analysis is complex and time-consuming, and it is often easier to

measure an antenna’s beam pattern. Figure 3.3 shows antenna patterns for the off-the-
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shelf wideband horn antenna that is used in Chapter 5 [112], which shows how the beam

pattern varies as a function of frequency.

To denote this frequency variation, the antenna gain terms in the radar equation must

be written as a function of frequency as well as angle, G(θ, f).
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Figure 3.3: Antenna patterns of the Q-par Angus (WBH1-18)[112] wideband horn an-
tennas, showing the different antenna patterns at different frequencies over a wide band.

3.2.3 Frequency-dependent Radar Equation

Combining the frequency-dependent terms from the previous section results in the frequency-

dependent radar equation given in Equation (3.3).

PRx(θ, f) =
PTxGTx(θ, f)GRx(θ, f)c

2σ(θ, f)

(4π)3R2
TxR

2
Rxf

2L(f)
(3.3)

3.2.4 The Wideband Phase-Only Radar Equation

The radar equation discussed in the previous section is primarily focused on understanding

the power of a received signal. However, Chapter 5 will also consider the phases of a
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received signal independently, and so it is useful to formulate a version of the radar

equation to use when considering the phase of a signal in lieu of the power.

There is much discussion in psychoacoustics about the extent to which humans and

animals use phase differences to locate sound sources [16, 43, 113, 114, 21]. However,

for radar systems phase is typically present in the signal processing and may therefore

be used as the basis for a radar-only cue. A phase-only form of the radar equation is

shown in Equation (3.4), where φRx and φTx are the phases of the received signal and

transmitted signal respectively, 6 GTx and 6 GRx are the phase shifts introduced by the

transmitting and receiving antennas respectively, and 6 σ is the phase shift introduced by

the target. The final term describes the phase shift introduced by the bistatic path length

from transmitter to receiver. This equation represents the ideal scattering scenario and

ignores the effect of noise introduced by imperfect scattering and atmospheric conditions.

φRx = φTx + 6 GTx(θ, f) + 6 GRx(θ ± θ0, f) + 6 σ(θ, f) +
2π (RTx +RRx) f

c
(3.4)

Conventionally, antenna gain is written as a real quantity, however over the wide

frequency band used by this technique the phase centre of each antenna can vary. This

phase centre variation occurs due to the EM reflections within the very near-field of

the antenna structure which modulate the received signal with a frequency- and angle-

dependent phase-shift. Phase centre variations are often treated in global positioning

system (GPS) research where they provide a deviation from the ideal behaviour which

must be corrected [115, 116, 117, 118, 119].

However, for the application in Chapter 5, we are interested in the angle-dependent

coding of space by the antennas and phase centre variations perform this function. The

variations can be incorporated into the antenna gain terms by considering them as com-

plex quantities (modifying both the amplitude and phase of the transmitted or received

signal). The angles of the complex gains represent the angle-dependent phase-shift that
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the antennas introduce.

3.3 Conventional Monopulse

Monopulse is a technique for localizing a target in both range and angle using a single

pulse and is the subject of many books [120, 121]. Accordingly, only a brief overview of the

relevant material is presented here. It is particularly useful for tracking radars due to the

high localization accuracy that it can achieve. Monopulse radars require multiple antennas

that can be used coherently for transmission, but are capable of receiving separately. This

requirement can be fulfilled by an array radar that is split into two halves, or by a pair

of feedhorn antennas connected to a monopulse duplexer.

The two antennas transmit the same pulse coherently, forming the sum channel which

corresponds to the blue antenna pattern in Figure 3.4a and Figure 3.4b. Provided that

this pulse illuminates the target successfully, the reflected energy is received independently

by the two antennas. The cyan and magenta beam patterns in Figure 3.4a represent the

receiver patterns of these two antennas.

Comparing the energy received at the two antennas results in the response shown

in Figure 3.4c, which is the difference channel of the monopulse radar. The difference

channel is uniquely valued when the target is within ±20o of the boresight direction (in

this example), and can be used to drive the motion of the antennas in a closed-loop process

which has a stable equilibrium when the angle to the target from the antenna boresight

is 0o.

The example given here was for localization in a single angular dimension, such as

in azimuth. However, monopulse can localize in both azimuth and elevation by adding

additional antennas and comparing the received signals in a similar manner.
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Figure 3.4: Monopulse radar operation. (a) Polar representation of two beams (magenta
and cyan) and sum beam (blue) used for monopulse in one angular dimension. (b) Sum
channel response. (c) Difference channel response.

3.4 Vector Network Analyzer Operation

Vector network analyzers (VNAs) are designed to measure the characteristics of electrical

networks, and are also capable of generating very wide bandwidth signals. A VNA will

be used to generate a very wide bandwidth signal in Chapter 5, and so a brief description

of VNA operation is given here.

VNAs often measure the scattering parameters (or S-parameters) between multiple

terminals of an electrical network. The scattering parameters describe the ratio of out-

going signals and incoming signals, such that, Sij = bi
aj
. Where bi and aj represent the

outgoing complex signal from VNA port i, and incoming signal to VNA port j. In general,
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the scattering parameters can be written as in Equation (3.5) [122, pp.3.27-3.28].







b1

b2
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S11 S12

S21 S22













a1

a2






(3.5)

In the context of the bistatic radar system shown in Figure 3.5 a VNA applies an

voltage of a particular magnitude and frequency to an output port that is connected to

an antenna, the changing voltage induces currents in the antenna. These currents cause

a self-sustaining EM wave that can propagate into the environment. The reflected wave

returns to the antennas and induces a signal voltage at the VNA input ports, forming a

complete electrical network. To determine the scattering parameters, the received signals

are mixed with the transmitted signal, in a way that is equivalent to performing a matched

filter in a conventional radar system. For example, S21, is the scattering parameter that

describes the ratio of received signal at the output of antenna 2, b2, to the transmitted

signal at the input of antenna 1, a1.

Figure 3.5: Schematic to show the configuration of a VNA for radar measurements.

By stepping through a wide range of frequencies and making separate measurements

of the scattering parameters at each frequency, the data from the VNA is equivalent

to a frequency-domain measurement of a radar chirp made at baseband (i.e. without
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downconverting and sampling at the intermediate frequency). Using a flexible frequency

oscillator means that the VNA is able to sample over very large bandwidths provided

that the oscillator is configurable to that frequency and that there is enough time to

make the sequence of measurements. Figure 3.6 presents a block diagram of the VNA

signal processing.

Reference
Oscillator

Variable
Frequency
Oscillator

Stepped
Sweep

Controller

Tx
Antenna

Rx
Antenna

Mixer
Low
Pass
Filter

Measure
Scattering
Parameters

Figure 3.6: Flowchart to show the processing chain of the VNA.

3.5 Radar and Array Processing

This section presents processing that will be relied upon in Chapter 6, it presents the

signal processing required to form a range profile from a linear frequency modulated

(LFM) signal, and then extends this signal processing for the array antenna case, allowing

a range-angle map to be formed. A range-angle map is a map of radar echo intensity as

a function of range and angle.
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3.5.1 The Range Profile

This section details the signal processing of a LFM signal using stretch processing to form

a range profile.

The transmit signal given in Equation (3.6) is an LFM upchirp with centre frequency,

fc, chirp rate, k, and duration, τ . A target at a (two-way) range, rd, which corresponds

to a time delay of, td, introduces a delay and phase shift into the received signal as

written in Equation (3.7). In these equations, Π(t) is the rectangular function defined in

Equation (3.8).

x (t) = e2πi(fct+
1

2
kt2+φ)Π

(

t

τ

)

(3.6)

y (t) = Ae2πi(fc(t−td)+
1

2
k(t−td)

2+φ)Π

(

t− td
τ

)

(3.7)

Π(t) =























0, if |t| > 0.5

0.5, if |t| = 0.5

1, if |t| < 0.5

(3.8)

Stretch processing mixes the received signal with a reference chirp, so that the fre-

quency difference between the two chirped signals corresponds to the target range. The

reference signal is given in Equation (3.9) and the baseband signal at the output of the

stretch processing is given in Equation (3.10). The rectangular function is omitted from

the reference signal for simplicity, but it should be understood that there is a practical

restriction on the bandwith of the reference.

h (t) = e2πi(fct+
1

2
kt2+φ) (3.9)

v (t) = h (t)× y⋆ (t) = Ae2πi(fctd−
1

2
kt2

d
+ktdt)Π

(

t− td
τ

)

(3.10)
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As the baseband signal has a fixed frequency that is proportional to the target range,

applying a Fourier transform can be used to extract the target range. The output of the

Fourier transform is given in Equation (3.11) and is a function in the frequency domain.

By taking the magnitude of the frequency-domain function as shown in Equation (3.12),

a sinc function (defined as sinc x ≡ sin x/x) centred at ktd is extracted, where β is the

bandwidth of the chirp, β = kτ . This function is the range profile and can be converted

to the range domain using the definitions, f = kr/c andtd = rd/c.

w (f) = F [v (t)] = Ae2πi(fctd−
1

2
kt2

d)
∞
∫

−∞

e−2πi(f− 1

2
ktd)tΠ

(

t− td
τ

)

dt

= Aτe2πi(fctd+kt2
d
−tdf) sinc (πτ (f − ktd)) (3.11)

|w (f)| = Aτ sinc (πτ (f − ktd)) = Aτ sinc

(

πβ

c
(r − rd)

)

(3.12)

3.5.2 Array Processing

An array radar is a radar system that is comprised of multiple antenna elements, often ar-

ranged linearly, and in which the signals received at the elements are processed coherently.

Figure 3.7 shows two example antenna arrays for reference. The research presented in

Chapter 6 uses an array radar (albeit a much smaller one) and so the theory underpinning

its operation is presented here.

A linear array configuration enables a variety of techniques that are not possible when

using a single antenna. For example, by comparing the signals received at the antenna

elements it is possible to derive a 2-dimensional range-angle map of the area in front of

the radar. The formation of a range-angle map for a generic array is demonstrated by

deriving the point spread function (PSF). This process builds on the derivation of the

range-profile given in the previous section, and uses multiple range profiles (one for each

element of the array) to derive the PSF.
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(a) (b)

Figure 3.7: Array Antennas. (a) Australia Telescope Compact Array, Image by CSIRO.
(b) Duga Array Radar, Image by Ingmar Runge.

For a 1-dimensional array, the signal arriving at each position along the array baseline

is slightly different due to the small difference in range to the target. If the incident waves

are treated as plane waves from a distant target as shown in Figure 3.8, the time to the

target can be written as a function of array element position, ta, as, td+ ta sin θd, where θd

is the angle to the target. Using this description of time to the target and Equation (3.11)

gives Equation (3.13) which describes how the complex range profiles vary as a function

of array element position, where L is the length of the array. Applying the far-field

condition, ta sin θd << td to the argument of the sinc function causes the ta dependence

to vanish, and neglecting the 1
2
k (td + ta sin θd)

2 term as vanishingly small, results in the

approximation given in Equation (3.14).

w (f, ta) =Aτe2πi(φ2−φ1+(fc−f)(td+ta sin θd)+
1

2
k(td+ta sin θd)

2)

sinc (πτ (f − k (td + ta sin θd))) Π

(

ta
L

)

(3.13)

w (f, ta) = Aτe2πi(fctd+
1

2
kt2

d
−f) sinc (πτ (f − ktd)) e

2πifcta sin θdΠ

(

ta
L

)

(3.14)
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Boresight Direction

θd rd, td

ra, ta

Figure 3.8: Geometry for array processing.

Equation (3.14) represents a signal as a function of the array element position with

a fixed spatial frequency proportional to sin θd. As with deriving the range profile, a

Fourier transform is able to extract the frequency of interest. In this case, the Fourier

transform acts to form beams across all angles. The result of applying a Fourier transform

across the array dimension is given in Equation (3.15), where fa is the spatial frequency

across the array dimension. Taking the magnitude of the beamformed complex signal

results in the map given in Equation (3.16), which can be transformed to the range-angle

map, Equation (3.17) using the previously used transformation and, sin θ = fa/fc. In the

range-angle map, the sinc characteristics of the PSF are present independently in both

dimensions as expected.

m (f, fa) =F [w (f, ta)]

=Aτe2πi(fctd+
1

2
kt2

d
−f) sinc (πτ (f − ktd))

∞
∫

−∞

e2πifcta sin θdΠ

(

ta
L

)

dta

=AτLe−2πif sinc (πτ (f − ktd)) sinc (πL (fa − fc sin θd)) (3.15)
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|m (f, fa)| = AτL sinc (πτ (f − ktd)) sinc (πL (fa − fc sin θd)) (3.16)

|m (r, θ)| ∝ sinc

(

πβ

c
(r − rd)

)

sinc (πLfc (sin θ − sin θd)) (3.17)

3.5.3 Co-located Multiple-Input Multiple-Output

Co-located Multiple-input multiple-output (MIMO) radar is a particular variation of ar-

ray radar in which the array is virtual and is formed by pairs of real transmit and receive

elements that are spaced along an array aperture in a specific configuration. The fun-

damental physical principle of MIMO radar is that every pair of transmit and receive

antennas is equivalent to a single virtual antenna that is located halfway between them.

To form a virtual array, the transmit signals from each of the transmitter elements

must be orthogonal so that the signals at the receiving antennas may be assigned to the

appropriate virtual element of the array. One method for achieving orthogonality is to

separate the transmissions from each element in time, allowing the received signals to be

unambiguously associated with the correct transmitter element.

As MIMO will be used as a technique rather than the subject of research, this thesis

does not attempt to compare or contrast different MIMO approaches (such as differ-

ent techniques for ensuring orthogonality of the transmit signals). Instead, this section

presents the theoretical basis for monostatic MIMO, in which the antenna elements are

co-located and the RCS of a target is the same across all elements.

Conceptualized in terms of path length, this means that the distance travelled by the

radar signal must be the same for the transmit-receive pair of antennas as for the virtual

antenna. Figure 3.9 indicates the geometry in this situation, where rTx, rRx, and rV are

the ranges to a target from the transmit antenna, the receive antenna, and the virtual

antenna respectively. Using this schematic, Equation (3.18) can be written to relate the

path lengths to each other, from which Equation (3.19) can be written to show that the
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path lengths are the same.

rV = rTx −
ra
2
sin(θ)

= rRx +
ra
2
sin(θ) (3.18)

rTx + rRx = 2rV (3.19)

rV

rRx

rTx

Boresight Direction

θ
ra
2

ra

Figure 3.9: Geometry for MIMO array forming.

By increasing the number of transmit and receive elements, the number of virtual

elements scales favourably. Each pair of transmit and receive elements generates a virtual

element, and so the number of virtual elements is the product of the number of transmit

elements and the number of receive elements. In a 4-by-8 MIMO configuration, meaning

4 transmit elements and 8 receive elements, there are 32 virtual elements but only 12

real elements as shown in Figure 3.10. Once the virtual array is formed by arranging the

data from each transmitter-receiver pair appropriately, the signal processing to form a

range-angle map is exactly the same as for a real array, given in Section 3.5.2.
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Figure 3.10: An example 4-by-8 MIMO array, with 4 transmit elements (blue) and 8
receive elements (red). The corresponding virtual array with 32 elements is also shown
(magenta).

3.6 Wideband Ambiguity Function

The wideband ambiguity function (WAF) is a function that describes the result of cross-

correlation of a wideband waveform with a time-delayed and Doppler-compressed version

of itself. It is a useful function for understanding the range and Doppler resolution of

a wideband waveform, as well as the interplay between these factors and is used for the

analysis of human echolocator clicks in Chapter 4.

The WAF is the general function which allows the narrowband ambiguity function to

be derived. The narrowband ambiguity function is specifically for narrowband signals,

and is given in Equation (3.20), where s(t) is the transmit signal, tau is the time delay of

the received signal, and δf is the Doppler frequency shift. For a narrowband signal, the

Doppler frequency shift is approximately equal across the whole signal, and so a single

term, δf , can be used to account for this [123].

However, in the wideband case, the Doppler compression results in very different

Doppler frequency shifts for the different frequency components of the signal. For wide-

band signals, the WAF can be formed, as in Equation (3.21), by using the Doppler

compression factor defined in Equation (3.22). Here, c0 is the speed of propagation in the

medium, and v is the radial velocity that causes the Doppler shift. This factor compresses

the whole signal, resulting in an accurate description of a signal after Doppler shift.

χ(τ, δf) =

∞
∫

−∞

s(t)s⋆(t− τ)e2πiδftdt (3.20)
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χ(τ, α) =
√

|α|
∞
∫

−∞

s(t)s⋆ (αt− τ) dt (3.21)

α =
c0 − v

c0 + v
(3.22)

The width of the WAF along the range dimension corresponds to the range-resolution

of the signal and the width along the Doppler dimension corresponds to the Doppler

resolution. Because of these properties, it makes the ambiguity function useful in assessing

the resolution properties of a waveform.

3.7 Sound Pressure Level

The sound pressure level (SPL) is a measure of the pressure of a sound wave as it causes

compressions and rarefactions in the air and is used in Chapter 4 for analysing the signal-

to-noise ratio (SNR) of audio recordings. The SPL is the root-mean-squared (RMS)

measurement of the sound pressure averaged over a period of time as given in Equa-

tion (3.23), where pi is the ith sample of sound pressure and N is the number of samples

in the time period. It is often expressed logarithmically (due to the logarithmic nature of

perception), and is referenced to 20 µPa as given in Equation (3.24), where p0 = 20 µPa.

20 µPa is the chosen reference as this is approximately the threshold of human hearing

[124].

Example SPLs for common situations are given in Table 3.2 for reference and to

provide context to the values quoted in this thesis.

p =
1√
N

√

√

√

√

N
∑

i=1

p2i (3.23)

Lp = 20 log10
p

p0
(3.24)
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Table 3.2: Example SPL values for common situations [125, p.17].

Source / observing situation Typical sound pressure level (db SPL)

Hearing threshold 0
Leaves fluttering 20
Whisper in an ear 30

Normal speech conversation for a participant 60
Cars/vehicles for a close observer 60-100

Airplane taking-off for a close observer 120
Pain threshold 120-140
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Chapter 4

Characterizing Blind Expert

Echolocator Tongue Clicks

There are things known and there are things unknown,

and in between are the doors of perception.

— Aldous Huxley

The Doors of Perception, 1954
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4.1 Introduction

Echolocation is an ability shared by many species in nature and involves the transmission

of a signal which is then reflected by objects in the environment. The echoes return to

the echolocator, where they are received at the ears and used to build up a perception of

the echolocator’s environment. It has long been established that certain species of bats

and marine mammals use echolocation to navigate and locate prey [71, 62, 126, 127],

but research has also demonstrated that humans are capable of echolocation (for reviews

see [77, 78, 79]). There are some blind people who have learned to use mouth-clicks to

achieve extraordinary levels of echolocation performance [51, 82], in some cases rivalling

performance of bats [81].

As with any natural echolocation, human echolocation shares many parallels with

man-made sonar systems, and relies similarly on signal transmission (of tongue-clicks)

and signal reception (at the ears). This chapter examines a large number of human

echolocator tongue clicks to build a model representation that captures their essential

characteristics. The tongue-click is one of the essential elements of the human echoloca-

tion system and there have been several broad descriptions of these tongue-clicks which

estimate some of their important parameters (such as click duration and peak frequency

in the forward direction) [83, 85], but the descriptions of other parameters (including click

spectral content and time-domain profiles) are restricted to small datasets [128, 129, 83].

A more complete discussion of echolocation and previous work on human echolocation is

presented in Chapter 2.

This chapter aims to present the synthesis of artificial human echolocator tongue-

clicks. The motivation for creating artificial clicks is that conducting experiments with

human echolocators is difficult for researchers due to the logistical and financial challenges

of finding echolocators that are able to participate. For some experiments, it may be

helpful for researchers to pilot a trial using artificially synthesized clicks that mimic the

clicks of human echolocators in a simulation before they take steps to arrange for human

echolocators to participate in person.
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To synthesize the clicks, a detailed description of human echolocator tongue clicks is

required. This chapter provides a more detailed description of human echolocator tongue

clicks than has previously been reported and is used to suggest ideas of how human

echolocation could inform the design and signal processing of a biologically-inspired radar

system.

This chapter describes the experiments and processing necessary for building a database

of thousands of human echolocator tongue clicks, and presents detailed descriptions of the

acoustic properties of the human echolocator tongue-clicks in the database, including their

spectral-, spatial-, and time-domain representations. These different representations of

the clicks are discussed in more detail later in the chapter.

This chapter begins by providing details of the experiments required to capture thou-

sands of human echolocator tongue-clicks in Section 4.2, and then presents the techniques

used to assemble the database from the experiments in Section 4.3. Section 4.4 details

the approach and results of analyzing the database of clicks using a variety of techniques,

and Section 4.5 presents the synthesized tongue clicks and compares them to individual

tongue clicks. A summary of results is included in Section 4.6.

This chapter is based on published work by the author [1].

4.2 Experimentation

The goal of the experiments referred to in this chapter was to construct a significantly

large database of human echolocator tongue click recordings that could be processed

and analyzed to extract the key parameters of the expert echolocator tongue clicks and

hence inform the design of a realistic model representation of them. The approach was

to record stationary expert human echolocators producing tongue-clicks in a controlled

laboratory environment and to process the audio recordings into a database. There are

numerous challenges in doing this, and care must be taken to ensure that the audio

recordings are of sufficient quality to enable the subsequent processing and analysis. To
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ensure useable quality, the signal-to-noise ratio (SNR) must be sufficiently large and

the instrumentation must be designed to reduce the number of unusable clicks in the

recording. The following sections address the participants of the experiments as well as

the equipment and methodology used to produce a useful click database.

4.2.1 Participants

Three blind people with expertise in echolocation participated in the trials conducted at

Durham University. The participation of three expert echolocators in the trials enabled

comparisons between the echolocator clicks to be made to help understand the key features

of their clicks. Throughout this chapter, the expert echolocators are referred to as EE1,

EE2, and EE3. EE1 is male, was 49 years at time of testing, was enucleated in infancy

because of retinoblastoma, and is reported to have used echolocation for as long as he can

remember. EE2 is male, was 33 years at time of testing, lost sight aged 14 years due to

atrophy of his optic nerve, and is reported to have used echolocation on a daily basis since

he was 15 years old. EE3 is male, was 31 years at time of testing, he lost sight gradually

from birth due to glaucoma. From approximately 3 years old EE3 was only able to detect

bright light and is reported to have used echolocation daily since he was 12 years old.

One of the limitations of this research is that it is based on recordings of three echolo-

cators, as the incidence of echolocators in the population is extremely low. As such, care

must be taken when attempting to make general conclusions about all human echoloca-

tors. Each echolocator’s clicks will be treated separately in the analysis and only features

common to all three will be generalized into the synthetic model.

4.2.2 Apparatus

The trials were conducted in a sound-insulated and echo-acoustic dampened room to

reduce the effects of clutter noise from the busy university department outside the room.

The room was rectangular, with dimensions of approximately 2.9m x 4.2m x 4.9m and was

lined with fabric acoustic dampeners that effectively absorbed frequencies above 315 Hz.
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Participants were positioned in the centre of the room. The elevation of a participant’s

mouth with respect to the floor was: EE1 - 154 cm, EE3 - 170 cm, EE2 - 143 cm. The

floor was covered with foam baffles to reduce multipath reflections from the floor.

In order to record the expert echolocators, a reference microphone was placed 50 cm in

front of the participant, while a second microphone was placed at either 40 cm or 100 cm

distance and moved around the participant to capture variation in clicks as a function of

range, azimuth, and elevation. The participants remained stationary during the trial. The

smallest distance to the microphone was selected to be 40 cm to reduce the likelihood

of a click saturating the microphone input which would result in a ‘clipped click’ that

would be unusable in the analysis. Figure 4.1 indicates the microphone positions which

were measured; in the azimuthal plane a span of 270o in 10o steps starting to the left

of the participant was measured and in the elevation plane a span of 260o in 10o steps

starting 40o below the horizontal plane to the front was measured. The microphones used

were DPA SC4060 [130] (with protective grid removed) and TASCAM DR100-MKII [131]

operating at 96 ksps with 24 bit recording.
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θ

40cm

100cm

(a) Azimuth plane viewed from above.

θ

40cm

(b) Elevation plane viewed from the side.

Figure 4.1: The microphone positions for the click recording trials. The position of the
reference microphone is shown in blue, and the possible positions of the signal microphone
are shown in black. The signal microphone was moved sequentially between these positions
to record a series of clicks at each position.

4.3 Building the Click Database

The experimental campaign resulted in a series of audio files of the human echolocators.

These files contained background noises from the building’s air conditioning, coughs and

sniffs from the echolocators, and low frequency and low magnitude signals likely derived

from the recording equipment power supply. These background noises needed to be filtered

out for the subsequent analysis of the clicks. Additionally, each recording contained

many sequential clicks which needed to be processed into a database of individual click

recordings. Figure 4.2 shows a schematic overview of the processes used to build the click

database.

The audio recordings were filtered using a finite impulse response equiripple filter with

the parameters given in Table 4.1 to remove background noises including the low frequency

hum of air conditioners in the building and increase the SNR. The magnitude response

of the filter is shown in Figure 4.3, the linear phase response is shown in Figure 4.4 and
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Figure 4.2: Flowchart to show the steps taken to build the sanitized click database.

examples of the audio file before and after filtering are shown in Figure 4.5 which shows

the removal of the low-frequency oscillations from the signal, with minimal impact on the

expert echolocator tongue clicks.
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Figure 4.3: The magnitude response of the equiripple filter.

To separate the long audio recordings into short recordings of the clicks, the location of

the clicks needed to be known. Clicks were identified based on the sound level exceeding a

threshold of 9.5% of the maximum amplitude observed in the file, and were windowed by

a fixed period in time (10ms before the onset and 30ms after) to capture the full spread
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Figure 4.4: The phase response of the equiripple filter.

Table 4.1: The parameters used to design a finite impulse response equiripple filter using
MATLAB to implement the Parks-McClellan algorithm [132].

Parameter Value Units

Stopband Frequency 65 Hz
Passband Frequency 400 Hz
Stopband Attenuation 60 dB
Passband Ripple 0.5 dB

of the click. These clicks were then manually reviewed to reject other sounds including

coughs and sniffs from the database.

Clicks that saturated the microphone and were therefore clipped in the recording were

also excluded as the full waveform was not available for analysis in these cases. The

number of sanitized clicks (meaning clicks after filtering, clipping rejection, and manual

rejection) for each echolocator and each recording position are given in Appendix A, which

shows that 9579 clicks were available for analysis, varying between 19 and 84 clicks at

each angular position.
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Figure 4.5: Time series plots showing the recorded audio signal before and after filtering.
(a) Quiet section of the recording which shows how filtering removes the low-frequency
oscillations present in the raw signal. (b) Section of the recording containing a tongue
click which shows how filtering has a minimal effect on the overall click.

4.3.1 Signal-to-Noise Ratio

Figure 4.6 shows a selection of individual clicks taken from the database, which shows that

the click waveforms of each echolocator are visually different, but with some commonalities

between clicks. These sample waveforms are indicative of the waveforms stored within

the click database.

The sound pressure level (SPL) is one of the standards used for measuring magnitude

of sound sources, as reviewed in Chapter 3. SPL measurements for the background noise

of the room used for the trials place the noise power before filtering at 38 dB (SPL), which

is decreased to 30 dB (SPL) by the filtering process. The recorded clicks have peak SPLs

around 100 dB (SPL) and this is unchanged by the filtering process. The SNR for the

dataset after filtering is approximately 70 dB (SPL) which is sufficient for the subsequent

analysis.
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Figure 4.6: Sample tongue clicks. The left column is EE1, the middle column is EE2,
and the right column is EE3.

4.4 Results

The clicks in the database were found to have little to no correlation in the time domain,

despite having some visually similar features. This low correlation was likely due to differ-

ent clicks containing different frequency components (as different frequency sinusoids are

orthogonal, this would decrease the time-domain correlation). Instead of conducting de-

tailed time-domain analysis of the clicks, the different elements of the click were analyzed

independently so that the analysis could be performed in the most suitable domain for

each component. The following sections present the analysis of the spectral content, the

spatial distribution, and time-domain envelope of the clicks, each of which was performed

in a different domain (frequency-, spatial-, and time-domain respectively). This section

also presents results considering the wideband ambiguity function (WAF) of the clicks.

The WAF is a useful tool often used in radar for determining the range-Doppler ambigu-
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ities that would arise due the waveform of a signal, and provides information about the

range and Doppler resolution of a signal.

4.4.1 Spectral Content

The spectral content of the clicks, meaning the spread of frequency information encoded

within them, was of interest because frequency modulation is of great importance to

radar and sonar systems, as it determines the system’s ability to resolve the range and

Doppler of targets, and is seen in many bat echolocation calls. Further, understanding

the frequency content of the clicks is essential for creating a model representation of them.

Two techniques were used to access the spectral content of the tongue clicks in the

database. The first technique was to use the periodogram power spectral density (PSD)

estimate [133], which uses the fast Fourier transform (FFT) to identify the overall spectral

components of the tongue click. The second technique was to take the short time Fourier

transform (STFT) of the clicks to look for time-varying frequency-modulation within the

clicks.
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Figure 4.7: (a) Example Click. (b) Spectrum of Example Click.

The PSD for clicks belonging to a single echolocator were found to contain features

that were present in the majority of the echolocator’s tongue clicks. These spectral peaks

varied significantly between the echolocators, but were reasonably consistent for a single
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echolocator, and can be thought of as a ‘fingerprint’ for each echolocator’s tongue clicks.

An example click and its corresponding PSD estimate are shown in Figure 4.7 for reference,

which shows an initial peak just below 4kHz, with a spectrum of frequencies decreasing

away from the peak. The PSD estimates were made with an FFT of length 1024 (which

is the next power of 2 greater than the data length of 700) with a rectangular window on

the signal sampled at 96 ksps.

The top row of Figure 4.8 shows averaged PSD estimates calculated for each echolo-

cator. These average PSD plots show the average spectrum in blue, with the grey area

representing the standard deviation of the logarithm of the spectrum (which was found

to be log-normally distributed at each frequency). From these plots, it can be seen that

the differences in clicks between the echolocators are much greater than the variation

between clicks for a single echolocator. It is likely that these differences originate due to

different physical characteristics (such as mouth shape) between the echolocators as well

as technique differences between them.

The middle row of Figure 4.8 shows waterfall plots with a set of individual click PSD

estimates which are combined to form the averaged plots discussed above. These plots

show the similarities between an echolocator’s clicks graphically.

Average STFTs of the clicks are shown on the bottom row of Figure 4.8 and show

how the spectral components of the clicks vary as a function of time. These plots show

that the key components within the clicks consist of single monotones that are amplitude

modulated, manifesting as a horizontal peak in the spectrograms. An example of a bat

spectrogram which exhibits structural frequency-modulation is given in Figure 4.9 for

comparison. The STFT representation of the clicks was calculated using an FFT length

of 1024, with a moving Kaiser window that was 220 samples (2.3 ms) long with a beta

value of 3.

As no structural frequency-modulation was identified in the human echolocator tongue

clicks, attention was instead focused on the identification and modelling of the key static

spectral components of the tongue clicks. Figure 4.8 also shows that, for EE1 and EE2,
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Figure 4.8: Plots indicating the frequency content of the expert echolocator clicks at a
distance of 40 cm. (a)-(c) Average periodogram PSD estimates for each expert echoloca-
tor in blue with ±1 standard deviation of the logarithm of the spectrum in the shaded
grey region. (d)-(f) Waterfall plots for a sample selection of clicks indicating the consis-
tency of frequency components between a single echolocator’s tongue clicks. (g)-(i) Av-
erage spectrograms for each expert echolocator, showing that there is no time-dependent
frequency-modulation over the duration of the tongue clicks.
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Figure 4.9: A Large Brown Bat (Eptesicus Fuscus) echolocation call exhibiting structural
frequency-modulation. The author wishes to thank Curtis Condon, Ken White, and Al
Feng of the Beckman Center at the University of Illinois for the bat data and for permission
to use it in this paper [134].

the main frequency peak varies less than the other frequency components. For EE3, the

peaks are more broadly spread, indicating that the monotone frequency locations within

the frequency domain vary more than for the other echolocators.

4.4.1.1 Parametrization

To parametrize the spectral content of the tongue clicks, only the most significant (largest

amplitude) frequency components were considered. As these components did not vary in

frequency as a function of time, they were treated as monotone sinusoids that could be

summed independently. The sum of monotones captures a set of key frequency com-

ponents and their relative amplitudes and phases, as described in Equation (4.1). In

Equation (4.1), Am describes the amplitude of the mth frequency component, fm is the
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frequency of the component, and φm is the relative phase of the component.

F (t) =
M
∑

m=1

Am cos (2πfmt+ φm) (4.1)

This model is capable of capturing the most significant m monotones within the clicks,

as well as their relative amplitudes and phases which are required to capture the timbre

of the clicks. This parametrization will be used later in Section 4.5 to help synthesize an

artificial click by contributing a frequency-domain component to the synthetic click.

4.4.2 Spatial Distribution

The spatial distribution of the clicks refers to how the energy of the click is distributed

in space and is analogous to the beam pattern of an antenna in radar. For an antenna,

the beam pattern is determined by its physical construction. Similarly for human echolo-

cators, the main contributing factor to the click distribution is expected to be the bulk

of the head, which is known to effect how humans perceive sound sources [135, 136]. Ad-

ditionally, it is likely that the shape of the mouth is a contribution factor in the tongue

click spatial distribution.

The echolocators produced several tongue clicks with the microphone at each measure-

ment position (shown in Figure 4.1) and the set of recorded clicks were used to extract

the click spatial distribution. This measurement technique assumes that the clicks had

broadly similar spatial distributions over the course of the trial, and the echolocators

were accordingly asked to produce uniform clicks, though it is not possible to validate

this assumption.

The signal energy for each click, E, was found using Equation (4.2), where S is an

audio recording of T samples. The energy of each click at the signal microphone was

then normalized to the energy of the click as recorded at a reference microphone (denoted

by subscripts s and r respectively), and averaged over all the clicks recorded at the same

angular position to determine the average gain at that angle as indicated in Equation (4.3).
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This processing allowed for natural variations in click volume to be compensated, and was

repeated for every angular position (in azimuth or elevation), θ, to build up an overall

directivity pattern as described in Equation (4.4).

E =
T
∑

t=1

S (t)2 (4.2)

G =
1

N

N
∑

n=1

Es (n)

Er (n)
(4.3)

D (θ) =
1

N (θ)

N(θ)
∑

n=1

Es (n, θ)

Er (n, θ)
(4.4)

The azimuthal directivity patterns in Figure 4.10 show similar spatial distributions

between the expert echolocators. The reason for the near-cardioid behaviour is likely due

to the bulk of the head increasingly attenuating the tongue click in the reverse direction,

in a similar manner to the head-shadow effect and the head-related transfer function

(HRTF) [27, 137]. As the head is approximately symmetrical in the azimuthal plane, it is

expected that these patterns would also be symmetrical. The beamwidth of the directivity

patterns is also of note and could be influenced by the method of click production; EE1’s

clicks are the broadest with a 3 dB beamwidth of approximately 80o, EE2’s clicks are the

most symmetrical and narrower at roughly 60o beamwidth, and EE3’s clicks are the most

directive and least symmetrical, with a beamwidth of approximately 50o.

The elevation directivity patterns in Figure 4.11 show similar spatial distributions be-

tween the echolocators, with asymmetry between the angles above and below the azimuth

plane, which is expected due to the asymmetry of the head in the vertical plane.

4.4.2.1 Parametrization

The directivity pattern in azimuth was parametrized by using a cardioid modified with

an ellipse as given in Equation (4.5). Initially a cardioid was used as it is a function which

commonly occurs in acoustics when a diaphragm is positioned next to a bulk object, such
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Figure 4.10: Tongue click directivity patterns measured in the azimuthal plane for three
expert echolocators at a distance of 40 cm (top row) and 100 cm (bottom row). The
blue crosses mark the mean power ratio (in dB) at that angle, the grey region shows ±1
standard deviation about the mean, and the red line shows the fit of a modified cardioid
described in Section 4.4.2.1
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Figure 4.11: Tongue click directivity patterns measured in the elevation plane for three
expert echolocators at a distance of 40 cm. The blue crosses mark the mean power ratio
(in dB) at that angle and the grey region shows ±1 standard deviation about the mean.
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as with many loudspeakers and microphones. With these objects, sound destructively

interferes in the ‘reverse’ direction due to different paths from/to the diaphragm, and this

seemed to be a reasonable hypothesis for the human head with the mouth acting as the

sound source.

The shape of the click directivity patterns appeared to be cardioid, but this description

was found to lack the degrees of freedom need to accurately model the spatial distribution

of the clicks. The addition of elliptical modulation allows for the broadness of the click

to be captured in the model and for the overall model to be a good fit to the data.

This parametrization of the azimuthal directivity pattern will be used later in Section 4.5

to help synthesize an artificial click by contributing a spatial-domain component to the

synthetic click.

D (θ) =
− (1 + cos θ)

√

α2 cos2 θ + β2 sin2 θ
(4.5)

For elevation, no physically meaningful parametrization was attempted due to the

complex shape of the head in the vertical plane.

4.4.2.2 Frequency-Dependent Analysis

It was also of interest to investigate if the frequency components of the tongue clicks (ex-

tracted in the previous section) shared a spatial distribution or if, as with electromagnetic

antennas, the directivity of the component varied with frequency.

The frequency-dependent spatial distribution of the tongue clicks was estimated in

a similar way to the overall distribution. To estimate the gain for a particular set of

frequency components, the periodogram estimate of power spectral density was used.

The periodogram of a real signal is equivalent to the squared magnitude of the one-sided

Fourier transform, F , of the same signal. Equation (4.6) describes how the periodogram

was used to estimate the energy contained within a frequency band, flo to fhi, normalized

to the bandwidth. The bands used are given in Table 4.2. The directivity pattern for each

band was evaluated as described previously, using Equation (4.3) and Equation (4.4), and
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Table 4.2: The frequency bands used to estimate the frequency-dependent click directivity.

Band flo (kHz) fhi(kHz)

1 0.1 2
2 2 4
2 4 8
4 8 16

resulted in the directivity patterns given in Figure 4.12 and Figure 4.13.

E =

fhi
∑

f=flo

|F{S(t)} (f) |2
fhi − flo

(4.6)

Both the azimuth and elevation frequency-dependent directivity patterns given in

Figure 4.12 and Figure 4.13 show that the higher frequencies of the tongue click experience

greater attenuation in the reverse direction than the lower frequencies which is a more

pronounced effect compared with prior literature focused on speech [138, 139]. In general,

it appears that the click frequency-components distribute similarly in space, and that the

only significant difference between different frequencies is the increased attenuation by

the mass of the head in the reverse direction.

4.4.3 Time-domain Envelope

The time-domain form of the audio signal is of interest because it is the factor, in com-

bination with the spectral content, that determines the range resolution capabilities of

the tongue clicks. In order to understand the time-domain form of the clicks, it is useful

to determine the envelope of the signal. An envelope is a function which modulates the

amplitude of underlying frequency components of a signal.

Peaks in the signal magnitude were identified and interpolated using cubic interpola-

tion, to estimate the click envelope. Figure 4.14 shows an example click and the result of

envelope extraction by peak detection, which shows that the envelope extracted by peak

detection successfully captures both the click onset and the signal decay.
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Figure 4.12: Tongue click directivity patterns for four frequency bands measured in the
azimuthal plane for three expert echolocators at a distance of 40 cm (top row) and 100 cm
(bottom row). The lines indicate the mean power ratio (in dB) and the shaded regions
show ±1 standard deviation about the corresponding mean.
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Figure 4.13: Tongue click directivity patterns for four frequency bands measured in the
elevation plane for three expert echolocators at a distance of 40 cm. The lines indicate
the mean power ratio (in dB) and the shaded regions show ±1 standard deviation about
the corresponding mean.
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Figure 4.14: An example click (blue) and the envelope extracted using peak interpolation
(red).

4.4.3.1 Parametrization

In order to parametrize the click envelope a function that captured both the initial rapid

onset and the longer decay was required. The model that most simply satisfied these

conditions was an exponential decay function mediated by a Heaviside step function and

is given in Equation (4.7). In this model the step function term captures the initial sharp

onset, and the exponential term captures the decay, resulting in a model that is able to

well describe the click envelope.

E (t) = a exp (−bt− c)H (t− c) (4.7)

This parametrization will be used later in Section 4.5 to help synthesize an artificial

click by contributing a time-domain component to the synthetic click.
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4.4.4 Wideband Ambiguity Function

The WAF is a function which describes the ambiguity of a waveform at the output of a

correlation process in terms of time delay caused by the range to a target and Doppler

caused by a relative instantaneous velocity. The equation for the WAF for an analytic

signal in the time domain, s (t), is given in Equation (4.8) in terms of the time delay, τ , and

the Doppler compression factor α. The analytic signal is achieved by taking the Hilbert

tranform of the real signal. The Doppler compression factor is defined in Equation (4.9)

where c0 is the speed of propagation in the medium and v is the radial velocity of the

target. More information about the WAF is available in Chapter 3.

χ (τ, α) =
√

|α|
∫ ∞

−∞

s (t) s (αt− τ) dt (4.8)

α =
c0 − v

c0 + v
(4.9)

A set of sample WAFs for the different expert echolocators are given in Figure 4.15.

These sample plots have a narrow peak in the surface along the range dimension at zero

Doppler, which shows that the echolocator clicks have the ability to resolve targets that are

closely spaced in range. Because this peak is a few tens of centimetres in width it indicates

that the resolving capabilities of echolocator clicks are to within a few tens of centimetres.

Previous work has reported that, under certain conditions, human echolocators can resolve

range changes to within 10-20 cm [80, 87] and the resolutions predicted by the WAFs are

consistent with this, but indicate lower average range resolution capability.

The sample WAFs also show that the Doppler resolution of the clicks is poor, indicated

by a very wide peak in the Doppler dimension at zero range. At the time of writing, there

is no other research into the Doppler resolution capabilities of human echolocators, and

it is speculated that this is because a human echolocator is more likely to resolve motion

through changes in range measurement between sequential clicks, than by sensing the

Doppler shift of a single echo.
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Table 4.3: The mean 3 dB peak widths of the WAF and their standard deviations. These
numbers represent the resolving ability of the echolocator clicks in range and Doppler.

Range (cm) Velocity (msˆ-1)
Mean Std Dev Mean Std Dev

EE1 30.0 16.2 60.8 16.2
EE2 58.0 16.7 73.9 15.6
EE3 37.5 27.3 62.3 25.3

The mean range and Doppler resolutions for each echolocator are given in Table 4.3.

These resolutions are calculated by considering the 3 dB width of the peak in the zero-

Doppler and zero-range cuts of the WAF. The WAF is not useful for developing synthetic

clicks, but it is important for characterizing the resolutions of human echolocator tongue

clicks.
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Figure 4.15: Sample WAFs.

4.5 Artificial Click Synthesis

The main goal of this chapter is to produce a model for an artificial human echolocator

tongue click that could be used by other researchers for their own modelling of human

echolocator trials, and this goal assisted in determining which elements of the tongue

clicks to investigate. The artificial click should capture the important features of the real

clicks, and this information is contained within the parameters detailed in the previous

sections. The frequency- and time-domain parameters were evaluated for each click indi-

vidually, and were then combined to produce the parameters for a typical tongue click.

The aggregated spatial-domain information was then added as an overall angle-dependent
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amplitude modulation to the synthetic click.

The equation for the synthetic click was developed by combining Equation (4.5), Equa-

tion (4.1), and Equation (4.7) as given in Equation (4.10).

C (θ, t) = E (t)F (t)D (θ) (4.10)

= a exp (−bt− c)H (t− c)
M
∑

m=1

Am cos (2πfmt+ φm) 10
∧ − (1 + cos θ)

10
√

α2 cos2 θ + β2 sin2 θ

Table 4.4: The parameters for the synthetic click of each echolocator.

f (kHz) A (a.u.) φ (radians) a (-) b (t−1) c (-) α (dB) β (dB)

EE1

3.52 6.50 1.59

6.70 1.56× 103 2.03 0.130 0.282
5.25 2.66 1.60
6.88 2.49 1.65
9.89 0.93 1.72
11.82 1.06 1.39

EE2

2.20 8.40 1.46

2.23 1.05× 103 1.97 0.101 0.185
7.20 1.22 1.57
10.78 1.68 1.57
13.26 0.98 1.53

EE3
3.67 5.21 1.59

6.57 1.56× 103 2.03 0.963 0.104
10.01 2.70 1.56

To capture the click frequency content, the average frequency, amplitude, and phase

of the peaks in the frequency-domain form of the tongue clicks were extracted from the

database and are given in Table 4.6. Similarly, to capture the click directivity, the pa-

rameters of the directivity patterns were evaluated by fitting the model to the magnitude

data extracted from the database. The time domain form of the clicks was determined by

fitting the exponential decay model, Equation (4.7), to each click and extracting a distri-

bution of parameters. The outliers of these distributions were excluded, and the median

envelope parameters were evaluated. All the extracted parameters are given in Table 4.4

for each echolocator, and were used to generate the typical clicks for each echolocator. A

summary of the parameters is given in Table 4.5.

The synthetic tongue clicks are shown in Figure 4.16, which shows that the tongue
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Table 4.5: The parameters used in the synthetic click model and their meanings.

Parameter Meaning Units

f Frequency of each monotone component. kHz
A Amplitude of each monotone component. Arbitrary units ∝ volts
φ Phase angle of each montone component. radians
a Scale factor of the exponential decay. Unitless
b Time constant of the decay t−1

c Offset for the decay Unitless
α Semi-major width of elliptical modulation dB
β Semi-minor width of elliptical modulation dB

clicks capture the key spectral and time domain features of the expert echolocator tongue

clicks. A tool for producing these tongue clicks was published by the author as supple-

mentary material to a journal paper on the topic [1]. For comparison, the time-domain

form, PSD, and spectrogram of a sample click from EE1 are provided in Figure 4.17,

which shows the similarity between the synthetic and recorded clicks.

74



Table 4.6: The mean peak frequencies and amplitudes for the monotones model.

Dist (cm)
Frequency (kHz) Amplitude (a.u.) Phase (radians)
Mean Std Dev Mean Std Dev Mean

EE1

40

3.52 0.16 6.50 1.08 1.59
5.25 0.43 2.66 0.68 1.60
6.88 0.48 2.49 0.74 1.65
9.89 0.60 0.93 0.51 1.72
11.82 0.47 1.06 0.55 1.39

100

3.51 0.16 6.58 1.02 1.62
5.20 0.45 2.69 0.67 1.56
6.86 0.51 2.44 0.70 1.62
9.84 0.60 0.88 0.42 1.78
11.81 0.46 0.97 0.45 1.38

EE2

40

2.20 0.22 8.40 0.89 1.46
7.20 0.37 1.22 0.67 1.57
10.78 0.37 1.68 0.93 1.57
13.26 0.53 0.98 0.55 1.53

100

2.10 0.19 8.53 0.76 1.32
7.18 0.39 1.18 0.72 1.78
10.82 0.39 1.26 0.83 1.56
13.30 0.55 0.79 0.43 1.61

EE3
40

3.67 0.44 5.21 1.40 1.59
10.00 0.91 2.70 0.90 1.56

100
3.82 0.51 4.75 1.21 1.59
10.05 1.00 2.53 0.82 1.54
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Figure 4.16: Synthetic tongue clicks representations in the time domain (left column),
frequency domain (middle column), and time-frequency domain (right column).
(a)-(c) Based on EE1. (d)-(f) Based on EE2. (g)-(i) Based on EE3.
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Figure 4.17: Sample click from EE1 for comparison with the synthetic tongue clicks.
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4.6 Summary

The previous sections have provided details of how to extract the key parameters from

human echolocator tongue clicks from the time-, frequency-, and spatial- domains. All

of these differing characteristics have been incorporated into the synthetic tongue click

model, allowing realistic rendering of human echolocator tongue clicks for broader subse-

quent use.

The frequency-components of human-echolocator tongue clicks are exclusively of con-

stant frequency as a function of time. This property is contrasted with many bats that use

both constant frequency waveforms and frequency modulated sweeps in their calls. The

primary peak frequency for all echolocators was different, but fell into the 2-4 kHz range.

Similarly to bats, human echolocator tongue clicks are comprised of several frequency

components that span a broad frequency band, ranging from 2-13 kHz. For localization

of sound sources, discussed in depth in Chapter 2, the bandwidth of the sound affects

a human’s ability to localize it, with broader band signals being easier to localize. The

broad band of frequencies in an echolocation call is likely to be of importance in localizing

the sources of echoes in a similar way. The use of broadband signals is of particular im-

portance when considering the frequency-dependent characteristics of the HRTF, which

are developed and utilized in the next chapter.

The time-domain profile of human echolocator tongue clicks is very sharp, and it is

thought that the sharp initial onset is a key feature for successful echolocation and allows

for resolution of objects in range. The duration of tongue-clicks was consistent between

echolocators and is approximately 3 ms, which means that objects separated by 0.9 m

in range would result in fully-separated echoes at the ears. Because of the sharp onset

and exponential decay of the tongue clicks, it is unlikely that human echolocators require

echoes to be fully separated in range in order to be able to make a determination about

their origins. Consequently it is reasonable to suggest that the range resolution of human

echolocators is better than 0.9 m, an assertion supported by the literature [80, 87]. The

click durations used by the echolocators are not assumed to be optimal, but are likely
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the shortest duration sounds with a sharp onset that can be easily made with the mouth.

Because human echolocators operate with acoustic signals with a much lower speed of

propagation than light, the observations about click duration and envelope are of less

utility for developing a biologically-inspired radar system.

The spatial-behaviour of the tongue clicks was found to be slightly more directional

than speech, and the main source of attenuation was the shadowing caused by the bulk

of the head. Higher-frequency components were found to be slightly more directive than

lower frequency components, and this is speculated to be due to the shape of the mouth

when the click is produced. Despite these observations, the clicks possess a very broad

beam, and illuminate a wide area in front of the echolocator. This broad illumination is

suggested to be useful for achieving a wide perception of an echolocator’s environment.

Other sources [88, 86, 87] have reported motion of the head by human echolocators when

performing experimental trials. In combination with the observation of a broad click

beamwidth, it seems that this motion may be less about directing the boresight of the

tongue-click and more about changing the pointing direction of the ears, which have a

much more directional receiving pattern [27, 136, 137].

The tongue clicks were found to be very good for resolving closely separated targets

in range using a correlation process, but were also found to be ambiguous in the Doppler

domain. The average range resolution of the echolocator clicks, estimated using the WAF,

was between 30 cm and 60 cm, which is in agreement with the range resolution reported

in previously conducted experiments [80, 87]. It seems unlikely that humans process

Doppler information to determine velocity directly, and instead are likely to compare

range measurements on a pulse-to-pulse basis for determining the velocity of objects. It

is also possible that expert human echolocators have developed neural structures similar to

the delay-tuned neurons found in other echolocating mammals [58, 59] as this mechanism

would lead to similar resolution performance as the correlation process.
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4.7 Conclusion

This chapter has explored the properties of human echolocator tongue clicks, has presented

novel research into those properties, and has used these properties to develop a set of

synthetic tongue clicks. The broad angular distribution of the clicks mean that the area in

front of the echolocator is approximately uniformly illuminated, and echoes can therefore

originate from any angle in the forward direction. The wide bandwidth of the echolocation

clicks means that the echolocator receives wideband spectral echoes from the environment,

which introduces the possibility of echolocators using spectral cues to localize echoes in

angle.

The next chapter will move away from the acoustic domain and into the electromag-

netic domain to develop a radar system. This radar system will take inspiration from

human echolocation and will embed some of the tongue click properties into the sys-

tem design. Using this biologically-inspired radar system, the next chapter will explore

the challenges of localizing echoes in angle using only the spectral information that they

contain.
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Chapter 5

Frequency Diverse Target

Localization

Jeder hält das Ende seines Gesichtskreises für das der Welt.

Every man takes the limits of his own field of vision for the

limits of the world.

— Arthur Schopenhauer

Parerga und Paralipomena, 1851
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5.1 Introduction

The techniques used to localize the positions of objects have been of great interest to the

seemingly disparate fields of psychoacoustics and radar for many years; areas of psychoa-

coustics seek to explain how animals localize sounds sources and carry out echolocation,

and many areas of radar development seek to design systems and techniques to localize

targets (amongst other functions) to the best of their ability. The problem of localizing

targets in range, azimuth, elevation, and Doppler has been very well treated in radar;

with powerful techniques for array processing and beamforming, it is possible to believe

that there is nothing new to add to conventional radar localization. However, looking to

sound localization in nature (see Chapter 2) we see that both the inter-aural level dif-

ference (ILD) and inter-aural time difference (ITD) have direct analogues in radar with

amplitude monopulse techniques and time difference of arrival (TDOA) respectively, but

the binaural timbre difference (BTD) has not previously had a radar dual. This chapter

seeks to investigate the BTD and use it to develop novel frequency-diverse techniques

for target localization using radar. As with natural biological systems which may use

many cues simultaneously, these techniques are not intended to be treated as standalone

approaches and should be considered as ways of accessing additional information which

may complement existing techniques.

Many echolocating species including bats and dolphins have been shown to use wide

bandwidth echolocation calls. Chapter 4 explored the spectral properties of human echolo-

cator tongue clicks and found that human echolocators also use wide bandwidth echoloca-

tion clicks. This wide bandwidth introduces frequency-diversity into the clicks, and can be

used by human echolocators to improve their perception of their environment. The radar

system used in this chapter will mimic natural echolocation approaches by implementing

a wide bandwidth signal.

As introduced in Chapter 2, the binaural configuration of the head is important for

sound localization in the natural world. Having two ears enables humans and other

animals to access the ITD, ILD, and BTD. As these cues rely on comparing the signal
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received at the two ears, any radar system hoping to investigate equivalent cues in the

electro-magnetic (EM) domain must have two receiving antennas and be able to compare

the signals between them.

This chapter will develop amplitude- and phase-based radar techniques analogous to

sound localization cues found in nature and will present the underlying theory behind

these techniques; the simulations and experiments used to investigate them; the results

of these investigations; and an analysis based on discussion of these results.

Sections of this chapter are taken verbatim from novel works written entirely by the

author [5, 4, 3].

5.1.1 The Head-Related Transfer Function and the BTD

The Head-related transfer function (HRTF) is a function often used in the field of psy-

choacoustics [27, 140, 26, 35] [141, pp.165-168] and describes the acoustic filtering process

that aids humans (and other creatures) in localizing the sources of sounds. An explanation

and example of the HRTF is included in Chapter 2.

Without a reference for the original spectral content of a sound, the spatial encoding

of sound signals by the HRTF is not sufficient for localization of sound sources as it is

impossible to know exactly which elements have been attenuated and which have not.

Monaural localization experiments show a localization performance better than chance

[34, 33, 142, 143] (but still worse than binaural localization performance) and suggest

that there is a learning process which allows humans to learn the spectral patterns of

common sounds. Having a reference for common sounds allows us to determine their

sources of origin when we encounter them. The addition of learning behaviours to this

system would be extremely interesting, but is outside the scope of this chapter.

However, the BTD cue is still relevant: by considering the difference in the frequency-

content of the sounds received between two ears, rather than the absolute information

received at either, the requirement for information about the original signal is removed

which enables localization of the sound source.
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An equivalent cue can be accessed using a radar system by considering the difference in

signals received at two antennas. In the instance of a radar system, it is not the original

frequency content of the transmission which is unknown, but instead the modulation

applied to it by the frequency-dependent radar cross-section (RCS) of the target.

5.2 Theory

Before developing a mathematical description of the biologically-inspired radar techniques,

it is useful to define the elements of the localization problem, which will also be used as

the geometry for the experimental work presented later in this chapter.

5.2.1 Geometric Model

Figure 5.1 shows schematically the relative locations of the target; transmitter, Tx, with

phase centre located at the origin; and a pair of receivers, R1 and R2, located such that all

three antennas are collinear. The receiving antennas are separated by a baseline, d. For

a target located at a point, U , the time taken for a signal to reach each antenna can be

expressed as in Equation (5.1), where c is the speed of light in a vacuum and the subscript

i can take a value of either 1 or 2 to denote the relevant receiving antenna.

ti =
ri + rtx

c
(5.1)

5.2.2 Signal Description

The signal used for localization given in Equation (5.2) is a linearly up-chirped signal of

duration T , chosen because it is a standard radar waveform, distributes energy equally

across all frequency components of the band, and can be experimentally implemented
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θt

rtx

r1

r2

d

Figure 5.1: System geometry for two receivers and a single transmitter in a binaural
configuration.

with a large bandwidth using a vector network analyzer (VNA).

stx ∝ exp
(

jπKt2
)

exp (j2πfct) Π (t, T ) (5.2)

Where fc is the up-chirp starting frequency, K is the chirp rate (Hz/s), and Π (t, T )

is a boxcar function defined in Equation (5.3).

Π(t, T ) =















1 if 0 ≤ t ≤ T

0 otherwise.

(5.3)

Recalling Equation (5.1) for the round-trip time taken by the signal and assuming a

delta function target response allows us write Equation (5.4) for the received signal, which

incorporates a time delay and a phase shift into the signal due to the range of the target.

s2i = PRi exp
(

jπK(t− ti)
2
)

exp (j2πfc(t− ti)) Π (t− ti, T ) (5.4)
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Figure 5.2: Flowchart to show the processing chain of the power-based approach.

5.2.3 Signal Power Ratio Approach

By taking inspiration from the ILD and the BTD (detailed in Chapter 2), we can formulate

a power-based angular localization technique [5]. Beginning with the signal description

from the previous section, the radar equation for the power at the output of the receiving

antenna is given in Equation (5.5), with the relevant parameters described in Table 5.1.

More detail of this formulation of the radar equation can be found in Chapter 3. The

following signal processing is summarized in Figure 5.2.

PRi =
PTxGTx(θt,f)GRi(θt ± θ0,f)c

2σ(θt,f)

(4π)3 (rtx + ri)
4
f 2L(θt)

(5.5)

For a single measurement, there are several parameters that can vary with frequency

(including the target RCS and the attenuation over the propagation space), but provided

that the antenna baseline, d, is sufficiently small (d << rtx), the difference in these
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Table 5.1: Reference for mathematical symbols.

Symbol Definition Units

θt target angle from transmitter boresight radians

θ0 receiver angle from transmitter boresight radians

f frequency Hertz

PRi signal power received at the ith receiving antenna Watts

PTx power transmitted to the transmitting antenna Watts

GTx gain of the transmitting antenna -

GRi gain of the receiving antenna -

c speed of light in a vacuum m s−1

σ radar cross section (RCS) of the target m2

L losses -

The subscript i is used throughout and can take a value of either 1 or 2 to denote the
relevant receiving antenna.

terms between the two receiving antennas is also sufficiently small and can be taken as

negligible. Considering the ratio of received signal powers, |s1|2 and |s2|2, between R1

and R2 respectively yields Equation (5.6), which gives the result that the signal ratio

is independent of target range or reflectivity. This is useful because it means that the

ratio of signals is independent of target scattering, and is purely a function of measurable

hardware parameters.

The theory presented here is given in the absence of noise, which introduces dependence

on target range and reflectivity, however the variation is on the order of the noise power

and is treated as additive white Gaussian noise (AWGN) for the purpose of simplifying

the analysis. This assumption will later be seen to be sufficiently valid to achieve useful

results.

|s1|2
|s2|2

=
PR1 (θt + θ0,f)

PR2 (θt − θ0,f)
=

GR1 (θt + θ0,f)

GR2 (θt − θ0,f)
(5.6)

=A (θt,f)

Therefore, by having prior information about the ratio of receiver gains across all

angles of interest and all frequencies in the band, it is possible to build up a map function
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which describes the expected result of a measurement in the presence of a target. This

map function depends only on the angle to the target and the antenna patterns which

are a known system characteristic, and is given in Equation (5.7), where θ represents a

set of all possible angles to a target.

GR1 (θ + θ0,f)

GR2 (θ − θ0,f)
= M (θ,f) (5.7)

In this approach the signal ratio is the cue (and, as with its acoustic counterpart,

requires some rudimentary processing) and the map function represents the prior infor-

mation held by the system (analogous to information held in memory). What is required

after a measurement is made is some way of relating the measured signal ratio to the

prior information held by the system. To do this, the Pearson correlation coefficient is

calculated between the signal ratio and the frequency profile across each angle in the

map function as formulated in Equation (5.8). The Pearson correlation coefficient was

chosen because it is a mathematically straightforward correlation measure which is able

to discriminate between positive and negatively correlated data. Where σA and σM are

the standard deviations of the signal ratio, A (θt,f), and the map function, M (θ,f),

respectively. θ′ represents a single angle from the set θ.

ρA (θt, θ
′) =

cov (A (θt,f) ,M (θ′,f))

σAσM

(5.8)

The Pearson correlation coefficients represents the degree of similarity between the

measured signal ratio and the expected profile at each candidate angle. By extracting the

peak from this likelihood profile, the angle to the target can be estimated.

5.2.4 Phase Difference Approach

This technique uses the same algorithmic structure as the power-based approach presented

in Section 5.2.3, but instead relies on the phase of the received signals. Similaraly, a

summary of the signal processing is given in Figure 5.3. A phase-only form of the radar
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θt = θ′

Figure 5.3: Flowchart to show the processing chain of the phase-based approach.

equation is shown in Equation (5.9), where φRi is the phase of the signal received at

antenna i, and φTx is the phase of the transmitted signal. More detail of this phase-only

formulation of the radar equation is presented in Chapter 3.

φRi = φTx + 6 GTx(θt,f) + 6 GRi(θt ± θ0,f) (5.9)

+ 6 σ(θt,f) +
4π (rtx + ri)f

c

The measured signal phase difference between the two receiving antennas is evaluated

in Equation (5.10), which shows that target-dependent phase effects cancel-out in a similar
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way to the target-dependent amplitude effects in Equation (5.6).

ΦS (θt,f) =φR1 − φR2 (5.10)

= 6 GR1(θt + θ0,f)− 6 GR2(θt − θ0,f)

+
4πr1f

c
− 4πr2f

c

This formulation means that the measured signal is a function of prior information, the

angle to the target, and the bistatic ranges to the target. However, the range dependence

can be approximated as d sin(θ) provided that the condition d << rtx is satisfied. This

condition is straightforward to satisfy as the receiving antennas may be moved arbitrarily

close together, in the extreme case causing the bistatic range terms to be equal and vanish.

The approximation for the bistatic range terms replaces the range dependence and hence

a phase map function (purely a function of angle and frequency) can be formulated as

in Equation (5.11). The phase map function gives the expected phase difference between

the antennas for a target at a given angle and across all transmitted frequencies.

ΦM (θ,f) = 6 GR1(θt + θ0,f)− 6 GR2(θt − θ0,f) (5.11)

+
2πdf

c
sin (θt)

ρS (θt, θ
′) =

cov (ΦS (θt,f) ,ΦM (θ′,f))

σΦS
σΦM

(5.12)

In this approach, the signal phase difference is the utilized cue and the phase map

function contains the prior information about the system characteristics. It is then pos-

sible to compare the measured signal phase difference with each frequency profile in the

phase map function again using the Pearson correlation coefficient. The Pearson correla-

tion coefficient for the phase comparison cue is given in Equation (5.12), where σΦS
and

σΦM
refer to the standard deviations of the measured signal phase difference, ΦS, and the
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phase map function, ΦM , respectively. The highest (closest to 1) value of the coefficient

represents the angle at which the target is most likely to be located.

5.2.5 On-Boresight Detection

Power
or

Phase?

Signal
Ratio

Signal
Phase

Difference

Standard
Deviation

Threshold
T

Use
Frequency-
Diverse
Approach

Use
Monopulse
Approach

Power

Phase

A (θt,f)

ΦS (θt,f)

σS

σS > T

σS < T

Figure 5.4: Flowchart to show the processing chain of the on-boresight detection tech-
nique.

The techniques presented in the previous sections rely on the Pearson correlation

coefficient to estimate the angle to the target. This method can be confidently predicted

to be deficient in the boresight direction because the Pearson correlation coefficient is

independent of the powers of the functions being correlated. In the boresight direction,

the difference between the measured signals (in both power and phase approaches) is zero

across all frequencies, and so the effect of measurement noise is amplified in the correlation

process, resulting in systematic error in the localization process. To compensate for this

deficiency, a technique is introduced whereby the system identifies that it has a target in

the region of poor performance, and switches to a traditional phase-monopulse approach

which performs well in the boresight direction. This technique is summarized in Figure 5.4.

To identify if the system is in the region of poorest performance, a measure of angular

variation is used because the signal difference is approximately zero in the boresight
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direction. The angular variation was captured by using the standard deviation of the

measured frequency profile, given in Equation (5.13) where S (θt,f) is either the power-

based signal ratio,A (θt,f), or the phase difference, ΦS (θt,f), depending on the technique

being used. S̄ is the mean value of S across all measured frequencies, Nf is the number

of frequency components in S, and fi is the ith component of the frequency vector f .

σS =

√

∑Nf

i=1

(

S (θt, fi)− S̄
)2

Nf

(5.13)

If this metric falls below a pre-defined threshold, a traditional phase-comparison

monopulse technique is used. The phase-comparison monopulse technique used [144]

is shown in Equation (5.14), where fm is the single frequency chosen for monopulse.

θt = arcsin

(

cΦS (fm)

2πdf

)

(5.14)

5.2.6 Summary of Theory

The theory presented in the above sections has developed two frequency-diverse localiza-

tion techniques, one reliant on amplitude and the other on phase, that are inspired by the

direction-dependent filtering of the HRTF in the biological world. In both instances the

antennas introduce variations (in amplitude or phase) to the signal at the output of the

antenna that are dependent on the incidence angle of the target. By considering a radar

equivalent of a binaural cue, the target-dependent effects are negated, and the remaining

signal is purely a function of the difference between the antenna patterns. It is worth

noting that, while a large bandwidth is implied, it is not necessary for the functioning

of this technique, provided that the variation introduced by the antennas is sufficiently

complex across the range of frequencies in the band. By augmenting the bio-inspired

techniques with traditional phase monopulse techniques, the performance of the overall

system is expected to be greater than the performance of either technique in isolation.
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Table 5.2: Experiment parameters and their values.

Parameter Value Units

θ0 24 degrees

PTx 5 dBm

fstep 100 MHz

fstart 2 GHz

fstop 6 GHz

θstep 0.5 degrees

θstart -90 degrees

θstop 6 degrees

5.3 Experiment

Having developed the theory for two biologically-inspired frequency-diverse localization

techniques, it is now useful to test these theories and to quantify the performance of each

technique. An overview of the parameters used in the experiment is given in Table 5.2.

5.3.1 Measurement Method

In order to mimic the binaural hearing configuration of echolocators two spatially-separated

identical receiving antennas were used, as presented in Section 5.2.1. Because of the use

of a binaural receiver configuration, the HRTF based-cue discussed in Section 5.1.1 may

be utilized by the radar system. To complete the biological mimicry a third identical

antenna was used exclusively for the transmit signal, mimicking the central placement

of the mouth, the origin of echolocator clicks. The transmit antenna pattern was not a

factor in the signal processing due to its absence in Equation (5.6) and Equation (5.10),

but it did affect the signal-to-noise ratio (SNR) of the received signals.

The antennas were mounted in a configuration broadly mimicking nature and consis-

tent with the geometry introduced in Figure 5.1, as shown in Figure 5.5a. The assemblage

was placed together with a target in an anechoic chamber so that the far-field condition

was satisfied which is discussed in more detail in Section 5.3.2. Due to the limited space
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available in the chamber, the target could not be moved through the required range of

azimuth angles. Instead the antennas were mounted on a rotation table such that, relative

to the transmit antenna boresight direction, measurements could be made over the desired

range of angles to the target. The target, a single mirrored sphere of 36 cm diameter,

was placed on a plinth to raise it into the same plane as the antennas, at a distance of

approximately 3 m, placing it in the far field region for the antennas (see Section 5.3.2

for more detail).

The physical size of the antennas places a lower limit on their separation. When

this restriction is combined with the maximum target range in the anechoic chamber

(approximately 3 m), the assumption that d << rtx is no longer valid and introduces an

error term to Equation (5.11). To mitigate this, the antenna calibration was performed for

this range, in order to cancel out the error. For this technique to be viable at short ranges

the antenna separation should be minimal, as the target range increases the geometric

errors are expected to reduce.

A VNA was used to generate the require band of frequencies. The VNA was placed on

the rotation table below the antennas as shown in Figure 5.5b to maintain phase coherence

(by avoiding flexing of cables). The VNA used was a 4-port Rohde & Schwarz ZVA-67

which has a very low noise floor (at approximately -120 dBm). The rotation table used

was a Parker 200RT which has a positioning accuracy of approximately 0.03o and was

therefore suitable to make measurements at 0.5o intervals across a range of −90o to +90o

to the target.

The measurements made consisted of s1 and s2 measured across a frequency band

of 2-6 GHz with a frequency step of 10 MHz. This band of frequencies was selected

based on the characteristics of the antenna presented in the following section. In order to

minimise the clutter response of the chamber, an initial background measurement of the

environment (across −90o to +90o and across the 2-6 GHz band) was made in the absence

of the target and was subtracted from all subsequent measurements made in the presence

of a target. Figure 5.6 shows the measurements of the chamber with and without the
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Figure 5.5: (a) Schematic of the biologically-inspired radar configuration including key
angles. (b) Photograph of the vector network analyzer (ZVA-67) and three wideband horn
antennas in the anechoic chamber.

target, as well as the background-subtracted measurement, in which the target is clearly

visible.

5.3.2 Antenna Characterization

Horn antennas from Q-par Angus (WBH1-18)[112] which satisfied the requirements of a

wide beamwidth and a wide operational bandwidth were used; Figure 5.7a shows how the

antenna beamwidth varies across the 2-6 GHz frequency band, presenting a broad range

of beamwidths from approximately 120o at 2 GHz to 60o at 6 GHz.

It was important to ensure that the measurements were made in the far-field region

of the antenna, to prevent reactive effects at shorter distances. Equation (5.15) gives

the formula used for the far-field distance as a function of wavelength, λ, and antenna

aperture size, D [105, p.229]. As the antenna aperture was 96 mm [112], the far-field

began at 0.1 m for 2 GHz and at 0.6 m for a transmit frequency of 10 GHz.

Rf =
2D2

λ
(5.15)
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Figure 5.6: Range-azimuth maps of the anechoic chamber. (a) The chamber without the
target, this is the background measurement which is subtracted from other measurements.
(b) The chamber in the presence of a target, very slight differences can be seen compared
to the background only measurement. (c) The chamber in the presence of a target with
the background removed. Here, clutter is visible at 1-2 m between 50o and 90o which is
attributed to the position of the anechoic chamber door being slightly different between
measurements.
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The wideband horn antenna was chosen, not because of any optimum beam pattern

or beam pattern variation over the band of frequencies of interest, but because it was

a readily-available off-the-shelf antenna with acceptable gain across the wide frequency

band. There are likely to be many ways to optimize the design of an antenna to better

encode space with spectral features for use with this technique. However, antenna op-

timization is beyond the scope of this chapter which seeks to present the theory of this

technique alongside proof-of-concept results to demonstrate its viability.

In order to use the techniques described in the previous section it was essential to have

a detailed characterization of the antenna beam patterns at a range of angles and over a

range of frequencies. To measure the antenna patterns, the configuration in the previous

subsection was modified within the anechoic chamber; a single antenna was removed from

its mounting point and was placed on a plinth approximately 3 m away facing towards the

VNA and the remaining antennas. As with the measurement technique described above,

the VNA was rotated on the turntable through 180o in steps of 0.5o and the direct signal

from the antenna on the plinth was measured. As the plinth antenna did not rotate, this

technique was able to describe the variation in the antenna gain as a function of angle (in

the azimuthal plane) and frequency as shown in Figure 5.7b. This characterization of the

antenna gain was repeated over several experiment rounds and was found to be consistent

between calibration measurements.

5.3.3 Signal Processing

The received signals, s1 and s2, were measured in the frequency domain, and were trans-

formed into the time domain using the fast Fourier transform (FFT). In the time do-

main, direct-path signals (signals received without reflection directly from the transmitter)

and reflections from the experimental apparatus corrupt the measured signal. A range-

azimuth map in the presence of the target (an with the background removed) is shown

in Figure 5.6c which shows the effect of clutter in the environment. Some clutter is not

removed by subtracting the background because of small variations in the scene, such as
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Figure 5.7: Antenna patterns of the Q-par Angus (WBH1-18)[112] wideband horn anten-
nas. (a) Three sample beam patterns, measured across a 2-6 GHz band, showing 3 dB
beamwidths of approximately 120o at 2 GHz and 60o at 6 GHz. (b) Wideband character-
ization surface measured across a 2-6 GHz band, showing the continuous variation of the
antenna pattern as a function of frequency and azimuth angle. This peak of the surface
narrows as the frequency increases, consistent with a reduction in beam width expected
at higher frequencies.

the door of the chamber being positioned slightly differently. In this range-azimuth map,

the target is clearly visible (above -20 dB) over an angular region of approximately 60o

and is slightly visible (above -40 dB) over an angular range of approximately 120o which

is in agreement with the antenna pattern presented in Figure 5.7a which has a beamwidth

of approximately 60o at 6 GHz and 120o at 2 GHz. A range-azimuth map of the cham-

ber without a target is shown in Figure 5.6a, which indicates that clutter and noise are

present in the signals. The target was then windowed within 25 range bins (0.935 m) in

order to reduce the effects of the clutter and noise. The windowed region was extracted

and zero-padded before transforming back into the frequency domain through the use of

an inverse fast Fourier transform (IFFT). The resulting frequency-domain signal had 292

sampling points.

The measurements of the antenna patterns were made by placing an antenna on the

plinth at the far end of the chamber, pointed directly at the receiving antennas. As a

result of this configuration, the directly received signal dominates the return and clutter

is not significant. Before correlating with the measured signal profile, the map function
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was down-sampled to match the dimensions of the up-sampled measured signal.

5.4 Results and Discussion

5.4.1 Signal Power Ratio

By taking the ratio of the powers of the direct signals as described in Equation (5.7), the

power-based map function was estimated and is shown in Figure 5.8a.

5.4.1.1 Ideal Behaviour

Because the power-based map function in Figure 5.8a has a high SNR, it represents the

ideal result of measurement of a target and by using this property it is possible to estimate

the ideal correlation surface for the localization technique. The correlation surface is a

visual representation of the Pearson correlation coefficients between two sets of measure-

ments. If the two sets of measurements used are the same, the self-correlation surface will

represent the mutual information contained between each pair of measurement angles.

This self-correlation surface was generated and is shown in Figure 5.8b, which shows a

correlation of 1 along the leading diagonal (which corresponds to an autocorrelation at

each angle). The width of the peak along the leading diagonal represents an estimate

of the robustness of the technique at that particular angle. For example, near the bore-

sight direction to around 20o the peak is broad and so worse performance is expected

than from a measurement at 45o (where the peak is narrower). The poor performance

in the boresight direction is expected due to the symmetry of the antennas and the flat

frequency-profile in this direction.

5.4.1.2 Simulated Behaviour

By degrading the power-based map function with AWGN it is possible to simulate the

signal ratio which would result from such a measurement. The example given in Fig-

ure 5.8c is for a received SNR of 10 dB in all directions. From the simulated signal ratio
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and the map function, the correlation surface can be estimated for a particular value of

SNR and is given in Figure 5.8d for the 10 dB case. From the correlation surface, the

resulting accuracy of the technique under particular SNR conditions may be estimated.

A more detailed exploration of the effects of SNR on this localization technique is given

in Section 5.4.5.

5.4.1.3 Real Target Behaviour

The measurement made for a single target in the anechoic chamber resulted in a correla-

tion surface as shown in Figure 5.8f. This correlation surface is in good agreement with

Figure 5.8b but is corrupted by measurement noise that increases away from the boresight

direction. By extracting the peak correlation value for each measurement angle, the per-

formance of the technique can be quantified, and is compared to the results of simulation

in Figure 5.9. There is good agreement between the measured and simulated results, with

a region of systematic error in the 0−20o region. This error is expected as the correlation

surface is broadest in this region. In the 20 − 70o region, the standard deviation of the

error is 1.83o, and is 1.14o in the 20− 40o region. Above 70o the localization completely

fails due to the low SNR of the signal at these angles, and so no attempt is made to

quantify the error in this region.

Figure 5.9 demonstrates the fundamental viability of using the frequency-diversity of

a signal and the natural spatial encoding that occurs due to the physical characteristics

of antennas to localize a target in angle over a wide angular range of operation.

5.4.2 Phase Difference

As with the power-based approach of the previous section, a map function can be deter-

mined for the phase-based approach by taking the phase angle difference between the two

receiving antennas in the direct signal case, as described in Equation (5.11). This method

yields the phase-based map function shown in Figure 5.10a. To determine the ideal and

simulated behaviours the same approach is used as the power-based approach and so the
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Figure 5.8: Power-based map functions and signal ratios (left) and correlation surfaces
(right). (a)(b) Measurements of the direct signal. (c)(d) The direct signal measurements
degraded by 10 dB of AWGN. (e)(f) Measurements with a target present.
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Figure 5.9: Simulated and measured errors of the power-based localization technique as
a function of angle. In the 20− 70o region, the standard deviation of the measured error
is 1.83o, and is 1.14o in the 20− 40o region.

following sections are kept concise to avoid repetition.

5.4.2.1 Ideal Behaviour

The ideal behaviour is estimated by self-correlating the phase-based map function to

generate the correlation surface shown in Figure 5.10b, which shows a tight peak along the

lead diagonal. Because the width of the peak represents the robustness of the technique at

that angle, the correlation surface indicates that the technique is also expected to perform

poorly at angles close to the system boresight (where the phase difference between the

antennas is close to zero), with performance expected to improve at angles greater than 5o

where the peak is narrow, and with performance expected to decrease slowly away from

the boresight direction.
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5.4.2.2 Simulated Behaviour

The phase-based map function is degraded with AWGN to simulate a measurement (as

with the power-based approach) of the signal ratio as shown in Figure 5.10c. The SNR

on the signal ratio decreases away from the boresight direction due to the decrease in

the antenna gains at these angles. The signal ratio surface is correlated with the original

map function to determine the correlation surface given in Figure 5.10d. The simulated

correlation surface shows a drop in correlation at angles furthest from the boresight, which

is expected due to the decrease in SNR to 10 dB.

5.4.2.3 Real Target Behaviour

The measurement made for a single target in the anechoic chamber resulted in the corre-

lation surface shown in Figure 5.10f. This correlation surface is in good agreement with

Figure 5.10b but, as with the power-based approach, is corrupted by measurement noise

that increases away from the boresight direction. The performance of the technique is

quantified and compared to the results of simulation in Figure 5.11. There is good agree-

ment between the measured and simulated results, with a region of systematic error in the

0− 5o region. This error is expected as the correlation surface is broadest in this region.

In the 20 − 70o region, the standard deviation of the error is 0.82o, and is 0.36o in the

20− 40o region. As with the power-based approach, the localization performance suffers

significantly above 70o and so no attempt is made to quantify the error in this region.

It is worth noting that further than 40o from the boresight a small systematic error is

present, which manifests as a small offset from 0o error on the localization estimate. This

effect is not visibly present in the results for the power-based approach and is possibly

due to slight variations in environmental conditions between calibration and experiment.

The presence of this error indicates the high sensitivity of the phase-based approach.
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Figure 5.10: Phase-based map functions and signal ratios (left) and correlation surfaces
(right). (a)(b) Measurements of the direct signal. (c)(d) The direct signal measurements
degraded by 10 dB of synthesized AWGN. (e)(f) Measurements with a target present.
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Figure 5.11: Simulated and measured errors of the phase-based localization technique as
a function of angle. In the 20-70o region, the standard deviation of the measured error is
0.82o, and is 0.36o in the 20− 40o region.

5.4.2.4 Comparison of Power- and Phase-based Approaches

The previous sections have presented the results of using the power- and phase-based

techniques, both of which yield good results. The phase-based approach gives much

better localization performance, but it is also reliant on phase coherency between the

two receiver channels, and is much more sensitive to noise due to the finer encoding of

space. Therefore it is likely that in the real-world, where phase-coherence over such a large

bandwidth may not be practical, the power-based approach is the more easily realized of

the two techniques.

The reason that the phase-based approach performs better in laboratory conditions

than the power-based approach is largely due to the decorrelation between closely spaced

angular positions. This decorrelation is visible in Figure 5.10f as a blue region (negative

correlation) on either side of the leading diagonal (positive correlation), which narrows

the width of the main peak across all angles and results in a localization result that is

more stable to noise. The correlation surface for the phase-based approach also has fewer
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other peaks than the power-based approach, meaning that different angles are less likely

to be confused. The correlation surface has fewer features because the phase-based map

function is a function of both antenna gains and spatial separation (see Figure 5.10a).

The spatial separation term of this equation causes every angle to be characterized by a

very different frequency profile which reduces the likelihood of correlation between returns

from different angles.

5.4.3 On-Boresight Detection

Using the technique described in Section 5.2.5 for detecting a target in the boresight direc-

tion it was possible to effectively switch techniques in this zone of degraded performance.

The results of the on-boresight detection for the power- and phase-based approaches are

given in Figure 5.12 and Figure 5.13 respectively. These figures show that, by setting an

appropriate threshold for the number of standard deviations in the signal profile or in the

phase difference profile, the boresight condition can be effectively determined, and the

technique switched to improve performance.

This switching is indicative of how this technique could be integrated with existing

systems that use alternative techniques, allowing the switching between techniques when

one is known to be performing poorly.

5.4.4 Performance Effects of Different Frequency Bands

This section considers the effects of different frequency bands for both power- and phase-

based approaches. In general, the band of frequencies used must elicit substantial variation

in the beam patterns of the antennas. As introduced in Section 5.2.6, there is nothing

unique about the absolute band or bandwidth used, but rather it is the variation in the

encoding of space by the antenna across of the frequencies of the band that is being used.

The results shown in this section are determined by processing the data recorded by

the VNA over the desired frequency bands, which are 2-4 GHz, 2-5 GHz, 2-6 GHz, 2-

10 GHz, 4-8 GHz, and 6-10 GHz. These particular bands were selected because they
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Figure 5.12: Power-based results for the on-boresight identification technique. (a) Shows
the standard deviation of the signal profile across the full bandwidth. (b) Shows the
result of using the on-boresight detection to improve performance at low angles. The
green-dashed line shows localization performance of the power-based technique near the
boresight (where performance is poor), by switching to a phase-comparison monopulse
approach, the results in red are attained. The results of the power-based approach further
from the boresight are shown in blue and remain unchanged.
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Figure 5.13: Phase-based results for the on-boresight identification technique. (a) Shows
the standard deviation of the signal profile across the full bandwidth. (b) Shows the
result of using the on-boresight detection to improve performance at low angles. The
green-dashed line shows localization performance of the phase-based technique near the
boresight (where performance is poor), by switching to a phase-comparison monopulse
approach, the results in red are attained. The results of the phase-based approach further
from the boresight are shown in blue and remain unchanged.
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allow comparison of the effects of varying the start frequency of the band as well as the

bandwidth as four results have the same starting frequency and three results have the

same bandwidth.

5.4.4.1 Power-based Approach

Figure 5.14 shows that when the bandwidth is low, as in the case of 2-4 GHz, there is a

large ambiguous region in the boresight direction up to around 30o, which manifests as a

‘chequerboard’ square region in the centre of the correlation surface. This region occurs

because the frequencies in this smaller band have broad beamwidths, meaning that there

are fewer spectral features to discriminate between angular positions near the boresight,

and consequently ambiguity occurs in that region. The 2-5 GHz results demonstrate that

by increasing the bandwidth to include frequencies with narrower beamwidths, the extent

of the angular ambiguity is decreased (to around 20o). This pattern of reduced ambiguity

towards the boresight direction continues for the 2-6 GHz and 2-10 GHz results.

If it is higher frequencies that help discriminate between different angular positions,

it might be expected that using the same bandwidth but with a higher central frequency

would yield better performance. In Figure 5.14 the results for 2-6 GHz show a narrow

peak on the correlation surface from 20 − 70o from the boresight direction, which trans-

lates to relatively good localization performance in this region. Increasing the band of

frequencies to 4-8 GHz does reduce the ambiguity in the boresight direction for the rea-

sons discussed previously. However, the technique now only works well up to about 40o,

this occurs because the sidelobes of the higher frequencies introduce ambiguity into the

signal power ratio. Above 40o, the ratio of signal powers is no longer sufficiently different

at every angular position to enable good localization performance. This degradation of

performance continues if the centre frequency is further increased to 6-10 GHz. At this

point, notable angular ambiguities occur in the 20− 30o range, which further reduce the

performance.

The final important effect is related to the SNR of the signal. As the lower frequen-
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cies are increasingly omitted from the band, the performance at angles furthest from the

boresight decreases. Part of this reduction in performance is due to the structural ambi-

guity of the beam patterns discussed previously, and part is due to a decrease in SNR.

The lower frequencies correspond to wider beams, and so the incident power on a target

far from the boresight direction is greater when lower frequencies are used. The SNR

effects are responsible for the majority of dissimilarities between simulated and measured

results because the simulation was performed with a constant SNR and did not take into

account the reduction of SNR away from the boresight direction. It is therefore possible

to separate the effects due to structural ambiguity and those due to noise. The results for

6-10 GHz show structural ambiguity for angles greater than 40o , whereas the 4-8 GHz

results show small regions of structural ambiguity at 40o, 70o, and 80o, which manifest

as spikes in the simulated result. More detail of noise-dependent effects is discussed in

Section 5.4.5

5.4.4.2 Phase-based Approach

The phase-based approach exhibits similar behaviour to the power-based approach, with

results for different bands shown in Figure 5.15. For 2-4 GHz, the ‘chequerboard’ ambi-

guity effect near the boresight is present in the correlation surface once more. The regions

of ambiguity are smaller than for the power-based approach, and this is due to the lack of

spectral features in the phase map function in the boresight direction (see Figure 5.10e).

As with the power-based approach, the chequerboard region decreases in extent as the

bandwidth increases to 2-5 GHz, and further still to 2-6 GHz. The extent of the ambiguity

is reduced with the inclusion of higher frequencies because the phase of the component

changes more rapidly at higher frequencies, encoding space more finely, and allowing for

more accurate localization.

The finer encoding of space by higher frequencies is not solely beneficial, and introduces

new ambiguities to the system. The new ambiguity manifests in the correlation surface

as high correlation regions radiating from the origin, not along the leading diagonal. This
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effect can be seen in the results for 4-8 GHz, and results in low reliability of localization

as the SNR drops beyond around 40o from the boresight. Because space is encoded more

finely by the higher frequencies, localization performance is far more sensitive to noise

than at the lower frequencies. The results for 6-10 GHz show an extreme case where

localization is almost impossible due to the ambiguous banding present in the correlation

surface.
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Figure 5.14: Power-based correlation surfaces and results for different frequency bands.
(a)(b) 2-4 GHz, (c)(d) 2-5 GHz, (e)(f) 2-6 GHz, (g)(h) 2-10 GHz, (i)(j) 4-8 GHz, (k)(l)
6-10 GHz.
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Figure 5.15: Phase-based correlation surfaces and results for different frequency bands.
(a)(b) 2-4 GHz, (c)(d) 2-5 GHz, (e)(f) 2-6 GHz, (g)(h) 2-10 GHz, (i)(j) 4-8 GHz, (k)(l)
6-10 GHz.
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5.4.4.3 Summary

One of the features that suggests itself when considering the results presented in Fig-

ure 5.14 and Figure 5.15 is that the lowest-frequency components (which correspond to a

very wide beam and to low-frequency phase variations) are required to disambiguate the

returns from different azimuth positions. Conversely, the higher frequencies are required

to improve the azimuth resolution, particularly at the angles near the system boresight

direction. The use of different frequency components to discriminate between targets at

different angular locations is similar to an approach possibly used by bats to discriminate

targets and clutter [63] introduced in Chapter 2, and the findings presented here could

possibly support that research. These two factors also have to be balanced against the in-

creased admittance of noise and clutter into the system that comes with a wider frequency

band, as well as the greater sensitivity to noise that comes with the higher frequencies.

An increase of noise admitted into the system degrades the performance of the correlation

process, and localization performance suffers as a consequence.

5.4.5 Signal-to-Noise Ratio

In order to understand the performance effects of SNR on the techniques it is important

to quantify the SNR at various angles from the system, as the SNR is expected to drop

at angles away from the boresight direction. The SNR was estimated by comparing the

return signals in the presence of a target to signals recorded when no target or clutter was

present. The measurements of SNR on the signals on the receiver channels, s1 and s2, can

be used to estimate the SNR on the power-based joint pattern using Equation (5.16) [5]

and the result of this is shown in Figure 5.16. The drop of SNR away from the boresight

direction of each antenna is expected from the beam patterns; as the frequency increases

the antenna beamwidth narrows causing the signal magnitude to fall closer to the noise

floor at angles away from the boresight and outside of the antenna main lobe. From

this estimate it can be seen that the SNR drops to below 10 dB at approximately −60o,

which is consistent with the measured performance for both techniques suffering for angles
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Figure 5.16: The SNR on the signal used for the power-based approach.

further from the boresight.

SNRjoint =
(

SNR1
−2 + SNR2

−2
)−0.5

(5.16)

5.4.5.1 SNR Filtering

As discussed above, the SNR decreases with angle and varies across the wide frequency

band, causing a significant decrease in average SNR at angles away from the boresight. If

the average SNR was increased, it is likely that performance of the previously presented

technique could be improved. By setting a signal magnitude threshold for both channels,

only the frequency-components with an SNR greater than the threshold are included in

the correlation process. Figure 5.17 shows the improvement in average SNR on the joint

pattern as a function of angle for an SNR threshold of 10 dB, at angles greater than

approximately 40o from the boresight an SNR improvement can be seen. At the angles

furthest from the boresight an SNR improvement of about 8 dB is achieved.

The signal ratio and correlation surface for the SNR filtering are shown in Figure 5.18
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which show that the threshold excludes an increasing number of frequency components

as the angle from the boresight direction increases and that the result of this is a sharper

correlation surface. Figure 5.19 shows the result of localization using this technique. The

performance achieved here is very high and is better than would be expected in a real-

world environment. This high performance occurs because the clutter and noise floor

of the anechoic chamber was static and well-known. However, the ability to improve

performance by using a threshold to remove low SNR measurements is a useful one,

and these results demonstrate the fundamental viability of processing any portion of the

frequency band in this way.

-100 -50 0 50 100

Angle (deg)

0

5

10

15

20

25

30

35

A
v
e
ra

g
e
 S

N
R

 (
d
B

)

Without Threshold

With Threshold

Figure 5.17: A comparison of SNRs on the joint pattern used for the power-based ap-
proach with and without signal magnitude filtering. The filtering excludes frequency
components from the processing if the SNR falls below a threshold of 10 dB.
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Figure 5.18: Measurements with an SNR threshold of 10 dB. (a) Measured signal ratio,
where black indicates areas where the SNR has fallen below the threshold. (b) Correlation
surface.
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5.5 Summary

The previous sections have laid out the theoretical basis for and the results of using a

novel biologically-inspired radar technique based on the frequency-angle relationship of the

received signals as a means of target localization. In this section, the processes underlying

the results are discussed in more detail and the various advantages and drawbacks of this

method are explored.

The most significant result is that using the techniques presented it is possible to

achieve target localization over a wide range of angles using off-the-shelf horn antennas

and no moving parts. These techniques rely on the variation of antenna gain as a function

of frequency, with a pair of antennas effectively encoding space with unique markers that

can be used to determine angular position. For successful target localization in angle,

sufficient information must be encoded in the received signals and so the variation in the

antenna beam patterns must also be significant. To achieve this significant variation, a

wide band of frequencies was used, but this is not inherently a wideband technique, and

the same results could be achieved with antennas that had the same variation in beam

pattern over a much narrower bandwidth.

As discussed in Chapter 2, there is neuroscientific evidence that frequency-dependent

binaural cues are used in nature [145, 44, 42]. Specifically, regions of neurons in the lateral

superior olive (a region of the brain close to the start of the auditory pathway) respond

selectively to ILDs as a function of frequency. This group of neurons pass the BTD

cue along the auditory pathway to the inferior colliculus, and subsequently the superior

colliculus where other cues are integrated and an auditory map of space is found. It is

this set of neural processes that provide the strongest evidence for biological equivalents

of the techniques presented in this chapter.

For both power- and phase-based approaches poor performance is seen in the boresight

direction which is both expected and consistent with simulation results. This degraded

performance occurred because the symmetry of the antenna patterns led to a flat profile

within the map function (for both power- and phase-based approaches), which caused the
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effects of noise to be more pronounced in the likelihood estimator. The poor performance

in the boresight direction was compensated for by using an on-boresight detection ap-

proach, which identified when the measured signal profile fell below a threshold required

for good localization performance. By switching to a phase monopulse approach in the

boresight region, the overall performance was improved out to approximately 70o where

low SNR degrades the results. This performance increase demonstrates that this tech-

nique would likely be the most viable in conjunction with alternative techniques for target

localization, and could be used to augment other techniques on existing systems.

The results for different bandwidths indicate the importance of using a band containing

a frequency component which for the antenna used has a wide beamwidth with high

gain. It is this low frequency which anchors the approach and determines the range of

angular operation of the technique. It is also important to have a wide range of higher

frequencies included in the band. A key finding of this research is that it is the variations

in the beampatterns that provide the spectral features required to disambiguate between

different angular positions. However, a limit must be imposed on the band of frequencies

used, as a wider bandwidth permits more noise to enter the processing, degrading the

overall performance. The imposition of a limit to the band is a trade off against the SNR

requirements of the processing; if signals below an SNR threshold were filtered out of the

processing, this band restriction could be relaxed.

SNR thresholding was carried out and shown to significantly improve the performance

of the technique, localizing the target in the 15 − 80o region almost perfectly, with a

standard deviation of 0.010o using a band of frequencies from 2-6 GHz. The application

of a threshold increased the average SNR as the angle from the boresight increased.

The threshold approach also demonstrates the feasibility of using any combination of

frequencies within a band for the processing. The ability to select individual frequencies

to consider in the correlation process opens up the possibility that this technique could

conceivably be used with multiple narrowband radars operating at different frequencies,

which is more feasible than using an ultra-wide bandwidth for real-world radar systems
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that operate with stringent bandwidth restrictions.

This chapter has considered the single target case for frequency-diverse localization,

this technique fails when two or more targets are present and are at a similar range.

The reason for this breakdown is that the ratio of received signals, Equation (5.6), is no

longer solely a ratio of antenna gains, and instead includes cross-terms from the result of

division of different target returns. This is the same restriction that applies to conventional

monopulse systems, which experience large errors if two targets are encountered at the

same range. If the two targets are separable in range, the bio-inspired technique can still

be used, operating on the returns of each target independently.

5.6 Conclusion

This chapter has developed a biologically-inspired radar system which uses the informa-

tion encoded in the spectral content of a signal to localize a target. The wide band of

frequencies provides an extra degree of freedom that the radar system can exploit for

target localization. In addition to using a wide range of frequencies, human echolocators

also use the degrees of freedom provided by movement of the head and body to build up

a more complete perception of their environments.

The next chapter will explore the possibilities and challenges that adding movement to

a radar platform presents. With additional degrees of freedom, a radar system should be

able to leverage these to increase its understanding of its environment and to improve per-

formance. As humans we understand our environments because of our cognitive abilities,

and the robot in the next chapter will take inspiration from human cognitive structures

in order to process and understand its environment.
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Chapter 6

Cognitive Radar Architecture for

Robot Navigation

Nosotros, de un vistazo, percibimos tres copas en una

mesa; Funes, todos los vástagos y racimos y frutos que

comprende una parra.

We, in a glance, perceive three wine glasses on the table;

Funes saw all the shoots, clusters, and grapes of the vine.

— Jorge Luis Borges

Funes el memorioso, 1942
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6.1 Introduction

This chapter is framed in terms of a radar-focused autonomous navigation task in which a

robot is required to sense and avoid obstacles en route to a destination. Radar sensors are

considered because their all-weather and day or night operational capabilities can make

them a suitable sensing choice in certain unknown and adverse environments through

which mobile robots may have to navigate.

Traditionally, radar has been widely used for collision avoidance in manned surface,

ground, and air platforms. More recently, its use onboard ground [146] or aerial [147, 148,

149] robotic platforms has been considered. However, there are still major challenges to

autonomous radar-only navigation, especially in confined spaces. A significant limiting

factor is that radar systems generally have lower resolution and accuracy than other

sensing modalities such as lidar. In addition, the complexity of radar scattering makes

reliable information extraction more difficult.

These challenges may be addressed by embedding intelligence within the radar sensor.

This area is still in its infancy, but demands on improved autonomy are becoming more

pressing all the time. Artificial radar intelligence may be manifested through reactive

systems [150, 151], and can be inspired by natural principles, such as the echolocation

of bats inspiring echoic flow techniques[76]. This work looks towards the creatures of

the natural world and attempts to develop a system that captures some of the cognitive

processes present in nature.

Creatures in the natural world use cognitive processes to operate on complex and vari-

able sensory inputs while interacting with their environments. In 2006, the neuroscientist

Joaqúın Fuster introduced the idea of a ‘cognit’ to cognitive neuroscience. A cognit is a

network of neurons ranging in size that represents a unit of memory or knowledge in the

brain [153]. Figure 6.1a shows Fuster’s hierarchical perception-action cycle, often referred

to in literature on cognitive radar [154, 75, 56, 57, 155].

However, perception is only one of many functional elements of cognition. To list the

functional elements of cognition exhaustively is a task beyond the scope of this work, but
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commonly referenced elements are: Perception, Action, Memory, Attention, Language,

Learning, and Reasoning [152]. These elements make it apparent that the perception-

action cycle is the ‘tip of the iceberg’ of cognition and that the presence of many other

functional elements alongside perception most likely enables higher-order cognitive be-

haviours.

Fuster’s cognit and presentation of the perception-action cycle can be thought of as

a useful roadmap for the development of cognitive systems. By following this roadmap,

cognitive systems that directly mimic the functional structures present in Fuster’s hierar-

chy can be built. Figure 6.1b shows how this chapter interprets Fuster’s perception-action

cycle for the mobile robot, relating the radar and motor data to raw perceptual input, and

showing how this is propagated to a working memory which can be used for determining

the course of action needed for the robot to complete its task.
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Figure 6.1: Schematics illustrating the functional components and hierarchy of processing
in Fuster’s perception-action cycle [153] and the robot’s perception-action cycle.

This chapter takes initial steps into designing practical cognitive radar systems in the

context of autonomous navigation. To do this, Fuster’s hierarchy and the functional el-

ements of cognition are used to guide the design of the system. The following sections

will describe the theory and implementation of cognitive radar signal processing using

the functional elements of cognition, explicitly including memory, for radar-guided au-

tonomous navigation. Results of simulations and experiments are presented, in which

123



cognitive signal processing is used to perform a navigational task in the presence of obsta-

cles. The role of the various functional elements of cognition are discussed in the context

of these experiments, with a particular focus on working memory and how it relates to the

radar data. Finally, possible future avenues of research into cognitive radar and robotics

are presented.

As a note on terminology, this chapter refers to results of simulated and experimental

trials under different conditions. ‘Experimental’ refers to practical experiments conducted

in a laboratory, and ‘simulated’ refers to the output of an ideal simulation. A ‘condition’

is a particular set of starting conditions and processing parameters that may be tested

repeatedly over multiple ‘trials’.

Sections of this chapter are taken verbatim from novel works written entirely by the

author [6, 7].

6.2 Memory

This chapter has a focus on the role of memory within autonomous cognitive radar sys-

tems, examining the impact that a working memory has on autonomous navigation per-

formance, and so a brief overview of the relevant concepts is presented here.

Memory is generally conceptualized in three ways: sensory, working, and long-term.

Sensory memory is the immediate perception by the senses that persists for a short period

of time [156, 157]. The light trails that fireworks appear to leave across the sky are an

example of the sensory memory of the eye. A person’s working memory exists over a

longer timescale than the sensory memory, and is the result of attentional processing of

multiple sensory memories [158, 156, 159]. For example, if a light was flashed once in an

otherwise darkened room, a person unfamiliar with the room would be able to navigate

through it using the spatial information stored in their working memory from their visual

sensory memory when the light was flashed. Long-term memory deals with the long term

ability of creatures to remember information, such as the layout of a place they have
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frequently visited [156, 160].

Memory is often discussed in the context of cognitive radar and varied approaches

for implementing memory functions have been presented theoretically and in simulation

[161, 162, 163], and experimental systems with capability to incorporate memory exist

[103]. To the best of the authors’ knowledge, this work presents the first results of an

experimentally realized cognitive radar system that explicitly incorporates a short-term

memory function for robotic navigation.

6.3 Perception and Attention

6.3.1 Primary Sensors

Before considering the cognitive radar signal processing and the control processes of the

robot, it is useful to understand the physical sensors that generate the signals that will

be used by the robot. The robot has two sources of external information: the radar and

the motor encoders, which are described in the following sections. The physical hardware

is equivalent to the primary sensory stage of Fuster’s perception-action cycle. The robot

has two sources of external information, the radar and the motor encoders, which are

described in the following sections.

6.3.1.1 Robot

The robot, shown in Figure 6.2, is the Arlo Robot Platform from Parallax Inc. [164]

which has a differential drive fixed-axle configuration with two driven wheels and two

free coasting wheels for stabilization. The wheels are driven by brushed motors and their

rotation is tracked with quadrature encoders fitted to each wheel block. The camera

shown in Figure 6.2 is used to provide optical truth for the experiments, used for the

post-trial analysis. The relevant parameters of the robot are provided in Table 6.1.
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Figure 6.2: Photograph of the robot with the MIMO radar frontend.

Table 6.1: Arlo Robot Parameters.

Parameter Value Units

Wheelbase 39.2 cm
Drive Wheel Diameter 15.0 cm

Encoder Ticks per Revolution 144 -

6.3.1.2 Radar

The radar is the INRAS Radarbook with a 77GHz frontend which is a multiple-input

multiple-output (MIMO) array in a 4-by-8 configuration resulting in an array of 29 virtual

elements (due to overlap in the virtual array) [165, 166]. The radar is triggered by

a robot control program, and generates a linear frequency modulated (LFM) upchirp

which is sequentially transmitted from each of the 4 transmitters. Because of the MIMO

configuration of the radar, the return signals are processed to form a virtual array using

conventional MIMO techniques, indicated schematically in Figure 6.3. A more complete

description of MIMO radar processing is presented in [167], but is omitted here for brevity.
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8 Receiver

Elements

4 Transmitter

Elements

29 Virtual Array Elements

3 Overlapping Virtual Elements

Figure 6.3: Diagram of the physical MIMO array (top) and the virtual MIMO array which
this forms (bottom).

Table 6.2: INRAS Radarbook Parameters.

Parameter Value Units

Centre Frequency 77 GHz
FMCW Bandwidth 2 GHz
No. Tx Elements 4 -
No. Rx Elements 8 -

No. Virtual Elements 29 -
Sweep Time 60 µs

Sampling Frequency after downconversion 10 Msps
Tx Power 10 dBm

MIMO is a useful technique in the context of mobile robotics because it can have a small

form-factor with low power requirements, and provides persistent scene observation over

a wide angular range. The description of the radar beamforming in Section 6.3.2.1 refers

to the array of virtual elements.

6.3.2 Unimodal Association

Unimodal association is the first layer of perception in Fuster’s cycle above the primary

sensory layer, and is characterized by the processing of a single sensory input. This section

details how the separate signals of the motor rotation encoders and the radar system are

processed independently to build up separate perceptions of the environment.

6.3.2.1 Radar Signal Processing

The radar signal processing is performed in two parts: (1) formation of a range-profile for

a single (virtual) array element, and (2) the processing of several range profiles across the

127



array to create a range-angle map, the final output of the radar signal processing. The

details of the signal processing are provided in Chapter 3, which gives an explanation of

how to use a MIMO radar to form a virtual array, and how to form a range-angle map

using an array of elements (virtual or otherwise).

The radar sequentially transmits a pulse from each of its 4 transmit antennas and uses

the signals received at the 8 receiving antennas to construct a virtual antenna array with

29 elements (due to element overlap in 3 positions). By performing a Fourier transform

across the time-dimension and a Fourier transform across the array-dimension of the radar

data, multiple beams are formed simultaneously, and a range-angle map is extracted. The

range-angle map for a point target is given in Equation (6.1), which is derived in Chapter 3.

|m (f, fa)| =AτL sinc (πτ (f − 2ktd)) sinc (πL (fa − fc sin θd))

|m (r, θ)| ∝ sinc

(

2πβ

c
(r − rd)

)

sinc (πLfc (sin θ − sin θd)) (6.1)

When processing the radar data, a Kaiser window function was used for sidelobe

suppression. Figure 6.4a shows an example range-angle map after beamforming of the

radar data. An obstacle is present at 10o and approximately 1m range and the wall of

the measurement enclosure is present at approximately 3m. The field-of-view of the radar

is restricted in software to be ±50o from the array boresight direction, as the azimuthal

extent of the bins increases with azimuth angle. This sample measurement is taken from

experimental trials detailed in Section 6.7.

6.3.2.2 Detection Thresholds

When propagating perception from an immediate sensory perception (the radar range-

angle map) to a working memory, much of the information from the sensory perception

is discarded and only the information required to perform the task at hand is kept. The

retention of information can be considered as an attentional process whereby choices are
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(a) An example range-angle map formed after
beamforming of the raw radar data.
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Figure 6.4: Signal processing of a sample measurement, in polar coordinates centred on
the radar. An obstacle is present at 10o at approximately 1m range and the wall of the
measurement enclosure is present at approximately 3m.

made about which information is important to parse [158, 159].

As the robot is trying to avoid obstacles and navigate through empty space, it is

important to retain the regions of high power in the radar range-angle map, which are

likely caused by the presence of an obstacle, and regions of low power, which are likely

to be unobstructed. To determine which information to retain, the robot uses a pair

of thresholds acting on the range-angle map to indicate whether a range-angle bin is

occupied, vacant, or an intermediate state. The advantage of using a pair of thresholds

is best seen in the context of a memory which can integrate multiple isolated perceptions

as will be presented in Section 6.4.

In short, the two thresholds prevent the robot from making hard-decisions about the

occupancy state of intermediate bins in the range-angle map. The main benefit of applying

dual thresholds to the continuously varying range-angle map is that the resulting data is

compressed to three states: occupied, unknown, and vacant, and the reduced data size

allows the robot to process the information more quickly.

The upper and lower thresholds are given in dB relative to the direct signal from

a transmit to a receive antenna element, in Equation (6.2) and Equation (6.3) respec-
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tively, where Pu and Pl are the fixed upper and lower threshold values at a range of 1m

respectively, and R is the round-trip distance to the target. The range is selected for

mathematical convenience and corresponds to the order of magnitude of ranges that are

important for the robot to accurately process. Points in the range-angle map with a power

that exceeds the upper threshold are considered occupied and points that have a power

that falls below the lower threshold are considered vacant.

To set these thresholds, it would be possible to carry out a full analysis of the statistics

of the detection process and consider the desired detection rate and false alarm rate in

the context of the dual thresholds. However, as this is preliminary research a detailed

statistical analysis was beyond the scope of the work, and values were instead chosen

empirically based on the results of experimental trials, and are detailed in Section 6.7.

t+ = Pu + 20 log10

(

1

R

)

(6.2)

t− = Pl + 20 log10

(

1

R

)

(6.3)

The locations of occupied and vacant points are stored in memory as a determination

map which is used by the robot in subsequent processing. The determination map is

the final stage of unimodal association for the radar data, and is in a polar coordinate

reference frame that is centred on the radar sensor. The determination map stores the

positions of occupied and vacant points. Any other points are declared as ‘unknown’ in

the map (which avoids a hard decision about their state). It is also likely that multipath

effects contributed to some of the unknown points on the map.

Figure 6.4b shows an example of the determination map for the range-angle map in

Figure 6.4a. The main peak of the obstacle is detected, as well as two points on the wall

of the enclosure. The area up to 3m is largely reported as empty, which was correct for

this sample measurement. The obstacle sidelobes and much of the area beyond 3m were

treated as having an unknown occupancy as the signals were above the lower threshold
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at these points, but not large enough to cross the upper threshold. Some of the areas in

the empty region below 3m that were marked as unknown are likely to originate from the

enclosure walls on either side of the robot, but the scattering was not bright enough to

cause the area to be marked as occupied.

6.3.2.3 Position Estimation

The perception the robot has of its wheel positioning is used to estimate its pose (a

description of its position and orientation) which enables the robot to understand its

relative position and angle to objects in the environment. The change in pose of the

robot can then be determined by considering the equations of motion for a two-wheel,

fixed-axle robot [168].

Encoders on the wheels record the number of ticks, nl and nr for the left and right

wheels respectively, where a full revolution comprises of 144 ticks. The distance that each

wheel travels may then be determined by multiplying the number of ticks by the distance

travelled per tick, s.

C

P

P ′

θ

d

L
snr

snl

Figure 6.5: Geometry for determining robot motion.

The movement of the robot can be considered as a rotation of the starting pose, P ,

about a point, C, as shown in Figure 6.5. To determine the final pose, P ′, the radius of

rotation, d, and the angle of rotation, θ, must be found. Using the definition of the arc

length of a circle allows equations for the arc lengths of the two wheels to be written as in

Equation (6.4) and Equation (6.5), where L is the distance between the wheels. Solving
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these gives Equation (6.6) for the angle of rotation and Equation (6.7) for the radius of

rotation.

θ

(

d− L

2

)

= snl (6.4)

θ

(

d+
L

2

)

= snr (6.5)

θ =
s

L
(nr − nl) (6.6)

d = L
nr + nl

nr − nl

(6.7)

The initial pose, P , comprises the Cartesian coordinates, x and y, and the heading,

φ, of the robot as given in Equation (6.8). The relative pose of the robot to the centre

of rotation, V , is written in Equation (6.9). The rotation matrix, M , which describes a

rotation of a pose about the centre of rotation is given in Equation (6.10). The new pose,

P ′, is then calculated by rotating the relative pose and adding the initial pose according

to Equation (6.11).

P =













x

y

φ













(6.8)

V =













d sinφ

d cosφ

1













(6.9)
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= MV + P (6.11)

There are hardware limitations on this technique, for example due to the quantized

nature of the motor encoder ticks as well as gradual wheel slippage, and although the

errors that accumulate over the duration of the trials are small, they are of significance

when considering the robustness of the working memory.

6.3.3 Polymodal Association

Polymodal Association is the section of Fuster’s perception-action cycle which refers to the

integration of multiple independent sensory perceptions to form a higher-level perception

of a creature’s surroundings. For the robot, the two independent sensory perceptions are

the radar-based determination map (introduced in Section 6.3.2.2) and the motor-based

estimate of its current pose (introduced in Section 6.3.2.3). These separate perceptions

can be combined by performing a sensorimotor transform, which combines spatial and

other sensory information [169, 170].

The reason for combining perceptions in this way is that the radar-based determination

map of the environment is centred on the radar sensor and is in a polar coordinate

system. Because the robot moves between measurements, the origin of this coordinate

system also moves, which makes it difficult to compare different radar-based perceptions.

Combination of sequential measurements is required to build up a working memory. If

the determination map is projected into the fixed Cartesian world space using the robot’s

pose, it means that different radar measurements can be compared and combined into a
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memory, as discussed in the next section.

The coordinates are transformed from the radar polar coordinate frame, (R, θ), to the

world frame, (X, Y ), using Equation (6.12) which describes the sensorimotor transform,

where x,y, and φ are taken from the robot pose relative to the origin located at one corner

of the enclosure and r0 is the radial offset of the radar from the centre of the robot in

the forward direction. Figure 6.6a shows the sample determination map from Figure 6.4b

after the sensorimotor transform, with the position (and historical track) of the robot

shown in the Cartesian world space.

X = x+ r0 cosφ+R cos (θ − φ) (6.12)

Y = y − r0 sinφ−R sin (θ − φ)

6.4 Memory

With the formation of an immediate sensory perception complete in the world frame,

the robot is able to propagate this information up the cognitive hierarchy and build a

working memory. The main reason for using a working memory is that it allows the robot

to remember obstacles that it once detected that fall outside the field-of-view of the radar,

and continue to avoid them. An additional benefit of the working memory is that it may

reduce the robot’s sensitivity to measurement errors, and this could be the subject of

future statistical analysis.

The radar-based determination map is registered to the fixed world space and so the

robot is able to easily integrate multiple maps to form the working memory. The memory

takes the form of an occupancy grid, which is populated with values derived from the

radar-based determination map described in Section 6.3.2.2. The occupancy grid is an

array which is mapped to the world space, with each grid cell containing a value that

represents the robot’s knowledge of occupancy at that point. A high occupancy value close
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(b) Working memory occupancy grid updated
using the sample determination map.
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(c) Working memory occupancy grid show-
ing the result of integrating five determination
maps.

Figure 6.6: Signal processing of a sample measurement. The dots indicate points at
which a measurement was made, blue signifies avoidance behaviour and pink signifies
goal finding behaviour. The black border represents the enclosure walls.

to 1 indicates that there is a high probability that the grid cell is occupied, while a low

occupancy value close to 0 indicates that the grid cell is likely to be vacant. The occupancy

values are between 0 and 1, and can be compared against thresholds to determine the

presence or absence of an obstacle in a cell. The population of the occupancy grid can be

time intensive when processing a large volume of data and so the attentional processing of

the range-angle map into the smaller determination map allows the formation of working

memory to occur quickly enough and for the robot to operate in real-time.
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Equation (6.13) describes the reinforcement rules for generating the occupancy grid,

m, where i and j are variables that index the grid and k+ and k− are rates of positive

and negative reinforcement respectively. The reinforcement rules are designed so that the

values in the grid cannot be larger than 1 or less than 0. This constraint is achieved

by forcing the rates of reinforcement to be between 0 and 1. Occupied points in the

determination map positively reinforce the corresponding grid cell, increasing its value,

and vacant points in the determination map negatively reinforce the corresponding grid

cell, decreasing its value.

mij =































mij + k+ (1−mij) , if occupied

mij = mij − k− (mij) , if empty

mij = mij, otherwise

(6.13)

Figure 6.6b shows an example of the working memory after using the single sample

measurement to populate it. In the working memory, the obstacle before the robot is

visible, as are two scattering centres from the far wall of the enclosure. The world exists

beyond the field-of-view of the radar, but remains unpopulated and holds the default

occupancy value of 0.5.

However, by integrating multiple determination maps into a single working memory

map, a more complete representation of the world can be achieved by the robot. Integra-

tion of multiple measurements begins by using the most recent determination map (the

nth map) in conjunction with the update rules to update the memory map. Then the

next most recent determination map (the n− 1th map) is used to update the memory

map again. This process repeats until the desired number of measurements have been

used to update the map. This number, N , represents the memory length of the working

memory.

Figure 6.6c shows the result of integrating five measurements in the working memory.

In this working memory, the full length of the back wall of the enclosure is visible, the wall

to the right of the robot which is outside of its field-of-view is visible, and the location of
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the immediate obstacle is clear. By building a more complete and consistent perception

of the world, the robot is able to make more informed decisions about its actions. The

length of the working memory is the number of determination maps that are integrated

into the working memory, and will be seen to be of central importance.

The combination of the occupancy grid and the dual thresholds introduced in Sec-

tion 6.3.2.2 reduces the effect of erroneous detections on the robot’s performance. For

example, if a particular region has been determined to be vacant for multiple measure-

ments, the corresponding occupancy value will be low. A single spurious detection in

the vacant region will not be sufficient to ‘convince’ the robot that there is an obstacle

present. If however, the source of the detection is a real obstacle, it will be present over

multiple measurements and the occupancy map will be positively reinforced, ‘convincing’

the robot that the space is occupied. Similarly, if an obstacle is present but not reflective

enough to cause a detection at long range, the area in the determination map will be

considered unknown and the occupancy map will retain the default state of 0.5. As soon

as the robot is close enough for the obstacle’s reflection to exceed the detection threshold,

the occupancy grid will be positively reinforced and the robot will consider the space oc-

cupied. Of course, ensuring the signal to noise ratio is adequate through the radar design

is as important as ever.

6.5 Reasoning and Action

With a fully-formed and integrated perception of its environment within the working

memory, the robot must decide how to proceed with the task at hand. There are many

different models of how the brain reasons, but for the purposes of this chapter it is sufficient

to observe that reasoning is a cognitive function that satisfies the rostral prefrontal step

in Fuster’s perception-action cycle [171, 172, 173]. The steering scheme presented in this

section is not necessarily suggested to be an accurate representation of any biological

system or an ideal strategy. Rather, the scheme aims to provide a simple and effective
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navigation strategy that enables the robot platform to successfully perform its task.

Ranges to obstacles in arbitrary directions from the robot are determined from the

working memory. To do this, a vector at the required angle from the robot is formed in

the memory, and the first occupied cell which lies along the vector is used to determine

the range. A cell in the occupancy grid is considered occupied if it exceeds a threshold

of 0.65 and vacant if it is below a threshold of 0.2. These values were set as the default

values for the MATLAB occupancy grid class, and were found to be adequate.

The robot’s movement is split into a speed component, S, and a rotation component,

T . For a particular motion, the robot’s wheels move at S + T and S − T for the left and

right wheels respectively. The speed component is used to increase the time to collision

in the forward direction which increases the number of observations the robot can make

before colliding with an obstacle. The speed component requires minimal reasoning to

determine, and is purely dependent on the distance from the robot to an obstacle in the

forward direction, Rf . Equation (6.14) defines how the robot determines its linear speed,

where Ds is the distance at which the robot’s linear speed will drop to 0, and ks is the

coupling constant between range and speed.

S = ks(Rf −Ds) (6.14)

As the rotation component is responsible for both turning away from obstacles and

turning towards the goal position, it requires more complex reasoning than the speed

component, and so a strategy for deciding which type of behaviour to exhibit is important.

Figure 6.7 provides a flowchart that describes the robot’s decision-making process for the

rotation component of its motion.

The robot begins by ‘looking’ in the direction of the goal (which may be outside of the

current swath of the radar, but still present in the working memory) to determine if it can

perceive an obstacle between it and the goal position. If it has line-of-sight to the goal

(but has not reached it yet) and none of its other range measurements are less than the

minimum allowed safe distance, rs, the robot proceeds with its goal-oriented behaviour
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and turns towards the goal position. kθ is a coupling constant between angle to the goal,

θg, and the speed of the robot’s rotation.

If the robot does not have line-of-sight to the goal position, or if it is below the min-

imum safe distance, it performs obstacle avoidance by considering the relative difference

between range measurements in the left and right beam, Rl and Rr respectively. The

robot turns to reduce the difference between the ranges in the two lateral beams, where

kT is the coupling constant between relative range difference and rotational speed.

With the reasoning between goal-finding and obstacle avoidance complete, the robot’s

motion is converted to speeds to transmit to the motor controller, equivalent to the

premotor step in Fuster’s perception-action cycle, and then transmitted to the motor

controller which actions the instruction. To complete the perception-action cycle, the

motor controller can be considered the primary motor step in Fuster’s cycle.

The action step concludes the robot’s perception-action cycle, which it continues to

repeat until it reaches the goal position. Throughout the cycle, the cognitive elements of

Perception, Attention, Memory, and Reasoning are used to manipulate and interrogate

raw sensory information.
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Start

Get
ranges to
obstacles
Rl, Rr

Rl > rs
AND

Rr > rs

Turn towards goal
T = −kθθg

Rl = Rr
Don’t turn

T = 0

Avoid obstacles
T = kT

Rl−Rr

min (Rl,Rr)

yes

no

no

yes

Figure 6.7: Flowchart to show the control rules of the robot for the rotation component
of its movement.
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(a) The enclosure used for the trials with obstacles and robot present.

(b) Obstacle close-up. (c) The initial view of the robot.

Figure 6.8: Images to show the configuration of the robot enclosure including the obstacles
used to obstruct the route of the robot.
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6.6 Simulation

A simulation was written to test and validate the algorithm presented in the previous

sections, and to investigate the effect of working memory on the robot’s performance. The

simulated trials were conducted with changes made to the memory length of the robot.

The memory length refers to the number of sequential determination maps (originating

from single radar pulses) that are integrated by the robot to form the working memory.

The simulation was written to be easily transferred to a laboratory experiment for

direct comparison. The simulated robot had to navigate from some initial position to

a goal position in virtual space avoiding two obstacles placed in its path. The trial was

designed to require both obstacle avoidance and goal-finding behaviours from the robot in

order to successfully complete the trial. Obstacles and walls were simulated with closely

spaced point scatterers as shown in Figure 6.9a. The simulation was carried out in 2D,

and the 3D perspective of the figure is for visualisation only. Multipath reflections and

reflector occlusion effects were not included in the simulation.

A program emulating a 77 GHz MIMO radar (corresponding to the hardware that

was available) was written for use in the simulation and an example output of this is

shown in Figure 6.9b. Figure 6.9c shows the determination map for the simulated data,

and Figure 6.9d shows the occupancy grid for the simulated robot during a trial, which

had a cell size of 6.7 cm. The field-of-view of the radar was restricted to be ±50o from

the boresight direction as the azimuth resolution of the radar becomes poor beyond this

angle.

The power thresholds, reinforcement rates, and coupling constants used for the trial

are given in Table 6.3. These values and the occupancy grid cell size were selected by

iterating over multiple preliminary trials with different values and selecting those that

gave the best observed performance.
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Table 6.3: Experiment and Simulation Parameters.

Parameter Description Value Units
k+ Positive reinforement rate 0.75 -
k− Negative reinforcement rate 0.3 -
Pu Upper threshold at 1 m -69 dB
Pl Lower threshold at 1 m -106 dB
ks Coupling of range and speed 20 ticks/s/m
kθ Coupling of angle to goal and rotation rate 20 ticks/s/radian
kT Coupling of range difference and rotation rate 5 ticks/s

(a) Simulated enclosure using multiple point
scatterers in 3D space.
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(b) Simulated 77GHz MIMO radar data.
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(d) Occupancy grid during a simulated trial.

Figure 6.9: Example plots from a simulated trial.
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6.7 Experiment Design

As with the simulated trials, the goal of the experimental trials was to investigate the effect

of the working memory on the robot’s performance. As with the simulation, experimental

trials were conducted with changes made to the memory length of the robot. The three

conditions tested were: a memory length of 1 corresponding to no memory (since a single

radar pulse is used to form a single range-angle map), a memory length of 15 for a short

memory, and a memory length of 25 for a longer memory, all other steps of the process

remained the same. Ten trials were conducted for each memory condition. Of course the

amount of processing time taken to form the occupancy grid increases proportionally with

memory length, however in all trials the robot navigated in real-time.

The experiment was designed with the same approach as the simulation; an enclosure

measuring 4.88 m by 3.66 m was built and is shown in Figure 6.8a. The internal walls

of the enclosure were covered with rough metal foil to provide diffuse scattering of the

incident signals. The goal of the robot was to navigate from one corner of the enclosure

to the other (left to right in Figure 6.8a). As indicated in Figure 6.8a, the Cartesian

coordinate system is defined with the origin at the corner nearest the photographer and

with the x dimension extending along the longer wall. The robot began the task at

coordinate (0.6,2.85) with a heading of −45o and was required to reach within 10 cm of

the ending location, at coordinates (3.66,1.22).

To prevent the robot from being able to travel in a straight line between the start

and end points, two metallic obstacles were placed within the enclosure mimicking the

point scatterers present in the simulation. The obstacles were pillars that had a height

of 46 cm which intersected the plane of the radar (35 cm above the ground). The pillars

had a diameter of 6.6 cm and the surface was dented to present a radar cross section

(RCS) that varied with viewing angle, making the task more realistic and challenging. A

detailed image of one pillar is given in Figure 6.8b. The pillars were placed as shown in

Figure 6.8a and Figure 6.8c to obstruct the route of the robot to the goal position. The

placement of the pillars was such that the pillar nearest to the robot (the ‘first’ pillar)
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partially occluded the more distant pillar (the ‘second’ pillar) from part of the radar array.

The power thresholds, reinforcement rates, and coupling constants used for the trial

are the same as the simulations and are given in Table 6.3. Pu and Pl are measured relative

to the direct signal intensity from the transmit to the receive antenna elements. These

values were selected by iterating over multiple preliminary trials with different values and

selecting those that gave the best observed performance.

A trial was considered a success if the robot reached the goal position without touching

either pillar or the enclosure walls. Conversely, a failed trial was recorded if the robot

touched either the pillar or the walls. An intermediate state could occur if the robot

reached the maximum allowed number of frames for the trial without reaching the goal,

but this state did not occur.
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(b) Memory Length 15.
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(c) Memory Length 25.

Figure 6.10: Simulated results for 10 trials under each trial condition, where memory
length is the only difference between trials. The pink cross represents the starting point
and the blue cross represents the end point. The small red circles represent the location
of obstacles and the outer orange circles indicate the location of the object plus the radius
of the robot such that a track passing through the outer circle indicates a collision.
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(c) Memory Length 25.

Figure 6.11: Experimental results showing the robot ground track estimates for 10 trials
under each trial condition, where memory length is the only difference between trials.
The lines represent the robot track, with dots indicating the positions at which radar
measurements were made. The pink cross represents the starting point and the blue cross
represents the end point. The small red circles represent the location of obstacles and the
outer orange circles indicate the location of the object plus the radius of the robot such
that a track passing through the outer circle indicates a collision. The ground tracks are
not a perfect representation of the robot’s position, and collisions may appear to have
occurred when they have not.
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6.8 Results and Discussion

This is a new area of research and the trials conducted in this chapter are restricted in

scope. As a result, these results are preliminary and there are many avenues of potential

development. However, the aim of these trials is to generate sufficient evidence to evaluate

the potential benefits of working memory in robotic guidance and to act as a stimulus for

future efforts. A summary of the number of successful and failed trials for both simulation

and experiment is given in Table 6.4, the mean trial durations are given in Table 6.5, and

an aggregated view of the robot ground tracks for each condition is given in Figure 6.10

for the simulation and Figure 6.11 for the experiment.

Under all conditions, both simulated and experimental, the robot took different routes

between trials. This is due to a combination of slight variations in initial conditions,

including the pose at which the robot was placed; differences in the environment such

as target orientation in the experimental trials; and noise effects causing bifurcation of

behaviours often seen in complex systems.

The least successful trial condition was the no memory condition, in which the majority

of trials were failed by the robot in both simulation and experiment. In the simulation,

the first obstacle was successfully detected and avoided, but the robot collided with the

second obstacle. In these failed trials, the robot began to take avoidance action around

the second obstacle, however the robot turning away from the obstacle led to it leaving the

field of view of the radar. With no memory of the obstacle, the robot turned back towards

the obstacle, but was too close to detect the target again (as it fell below the minimum

detection range of 0.5 m). As a result, the robot collided with the second obstacle. During

Table 6.4: Number of successful and failed trials for each condition.

Simulation Experiment
Memory Length Successes Failures Successes Failures

1 (No Memory) 4 6 4 6
15 (Short Memory) 10 0 9 1
25 (Long Memory) 10 0 7 3
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Table 6.5: Average number of measurements for each trial condition.

Memory Length Simulation Experiment
1 (No Memory) 59 59
15 (Short Memory) 70 66
25 (Long Memory) 80 65

the no memory experimental trials a similar behaviour was observed that led the robot

to collide with the first obstacle. Another cause of failure in the experimental trials was

a lack of consistent detection of the obstacles, which in several trials led to the obstacle

being too close to the radar to be detected and subsequent collision with the robot. The

lack of consistent detection contributed to collision with the first obstacle, rather than

collisions with the second obstacle as seen in simulation.

In the short memory condition the robot exhibited more successful behaviour and was

able to reach the goal without collision in all of the simulated trials, and in all but one

of the experimental trials. In the simulated trials the robot followed a very similar initial

route to the right of the first obstacle. On the approach to the second obstacle, the robot’s

route bifurcated and the robot succeeded in reaching the goal position in all cases without

collision. In all but one of the experimental trials the robot detected and avoided the first

obstacle. For the trials in which the robot proceeded to the left of the initial obstacle, it

was then able to proceed almost directly to the goal without need for further avoidance

behaviour. In trials where the robot passed to the right of the initial obstacle, the second

obstacle was also avoided successfully. The ground tracks in Figure 6.11 indicate that

two collisions occurred, whereas Table 6.4 states that only one occurred. This apparent

discrepancy is due to the inaccuracy of the recorded position of the robot. The yellow

track in Figure 6.11 did not result in a physical collision.

In the long memory condition, the robot succeeded in all of the simulated trials and

in the majority of the experimental trials. In the simulation trials, very similar behaviour

was observed as in the short memory condition, but the robot exhibited more sensitivity

to measurement errors in the experimental trials. In one particular trial, denoted by a

yellow track in Figure 6.11c, the robot followed an erratic path and collided with the wall
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of the experiment enclosure. This erratic behaviour was a result of erroneous detections

persisting in the memory for a long time, causing unnecessary avoidance manoeuvres.

The duration of the simulated trials was also notably affected by the memory length.

As the memory length was increased the duration of the simulated trials increased signif-

icantly. This increase is a result of the more circuitous route taken by the robot, which is

due to the persistence of objects in the working memory: a feature that significantly as-

sists with obstacle avoidance but increases the duration of the trial. Ultimately however,

this is due to a combination of erroneous detections, lack of consistent detections, and

position error accumulation. Detection performance could be improved by carrying out a

thorough statistical analysis of the detection thresholds and the relationship between this

and the accumulation of detections in memory, and by using that analysis to determine

the detection scheme. Positional errors could be decreased by using an external posi-

tioning system or a standard approach to ego-motion estimation. If these factors were

addressed, the memory length could probably be increased, perhaps arbitrarily.

Memory in the cognitive functioning of the robot is essential for the robot to maintain

a perception of obstacles outside of its field-of-view so that it can take appropriate obstacle

avoidance actions. The implementation of memory described in this chapter is heavily

influenced by the parameters chosen for the other cognitive processes of the robot. For

example, if the radar measured more frequently, then a particular memory length would

correspond to a shorter distance travelled by the robot than in the current implementation,

and would have less accumulation of positional errors as a result.

However, it is still possible to come to some general conclusions about using a short-

term memory: if the memory length is too long the robot is less able to recover from

erroneous detections resulting from clutter, sidelobes, or multipath effects as they persist

in the robot’s working memory for a greater number of steps and can lead to collisions.

Further, as the memory length increases, the cumulative positioning error within the

integrated measurements could become significant which would further inhibit the robot’s

success.
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6.9 Summary

This chapter has presented an example cognitive architecture for radar control of an

autonomous robotic platform. The cognitive processing scheme contains several important

elements of cognition including Perception, Memory, Attention, and Reasoning and relates

these to functional elements of Fuster’s perception action cycle.

Through simulation and experiment, this chapter has shown the structural benefits of

including a working memory in a cognitive radar system. In general, memory allows a cog-

nitive radar system to gradually develop its understanding of its environment, decreasing

its overall sensitivity to erroneous measurements and enabling it to maintain perception

outside of its immediate field-of-view. The stability of perception is an advantage for any

cognitive system that is making rapid control decisions.

For the autonomous navigation task, the performance improvement with memory

length was related to the ability of the robot to maintain a perception of an obstacle

when it falls outside the radar’s field-of-view. The persistence of obstacles in memory al-

lowed for better navigation decisions to be made, which resulted in an increased number

of successful trials. Some of the difficulties with using a working memory for autonomous

navigation have also been explored, particularly the persistence of erroneous detections

and accumulation of errors. For the robot the advantages of a working memory out-

weighed the disadvantages, but in some cases the accumulation of errors caused the robot

to be unable to navigate effectively, leading to collisions.

6.10 Conclusion

This chapter has explored the possibilities of cognitive processing to leverage the degrees

of freedom made available to a mobile radar platform. By taking inspiration from such a

fundamental part of human experience, this chapter has shown how cognitive processing,

particularly with regards to memory, can enhance the radar’s quality of perception and

significantly improve performance.
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Chapter 7

Conclusion

All we have to believe with is our senses, the tools we use

to perceive the world: our sight, our touch, our memory. If

they lie to us, then nothing can be trusted. And even if we

do not believe, then still we cannot travel in any other way

than the road our senses show us; and we must walk that

road to the end.

— Neil Gaiman

American Gods, 2001
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7.1 Summary

This thesis has explored the processes of localization and echolocation in the natural

world, and has made several central observations. Echolocators use wideband echolocation

calls which have an extra degree of freedom that can encode information compared with

narrowband calls. The mass of the head and the shape of the pinna attenuate different

frequency components of a wideband sound signal by different amounts depending on

the angle of incidence, and this can be described by the head-related transfer function

(HRTF). Through the filtering process, the HRTF introduces binaural cues which can

be used by the brain for sound source localization. The cognitive processes of the brain

enable understanding of these cues, and the higher-level processes seen in mammalian

echolocators enable complex behaviours and interactions with the environment.

By providing detailed analysis of human echolocator tongue clicks and their properties,

this thesis has contributed to the understanding of human echolocation. This work found

that the click signals have very wide beamwidths in both azimuth and elevation directions,

almost uniformly illuminating the area before the echolocators. For the first time, the

bandwidth of human echolocator tongue clicks was reported based on the analysis of a

large database of tongue clicks and has contributed a new understanding of the diverse

frequency components used by human echolocators. Using the descriptions of the different

key components of human echolocator tongue clicks, an open access tool was developed

and published to enable widespread synthesis of human echolocator tongue clicks.

Building on the central observations of echolocators in nature and research into human

echolocator tongue click properties, this thesis has proposed and developed two distinct

radar techniques.

The first technique is inspired by the wideband signals seen in nature’s echolocators,

binaural cues for localization, and the HRTF. This radar approach uses the information

encoded in the spectral content of a signal to localize a target. The wide band of frequen-

cies used by the radar provides an extra degree of freedom that the system can exploit

for target localization. Power- and phase-based versions of this technique were developed,
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with both approaches showing high angular accuracy over a wide angular range of op-

eration. The phase-based approach outperformed the power-based approach in terms of

accuracy, but is also expected to be less stable in noisy operating conditions.

The second radar technique presented in this thesis explored the possibilities of us-

ing cognitive processing to exploit the degrees of freedom made available to a mobile

radar platform. By taking inspiration from the cognitive processes seen in mammalian

echolocators, this work showed that a cognitive processing architecture can be used by a

radar system. This research also investigated the effects of memory on a cognitive signal

processing architecture and demonstrated that careful use of memory can significantly

improve radar performance.

7.2 Core Contributions

Novel parametrization of human echolocator tongue clicks was carried out and resulted

in the construction and release of open access synthetic human echolocator tongue clicks.

The parametrization was carried out based on original analysis of a large database of hu-

man echolocator tongue clicks which was conducted in unprecedented detail. This analysis

enhances understanding of the key echolocator click parameters and their variability.

A theoretical basis for a family of closely-related radar techniques has been developed,

and these use the frequency diversity of the transmit waveform and spatial encoding by

the receiving antennas to localize a target in angle. These techniques were verified and

assessed through simulation and experiment, the results of which confirm the fundamental

possibility that these techniques operate with high angular accuracy over a wide angular

range using single measurements.

A novel autonomous cognitive radar system architecture for navigation was developed

and tested using simulated and experimental results to assess its performance. The radar

processing was designed to simulate and implement the functional blocks of cognition,

which resulted in complex and variable emergent behaviours. To the author’s best knowl-
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edge this work is the first investigation into the effects of using memory in cognitive radar

systems, which finds that some memory is useful for a cognitive radar, but that too much

memory can hinder such a system.

7.3 Future Work

The exploration of biologically-inspired sensing techniques in this thesis has covered a

wide range of approaches and has touched upon many interesting strands of research

which could be developed further. This section sets out the most promising avenues for

future research as the author sees them.

Future research into human echolocator tongue clicks could analyze the relationship

between the centre frequencies of the components within the click spectrum. This research

has the potential to develop synthetic tongue clicks that are both realistic and variable,

enabling a wider variety of applications than the current model.

Future work on the frequency-diverse radar techniques could focus on integrating the

power- and the phase-based approaches, which may improve the performance and robust-

ness of angular localization. Integrating the two approaches should allow the correlation

process to discriminate between closely spaced angles more reliably. The issues introduced

by multiple closely-spaced targets merit more research as solving these would allow the

radar to operate in more complex environments such as those with significant multipath

and extended scatterers. Field trials would enable the d << rtx condition to be more

convincingly satisfied and could provide useful insight into how this technique could be

implemented in an operational environment, particularly with regard to the signal-to-noise

ratio (SNR) thresholding approach which shows promising initial results.

Optimisation of the antenna patterns could provide a way to reduce the bandwidth

of the technique to a practical bandwidth, and trials with multiple narrowband radars

could allow the technique to become more practical in the wider world. Because the

localization technique is independent of transmit signal (other than for meeting SNR
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requirements), it is possible that this approach could be used passively, which would

eliminate the requirement of generating a large bandwidth signal and provides another

avenue of research.

Future work developed from the research into cognitive robotics could explore in more

detail the effects of memory length on specific types of errors and how these errors ac-

cumulate and contribute to the overall performance of an autonomous cognitive radar

platform. Specifically, a detailed statistical analysis of the detection process would enable

better understanding of how detection parameter choice affects the robot’s overall perfor-

mance. This approach could be extended to include detailed analysis of the effects other

parameter choices, including the occupancy grid resolution, motion coupling constants,

and memory duration.

It would be especially interesting to explore the effects of including a long-term memory

in the signal processing, which could be achieved by consolidating the observations made

over the duration of a trial into a more complete map of the environment for use in a

subsequent trial. This processing could be performed ‘offline’ and more computationally

intensive techniques could be used to reduce the effects of errors. The use of a memory

that persisted between trials could enable learning behaviour to be exhibited by the robot,

and could lead to performance improvements as the robot increased its knowledge of the

trial environment. Further, if the robot was given control of its own parameters, it may

be possible to create a system that optimizes its parameters over multiple trials based on

its interactions with the environment.

The treatment of attention in cognitive radar systems merits more research. While

it is sometimes implemented as beamforming, attentional processing could also include

different post-processing schemes such as the thresholding scheme presented in this thesis.

The choice of processing scheme merits more research as this choice will affect the nature

of a cognitive radar system and will impact the radar’s performance.
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7.4 Conclusion

This thesis set out to find new approaches to radar systems by exploring the paradigm

of biologically-inspired design, and aimed to find effective ways of using the redundancy

found in modern radar systems. By identifying frequency-diversity and platform motion

as candidate degrees-of-freedom for utilization, this thesis has proposed and developed

two effective biologically-inspired radar techniques that extract and process information

from radar systems in new ways. The paradigm of biologically-inspired design is perfectly

suited to research into radar, and the author hopes that researchers will continue to take

inspiration from the natural world for many years to come.
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Appendix A

Human Echolocator Click Database

Counts
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Table A.1: The number of sanitized click samples (meaning clicks after filtering, clipping
rejection, and manual rejection) for each expert echolocator under each trial condition
for the azimuth measurements. Each sample consists of two recordings, one measured
at a reference microphone which remained static throughout the different trials, and one
measured by the signal microphone at the indicated position.

Echolocator EE1 EE1 EE3 EE3 EE2 EE2
Distance (cm) 40 100 40 100 40 100

Azimuth (deg) Counts
-90 43 47 30 28 45 48
-80 44 50 28 28 45 45
-70 42 42 30 20 46 45
-60 40 45 24 27 46 49
-50 40 41 26 28 46 54
-40 43 44 28 26 45 59
-30 42 44 27 28 48 53
-20 40 45 31 28 108 50
-10 84 45 20 28 92 47
0 84 50 52 23 110 56
10 43 42 29 28 45 49
20 43 42 30 26 62 50
30 42 41 30 26 59 50
40 42 41 29 28 57 48
50 46 42 30 28 57 51
60 44 45 30 30 49 52
70 44 43 29 26 53 46
80 40 40 30 28 45 52
90 44 40 31 27 44 49
100 43 42 29 28 45 51
110 45 42 30 26 49 57
120 40 44 28 31 43 48
130 43 42 28 28 58 51
140 40 34 25 27 56 58
150 40 41 27 28 50 53
160 41 42 28 26 44 58
170 55 40 27 25 74 52
180 43 43 30 26 56 60

Totals 1280 1199 816 756 1577 1441
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Table A.2: The number of sanitized click samples (meaning clicks after filtering, clipping
rejection, and manual rejection) for each expert echolocator under each trial condition
for the elevation measurements. Each sample consists of two recordings, one measured
at a reference microphone which remained static throughout the different trials, and one
measured by the signal microphone at the indicated position.

Echolocator EE1 EE3 EE2
Distance (cm) 40 40 40

Elevation (deg) Counts
-140 29 20 36
-150 26 20 40
-160 29 20 39
-170 34 22 50
-180 31 20 33
170 33 20 35
160 35 20 41
150 33 20 41
140 36 20 43
130 42 19 40
120 36 19 43
110 29 20 35
100 30 20 37
90 39 20 38
80 35 20 35
70 37 20 36
60 38 20 35
50 36 20 35
40 31 20 40
30 32 20 47
20 32 20 46
10 31 20 35
0 32 40 69
-10 30 20 35
-20 30 20 33
-30 30 20 35
-40 29 20 33

Totals 885 560 1065
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Robot Control Hardware
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Figure B.1: Diagram to show the hardware components and connections of the robot.

This appendix details the hardware interfaces for the robot used in Chapter 6 and

relates the flow of information to the MATLAB scripts which control the robot’s func-

tioning. An schematic overview of the connections for the robot is shown in Figure B.1.

B.1 Laptop Interfaces

B.1.1 Camera

The camera used for capturing the visual ground truth of the robot was a RICOH THETA

S, which has a 360o viewing angle [174] making it ideal for viewing the hemisphere before

the robot. The following MATLAB code snippit indicates how the connection to the

camera is made over a USB connection using the MATLAB Image Acquisition Toolbox.

vid = videoinput(’winvideo’, 4, ’RGB24_1280x640’);

src = getselectedsource(vid);

vidSize =[320 0 640 640];

vid.ROIPosition = vidSize;
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vid.FramesPerTrigger = 1;

hImage = image(zeros(vidSize(4),vidSize(3), vid.NumberOfBands);

preview(vid, hImage);

B.1.2 Radar

The INRAS Radarbook [165] communicates over ethernet, and is visible to MATLAB

on the laptop as a TCP/IP object. The ethernet connection is handled by a MATLAB

hardware class provided by INRAS.

B.1.3 Robot

The laptop communicates with the Propeller Activity Board WX [175] over a USB serial

connection that is handled by a custom MATLAB class written for operating the robot.

The serial connection has a Baud rate of 115200 and operates with 8 data bits.

B.2 Robot

B.2.1 Propeller

The Arlo robot package includes the Propeller Activity Board WX [175], which is a board

based around the Propeller P8X32A microcontroller [176]. The board is designed to be

the control unit of the robot, but as this control was moved to the laptop, the Propeller

board provided a convenient way to communicate with the motor drivers and ultrasonic

sensors.

The Propeller board is programmed in Propeller C and implements a serial forwarding

program which connects the laptop serial connection to the motor driver serial connection.

The connection can be escaped if data from the ultrasonic sensors, which are connected

directly to the propeller, are requested.
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B.2.2 Ultrasonic Sensors

Though not used in the material in this thesis, the robot is equipped with four ultrasonic

PING))) sensors from Parallax [177]. The ultrasonic sensors are triggered by a short 5 V

impulse from the Propeller board, and they return a 5 V signal with a width corresponding

to the time delay of the sonar pulse, and hence range to an obstacle. The pulse width is

parsed and returned as a range in centimeters.

B.2.3 Motor Driver Board

The motor driver board is the DHB-10 motor controller [178], which handles closed-loop

control of the motors. The controller is connected to the Propeller board via a serial

connection with the same properties as the laptop-Propeller serial connection.

The controller can drive each wheel independently, and tracks how far each wheel has

rotated through use of the motor encoders which report the number of ticks travelled by

each motor. The motor controller functionality is implemented in the MATLAB object

class used on the laptop, so full use of the controllers capabilities is possible.
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