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Abstract: The key purpose of this paper is to present an alternative viewpoint for combining expert
opinions based on finite mixture models. Moreover, we consider that the components of the mixture
are not necessarily assumed to be from the same parametric family. This approach can enable the
agent to make informed decisions about the uncertain quantity of interest in a flexible manner that
accounts for multiple sources of heterogeneity involved in the opinions expressed by the experts
in terms of the parametric family, the parameters of each component density, and also the mixing
weights. Finally, the proposed models are employed for numerically computing quantile-based risk
measures in a collective decision-making context.

Keywords: opinion pooling; finite mixture models; expectation maximization algorithm; quantile-
based risk measures

1. Introduction

“Opinion is the medium between knowledge and ignorance” is an expression that is
ascribed to Plato. Indeed, due to the growing uncertainty in an abundance of contemporary
societal settings, we often come across circumstances when an agent, who acts on behalf of
another party, is called to make a decision by combining multiple and sometimes diverging
sources of information that can be described as opinions. Moreover, the latter may take
any form; from experts to forecasting methods or models (see Clemen and Winkler (2007)),
and from now on, we may use these terms interchangeably when referring to an opin-
ion. Opinions communicated to an agent can differ to varying degrees, and the level of
confidence that an agent allocates to any given viewpoint is subjective.

Some examples where an idiosyncratic combination of opinions is required for a deci-
sion to be made at an individual, corporate, and policy level follow. In the private sphere,
consider an individual who plans to sell their house, and in doing so consults property
experts to determine an appropriate selling price. While the latter may be influenced by
some "standard" factors, such as the number of bedrooms in a given postcode, various
experts may additionally examine different price determinants such as the proximity of the
property to a good school or a park. That said, the seller may want to incorporate all this
diverse information in an effort to achieve a better financial outcome for themselves, but the
weight that each reported opinion has in this process lies mostly on the seller’s perception.
In a financial corporate environment, consider the case where an investment manager
asks a number of quantitative analysts to evaluate the return on a stock. Disagreement in
opinions here could arise from the fact that some analysts may be more optimistic than
others about the future. As mentioned in Peiro (1999), aggregate stock market returns are
asymmetrically distributed; the largest movements in the market usually refer to decreases
rather than increases in returns. As a result, one can say that an analyst foreseeing a regime
shift, let us say, close to a firm’s earnings announcement period (see McNichols (1988))
would possibly choose a more heavy-tailed distribution to model the returns compared to
others who did not have such a negative expectation. Once again, an investment manager
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decides on the level of trust to show to any given opinion, based on their own subjective cri-
teria. Finally, at a public policy level and in light of the COVID-19 pandemic, policy makers
consult experts from a variety of disciplines, such as anthropology, mathematics, statistics,
epidemiology, and engineering, to name a few (see Government Office for Science (2020))
to enable them to build the strategy for its effective management. Reported opinions may
not always align, as each specialist sees the problem from a different angle. Government
officials though, regardless of divergent opinions, need to combine and evaluate the weight
of each view for policy decisions. The subjective character of how much emphasis is given
to each opinion by a given policy maker is apparent by the recorded observations of so
many different responses related to handling the pandemic across different countries. Simi-
larly to the aforementioned quandaries, decision dilemmas have long been investigated in
the particularly rich literature concerning combinations of opinions, which, as Clemen and
Winkler (1999) indicate, embraces a number of behavioural and quantitative approaches.
See Section 2 for a detailed literature review.

Let us now discuss our motivation behind this study. As is well known, in quanti-
tative risk management, the process of defining, measuring and managing operational
risk is crucial since it formalizes the financial institutions’ approaches to comply with the
qualifying qualitative criteria of the Basel Capital Accord and Solvency Directive. This
approach relies on the knowledge of experienced enterprise agents and risk management
experts who are asked to provide opinions regarding plausible high-severity events. For
instance, these opinions can be expressed as parameters of an assumed loss distribution.
However, the company’s risk profile, which could accord to a consensus of experts’ individ-
ual judgements regarding the severity distribution, might often not be robustly estimated.
The main reason for this is that when experts are presented with internal data and need to
express probabilistic opinions about the same uncertain quantity of interest, there may be
multiple sources of heterogeneity in their responses concerning the choice of models and
their parameters and, in addition to these, the allocation of weights from the agent that are
not considered as being embedded in the data-generative process of the uncertain quantity
of interest based on which the agent needs to make a decision. In particular, each expert
reports their opinion based on what their focus is, and if we assume that they report their
opinions honestly, each believes that their opinion reflects best the true data-generative
process. Therefore, since a major challenge in operational risk management is to evaluate
the exposure of severe losses based on a weighted combination of a variety of opinions in
the first place, it appears that it would make more sense to employ probabilistic models
that reflect group structures.

In this paper, we present an alternative perspective for modelling of operational risk
in an enterprise context by combining expert opinions based on finite mixture models.
Finite mixtures models can provide a formal framework for clustering and classification
that can be effectively used within the opinions combination research setting. In particular,
this versatile and easily extensible class of models can accommodate different sources
of unobserved heterogeneity in the data-generative process of the uncertain quantity of
interest by allowing for the mixture components to represent groups within which there is
a concurrence of judgements. At this point, it is worth noting that finite mixtures models
have not been applied in the area of opinion combinations, with the exception of Rufo
et al. (2010), who employed Bayesian hierarchical models based on mixtures of conjugate
prior distributions for merging expert opinions. Furthermore, it should be noted that
Shevchenko and Wüthrich (2006) employed the Bayesian inference method for quantifying
frequency and severity distributions in the context of operational risk. Their approach
was based on specifying the prior distributions for the parameters of the frequency and
severity distributions based on expert opinions or external data. Furthermore, Lambrigger
et al. (2009) extended the framework of the previous paper by developing a Bayesian
inference model that permits combining internal data, external data, and expert opinions
simultaneously. The setup they proposed enlarged the Bayesian inference models of the
exponential dispersion family (EDF) and their corresponding conjugate priors; see, for
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instance, Bühlmann and Gisler (2006), Chapter 2. However, to the best of our knowledge,
the use of finite mixture models within the traditional frequentist approach for combining
diverging opinions remains a largely uncharted research territory. Our main contribution
is that we consider that the component distributions can stem from different parametric
families. The advantage of this formulation is that it allows the agent to obtain the ag-
gregated opinion of a group of experts, based on a linear opinion pool, and account for
the various sources of unobserved heterogeneity in the decision-making process in the
following ways: (i) by assuming that the data are drawn from a finite mixture distribution
with components representing different opinions about both the distribution family and
its parameters regarding the uncertain quantity of interest, and (ii) via the mixing weights
that reflect the quality of each opinion. Furthermore, when the proposed family of models
is applied to internal data, it can enable the agent to utilize all the available information for
accurately assessing the effectiveness of (i) the combination of the expert judgements and
(ii) their own judgement about the weights that they intended to allocate to each expert—a
concept not so dissimilar to the the main idea behind the long-established weights alloca-
tion approach of Cooke (1991) and the scoring rules in general. Finally, the proposed family
of models is used for numerically computing quantile-based risk measures, which are of
interest in a variety of different types of insurance problems, such as setting premiums,
insurance deductibles, and reinsurance credance levels and determining reserves or capital
and ruin probabilities.

The rest of this paper proceeds as follows. Section 2 provides a brief literature review
on some traditional approaches for combining diverging opinions. Section 3 explores the
topic of combining diverging opinions using finite mixture models. Section 4 describes
the calculation of quantile-based risk measures based on the finite mixture modelling
methodology. In our numerical application, we focus on quantile-based risk measures.
Finally, concluding remarks can be found in Section 5.

2. Traditional Approaches for Combining Expert Judgements

In this section, we briefly present some famous approaches in aggregating expert
judgements. The latter topic can be seen from different perspectives, and in recent decades,
several quantitative and behavioural methods have been used for its study. That said,
no method can be considered superior to another because for each opinion combination
problem, a whole process should be established to identify the most appropriate com-
bination strategy; see Clemen and Winkler (1999). In doing so, factors such as experts’
availability, degree of divergence in opinions, past experience regarding the experts, and
the random quantity of interest among others should all be considered. As one would
expect, such diversity in approaches to combining judgements has resulted in a rich and
interdisciplinary literature that would be impossible to cover in its entirety in this article;
however, we provide a short review of some important works.

2.1. Behavioural Approaches

Behavioural approaches to opinion aggregation typically involve sources of informa-
tion, commonly referred to as experts, interacting with each other in order to reach some
conclusions. This interaction between experts can happen in a direct or indirect manner. For
instance, in an approach called feedback and re-assessment (see Winkler (1968)) no direct
communication is allowed among the experts. The agent first collects the views of each indi-
vidual expert, and then each of them is presented with the other expert opinions and given
the opportunity to revise their own view and re-submit it to the agent. Multiple rounds of
this process may be required to reach a consensus, or at least to decrease the number of
diverging views, thus simplifying decision making. Subsequently, these views may need to
be quantitatively combined. One of the earliest methods associated with the feedback and
re-assessment approach is known as the Delphi Method; see Linstone and Turoff (1975),
Dalkey (1969), and Parenté and Anderson-Parenté (1987).
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Additionally, another behavioural aggregation approach, which is known as group
re-assessment (Winkler (1968)), allows for direct discussion between experts, after they
have individually shared their view, in search of a group opinion consensus. Examples
of methods falling into this category are the Nominal Group technique and Kaplan’s
approach; see Delbecq et al. (1975) and Kaplan (1992), respectively. An advantage of such
group reassessment approaches is that experts, when given the opportunity to discuss, may
find that there are other factors to consider that would have been otherwise overlooked.
However, the fact that the experts need to make a decision as a group comes with certain
complications, which we discuss briefly below.

In particular, if we assume that the initial individual opinions are expressed in terms
of probability distributions, the moment that discussion between experts starts, each
expert also brings considerations about their individual utility function. Furthermore,
psychological factors have a role to play in reaching common agreement; some experts may
have more advanced leadership skills than others, which may result in the latter adjusting
their views merely to reach consensus without necessarily agreeing on the outcome. Last
but not least, a phenomenon called polarisation may happen when the group takes riskier
decisions as a whole compared to if an individual were to make a decision alone; see
Plous (1993) and Wallach et al. (1962). However, this is certainly not to say that the choice
to use group decisions is flawed; direct group interactions can be functional in certain
circumstances; see Hogarth (1977). Having discussed some behavioural methods, we
continue with the presentation of a few quantitative approaches for combining diverging
expert opinions.

2.2. Quantitative Approaches

Addressing the problem of combining opinions quantitatively often involves analytical
models and procedures operating on individual probability distributions to yield a single
combined distribution; see Winkler (1968), French (1983), Genest (1992), Cooke (1991),
Clemen (1989), and Clemen and Winkler (1999) for an overview. Focusing on the field of
quantitative combination of probability distributions, we see that the linear, logarithmic,
and Bayesian pooling methods are typical approaches—a summary of the general ideas
behind these methods follows.

The linear pool (see Stone (1961)) and logarithmic pool (see Genest et al. (1984) and
Clemen and Winkler (1999)) involve, respectively, a weighted linear or multiplicative com-
bination of the expert probabilities. Out of the two, the linear pool is often perceived as a
more attractive combination method because of its intuitiveness and the fact that it satisfies
a number of convenient properties; see Cooke (1991) and Clemen and Winkler (1999). In
the Bayesian framework, the agent firstly determines a prior distribution over the values
of the examined random variable, and then information provided by other sources, say
experts, is merely seen as observed data. These “data” are then inserted into a likelihood
function along with the prior distribution of the agent to derive a posterior distribution.
Although interesting, the implementation of this approach can be challenging in practice;
see Bolger and Houlding (2016).

Furthermore, an important note is the meaning of the word “probabilities” in the quan-
titative opinion combination literature. Whilst traditionally, “probabilities” means mass
or density functions for the discrete case and continuous case, respectively Clemen (1989),
in recent years, there has been some evidence that combining quantiles, first suggested
by Vincent (1912), might be at least as good as combining probability densities (see Lich-
tendahl et al. (2013), Busetti (2017), Bansal and Palley (2017), Hora et al. (2013), Bogner
et al. (2017), and Jose et al. (2013)), despite some criticism from Colson and Cooke (2017).
Quantiles combination was also found to be preferable when individual forecasts are
biased; see Bamber et al. (2016) and Lichtendahl et al. (2013). Next, we discuss the topic of
weights allocation, which, as we will see, is once again a subjective matter depending on
the opinions combination problem in question.



Risks 2021, 9, 115 5 of 25

2.3. Weights Determination

When combining competing views, the determination of weights is difficult because
there are no methods for weights allocation obtained straight from first principles; see
Clemen (2008). Nevertheless, the interpretation of weights is flexible, and as Genest and
McConway (1990) mention, based on the meaning chosen, one can direct oneself in selecting
an appropriate method for their computation. Generally speaking, the weights should
somehow reflect the quality of expert opinions; see Bolger and Houlding (2016). When
weights are interpreted in this way, the evaluation of the quality of probabilistic forecasts
entails the computation of performance measures that account for what has happened in
reality; see Winkler et al. (1996) and Gneiting and Raftery (2007).

Such measures, known as scoring rules, play an ex post and ex ante role in the
evaluation of probabilities reported; see Winkler et al. (1996): an ex post role because
the decision maker needs to first observe what happens in reality before they can truly
assess the quality of probabilities experts have reported, and an ex ante role because the
experts anticipate the ex post evaluation from the agent and thus have an incentive to
be honest when they are expressing their opinions. There are many scoring rules, even
though the most preferred are those called strictly proper, meaning that an expert can only
maximise their score for an expressed opinion by reporting their forecast honestly; see
Winkler et al. (1996) and Gneiting and Raftery (2007). Overall, the choice of scoring rule
would in turn lead to different weights; see Genest and McConway (1990).

That said, probably one of the most famous approaches for weights determination,
often referred to as the "classical" method, is the one presented in Cooke (1991). There,
before making a decision, the agent requests experts to provide their views on quantities
whose values are known to the agent but totally unknown to the experts. See Cooke and
Goossens (2008) and Eggstaff et al. (2014b) for merits of the "classical" approach, Eggstaff
et al. (2014a) for a novel way to make it account for sequential weight updating, and Flan-
doli et al. (2011) for shortcomings and some alternatives to the "classical" approach. Given
the complication involved in weights calculation, the simple averaging scheme is popular
in practice because of its perceived robustness and simplicity (see O’Hagan et al. (2006),
Lichtendahl et al. (2013)), whilst there is no clear indication that it performs worse than
Cooke’s approach; see Clemen (2008).

All in all, it should be mentioned that there is limited literature on determining the
opinion weights, but for the interested reader, the recent work of Koksalmis and Kabak
(2019) provides a comprehensive literature review across various disciplines, suggest-
ing a classification system with the following categories: similarity-based approaches,
index-based approaches, clustering-based approaches, integrated approaches, and other
approaches. Moving forward to Section 3, we recommend an alternative approach in the
area of quantitative combination of probabilistic opinions based on finite mixture models.
Such an approach has the benefit of accounting for various forms of heterogeneity among
expert views, and straightforward weights computation being able to deal with even a
large number of experts.

3. A Finite Mixture Modelling Viewpoint for Opinions Combination

In this section, we present a different approach and incorporate finite mixture models
into the diverse set of methodologies for aggregating different opinions. We start by
explaining the motivation behind our proposal, followed by a formal presentation of finite
mixture models. We then explain how the finite mixture model framework is interpreted
for the purposes of combining judgements.

3.1. Motivation Behind the Suggested Approach

Thinking about opinions in the context of distributions or models, in the traditional
framework of combining judgements, described in Section 2, each expert gives the agent
a different model, and then these individual models are combined into a single model
with weights being decided by the agent—most often by taking the weighted average of
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the individual probability density functions or quantiles. Our proposed finite mixture
modelling perspective provides a platform for opinion pooling in two stages. Firstly, we
cluster expert opinions of the same kind, and secondly, we perform a convex combination
of different clusters using mixing weights that represent the quality of each opinion as this
is perceived by the agent. Using historical data, the maximum likelihood (ML) estima-
tion of the parameters and weights can reveal whether both parties are rigorous in their
judgements.

3.2. Finite Mixture Models

We start by giving some background on finite mixture models and their use across
multiple disciplines and then provide their mathematical definition.

3.2.1. Overview

Finite mixtures is a flexible and easily extensible class of models that account for
unobserved heterogeneity; see, for instance, Newcomb (1886), Pearson (1894), Everitt and
Hand (1981), Titterington et al. (1985) and McLachlan and Basford (1988) and McLachlan
et al. (2019). In particular, starting from a sample of observations, which are assumed to
come from a number of underlying classes with unknown proportions, the density of the
observations in each of these classes is determined for the purpose of decomposing the
sample into its mixture components; see Wedel and DeSarbo (1994). It should be noted that
the popularity of mixture models has spread substantially in works of applied and method-
ological interest across various disciplines such as insurance, economics, finance, biology,
genetics, medicine, and most recently in the sphere of artificial intelligence. A few notable
works across the aforementioned disciplines include these of Titterington (1990), Samadani
(1995), Yung (1997), Allison et al. (2002), Karlis and Xekalaki (2005), McLachlan et al. (2005),
Grün and Leisch (2008), Efron (2008), Schlattmann (2009), Bouguila (2010), Mengersen et al.
(2011), Elguebaly and Bouguila (2014), Tzougas et al. (2018), Henry et al. (2014), Miljkovic
and Grün (2016), Gambacciani and Paolella (2017), Oboh and Bouguila (2017), Tzougas
et al. (2014), Miljkovic and Grün (2016), Punzo et al. (2018), Blostein and Miljkovic (2019),
Chai Fung et al. (2019), Caravagna et al. (2020), and Bermúdez et al. (2020), though this
list is certainly not exhaustive. A short summary of the main characteristics of the class of
finite mixture models with component distributions stemming from different parametric
families, which we consider in this study follows. The interested reader can also refer to
McLachlan and Peel (2000b) for a more detailed treatment of finite mixture models and
to McLachlan et al. (2019) for an up-to-date account of the theory and methodological
developments underlying their applications.

3.2.2. Definition

Consider that X , {Xi}ν
i=1 is a sample of independent and identically distributed

(i.i.d.) random variables from an n-component finite mixture distribution with density
function

f (x|Ξ) =
n

∑
z=1

πz fz(x|θz), (1)

where Ξ = (θ, π), with θ = (θ1, θ2, ..., θn), where θz denotes the parameters of the zth
density function fz(·), and where πT = (π1, π2..., πn) is the vector of component weights,
with πz the prior (or mixing) probability of the component z, where 0 < πz ≤ 1 ∀z ∈
{1, 2, ..., n} and

n
∑

z=1
πz = 1 holds. Furthermore, assume that the density functions fz

are absolutely continuous with respect to the Lebesgue measure and are elements from
univariate parametric families with a d-dimensional parameter vector θz, F = { fz(·|θz),
θz ∈ Θ ⊂ Rd}.

At this point, it is worth noting that, under the proposed modelling framework,
the component distributions fz(·) in Equation (1) do not necessarily arise from the same
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parametric family. Therefore, our general approach allows for the design of more flexible
models to include a large number of alternative convex combinations of heavy-tailed and
light-tailed distributions. Moreover, with this formulation, this class of models can take into
account heterogeneity in the data arising from three different sources, differing parameters,
differing parametric families, and mixing weights.

3.2.3. Estimation via the Expectation Maximisation Algorithm

Consider the finite mixture model with the associated log-likelihood

l(Ξ) =
ν

∑
i=1

log( f (xi|Ξ)),

where f (xi|Ξ) is given by Equation (1). The direct maximization of the above function with
respect to the vector of parameters Ξ = (θ, π), is complicated. Fortunately, such a task can
be easily achieved via the Expectation Maximization (EM) algorithm, which is the standard
iterative method that is used for finding ML estimates for models with latent variables; see
Dempster et al. (1977). In particular, the popularity of EM algorithm for fitting mixture
models to data is such that, as stated in McLachlan et al. (2019), all research works on this
topic after 1977 use this method because it unifies the ML estimation from data that can be
viewed as being incomplete. For more details regarding the EM algorithm, the interested
reader can, for instance, refer to the works of Titterington et al. (1985), McLachlan and
Basford (1988), Couvreur (1997), and Karlis and Xekalaki (1999).

Regarding the implementation of the EM algorithm for ML estimation in the context
of finite mixture models, we follow the standard approach of combining the observed data,
which are represented by the random variable X, with the set of unobserved latent random
variables w = (wi1, wi2, ..., win), where wiz = 1 if the i-th observation belongs to the z-th
component, and 0 otherwise, for i = 1, ..., ν and z = 1, ..., n.

Then, the complete data log-likelihood of the model is given by

lc(Ξ) =
ν

∑
i=1

n

∑
z=1

wiz[log(πz) + log( fz(xi|θz)]. (2)

In what follows, at the E-Step of the algorithm, it is necessary to compute the Q-
function, which is the conditional expectation of the complete data log-likelihood given
by Equation (2), while the M-Step consists of maximizing the Q-function with respect to
Ξ = (θ, π). A generic algorithm is formally described in what follows.

E− Step : Using the current estimates π
(r−1)
z and θ

(r−1)
z at iteration r− 1, calculate

the “membership weights”:

π
(r)
iz = E(wiz|xi, Ξ(r−1)) =

π
(r−1)
z fz(xi|θ

(r−1)
z )

∑n
z=1 π

(r−1)
z fz(xi|θ

(r−1)
z )

, (3)

for i = 1, ..., ν and z = 1, ..., n. Note that π
(r)
iz is the posterior probability that xi comes from

the mixture component z, calculated at the rth iteration of the EM algorithm. Thus, the
Q-function is given by

Q(Ξ|Ξ(r−1)) =
ν

∑
i=1

n

∑
z=1

π
(r)
iz [log(πz) + log( fz(xi|θz)).

M− Step : Obtain new estimates for π and θ by maximizing the Q-function:
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• The updated estimates π̂
(r)
z are given by:

π̂
(r)
z =

∑ν
i=1 π

(r)
iz

ν
, z = 1, ..., n.

• The updated estimates θ̂
(r)
z are obtained using a weighted likelihood approach for

each of the different component distributions with weights π
(r)
iz given by Equation (3).

It is clear that ML estimation can be accomplished relatively easily when the M-Step
is in closed form. On the contrary, when this is not the case, numerical optimization
methods are required for maximizing the the weighted likelihood.

Finally, initialization of parameters can be done using the following data partition
methods: (i) means clustering method (see Forgy (1965) and MacQueen (1967)), (ii) Eu-
clidean distance-based initialization (see Maitra (2009)), and (iii) random initialization (see
McLachlan and Peel (2000a)).

3.3. Opinions Combination Problem in a Finite Mixture Model Setting

When considering the application of finite mixtures in the area of opinions combi-
nation, the framework described in Section 3.2 can be adjusted as follows. A decision
maker, otherwise called an agent, needs to make a decision about an X random quantity of
interest. Since this decision is made under circumstances of uncertainty, the agent seeks for
the opinion of an arbitrary number of consultants z = 1, 2, ...n and the combined opinion
is seen as a finite mixture model of the type described in 2.3.1 allowing for divergence
in expert opinions, both in the class of fz and in components parameters θz. The mixing
weights πz show the level of trust that the agent has to each expert. As in traditional
approaches to expert opinions combination, the weights is up to the agent to determine. If
the agent has access to older data about X, the decision process can be made in two stages
to ensure that weights allocation is right.

In the first stage, the agent fits alternative finite mixture models to the available internal
data and identifies the mixing probabilities πz, the class of fz(·), and the parameters θz
that lead to a robust estimation of the company’s risk profile. Then, the experts are asked to
provide their views on fz(·) class and θz given the old data without knowing that the agent
knows the real answer. The agent checks the reply of the zth expert by comparing it to the
correct answer, which, as mentioned previously, it is known to the agent but unknown
to the zth expert. In the second stage, the agent needs to make a decision on a totally
unknown situation and thus provides the data of real interest to Z experts. Assuming
that past experts’ performance in getting a good answer indicates their future ability in
providing reliable advice, the agent has an indication of how much trust should be given
to the zth consultant. Assessing the quality of a probabilistic forecast on an ex post and ex
ante basis using real data is not much different from the rationale of using scoring rules
as mentioned in Section 2.1. In what follows, we present an application of finite mixture
models to combine expert views in a financial setting and in particular when multiple
experts are given the task to compute the financial risk measure Value at Risk (V@R).

4. Application to a Quantile-Based Financial Risk Measures Setting

In this section, we apply a finite mixture methodology to address the issue of com-
bining diverging expert opinions in an insurance context. We assume that the experts are
actuaries and that the opinions expressed by each of them refer to the reserve, or otherwise
risk measure, that the institution needs to report to the financial regulator. In particular,
without loss of generality, we focus on the popular risk measure called Value at Risk (V@R)
having the quantile as core ingredient; however our general approach can be applied to any
quantile-based risk measure. Any discussion from now on is focused on quantiles because,
as we will later on see, the latter is the core ingredient of V@R. We start by giving a brief
presentation of risk measures and V@R using a general notation, and then the application
using simulated finite mixture data follows.
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4.1. Motivation Behind the Application

Financial institutions are subject to a number of economic capital requirements fol-
lowing Basel II and Basel III directives in the banking sector and Solvency II and the Swiss
Solvency Test in the insurance industry. Since the regulators do not instruct the use of a
specific model for the calculation of the reserve, otherwise called risk measure, the choice
of any probabilistic model that is used internally by a financial institution for calculating
risk measures is crucial.

The above-mentioned challenge known as model risk (see Barrieu and Scandolo (2015)
and Barrieu and Ravanelli (2015), among others) is of paramount importance for the health
of the financial system along with the choice of the risk measure itself by the regulator; see
Danielsson et al. (2001) and Embrechts et al. (2014). The multiple model alternatives for
computing a given risk measure can be seen through the prism of an opinions’ combination
problem. A financial institution, being an agent, instructs actuaries to present alternative
internal models for the computation of a risk measure such as V@R. In presence of model
risk, the agent prefers to use a combination method to take into account the different
opinions, i.e., models, prior to reaching a capital reserve decision.

In the context of combining expert opinions for computing quantile-based risk mea-
sures, such as V@R, there is a clear advantage that the suggested finite mixture modelling
approach enjoys over the classical approach of calculating quantiles such as the weighted
average of individual quantiles coming from the expert judgements; see, Lichtendahl et al.
(2013). This is that it provides a way to assess if the information from the experts that
determines the decision-making process of the agent and the data-generative process are
highly “synchronous” under a single chosen model in order to ensure that the resulting risk
measure value can, as accurately as possible, determine the minimum cushion of economic
liquidity.

Finally, under our general approach, which allows for flexibility in the choice of the
component distributions which reflect different expert opinions, the resulting risk measures
can be calculated using a convex combination of an abundance of alternative heavy-tailed
and light-tailed distributions. Thus, since risk measures are equal or proportional to
solvency capital requirements, the adopted modelling framework allows us to strike the
right balance between calculating risk measures that are not too conservative and hence
are preferred by financial institutions and insurance companies who wish to minimise the
level of their reserves, since there are many restrictions on how this money can be invested,
and computing stricter risk measures that would rather be imposed by regulators who
wish to protect consumers. Moving forward, we start by defining financial risk measures
in general before narrowing down to Value at Risk, which we use in our application.

4.2. Risk Measures

Financial institutions want to know the minimum amount of capital to add to a
position they take in the market to make it acceptable from a regulatory viewpoint. From
now on, our random quantity of interest X is a financial position. More precisely, a financial
position is a mapping

X : Ω −→ R∪ {+∞}

where Ω is an non-empty set representing a fixed set of possible scenarios. Let ω be a
scenario that is part of Ω. Then X(ω) reflects the terminal value of the position (profit or
loss) at the end of the trading period if the scenario ω ∈ Ω is observed. Assuming that
X is a set of financial positions, we let the financial position X belong to it. Whilst from
an economic perspective X would have to be of a very large size, preferably the space
of all X : Ω −→ R ∪ {+∞}, it is quantitatively convenient to introduce the restriction of
boundedness. Furthermore, X is a linear space containing the constants. At this point, we
do not fix a probability measure in Ω.
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To calculate the capital requirement, an actuary finds some number ρ(X) that quanti-
fies the risk of taking the financial position X. In particular, a monetary risk measure ρ is a
mapping

ρ : X −→ R

which satisfies the following conditions

Monotonicity: if X ≤ Y , then ρ(X) ≥ ρ(Y)

Cash invariance: ρ(X + m) = ρ(X)−m ∀ m ∈ R for all X, Y ∈ X

Normalisation: ρ(0) = 0

The condition of monotonicity simply reflects the fact that a position yielding a higher
payoff in all scenarios, i.e., in the whole Ω, carries less risk. The cash invariance property
demonstrates that risk is measured in monetary units, meaning when an amount m is
added to a risky position, its risk will decrease by the same amount m. Normalisation
implies that if one has nothing, there is no need to put aside any reserve.

There is a variety of risk measures (see, for instance Barrieu and El Karoui (2005),
Föllmer and Schied (2010), Acciaio and Penner (2011), Föllmer and Schied (2016)), and in
many cases, quantiles are a key ingredient. That said, for an α ∈ (0, 1), the α-quantile of a
random variable on a probability space (Ω, F ,P), where P is a probability measure on a
measurable space (Ω, F ), is any real number Q that satisfies the property

P[X ≤ Q] ≥ α and P[X < Q] ≤ α.

The set of all α-quantiles of X is an interval [Q−X (α), Q+
X (α)] where the lower quantile

function of X is

Q−X (t) = sup{x|P[X < x] < t} = inf{x|P[X ≤ x] ≥ t}

and the upper quantile function of X is

Q+
X (t) = inf{x|P[X ≤ x] > t} = sup{x|P[X < x] ≤ t}

A very famous risk measure upon which the financial and insurance industry heavily
relies is Value at Risk (V@R). If we fix some level α ∈ (0, 1), the V@R of a financial position
X at level α is defined as

V@Rα(X) := −Q+
X (α) = inf{m|P[X + m < 0] ≤ α}

where Q+
X (α) is the upper quantile function of X. The financial interpretation of V@Rα(X)

is the smallest amount of capital, which, if added to the position X and invested in a
risk-free manner, ensures that the probability of a negative outcome is below the level α. In
the following subsection, we discuss how quantile-based risk measures, such as V@R, can
be numerically computed in the case of finite mixtures utilising the EM algorithm.

4.3. Computation of V@R Using Finite Mixtures Models

In the context of computing quantile-based risk measures using finite mixtures models,
one should take into account that there is no closed-form solution and numerical estimation
is required. For expository purposes, we present the numerical calculation of the V@R
using a finite mixture modelling methodology in the context of combining diverging expert
opinions. However, note that the computation of other quantile risk measures, with many
more interesting properties than the V@R, such as the Tail Value at Risk (TV@R) is straight
forward using finite mixture models. For more details, one can refer to Miljkovic and Grün
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(2016). Since under the modelling framework we propose the component distributions can
stem from different parametric families further interesting results can be obtained.

Let X, presented in Section 3.2, be the random vector of ν financial positions of a
financial institution introduced in Section 4.2. As we have seen in Section 4.2, V@Ra(X)
is the α-quantile of the distribution of financial position X, and it satisfies the following
property

P(X > V@Ra(X)) = 1− α

Since in the context of finite mixture models, the V@Ra(X) does not have a closed-form
solution, we compute it numerically by solving Equation (4)

FX(V@Ra(X)) = α (4)

where FX := R −→ [0, 1] is the cumulative distribution function of the random financial
position X.

In particular, the numerical computation of V@Ra(X) can be achieved easily using the
R programming language in a two-step process. Firstly, we create an R function according
to Equation (1) with the only difference that now fz is replaced by FXz as follows

FX(x|Ξ) =
n

∑
z=1

πzFXz(x|θz)

where Ξ = (θ, π), where θ = (θ1, θ2, ..., θn), and πT = (π1, π2..., πn) represents the vector
of unknown parameters, πz is the prior (or mixing) probability of the component z where

0 < πz ≤ 1 ∀z ∈ {1, 2, ..., n} and
n
∑

z=1
πz = 1 holds. Secondly, we create the inverse function

of FXz denoted as F−1
Xz

, which is the V@Ra(X). The function F−1
Xz

is derived in R by returning
the uniroot() argument in the package stats in R of (FXz − α) for a pre-determined quantile
bracket. It should be mentioned that in order to evaluate FXz at the point x, one needs to
utilise the EM algorithm to estimate the parameters and mixing probabilities of FX . In
the end, in order to calculate the quantile using the function F−1

Xz
, one just needs to insert

as arguments the the percentile α upon which V@Ra(X) will be calculated as well as the
vectors of estimated parameters and mixing probabilities. In Section 4.4, we present our
numerical application.

4.4. Numerical Application

In this subsection, a numerical example is presented to illustrate the proposed ap-
proach for combining expert opinions. In particular, without loss of generality, we assume
that the experts can be classified into two groups within each of which there is a consensus
of opinions. In this context, the components represent different expert opinions about
the distribution family and its parameters, whilst the weights reflect the quality of each
opinion as this may be assessed by the agent.

In what follows, we generate multiple samples from two-component mixtures of some
classical distributions where the components of the mixture do not necessarily belong to
the same parametric family. In particular, we consider the two-component (2C) Normal,
2C Gamma, 2C Lognormal, 2C Pareto mixtures, and also the 2C Lognormal-Gamma,
and 2C Pareto-Gamma mixtures. Note that when using real data, one can distinguish
between the competing models by employing the Deviance (DEV), Akaike information
criterion (AIC), and the Schwartz Bayesian criterion (SBC). Furthermore, the prediction
performances of the models can be assessed via out-of-sample validation. The prediction
performances can be measured using the root-mean squared error (RMSE) and the deviance
statistic. To provide a potential practical application of the proposed perspective, note
that the convex combination of moderate and heavy-tailed distributions, similar to the
aforementioned ones, can be used for efficiently approximating positive insurance loss
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data with right skewness, which can often be represented as an amalgamation of losses of
different magnitudes. For example, Tzougas et al. (2014) and Miljkovic and Grün (2016)
proposed the use of mixtures of finite mixture claim severity models in an actuarial setting,
whilst Tzougas et al. (2018) and Blostein and Miljkovic (2019) considered finite mixture
models where all components of the mixture are not necessarily assumed to be from the
same parametric family.

The probability density functions (pdfs) of the component distributions, denoted by
fz in Equation (1), are given by Equations (5)–(8) below.

• Normal distribution: the pdf of the Normal distribution is given by:

fz(x|µ, σ) =
1√
2πσ

e−−−
(x−µ)2

2σ2 (5)

for −∞ < x < ∞ where −∞ < µ < ∞ and σ > 0. The mean of X is given by
E(X) = µ and the variance of X by Var(X) = σ2. This parametric family is chosen
for relatively symmetric insurance loss data, which take either positive or negative
values.

• Lognormal distribution: the pdf of the Lognormal distribution is as follows:

fz(x|µ, σ) =
1√

2πσ2

1
x

e−
[log(x)−µ]2

2σ2 (6)

for x > 0 where µ > 0 and σ > 0. Here, E(X) = c
1
2 eµ and Var(X) = c(c − 1)e2µ

where c = eσ2
.

• Gamma distribution: the density of the Gamma is given by:

fz(x|µ, σ) =
1

(σ2µ)
1

σ2

x
1

σ2−1e
−x

(σ2µ)

Γ( 1
σ2 )

(7)

for x > 0, where µ > 0 and σ > 0. This is a re-parameterisation, which was given in
Equation (17.23) of Johnson et al. (1994) in p.343, and it can be obtained by setting
σ = 1

α and µ = αβ. Moreover, E(X) = µ and Var(X) = σ2µ2. The Gamma has a less
heavier tail than the Lognormal one.

• Pareto distribution: the pdf of the Pareto distribution is as follows:

fz(x|µ, σ) =
1
σ

µ
1
σ (x + µ)−

1
σ+1 (8)

for x ≥ 0, where µ > 0 and σ > 0. Furthermore, E(X) = µ( 1
σ − 1), and Var(X) =

(µ( 1
σ − 1))2( 1

1−2σ ) exists only if σ < 1/2. This is an alternative distributional class
choice that may be preferred to model more heavily right-skewed insurance loss data
than the previous two distribution choices.

As described in Section 3.3, the fitting of such mixture distributions can be achieved
via the EM algorithm, which is implemented for estimating both the parameters of each
mixture component distribution and mixing weights. Subsequently, using these estimated
values, we proceed with calculating the quantiles of the mixture models across all estimated
weights combinations and for various probability levels (1− α). At this point, it should
be noted that we choose to compute quantiles directly from the finite mixture models, but
for comparison purposes, we also combine quantiles for each expert view as it has often
been encountered in the literature; see, for instance, Lichtendahl et al. (2013). Note also
that the calculation of risk measures using finite mixture models has also been addressed
by Miljkovic and Grün (2016) and Blostein and Miljkovic (2019). However, we would like
to emphasise that this is the first time that the 2C Pareto and 2C Pareto-Gamma models
are used for computing quantile based risk measures. Therefore, this constitutes one more
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novelty of our work in addition to proposing the finite mixture modelling approach as an
efficient tool for combining expert opinions.

The results of our numerical application for each of the 2C component mixture models
we consider in this study, namely the Normal, Gamma, Lognormal, Pareto, Lognormal-
Gamma, and Pareto-Gamma, are presented in the following manner. In Table 1, for each
of the previously described 2C mixture models, we show the parameters estimates across
all estimated weights combinations derived using the EM algorithm. Then, in Table 2, we
present the 2C mixture model-based quantiles which are computed by utilising the EM
algorithm parameter and weight estimates, which are presented in Table 1, as well as the
quantiles derived by using the weighted average approach across all weights combinations
that are used to generate the data. Both quantile types are calculated at two widely used,
in a financial context, probability levels (1− α), i.e., 0.950 and 0.990. Finally, in Figures 1–6,
we plot the mixture-model-based quantiles and the weighted average-based quantiles
computed at a more extended range of (1− α) probability levels ranging from 0.950 to 0.995.
It is important to mention that the values for the two quantile types of interest appear to be
substantially different, and therefore we deemed it necessary to have two distinct y axes in
each plot of Figures 1–6 to allow for an easier comparison.

As we observe, the quantile values in the case of the 2C Normal, 2C Gamma, 2C Log-
normal, and 2C Pareto mixtures, and also the 2C Lognormal-Gamma and 2C Pareto-Gamma
mixtures, are higher than the weighted-average-based ones. Regarding the decision-making
problem we address, as was previously mentioned, the approach we consider is more
flexible because it provides a two-fold benefit to the decision maker, since, in addition to
enabling them to evaluate the efficacy of the expert views aggregation process, it allows
them to test how the weights that they were intending to allocate to each expert opinion
based on their personal judgement compared to the ones estimated by the model.
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Table 1. EM algorithm estimates for various two-component (2C) finite mixture models. Estimates
refer to the parameters mean (µ̂1, µ̂2) and standard deviation (σ̂1, σ̂2) and the mixing weights of each
mixture component (π̂1, 1− π̂1) across all plausible mixing weight combinations (π1) in the true data
generative process. All estimates provided are statistically significant at a 5% threshold or below.

Parametric Family π̂1 π̂2 µ̂1 µ̂2 σ̂1 σ̂2

0.098 0.902 5271.210 1333.022 0.228 0.442
0.203 0.797 5273.012 1342.762 0.231 0.448
0.300 0.700 5272.341 1341.234 0.225 0.448
0.400 0.600 5271.032 1340.012 0.221 0.446

2C Normal 0.500 0.500 5272.002 1342.569 0.230 0.447
0.600 0.400 5272.321 1343.812 0.238 0.449
0.700 0.300 5270.921 1341.989 0.236 0.444
0.800 0.200 5271.981 1345.091 0.239 0.449
0.901 0.099 5273.182 1343.991 0.240 0.447

0.090 0.910 9.538 8.042 0.723 0.884
0.200 0.800 9.521 8.025 0.717 0.879
0.299 0.701 9.539 8.042 0.772 0.883
0.398 0.602 9.537 8.041 0.771 0.881

2C Lognormal 0.498 0.502 9.538 8.064 0.778 0.899
0.600 0.400 9.548 8.053 0.766 0.896
0.700 0.300 9.528 8.035 0.741 0.873
0.802 0.198 9.508 0.722 8.016 0.858
0.901 0.099 9.511 0.733 8.023 0.867

0.086 0.914 6786.348 3162.126 0.625 0.352
0.207 0.793 6737.558 3127.165 0.629 0.340
0.307 0.693 6738.557 3124.408 0.635 0.342
0.400 0.600 6739.659 3127.512 0.629 0.344

2C Gamma 0.499 0.501 6784.309 3171.627 0.630 0.357
0.601 0.399 6754.742 3123.512 0.638 0.341
0.700 0.300 6783.127 3170.006 0.636 0.346
0.799 0.201 6783.021 3172.871 0.621 0.341
0.902 0.098 6786.735 3172.513 0.599 0.343

0.088 0.912 1364.138 3148.568 3.354 2.439
0.204 0.796 1329.177 3099.778 3.342 2.442
0.295 0.705 1326.426 3100.769 3.344 2.448
0.405 0.595 1329.524 3101.871 3.346 2.443

2C Pareto 0.494 0.506 1373.639 3146.521 3.359 2.444
0.605 0.395 1325.524 3116.954 3.343 2.452
0.694 0.306 1372.018 3145.339 3.348 2.450
0.805 0.195 1374.883 3145.233 3.343 2.434
0.896 0.104 1374.525 3148.947 3.345 2.422

0.088 0.912 1902.904 2393.673 2.085 0.604
0.204 0.796 1867.943 2344.883 2.073 0.608
0.295 0.705 1865.186 2345.882 2.075 0.614
0.404 0.596 1868.129 2346.984 2.077 0.608

2C Lognormal-Gamma 0.494 0.506 1912.405 2391.634 2.079 0.609
0.605 0.395 1864.289 2362.067 2.074 0.617
0.694 0.306 1910.784 2390.452 2.079 0.615
0.805 0.195 1913.649 2394.123 2.074 0.602
0.896 0.104 1912.018 2396.106 2.076 0.599

0.088 0.912 9.538 3175.526 0.725 0.737
0.197 0.803 9.522 3140.588 0.722 0.741
0.297 0.703 9.543 3139.065 0.781 0.747
0.396 0.604 9.547 3142.169 0.777 0.742

2C Pareto-Gamma 0.496 0.504 9.547 3186.286 0.784 0.743
0.598 0.402 9.558 3138.171 0.772 0.751
0.698 0.302 9.537 3184.665 0.765 0.749
0.800 0.200 9.517 3187.353 0.728 0.734
0.899 0.101 9.520 3189.272 0.739 0.729
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Table 2. Comparison between the finite mixture model-based (1− α) quantile Qmix. and the weighted average-based (1− α)
quantile Qw.a. derived for the various parametric families considered in this study. Note that (1− α) denotes the probability
level at which the quantile is computed. The quantile Qmix. is calculated by using the derived EM parameters and weights
estimates shown in Table 1. For the computation of quantile Qw.a., no model estimation is involved, and it is calculated as
the weighted average of two individual quantiles, each coming from a distribution family with parameters and weights as
those used to generate the data.

Finite Mixture Model-Based Quantile Qmix.

1 − α 2C Normal 2C Lognormal 2C Gamma 2C Pareto 2C Lognormal-Gamma 2C Pareto-Gamma

0.950 5271.204 18,674.230 6254.920 7221.820 13,053.610 5189.413
0.990 5271.499 37,254.660 11,911.220 16,895.230 33,302.150 7286.269

0.950 5273.171 24,144.120 9057.693 6569.990 22,039.780 5157.749
0.990 5273.394 45,694.640 14,982.950 15,542.580 44,546.370 7797.691

0.950 5272.559 30,361.480 10,637.600 6108.752 29,534.510 5231.247
0.990 5272.754 57,847.270 16,443.240 14,589.80 58,206.920 8493.526

0.950 5271.286 34,225.830 11,600.840 5564.221 34,066.590 5273.603
0.990 5271.465 63,167.590 17,229.970 13,503.800 63,994.280 9481.466

0.950 5272.297 38,063.000 12,505.360 5147.291 38,106.660 5449.650
0.990 5272.474 68,905.430 18,108.690 12,655.920 69,880.110 10,662.670

0.950 5272.650 40,758.710 13,203.380 4409.509 41,120.820 5487.197
0.990 5272.827 71,836.230 18,826.360 11,044.520 73,116.860 11,643.710

0.950 5271.267 40,870.610 13,793.70 3904.314 42,478.650 5662.312
0.990 5271.438 69,767.140 19,373.060 9889.721 73,938.670 12,784.550

0.950 5272.348 40,907.890 14,083.190 3191.665 41,516.230 5810.997
0.990 5272.517 68,097.500 19,440.430 8118.793 69,476.320 13,964.470

0.950 5273.564 43,519.640 14,211.730 2596.741 44,222.170 5958.190
0.990 5273.731 72,328.780 19,271.110 6335.289 73,824.540 14,757.320

Weighted average-based quantile Qw.a.

1 − α 2C Normal 2C Lognormal 2C Gamma 2C Pareto 2C Lognormal-Gamma 2C Pareto-Gamma

0.950 1713.689 15,847.350 6130.278 6974.334 9075.481 5234.196
0.990 1713.975 28,081.790 7666.813 16,133.486 12,933.270 7791.443

0.950 2106.655 19,018.620 7108.780 6415.912 12,999.186 5328.475
0.990 2106.926 33,072.860 9074.596 14,783.290 19,607.500 8635.935

0.950 2499.620 22,189.900 8087.282 5857.489 16,922.892 5422.755
0.990 2499.877 38,063.930 10,482.379 13,433.094 32,955.980 9480.427

0.950 2892.586 25,361.170 9065.785 5299.066 20,846.597 5517.035
0.990 2892.828 43,054.990 11,890.162 12,082.899 26,281.740 10,324.919

0.950 3285.551 28,532.450 10,044.287 4740.644 24,770.303 5611.315
0.990 3285.779 48,046.060 13,297.946 10,732.703 39,630.220 11,169.410

0.950 3678.516 31,703.730 11,022.790 4182.221 28,694.008 5705.594
0.990 3678.730 53,037.130 14,705.729 9382.508 46,304.450 12,013.902

0.950 4071.482 34,875.000 12,001.292 3623.798 32,617.714 5799.874
0.990 4071.682 58,028.200 16,113.512 8032.312 52,978.690 12,858.394

0.950 4464.447 38,046.280 12,979.794 3065.376 36,541.419 5894.154
0.990 4464.633 63,019.270 17,521.295 6682.116 59,652.930 13,702.886

0.950 4857.413 41,217.550 13,958.297 2506.953 40,465.125 5988.433
0.990 4857.584 68,010.340 18,929.078 5331.921 66,327.170 14,547.377
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Figure 1. Two-component (2C) Normal finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Normal weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 2. Two-Component (2C) Lognormal finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Lognormal weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 3. Two-Component (2C) Gamma finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Gamma weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 4. Two-Component (2C) Pareto finite mixture model-based (1− α) quantile Qmix. (blue colour) across all (π̂1, π̂2)
combinations versus two-component (2C) Pareto weighted average-based (1− α) quantile Qw.a. (red colour) across all
(π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable discrepancy
between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.
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Figure 5. Two-Component (2C) Lognormal-Gamma finite mixture model-based (1− α) quantile Qmix. (blue colour) across
all (π̂1, π̂2) combinations versus two-component (2C) Lognormal-Gamma weighted average-based (1− α) quantile Qw.a.

(red colour) across all (π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a
considerable discrepancy between Qmix. and Qw.a. values, each given plot has two different y axes-one for each quantile
type.
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Figure 6. Two-Component (2C) Pareto-Gamma finite mixture model-based (1− α) quantile Qmix. (blue colour) across all
(π̂1, π̂2) combinations versus two-component (2C) Pareto-Gamma weighted average-based (1− α) quantile Qw.a. (red colour)
across all (π1, π2) combinations, where (1− α) takes values in the range of 0.950-0.995. Note that, due to a considerable
discrepancy between Qmix. and Qw.a. values, each given plot has two different y axes—one for each quantile type.

5. Concluding Remarks

When making a decision in an uncertain environment, an agent may consult multiple
experts. In such a scenario, the aggregation of individual opinions before reaching a
decision is required. In this study, we contribute to the plethora of interdisciplinary
literature on this topic by proposing a finite mixture modelling approach that can enable
the agent to combine the component distributions in order to obtain a single distribution of
the quantity of interest that is a quantile-based risk measure. The component distributions
we consider in this study can be used in practice to model various quantities of interest
in financial and insurance applications such as financial returns and insurance losses
with light and heavy tails. The suggested method allows for considerable flexibility in
expert opinions regarding the distribution class of the random quantity of interest and
its parameters, and it also provides an efficient way for weights computation—a task
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recognised as being particularly strenuous in this segment of literature. By employing
the perspective that opinions take the form of quantiles, we compare our approach to
the traditional weighted average one, and we find that they lead to different results.
Furthermore, the proposed models can be used for carrying out different tasks in insurance
such as calculating premiums and reserves and measuring tail risk.

A compelling direction of further research would be to use combinations of finite
mixtures and composite models that can mitigate instabilities of tail index estimations
inherited by finite mixture models; see, for instance, Fung et al. (2021). Furthermore, a
natural extension of our study is to employ Bayesian inference for mixtures, which will
allow us to combine internal data, external data, and expert opinions proceeding along
similar lines as in Lambrigger et al. (2009). Additionally, in this paper, we have focused
only on the opinion aggregation process without considering how experts have elicited
their views; therefore, it would be interesting to examine ways in which this aspect is also
taken into account. Finally, another potential topic of interest, with regards to weights
allocation this time, is for the weights to reflect the risk aversion level of the agent as well as
the quality of a given expert’s judgement, and the level of disagreement between experts.
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