
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

GaussianProcesses.jl: A Nonparametric Bayes
package for the Julia Language

Jamie Fairbrother
Lancaster University

Christopher Nemeth
Lancaster University

Maxime Rischard
Cervest

Johanni Brea
EPFL

Thomas Pinder
Lancaster University

Abstract

Gaussian processes are a class of flexible nonparametric Bayesian tools that are widely
used across the sciences, and in industry, to model complex data sources. Key to applying
Gaussian process models is the availability of well-developed open source software, which
is available in many programming languages. In this paper, we present a tutorial of
the GaussianProcesses.jl package that has been developed for the Julia programming
language. GaussianProcesses.jl utilises the inherent computational benefits of the Julia
language, including multiple dispatch and just-in-time compilation, to produce a fast,
flexible and user-friendly Gaussian processes package. The package provides many mean
and kernel functions with supporting inference tools to fit exact Gaussian process models,
as well as a range of alternative likelihood functions to handle non-Gaussian data (e.g.,
binary classification models) and sparse approximations for scalable Gaussian processes.
The package makes efficient use of existing Julia packages to provide users with a range
of optimization and plotting tools.

Keywords: Gaussian processes, nonparametric Bayesian methods, regression, classification,
Julia.

1. Introduction
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Gaussian processes (GPs) are a family of stochastic processes which provide a flexible non-
parametric tool for modelling data. In the most basic setting, a Gaussian process models a
latent function based on a finite set of observations. The Gaussian process can be viewed
as an extension of a multivariate Gaussian distribution to an infinite number of dimensions,
where any finite combination of dimensions will result in a multivariate Gaussian distribu-
tion, which is completely specified by its mean and covariance functions. The choice of mean
and covariance function, also known as the kernel, impose smoothness assumptions on the
latent function of interest and determines the correlation between output observations y as a
function of the Euclidean distance between their respective input data points x.
Gaussian processes have been widely used across a vast range of scientific and industrial fields,
for example, to model astronomical time series (Foreman-Mackey, Agol, Ambikasaran, and
Angus 2017) and brain networks (Wang, Durante, Jung, and Dunson 2017), or for improved
soil mapping (Gonzalez, Cook, Oberthur, Jarvis, Bagnell, and Dias 2007) and robotic control
(Deisenroth, Fox, and Rasmussen 2015). Arguably, the success of Gaussian processes in these
various fields stems from the ease with which scientists and practitioners can apply Gaussian
processes to their problems, as well as the general flexibility afforded to GPs for modelling
various data forms.
Gaussian processes have a longstanding history in geostatistics (Matheron 1963) for modelling
spatial data. However, more recent interest in GPs has stemmed from the machine learning
and other scientific communities. In particular, the successful uptake of GPs in other areas
has been a result of high-quality and freely available software. There are now a number of
excellent Gaussian process packages available in several computing and scientific program-
ming languages. One of the most mature of these is the GPML package Rasmussen and
Nickisch (2017) for the MATLAB language which was originally developed to demonstrate
the algorithms in the book by Rasmussen and Williams (2006) and provides a wide range
of functionality. Packages written for other languages, including Python packages, e.g., GPy
GPy (since 2012) and GPFlow Matthews, Van Der Wilk, Nickson, Fujii, Boukouvalas, León-
Villagrá, Ghahramani, and Hensman (2017), have incorporated more recent developments in
the area of Gaussian processes, most notably implementations of sparse Gaussian processes
and graphics processing unit (GPU) accelerations.
This paper presents a new package, GaussianProcesses.jl, for implementing Gaussian pro-
cesses in the recently developed Julia programming language. Julia (Bezanson, Edelman,
Karpinski, and Shah 2017), an open source programming language, is designed specifically
for numerical computing and has many features which make it attractive for implementing
Gaussian processes. Two of the most useful and unique features of Julia are just-in-time
(JIT) compilation and multiple dispatch. JIT compilation compiles a function into binary
code the first time it is used, which allows code to run much more efficiently compared with
interpreted code in other dynamic programming languages. This provides a solution to the
“two-language” problem: in contrast to e.g., R or Python, where performance-critical parts
are often delegated to libraries written in C/C++ or Fortran, it is possible to write highly
performant code in Julia, while keeping the convenience of a high-level language. Multiple
dispatch allows functions to be dynamically dispatched based on inputted arguments. In the
context of our package, this allows us to have a general framework for operating on Gaussian
processes, while allowing us to implement more efficient functions for the different types of
objects which will be used with the process. Similar to the R language, Julia has an excellent
package manager system which allows users to easily install packages from inside the Julia
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REPL as well as many well-developed packages for statistical analysis.
GaussianProcesses.jl is an open source package which is entirely written in Julia. It supports a
wide choice of mean, kernel and likelihood functions (see Appendix A) with a convenient inter-
face for composing existing functions via summation or multiplication. The package leverages
other Julia packages to extend its functionality and ensure computational efficiency. For ex-
ample, hyperparameters of the Gaussian process are optimised using the Optim.jl package
(Mogensen and Riseth 2018) which provides a range of efficient and configurable unconstrained
optimization algorithms; prior distributions for hyperparameters can be set using the Distri-
butions.jl package (Besançon, Anthoff, Arslan, Byrne, Lin, Papamarkou, and Pearson 2019).
Additionally, this package has now become a dependency of other Julia packages, for exam-
ple, BayesianOptimization.jl, a demo of which is given in Section 4.4. The run-time speed
of GaussianProcesses.jl has been heavily optimised and is competitive with other Gaussian
process packages. A run-time comparison of the package against GPML and GPy is given in
Section 5.
Within the Julia language, Gaussian process software is currently limited. Aside from Gaus-
sianProcesses.jl, two other packages currently under development are Stheno.jl and Augment-
edGaussianProcesses.jl. The Stheno.jl package is designed to provide ease of compatibility
with other Julia packages to allow users to leverage the benefits of Bayesian inference (Ad-
vancedHMC.jl), optimization (Optim.jl) and automatic differentiation (Zygote.jl) when fitting
Gaussian process models. Stheno.jl is designed for Gaussian process regression and does not
currently provide features to handle non-Gaussian likelihoods, e.g., classification data. The
AugmentedGaussianProcesses.jl package is developed primarily for data-augmented sparse
Gaussian processes. The data-augmentation structure of this package allows users to utilize
Gaussian and non-Gaussian likelihoods by transforming the likelihood functions into condi-
tionally conjugate likelihoods, which allows for faster inference via block coordinate updates.
AugmentedGaussianProcesses.jl is geared towards variational inference instead of Markov
chain Monte Carlo-based inference that is primarily used in GaussianProcesses.jl.
The paper is organised as follows. Section 2 provides an introduction to Gaussian processes,
how they can be applied to model Gaussian and non-Gaussian observational data, and how
enhanced computational efficiency can be achieved through sparse approximations. Section
3 gives an overview of the main functionality of the package which is presented through a
simple application of fitting a Gaussian process to simulated data. This is then followed
by five application demos in Section 4 which highlight how Gaussian processes can be ap-
plied to classification problems, time series modelling, count data, black-box optimization
and computationally-efficient large-scale nonparametric modelling via sparse Gaussian pro-
cess approximations. Section 5 gives a run-time comparison of the package against popular
alternatives which are listed above. Finally, the paper concludes (Section 6) with a discussion
of ongoing package developments which will provide further functionality in future releases
of the package.

2. Gaussian processes in a nutshell

Gaussian processes are a class of models which are popular tools for nonlinear regression and
classification problems. They have been applied extensively in scientific disciplines ranging
from modelling environmental sensor data (Osborne, Roberts, Rogers, and Jennings 2008)
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to astronomical time series data (Wilson, Dann, and Nickisch 2015) all within a Bayesian
nonparametric setting. A Gaussian Process (GP) defines a distribution over functions, p(f),
where f : X → R is a function mapping from the input space X to the space of real numbers.
The space of functions f can be infinite-dimensional, for example when X ⊆ Rd, but for any
subset of inputs X = {x1,x2, . . . ,xn} ⊂ X we define f := {f(xi)}ni=1 as a random variable
whose marginal distribution p(f) is a multivariate Gaussian.
The Gaussian process framework provides a flexible structure for modelling a wide range of
data types. In this package we consider models of the following general form,

y | f ,θ ∼
n∏
i=1

p(yi | fi,θ),

f(x) |θ ∼ GP
(
mθ(x), kθ(x,x′)

)
, (1)

θ ∼ p(θ),

where y = (y1, y2, . . . , yn) ∈ Y and x ∈ X are the observations and covariates, respectively,
and fi := f(xi). We assume that the responses y are independent and identically distributed,
and as a result, the likelihood p(y | f ,θ) can be factorised over the observations. For the sake
of notational convenience, we let θ ∈ Θ ⊆ Rd denote the vector of model parameters for both
the likelihood function and Gaussian process prior.
The Gaussian process prior is completely specified by its mean function mθ(x) and covariance
function kθ(x,x′), also known as the kernel. The mean function is commonly set to zero (i.e.,
mθ(x) = 0,∀x), which can often by achieved by centring the observations (i.e., y − E [y])
resulting in a mean of zero. If the observations cannot be re-centred in this way, for example
if the observations display a linear or periodic trend, then the zero mean function can still be
applied with the trend modelled by the kernel function.
The kernel determines the correlation between any two function values fi and fj in the output
space as a function of their corresponding inputs xi and xj . The user is free to choose any
appropriate kernel that best models the data as long as the covariance matrix formed by the
kernel is symmetric and positive semi-definite. Perhaps the most common kernel function
is the squared exponential, Cov [f(x), f(x′)] = k(x,x′) = σ2 exp(− 1

2`2 |x − x′|2). For this
kernel the correlation between fi and fj is determined by the Euclidean distance between
xi and xj and the hyperparameters θ = (σ, `), where ` determines the speed at which the
correlation between x and x′ decays. There exists a wide range of kernels that can flexibly
model a wide range of data patterns. It is possible to create more complex kernels from
the sum and product of simpler kernels (Duvenaud 2014), (see Chapter 4 of Rasmussen and
Williams (2006) for a detailed discussion of kernels). Figure 2 shows one-dimensional Gaussian
processes sampled from three simple kernels (squared exponential, periodic and linear) and
three composite kernels, and demonstrates how the combination of these kernels can provide
a richer correlation structure to capture more intricate function behaviour.
Often we are interested in predicting function vales f∗ at new inputs x∗. Assuming a finite set
of function values f , the joint distribution between these observed points and the test points
f∗ forms a joint Gaussian distribution,(

f
f∗

)
|X,x∗,θ ∼ N

(
0,
[
Kf ,f Kf ,∗
K∗,f K∗,∗)

])
, (2)

where Kf ,f = kθ(X,X), Kf ,∗ = kθ(X,x∗) and K∗,∗ = kθ(x∗,x∗).
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Figure 1: Clockwise from the top left. Five random samples from the Gaussian pro-
cess prior using the following kernels (refer to the help file for details): SE(0.5,0.0),
Periodic(0.5,0.0,1.0), Lin(0.0), SE(0.5,0.0) * Lin(0.0) + SE(0.5,0.0) *
Periodic(0.5,0.0,1.0), Periodic(0.5,0.0,1.0) * Lin(0.0) and SE(0.5,0.0) +
Periodic(0.5,0.0,1.0)

By the properties of the multivariate Gaussian distribution, the conditional distribution of f∗
given f is also a Gaussian distribution for fixed X and x∗. Extending to the general case, the
conditional distribution for the latent function f(x∗) is a Gaussian process

f(x∗) | f ,θ ∼ GP(kθ(x∗,X)K−1
f ,f f , kθ(x∗,x∗)− kθ(x∗,X)K−1

f ,f kθ(X,x
∗)). (3)

Using the modelling framework in eq. (1), we have a Gaussian process prior p(f |θ) over the
function f(x). If we let D = {X,y} represent our observed data, where X = (x1,x2, . . . ,xn),
then the likelihood of the data, conditional on function values f , is p(D | f ,θ). Using Bayes
theorem, we can show that the posterior distribution for the function f is p(f | D,θ) ∝
p(D | f ,θ)p(f |θ). In the general setting, the posterior is non-Gaussian (see Section 2.1 for an
exception) and cannot be expressed in an analytic form, but can often be approximated us-
ing a Laplace approximation (Williams and Barber 1998b), expectation-propagation (Minka
2001), or variational inference (Opper and Archambeau 2009) (see Nickisch and Rasmussen
(2008) for a full review). Alternatively, simulation-based inference methods including Markov
chain Monte Carlo (MCMC) algorithms (Robert 2004) can be applied.
From the posterior distribution, we can derive the marginal predictive distribution of y∗, given
test points x∗, by integrating out the latent function,

p(y∗ |x∗,D,θ) =
∫ ∫

p(y∗ | f∗,θ)p(f∗ | f ,x∗,X,θ)p(f | D,θ)df∗df . (4)

Calculating this integral is generally intractable, with the exception of nonlinear regression
with Gaussian observations (see Section 2.1). In settings such as seen with classification
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models, the marginal predictive distribution is intractable, but can be approximated using
the methods mentioned above. In Section 2.2 we will introduce a MCMC algorithm for sam-
pling exactly from the posterior distribution and use these samples to evaluate the marginal
predictive distribution through Monte Carlo integration.

2.1. Nonparametric regression: the analytic case

We start by considering a special case of eq. (1), where the observations follow a Gaussian
distribution,

yi ∼ N (f(xi), σ2), i = 1, . . . , n. (5)

In this instance, the posterior for the latent variables, conditional on the data, can be derived
analytically as a Gaussian distribution (see Rasmussen and Williams (2006)),

f | D,θ ∼ N (Kf ,f (Kf ,f + σ2
nI)−1y,Kf ,f −Kf ,f (Kf ,f + σ2

nI)−1Kf ,f ). (6)

The predictive distribution for y∗ in eq. (4) can also be calculated analytically by noting that
the likelihood in eq. (5), the posterior in eq. (6) and the conditional distribution for f∗ in
eq. (3) are all Gaussian and integration over a product of Gaussians produces a Gaussian
distribution,

y∗ |x∗,D,θ, σ2 ∼ N (µ(x∗),Σ(x∗,x∗′) + σ2I), (7)

where
µ(x∗) = k(x∗,X)(Kf ,f + σ2

nI)−1y

and
Σ(x∗,x∗′) = k(x∗,x∗)− k(x∗,X)(Kf ,f + σ2

nI)−1k(X,x∗)

(see Chapter 2 of Rasmussen and Williams (2006) for the full derivation).
The quality of the Gaussian process fit to the data is dependent on the model hyperparameters,
θ, which are present in the mean and kernel functions as well as the observation noise σ2.
Estimating these parameters requires the marginal likelihood of the data,

p(D |θ, σ) =
∫
p(y | f , σ2)p(f |X,θ)df ,

which is given by marginalising over the latent function values f . Assuming a Gaussian
observation model in eq. (5), the marginal distribution is p(y |X,θ, σ2) = N (0,Kf ,f + σ2I).
For convenience of optimisation we work with the log-marginal likelihood

log p(D |θ, σ) = −1
2y>(Kf ,f + σ2I)−1y− 1

2 log |Kf ,f + σ2I| − n

2 log 2π. (8)

The tractablility of the log-marginal likelihood allows for the straightforward calculation of
the gradient with respect to the hyperparameters. Efficient gradient-based optimisation tech-
niques (e.g., L-BFGS and conjugate gradients) can be applied to numerically maximise the
log-marginal likelihood function. In practice, we utilise the excellent Optim.jl package (Mo-
gensen and Riseth 2018) and provide an interface for the user to specify their choice of
optimisation algorithm. Alternatively, a Bayesian approach can be taken, where samples are
drawn from the posterior of the hyperparameters using the in-built MCMC algorithm, see
Section 3 for an example.
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2.2. Gaussian processes with non-Gaussian data

In Section 2.1 we considered the simple tractable case of nonlinear regression with Gaussian
observations. The modelling framework given in eq. (1) is general enough to extend the
Gaussian process model to a wide range of data types. For example, Gaussian processes can
be applied to binary classification problems (see Rasmussen and Williams (2006) Chapter 3),
by using a Bernoulli likelihood function (see Section 4.1 for more details).
When the likelihood p(y | f ,θ) is non-Gaussian, the posterior distribution of the latent func-
tion, conditional on observed data p(f | D,θ), does not have a closed form solution. A popular
approach for addressing this problem is to replace the posterior with an analytic approxima-
tion, such as a Gaussian distribution derived from a Laplace approximation (Williams and
Barber 1998b) or an expectation-propagation algorithm (Minka 2001). These approxima-
tions are simple to employ and can work well in practice on specific problems (Nickisch and
Rasmussen 2008), however, in general these methods struggle if the posterior is significantly
non-Gaussian. Alternatively, rather than trying to find a tractable approximation to the
posterior, one could sample from it and use the samples as a stochastic approximation and
evaluate integrals of interest through Monte Carlo integration (Ripley 2009).
Markov chain Monte Carlo methods (Robert 2004) represent a general class of algorithms
for sampling from high-dimensional posterior distributions. They have favourable theoretical
support to guarantee algorithmic convergence (Roberts and Rosenthal 2004) and are generally
easy to implement only requiring that it is possible to evaluate the posterior density point-
wise. We use the centred parameterization as given in Murray and Adams (2010); Filippone,
Zhong, and Girolami (2013); Hensman, Matthews, Filippone, and Ghahramani (2015), which
has been shown to improve the accuracy of MCMC algorithms by de-coupling the strong
dependence between f and θ. Re-parameterising eq. (1) we have,

y | f ,θ ∼
n∏
i=1

p(yi | fi,θ),

f = Lθv, LθL
>
θ = Kθ, (9)

v ∼ N (0n, In) , θ ∼ p(θ),

where Lθ is the lower Cholesky decomposition of the covariance matrixKθ, with (i, j)-element
Ki,j = kθ(xi, xj). The random variables v are now independent under the prior and a deter-
ministic transformation gives the function values f . The posterior distribution for p(f | D,θ),
or in the transformed setting, p(v | D,θ) usually does not have a closed form expression. Us-
ing MCMC we can instead sample from this distribution, or in the case of unknown model
parameters θ, we can sample from

p(θ,v | D) ∝ p(D |v,θ)p(v)p(θ). (10)

Numerous MCMC algorithms have been proposed to sample from the Gaussian process pos-
terior (see Titsias, Lawrence, and Rattray (2008) for a review). In this package we use the
highly efficient Hamiltonian Monte Carlo (HMC) algorithm (Neal 2010), which utilises gra-
dient information to efficiently sample from the posterior. Under the re-parametrised model
eq. (9), calculating the gradient of the posterior requires the derivative of the Cholesky factor
Lθ. We calculate this derivative using the blocked algorithm of Murray (2016).
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After running the MCMC algorithm we have N samples {v(j),θ(j)}Nj=1 from the posterior
p(θ,v | D). Function values f are given by the deterministic transform of the Monte Carlo
samples, f (i) = Lθ(i)v(i). Monte Carlo integration is then used to estimate for the marginal
predictive distribution from eq. (4),

p̂(y∗ |x∗,D,θ) ' 1
N

N∑
i=1

∫
p(y∗ | f∗,θ(i))p(f∗ | f (i),x∗,X,θ(i))df∗, (11)

where we have a one-dimensional integral for f∗ that can be efficiently evaluated using Gauss-
Hermite quadrature (Liu and Pierce 1994).
In contrast to MCMC, a variational approach can be employed to perform inference in a non-
conjugate Gaussian process. Unlike MCMC which seeks to approximate the process using
sampling, variational inference (VI) uses optimisation techniques to minimise a discrepancy
term between an approximating distribution and the true posterior of the process (Opper and
Archambeau 2009). Many schemes exist to perform VI, however, under the general framework,
one seeks to find an optimal distribution q? from a family of probability distributions Q, that
are parameterised by a set of variational parameters λ. To find q?, the Kullback-Léibler (KL)
divergence between the true posterior and the approximating distribution is minimised such
that

q?(f |λ) = arg min
q(f |λ)∈Q

KL (q(f |λ)||p(f | D, θ)) . (12)

It is common to let q ∼ N (m,V), where m is a mean vector and V a covariance matrix.
Consequently, the variational parameters to be estimated through VI are λ = (m,V).
Optimising (12) in closed form is not possible due to the need to evaluate the intractable
marginal likelihood when computing p(f | D, θ). To circumvent this, the objective function
can be reformulated in terms of an evidence lower bound (ELBO):

ELBO(q) =
N∑
n=1

Eq(fn |λn) [log p(yn | fn)]−KL (q(f |λ)||p(f |θ)) . (13)

While the KL-divergence term is now tractable as it only involves the evaluation of the
Gaussian process’ prior distribution, the newly required need to compute the expectation
of log p(yn | fn) is an intractable sum for all n. Using the variational objective presented in
Khan, Mohamed, and Murphy (2012), a tractable objective function can be expressed as

LJ(λ) := 1
2
[
log |VΩ| − tr(VΩ)− (m− µ)TΩ(m− µ) +N

]
+

N∑
n=1

g (yn,mn, Vnn) , (14)

where Ω = K−1
f ,f , N is the number of observations and µ is the Gaussian process prior

mean. The function g(·) is used to denote the likelihood-specific, local variational bound
function that is defined such that E [log p (yn|fn)] ≥ g (yn,mn, Vnn). An extensive list of local
variational bounds can be found in Khan et al. (2012), however, an example for Poisson data
is g (yn,mn, Vnn) = ym − exp(m + v/2) − log y!, where v denotes a single term from the
diagonal of V . Upon convergence of the optimiser, Kf ,f is approximated using V .
Using the Optim.jl package, we can maximise (14) with respect to m and V respectively
to find q?. In order to perform optimisation, gradients of the objective function’s lower
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variational bound must be taken. To enable variational inference to be easily extended to
new likelihoods, the computation of derivatives is handled using the automatic differentiation
functionality in Zygote.jl.

2.3. Scaling Gaussian processes with sparse approximations

When applying Gaussian processes to a dataset of size n, an unfortunate by-product is the
O(n3) scalability of the Gaussian process. This is due to the need to invert and compute
the determinant of the n × n kernel matrix Kf ,f . There exist a number of approaches to
deriving more scalable Gaussian processes: sparsity inducing kernels (Melkumyan and Ramos
2009), Nyström-based eigendecompositions (Williams and Seeger 2001), variational posterior
approximations (Titsias 2009), neighbourhood partitioning schemes (Datta, Banerjee, Finley,
and Gelfand 2016), and divide-and-conquer strategies (Guhaniyogi, Li, Savitsky, and Srivas-
tava 2017). In this package, scalability within the Gaussian process model is achieved by
approximating the Gaussian process’ prior with a subset of inducing points u of size m, such
that m << n (Quiñonero-Candela and Rasmussen 2005).
Due to the consistency of a Gaussian process1 the joint prior in eq. (2) can be recovered from
a sparse Gaussian process through the marginalisation of u

p(f , f∗) =
∫
p(f , f∗,u)du =

∫
p(f , f∗ |u)p(u)du,

where u ∼ N (0,Ku,u) and Ku,u = kθ(u,u) is an m ×m covariance matrix. An approxima-
tion is only induced under the sparse framework through the assumption that f and f∗ are
conditionally independent, given u

p(f , f∗) ≈ q(f , f∗) =
∫
q(f |u)q(f∗ |u)p(u)du.

From this dependency structure, it can be seen that f and f∗ are only dependent through
the information expressed in u. The fundamental difference between each of the four sparse
Gaussian process schemes implemented in this package is the additional assumptions that
each scheme imposes upon the conditional distributions q(f |u) and q(f∗ |u). In the exact
case, these two conditional distributions can be expressed as

p(f |u) = N (Kf ,uK−1
u,uu,Kf ,f −Qf ,f ) (15)

p(f∗ |u) = N (K∗,uK−1
u,uu,K∗,∗ −Q∗,∗), (16)

where Qf ,f = KfuK−1
uuKuf .

The simplest, and most computationally efficient, sparse method is the subset of regressors
(SoR) strategy. SoR assumes a deterministic relationship between each f and u, making the
Gaussian process marginal predictive distribution (4) equivalent to

q(y∗ |x∗,D,θ) = N
(
σ−2Kf∗,uΣKu,f y,Kf∗,uΣKu,f∗

)
, (17)

where Σ =
(
σ−2Ku,f Kf ,u + Ku,u

)−1. Such scalability comes at the great cost of wildly
inaccurate predictive uncertainties that often underestimate the true posterior variance as

1A required assumption for any valid stochastic process, consistency assumes that if we marginalise out
part of the process, then the resulting marginal distribution will be the same as the distribution defined in the
original sequence of the process.
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the model can only express m degrees-of-freedom. This result occurs as at most m linearly
independent functions can be drawn from the prior, and consequently prior variances are
poorly approximated.
A more elegant sparse method, is the deterministic training conditional (DTC) approach
of Seeger, Williams, and Lawrence (2003). DTC addresses the issue of inaccuracy within
the Gaussian process posterior variance by computing the Gaussian process’ likelihood using
information from all n data points; not just u. This is achieved by projecting f such that
f = Kf,uK−1

u,uu. With an exact likelihood computation, an approximation is still required on
the Gaussian process’ joint prior(

f
f∗

)
|X,x∗,θ ∼ N

(
0,
[
Qf ,f Qf ,∗
Q∗,f K∗,∗

])
. (18)

Through retention of an exact likelihood, coupled with an approximate prior, a deterministic
relationship need only be imposed on u and f , allowing for an exact test conditional ((16))
to be computed. Given that the test conditional is now exact, and the prior variance of f∗ is
computed using K∗,∗, not Q∗,∗, more reasonable predictive uncertainties are now produced.
Note, while an exact test conditional is now being computed, a DTC approximation is not an
exact Gaussian process as the process is no longer consistent across training and test cases
due to the inclusion of K∗,∗ in (18).
The fully independent training conditional (FITC) scheme enables a richer covariance struc-
ture by preserving the exact prior covariances along the diagonal of the sparse covariance
matrix (Snelson and Ghahramani 2006). This can be seen in the model’s joint prior(

f
f∗

)
|X,x∗,θ ∼ N

(
0,
[
Qf ,f − diag

[
Qf ,f −Kf ,f

]
Qf ,∗

Q∗,f K∗,∗

])
. (19)

As with the DTC, FITC imposes an approximation to the training conditional from (15),
but computes (16) exactly. An important extension to (19), is proposed in Quiñonero-
Candela and Rasmussen (2005) whereby the prior variance for f∗ is reformulated as Q∗,∗ −
diag [Q∗,∗ −K∗,∗]. This assumption of full independence within the conditionals of both f
and f∗ ensures that the FITC approximation is equivalent to exact inference within a non-
degenerate Gaussian process; a property not enjoyed by the aforementioned sparse approxi-
mations2.
The final sparse method implemented within the package is the full-scale approximation of
Sang and Huang (2012). A full-scale approximation further enriches the prior covariance
structure by imposing a series blocked matrix corrective terms along diagonal of f(

f
f∗

)
|X,x∗,θ ∼ N

(
0,
[
Qf ,f − blockdiag

[
Qf ,f −Kf ,f

]
Qf ,∗ − blockdiag

[
Qf ,∗ −Kf ,∗

]
Q∗,f − blockdiag

[
Q∗,f −K∗,f

]
K∗,∗

])
.

(20)
The predictive uncertainties that a full-scale approach yields will be far superior to any of
the previous sparse approximation, however, this comes at the cost of an increased com-
putational complexity due to the presence of a more dense covariance matrix. As with
the DTC and FITC approximations, the exact test conditional of eq. (16) is preserved,

2Note, in this package (19) has been implemented, however, the proposed extension by Quiñonero-Candela
and Rasmussen (2005) is left for future work within the package
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while the approximation of the training conditional in eq. (15) takes the form q(f |u) =
N (Kf ,uK−1

u,uu,blockdiag
[
Kf ,f −Qf ,f

]
).

Adopting a full-scale approach requires the practitioner to specify the number of blocks k,
apriori. The trade-off when making this decision is that fewer blocks will result in a more
accurate predictive distribution, however, the computational complexity will increase. As
recommended by Tresp (2000), it is commonly advised to select k = n

m , where each block is of
dimension m×m. In the extreme case that k = m, the full-scale approach becomes a FITC
approximation, and if k = 1, just a single block will exist, and the exact Gaussian process
will be recovered.
A final note with regard to sparse approximations is that the set of inducing point locations
Xu, such that u = f(Xu), will heavily influence the process. Modern extensions to the sparse
methods detailed above seek to learn Xu concurrently during hyper-parameter optimisation.
However, such an approach, whilst elegant, requires first-order derivatives of u to be available;
a functionality not currently available in the package. Instead, the practitioner is required to
specify a set of points apriori that correspond to the locations of Xu. A simple, yet effective,
approach to this is to divide the input space up into equidistant knots and use these knot
points as Xu.

3. The package
The package can be downloaded from the Julia package repository during a Julia session
by using the package manager tool. The ] symbol activates the package manager, after
which the GaussianProcesses.jl package can be installed with the following command add
GaussianProcesses. Alternatively, the Pkg package can be used with command

julia> Pkg.add("GaussianProcesses")

Julia will also install all of the required dependency packages. Documentation for types and
functions in the package, like other documentation in Julia, can be accessed through the
help mode in the Julia REPL. Help mode is activated by typing ? at the prompt, and
documentation can then be searched by entering the name of a function or type.

julia> ?
help?> optimize!
search: optimize!

optimize!(gp::GPBase; kwargs...)

Optimise the hyperparameters of Gaussian process gp based on type II
maximum likelihood estimation. This function performs gradient-based
optimisation using the Optim pacakge to which the user is referred to
for further details.

Keyword arguments:

* `domean::Bool`: Mean function hyperparameters should be optimized
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* `kern::Bool`: Kernel function hyperparameters should be optimized
* `noise::Bool`: Observation noise hyperparameter should be optimized (GPE only)
* `lik::Bool`: Likelihood hyperparameters should be optimized (GPA only)
* `kwargs`: Keyword arguments for the optimize function from the Optim package

The main function in the package is GP, which fits the Gaussian process model to covariates
X and responses y. As discussed in the previous section, the Gaussian process is completely
specified by its mean and kernel functions and possibly a likelihood when the observations
y are non-Gaussian.
julia> gp = GP(X,y,mean,kernel)
julia> gp = GP(X,y,mean,kernel,likelihood)

This highlights the use of the Julia multiple dispatch feature. The GP function will, in the
background, construct either an object of type GPE or GPA for exact or approximate inference,
respectively, depending on whether or not a likelihood function is specified. If no likelihood
function is given, then it is assumed that y are Gaussian distributed as in the case analytic
case of eq. (5).
In this section we will highlight the functionality of the package by considering a simple
Gaussian process regression example which follows the tractable case outlined in Section 2.1.
We start by loading the package and simulating some data.
julia> using GaussianProcesses, Random

julia> Random.seed!(13579) # Set the seed using the 'Random' package
julia> n = 10; # number of training points
julia> x = 2π * rand(n); # predictors
julia> y = sin.(x) + 0.05*randn(n); # regressors

Note that Julia supports UTF-8 characters, and so one can use Greek characters to improve
the readability of the code.
The first step in modelling data with a Gaussian process is to choose the mean and kernel
functions which describe the data. There are a variety of mean and kernel functions available
in the package (see Appendix A for a list). Note that all hyperparameters for the mean
and kernel functions and the observation noise, σ, are given on the log scale. The Gaussian
process is represented by an object of type GP and constructed from the observation data, a
mean function and kernel, and optionally the observation noise.
# Select mean and covariance function
julia> mZero = MeanZero() # Zero mean function
julia> kern = SE(0.0,0.0) # Sqaured exponential kernel
julia> logObsNoise = -1.0 # log standard deviation of observation noise
julia> gp = GP(x,y,mZero,kern,logObsNoise) # Fit the GP

For this example we have used a zero mean function and squared exponential kernel with
signal standard deviation and length scale parameters equal to 1.0 (recalling that inputs are
on the log scale). After fitting the GP, a summary output is produced which provides some
basic information on the GP object, including the type of mean and kernel functions used, as
well as returning the value of the marginal log-likelihood eq. (8). Once the user has applied
the GP function to the the data, a summary of the GP object is printed.
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GP Exact object:
Dim = 1
Number of observations = 10
Mean function:
Type: GaussianProcesses.MeanZero, Params: Any[]
Kernel:
Type: GaussianProcesses.SEIso, Params: [0.0,0.0]
Input observations =
[5.66072 1.67222 ... 6.08978 3.39451]
Output observations = [-0.505287,1.02312,0.616955,-0.777658,-0.875402, ...
Variance of observation noise = 0.1353352832366127
Marginal Log-Likelihood = -6.719

Once we have fitted the GP function to the data we can calculate the predicted mean and
variance of the function at unobserved points {x∗, y∗}, conditional on the observed data
D = {y,X}. This is done with the predict_y function. We can also calculate the predictive
distribution for the latent function f∗ using the predict_f function. The predict_y function
returns the mean vector µ(x∗) and covariance matrix Σ(x∗,x∗′) of the predictive distribution
in eq. (7) (or variance vector if full_cov=false).

julia> x = 0:0.1:2π # a sequence between 0 and 2π with 0.1 spacing
julia> µ, Σ = predict_y(gp,x);

Plotting one and two-dimensional GPs is straightforward and in the package we utilise the
recipes approach to plotting graphs from the Plots.jl3 package. Plots.jl provides a general in-
terface for plotting with several different backends including PyPlot.jl4, Plotly.jl5 and GR.jl6.
The default plot function plot(gp) outputs the predicted mean and variance of the function
(i.e., uses predict_f in the background), with the uncertainty in the function represented by
a confidence ribbon (set to 95% by default). All optional plotting arguments are given after
the ; symbol.

julia> using Plots
julia> pyplot() # Optionally select a plotting backend
# Plot the GP
julia> plot(gp; xlabel="x", ylabel="y",

title="Gaussian process", legend=false, fmt=:png)

The parameters θ are optimised using the Optim.jl package (see the right-hand side of Figure
3). This offers users a range of optimisation algorithms which can be applied to estimate
the parameters using maximum likelihood estimation. Gradients are available for all mean
and kernel functions used in the package and therefore it is recommended that the user
utilises gradient-based optimisation techniques. As a default, the optimize! function uses
the L-BFGS solver, however, alternative solvers can be applied and the user should refer
to the Optim.jl documentation for further details. For highly non-convex models, gradient-
based methods will only converge to a local optimum. In these settings, a popular pragmatic

3http://docs.juliaplots.org/latest/
4https://github.com/JuliaPy/PyPlot.jl
5https://plot.ly/julia/
6https://github.com/jheinen/GR.jl
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Figure 2: One dimensional Gaussian process regression with initial kernel parameters (left)
and optimised parameters (right).

solution is to run the optimizer multiple times for different initial parameter values and then
choose the best parameter set from these multiple runs.
julia> optimize!(gp) #Optimise the parameters

Results of Optimization Algorithm
* Algorithm: L-BFGS
* Starting Point: [-1.0,0.0,0.0]
* Minimizer: [-2.683055260944582,0.4342151847965596, ...]
* Minimum: -4.902989e-01
* Iterations: 9
* Convergence: true
* |x - x'| < 1.0e-32: false
* |f(x) - f(x')| / |f(x)| < 1.0e-32: false
* |g(x)| < 1.0e-08: true
* f(x) > f(x'): false
* Reached Maximum Number of Iterations: false
* Objective Function Calls: 38
* Gradient Calls: 38

Parameters can be estimated using a Bayesian approach, where instead of maximising the
log-likelihood function, we can approximate the marginal posterior distribution p(θ, σ | D) ∝
p(D |θ, σ)p(θ, σ). We use MCMC sampling (specifically HMC sampling) to draw samples
from the posterior distribution with the mcmc function. Prior distributions are assigned to
the parameters of the mean and kernel parameters through the set_priors! function. The
log-noise parameter σ is set to a non-informative prior p(σ) ∝ 1. A wide range of prior
distributions are available through the Distributions.jl package. Further details on the MCMC
sampling of the package is given in Section 4.1.
julia> using Distributions

# Uniform priors are used as default if priors are not specified
julia> set_priors!(kern, [Normal(0,1), Normal(0,1)])
julia> chain = mcmc(gp)
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julia> plot(chain', label=["Noise", "SE log length", "SE log scale"])

Figure 3: Trace plots of the MCMC output for the posterior samples

The regression example above can be easily extended to higher dimensions. For the purpose
of visualisation, and without loss of generality, we consider a two-dimensional regression
example. When d > 1 (recalling that X ⊆ Rd), there is the option to either use an isotropic
(Iso) kernel or an automatic relevance determination (ARD) kernel. The Iso kernels have one
length scale parameter ` which is the same for all dimensions. The ARD kernels, however,
have different length scale parameters for each dimension. To obtain Iso or ARD kernels,
a kernel function is called either with a single length scale parameter or with a vector of
parameters. For example, below we will use the Matérn 5/2 ARD kernel, if we wanted to use
the Iso alternative instead, we would set the kernel as kern=Matern(5/2,0.0,0.0).
In this example we use a composite kernel represented as the sum of a Matérn 5/2 ARD kernel
and a squared exponential isotropic kernel. This is easily implemented using the + symbol,
or in the case of a product kernel, using the * symbol.

# Simulate data for a 2D Gaussian process
julia> n = 10 # number of data points
julia> X = 2π * rand(2, n) # inputs
julia> y = sin.(X[1,:]) .* cos.(X[2,:]) + 0.5 * rand(n) # outputs

julia> kern = Matern(5/2,[0.0,0.0],0.0) + SE(0.0,0.0) # sum of two kernels
julia> gp2 = GP(X,y,MeanZero(),kern)

GP Exact object:
Dim = 2
Number of observations = 10
Mean function:
Type: GaussianProcesses.MeanZero, Params: Any[]
Kernel:
Type: GaussianProcesses.SumKernel
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Type: GaussianProcesses.Mat52Ard, Params: [-0.0, -0.0, 0.0]
Type: GaussianProcesses.SEIso, Params: [0.0, 0.0]

Input observations =
[5.28142 6.07037 ... 2.27508 0.15818; 3.72396 2.72093 ... 3.54584 4.91657]
Output observations = [1.03981, 0.427747, -0.0330328, 1.0351, 0.889072, 0.491157, ...
Variance of observation noise = 0.01831563888873418
Marginal Log-Likelihood = -12.457

By default, the in-built plot function returns only the mean of the GP in the two-dimensional
setting. There is an optional var argument which can be used to plot the two-dimensional
variance (see Figure 3).

# Plot mean and variance
julia> p1 = plot(gp2; title="Mean of GP")
julia> p2 = plot(gp2; var=true, title="Variance of GP", fill=true)
julia> plot(p1, p2; fmt=:pdf)

Figure 4: GP mean and variance from the two-dimensional process.

The Plots.jl package provides a flexible recipe structure which allows the user to change the
plotting backend, e.g., PyPlot.jl to GR.jl. The package also provides a rich array of plotting
functions, such as contour, surface and heatmap plots.

julia> gr() # use GR backend to allow wireframe plot
julia> p1 = contour(gp2)
julia> p2 = surface(gp2)
julia> p3 = heatmap(gp2)
julia> p4 = wireframe(gp2)
julia> plot(p1, p2, p3, p4; fmt=:pdf)

4. Demos
So far we have considered Gaussian processes where the data y are assumed to follow a
Gaussian distribution centred around the latent Gaussian process function f eq. (5). As
highlighted in Section 2.2, Gaussian processes can easily be extended to model non-Gaussian
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Figure 5: Two-dimensional plot of the GP mean with a range of available plotting options.
Clockwise from the top left: contour, surface, wireframe and heatmap plots

data by assuming that the data are conditional on a latent Gaussian process function. This
approach has been widely applied, for example, in machine learning for classification problems
(Williams and Barber 1998a) and in geostatistics for spatial point process modelling (Møller,
Syversveen, and Waagepetersen 1998). In this section, we will show how the GaussianPro-
cesses.jl package can be used to fit Gaussian process models for binary classification, time
series and count data. The code for all examples is also available in a Notebook format7.

4.1. Binary classification

In this example we show how the approximate GP function can be used for supervised learning
classification with MCMC used to estimate the latent process. We use the Crab dataset from
the R package MASS. In this dataset we are interested in predicting whether a crab is of
colour form blue or orange. Our aim is to perform a Bayesian analysis and calculate the
posterior distribution of the latent GP function f and parameters θ from the training data
{X,y}.

julia> using GaussianProcesses, RDatasets, Random
julia> Random.seed!(113355)

julia> crabs = dataset("MASS","crabs"); # load the data
julia> crabs = crabs[shuffle(1:size(crabs)[1]), :]; # shuffle the data

julia> train = crabs[1:div(end,2),:]; # training data
julia> y = Array{Bool}(undefsize(train)[1]); # response

7https://github.com/STOR-i/GaussianProcesses.jl/tree/master/notebooks
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julia> y[train[:Sp].=="B"]=0; # convert characters to booleans
julia> y[train[:Sp].=="O"]=1;
julia> X = convert(Array,train[:,4:end]); # predictors

We assume a zero mean GP with a Matérn 3/2 kernel. We use the automatic relevance
determination (ARD) kernel to allow each dimension of the predictor variables to have a
different length scale. As this is binary classification, we use the Bernoulli likelihood,

yi ∼ Bernoulli(Φ(fi)),

where Φ : R→ [0, 1] is the cumulative distribution function of a standard Gaussian and acts
as a link function that maps the GP function to the interval [0,1], giving the probability
that yi = 1. Note that BernLik requires the observations to be of type Bool and unlike
some likelihood functions (e.g., Student-t) does not contain any parameters to be set at
initialisation.

#Select mean, kernel and likelihood function
julia> mZero = MeanZero(); # Zero mean function
julia> kern = Matern(3/2,zeros(5),0.0); # Matern 3/2 ARD kernel
julia> lik = BernLik(); # Bernoulli likelihood for binary data {0,1}

We fit the Gaussian process using the general GP function. This function is a shorthand for the
GPA function, which is used to generate approximations of the latent function using MCMC
or variational inference when the likelihood is non-Gaussian.

julia> gp = GP(X',y,mZero,kern,lik) # Fit the Gaussian process model

GP Approximate object:
Dim = 5
Number of observations = 100
Mean function:
Type: GaussianProcesses.MeanZero, Params: Float64[]
Kernel:
Type: GaussianProcesses.Mat32Ard, Params: [-0.0,-0.0,-0.0,-0.0,-0.0,0.0]
Likelihood:
Type: GaussianProcesses.BernLik, Params: Any[]
Input observations =
[16.2 11.2 ... 11.6 18.5; 13.3 10.0 ... 9.1 14.6; ... ; 41.7 26.9 ... 28.4 42.0;
Output observations = Bool[false,false,false,false,true,true,false,true, ...
Log-posterior = -161.209

As we are taking a Bayesian approach to infer the latent function and model parameters, we
shall assign prior distributions to the unknown variables. As outlined in the general modelling
framework (9), the latent function f is reparameterised as f = Lθv, where v ∼ N (0n, In) is
the prior on the transformed latent function. Using the Distributions.jl package we can assign
normal priors to each of the Matérn kernel parameters. If the mean and likelihood functions
also contained parameters then we could set these priors in the way same using gp.mean and
gp.lik in place of gp.kernel, respectively.

julia> set_priors!(gp.kernel,[Distributions.Normal(0.0,2.0) for i in 1:6])
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Samples from the posterior distribution of the latent function and parameters f , θ | D, are
drawn using MCMC sampling. The mcmc function uses a Hamiltonian Monte Carlo sampler
(Neal 2010). By default, the function runs for nIter=1000 iterations and uses a step-size of
ε = 0.01 with a random number of leap-frog steps L between 5 and 15. Setting Lmin=1 and
Lmax=1 gives the MALA algorithm (Roberts and Rosenthal 1998). Additionally, after the
MCMC sampling is complete, the Markov chain can be post-processed using the burn and
thin arguments to remove the burn-in phase (e.g., first 100 iterations) and thin the Markov
chain to reduce the autocorrelation by removing values systematically (e.g., if thin=5 then
only every fifth value is retained).
julia> samples = mcmc(gp; ε=0.01, nIter=10000, burn=1000, thin=10);

We assess the predictive accuracy of the fitted model against a held-out test dataset
julia> test = crabs[div(end,2)+1:end,:]; # select test data
julia> yTest = Array{Bool}(undef,size(test)[1]); # test response data
julia> yTest[test[:Sp].=="B"]=0; # convert characters to booleans
julia> yTest[test[:Sp].=="O"]=1;
julia> xTest = convert(Array,test[:,4:end]);

Using the posterior samples {f (i),θ(i)}Ni=1 from p(f ,θ | D) we can make predictions about
y∗, as in eq. (11), using the predict_y function and sample predictions conditional on the
MCMC samples. We do this by looping over the N posterior samples and for each iteration
i we fix the GP function f (i) and hyperparameters θ(i) to their posterior sample value.
julia> ymean = Array{Float64}(undef,size(samples,2),size(xTest,1));

julia> for i in 1:size(samples,2)
set_params!(gp,samples[:,i]) # Fix GP at posterior values
update_target!(gp) # Update the GP function with the new parameters
ymean[i,:] = predict_y(gp,xTest')[1] # Store the predictive mean

end

For each of the posterior samples we plot (see Figure 6) the predicted observation y∗ (given
as lines) and overlay the true observations from the held-out data (circles).
julia> using Plots
julia> gr()

julia> plot(ymean',leg=false)
julia> scatter!(yTest)

4.2. Time series

Gaussian processes can be used to model nonlinear time series. We consider the problem
of predicting future concentrations of CO2 in the atmosphere. The data are taken from the
Mauna Loa observatory in Hawaii which records the monthly average atmospheric concen-
tration of CO2 (in parts per million) between 1958 to 2015. For the purpose of testing the
predictive accuracy of the Gaussian process model, we fit the GP to the historical data from
1958 to 2004 and optimise the parameters using maximum likelihood estimation.
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Figure 6: Posterior samples overlayed with predicted observations from a held-out test dataset.

We employ a seemingly complex kernel function to model these data which follows the kernel
structure given in (Rasmussen and Williams 2006, Chapter 5). The kernel comprises of
simpler kernels with each kernel term accounting for a different aspect in the variation of
the data. For example, the Periodic kernel captures the seasonal effect of CO2 absorption
from plants. A detailed description of each kernel contribution is given in (Rasmussen and
Williams 2006, Chapter 5).

julia> using GaussianProcesses, CSV

#Location of data within the package
julia> data_dir = joinpath(dirname(dirname(pathof(GaussianProcesses))),

"notebooks/data")

#Load the data (the data is in the package directory)
julia> data = CSV.read(joinpath(data_dir, "CO2_data.csv"),header=0)
julia> year = data[:,1]; co2 = data[:,2];

# Split the data into training and testing data
julia> xtrain = year[year.<2004]; ytrain = co2[year.<2004];
julia> xtest = year[year.>=2004]; ytest = co2[year.>=2004];

# Kernel is represented as a sum of kernels
julia> kernel = SE(4.0,4.0) + Periodic(0.0,1.0,0.0) * SE(4.0,0.0)

+ RQ(0.0,0.0,-1.0) + SE(-2.0,-2.0);
julia> gp = GP(xtrain,ytrain,MeanZero(),kernel,-2.0) #Fit the GP
julia> optimize!(gp) #Find the maximum likelihood estimation
julia> µ, Σ = predict_y(gp,xtest);

julia> using Plots #Load the Plots.jl package with the pyplot backend
julia> pyplot()

julia> plot(xtest,µ,ribbon=Σ, title="Time series prediction",
label="95% predictive confidence region",fmt=:pdf)
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julia> scatter!(xtest,ytest,label="Observations")

The predictive accuracy of the Gaussian process is plotted in Figure 7. Over the ten year
prediction horizon the GP is able to accurately capture both the trend and seasonal variations
of the CO2 concentrations. Arguably, the GP prediction gradually begins to underestimate
the CO2 concentration. The accuracy of the fit could be further improved by extending the
kernel function to include additionally terms. Recent work on automatic structure discovery
(Duvenaud, Lloyd, Grosse, Tenenbaum, and Ghahramani 2013) could be used to optimise the
modelling process.

Figure 7: Predictive mean and 95% confidence interval for CO2 measurements at the Mauna
Loa observatory from 2004 to 2015

4.3. Count data

Gaussian process models can be incredibly flexible for modelling non-Gaussian data. One such
example is in the case of count data y, which can be modelled with a Poisson distribution,
where the log-rate parameter can be modelled with a latent Gaussian process.

y | f ∼
n∏
i=1

λyi
i exp{−λi}

yi!
,

where λi = exp(fi) and fi is the latent Gaussian process.
The package contains two methods for performing inference for Gaussian processes with
non-Gaussian data: MCMC and variational inference, as described in Section 2.2. To demon-
strate the performance of both algorithms, we will simulate 20 observations such that y ∼
Poisson (exp (f(xi))), where f(xi) = 2 cos(2xi) and xi ∈ [−3, 3].
julia> using GaussianProcesses, Distributions, Plots, Random
julia> pyplot()

julia> n = 20
julia> X = collect(range(-3,stop=3,length=n));
julia> f = 2*cos.(2*X);
julia> Y = [rand(Poisson(exp.(f[i]))) for i in 1:n];
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#GP set-up
julia> k = Matern(3/2,0.0,0.0) # Matern 3/2 kernel
julia> l = PoisLik() # Poisson likelihood

We can compare the accuracy of the MCMC versus the VI approximation by fitting an
approximate GP using both methods.
# Define MCMC and VI models respectively
julia> gpmc = GP(X, vec(Y), MeanZero(), k, l)
julia> gpvi = GP(X, vec(Y), MeanZero(), k, l);

# Set the priors and sample from the posterior for the MCMC model
julia> set_priors!(gpmc.kernel,[Normal(-2.0,4.0),Normal(-2.0,4.0)])
julia> set_priors!(gpvi.kernel,[Normal(-2.0,4.0),Normal(-2.0,4.0)]);

The MCMC algorithm is a sampling-based approach and so we use the mcmc() function to
draw samples from the posterior distribution. Conditional on these posterior samples we can
also draw samples from the predictive distribution
# Perform MCMC and sample posterior realisation
julia> samples = mcmc(gpmc; nIter=10000);

julia> xtest = range(minimum(gpmc.x),stop=maximum(gpmc.x),length=50);
julia> ymean = [];
julia> fsamples = Array{Float64}(undef,size(samples,2), length(xtest));
julia> for i in 1:size(samples,2)

set_params!(gpmc,samples[:,i])
update_target!(gpmc)
push!(ymean, predict_y(gpmc,xtest)[1])
fsamples[i,:] = rand(gpmc, xtest)

end

The variational inference approach for parameter estimation relies on optimisation rather
than sampling to approximate the posterior. Using the ELBO (13) function as an objective,
we can optimise the free variational parameters to maximise the ELBO function in a similar
manner as we maximise the marginal log-likelihood function to optimise the GP parameters
in the exact Gaussian processes setting (see Section 3 for an example).
# Optimise variational distribution Q and sample posterior realisations
julia> Q = vi(gpvi);

julia> xtest = range(minimum(gpmc.x),stop=maximum(gpmc.x),length=50);
julia> nsamps = 500
julia> ymean = [];
julia> visamples = Array{Float64}(undef, nsamps, length(xtest))

julia> for i in 1:nsamps
visamples[i, :] = rand(gpvi, xtest, Q);
push!(ymean, predict_y(gpvi, xtest)[1]);

end
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We can plot the predictive posterior samples using both MCMC and VI to give a visual
comparison of the two methods.

# Plot realisations of MCMC and VI Gaussian processes
julia> q10 = [quantile(fsamples[:,i], 0.1) for i in 1:length(xtest)]
julia> q50 = [quantile(fsamples[:,i], 0.5) for i in 1:length(xtest)]
julia> q90 = [quantile(fsamples[:,i], 0.9) for i in 1:length(xtest)]
julia> plot(xtest,exp.(q50),ribbon=[exp.(q10), exp.(q90)],leg=true,

fmt=:png, label="quantiles", title = "MCMC Inference")
julia> plot!(xtest,mean(ymean), label="posterior mean")
julia> xx = range(-3,stop=3,length=1000);
julia> f_xx = 2*cos.(2*xx);
julia> plot!(xx, exp.(f_xx), label="truth")
julia> scatter!(X,Y, label="data")

julia> q10 = [quantile(visamples[:,i], 0.1) for i in 1:length(xtest)];
julia> q50 = [quantile(visamples[:,i], 0.5) for i in 1:length(xtest)];
julia> q90 = [quantile(visamples[:,i], 0.9) for i in 1:length(xtest)];
julia> plot(xtest, exp.(q50), ribbon=[exp.(q10), exp.(q90)], leg=true,

fmt=:png, label="quantiles",
title="Variationally Approximate Inference")

julia> plot!(xtest, mean(ymean), label="posterior mean", w=2)
julia> xx = range(-3,stop=3,length=1000);
julia> f_xx = 2*cos.(2*xx);
julia> plot!(xx, exp.(f_xx), label="truth")
julia> scatter!(X,Y, label="data")

The results of both algorithms are presented in Figure 8. As can be seen in the left-hand
panel, MCMC offers a far richer approximation to the posterior of the Gaussian process. In
the asymptote, MCMC will in fact yield the true posterior, whereas variational inference is
not equipped with such theoretically desirable guarantees. Further, as the posterior approx-
imation is constrained to be a set of independent Gaussian distributions, it will often fail to
capture the intricate details that exist in a non-Gaussian posterior. Typically, variational
methods scaled more efficiently than MCMC as it does not require the costly evaluation of
the proposal distribution. Instead modern techniques such as stochastic optimisation and
graphics processing unit (GPU) accelerations can be incorporated into variational schemes, a
task left for future work.

4.4. Bayesian optimization

This section introduces the BayesianOptimization.jl8 package, which requires GaussianPro-
cesses.jl as a dependency. We highlight some of the memory-efficiency features of Julia and
show how Gaussian processes can be applied to optimize noisy or costly black-box objective
functions Shahriari, Swersky, Wang, Adams, and de Freitas (2016). In Bayesian optimization,
an objective function l(x) is evaluated at some points y1 = l(x1), y2 = l(x2), . . . , yt = l(xt).
A modelM(Dt), e.g., a Gaussian process, is fitted to these observations Dt = {(xi, yi)}i=1,...,t

8https://github.com/jbrea/BayesianOptimization.jl
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Figure 8: Samples from the MCMC approximated posterior (left) and variational posterior
(right) of the Gaussian process with a Poisson observation model. The points show the
simulated observations, the orange line shows the modal posterior values and the blue ribbon
shows the 10% and 90% quantile range.

and used to determine the next input point xt+1 at which the objective function should
be evaluated. The model is refitted with inclusion of the new observation (xt+1, yt+1) and
M(Dt+1) is used to acquire the next input point. With a clever acquisition of next input
points, Bayesian optimization can find the optima of the objective function with fewer function
evaluations than alternative optimization methods Shahriari et al. (2016).
Since the observed data sets in different time steps are highly correlated, Dt+1 = Dt ∪
{(xt+1, yt+1)}, it would be wasteful to refit a Gaussian process to Dt+1 without consider-
ing the model M(Dt) that was already fit to Dt. To avoid refitting, GaussianProcesses.jl
includes the function ElasticGPE that creates a Gaussian process where it costs little to add
new observations. In the following example, we create an elastic and exact GP for two input
dimensions with an initial capacity for 3000 observations, and an increase in capacity for 1000
observations, whenever the current capacity limit is reached.
julia> gp = ElasticGPE(2, # two input dimensions

mean = MeanConst(0.),
kernel = SEArd([0., 0.], 5.),
logNoise = 0.,
capacity = 3000,
stepsize = 1000)

GP Exact object:
Dim = 2
Number of observations = 0
Mean function:

Type: MeanConst, Params: [0.0]
Kernel:

Type: SEArd{Float64}, Params: [-0.0, -0.0, 5.0]
No observation data

julia> append!(gp, [1., 2.], 0.4) # append observation x = [1., 2.] and y = 0.4
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GP Exact object:
Dim = 2
Number of observations = 1
Mean function:

Type: MeanConst, Params: [0.0]
Kernel:

Type: SEArd{Float64}, Params: [-0.0, -0.0, 5.0]
Input observations =

[1.0; 2.0]
Output observations = [0.4]
Variance of observation noise = 1.0
Marginal Log-Likelihood = -5.919

Under the hood, elastic GPs allocates memory for the number of observations specified with
the keyword argument capacity and uses views to select only the part of memory that is
already filled with actual observations. Whenever the current capacity c is reached, memory
for c + stepsize observations is allocated and the old data copied over. Elastic GPs uses
efficient rank-one updates of the Cholesky decomposition that holds the covariance data of
the GP.
In the following example we use Bayesian optimization on a not so costly, but noisy one-
dimensional objective function, f(x) = 0.1 · (x − 2)2 + cos(π/2 · x) + ε, where ε ∼ N (0, 1),
which is illustrated in Figure 9.

0

2

4
observations
model std

model mean
noisefree target

−6 −4 −2 0 2 4 6
0

4

8
·10−2

next acquisition
acquisition function

Figure 9: After evaluating the noisy function f(x) = 0.1 · (x − 2)2 + cos(π/2 · x) + ε, where
ε ∼ N (0, 1), at five positions five times (black dots) and fitting a Gaussian process (blue line
with red standard deviations), the expected improvement acquisition function (black line)
peaks near input value 2, where the next acquisition will occur.

julia> using BayesianOptimization, GaussianProcesses

julia> f(x) = 0.1*(x[] - 2)^2 + cos(pi/2*x[]) + randn() # noisy function

# Choose as a model an elastic GP with input dimensions 1.
julia> model = ElasticGPE(1, mean = MeanConst(0.),
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kernel = SEArd([0.], 5.), logNoise = 0.)

# Optimize the hyperparameters of the GP using maximum likelihood (ML)
# estimates every 50 steps woth bounds on the logNoise and
# bounds for the two parameters GaussianProcesses.get_param_names(model.kernel)

julia> modeloptimizer = MAPGPOptimizer(every = 50,
noisebounds = [-2., 3],
kernbounds = [[-1, 0], [4, 10]],
maxeval = 40)

julia> opt = BOpt(f, model,
ExpectedImprovement(), # type of acquisition function
modeloptimizer,
[-5.], [5.], # lower- and upperbounds
repetitions = 5, # evaluate the function 5 times
maxiterations = 200, # evaluate at 200 input positions
sense = Min, # minimize the objective function
acquisitionoptions = (maxeval = 4000, restarts = 50),
verbosity = Silent)

julia> result = boptimize!(opt)

(observed_optimum = -3.737657255325198, observed_optimizer = [2.02252],
model_optimum = -0.9836243116981216, model_optimizer = [1.97054])

BayesianOptimization.jl uses automatic differentiation tools in ForwardDiff.jl (Revels, Lubin,
and Papamarkou 2016) to compute gradients of the acquisition function (ExpectedImprovement()
in the example above). After evaluating the function at 200 positions, the global minimum
of the Gaussian process at model_optimizer = [1.99274] is close to the global minimum
of the noise-free objective function.

4.5. Sparse inputs

In this section we will demonstrate how each of the sparse approximations detailed in Section
2.3 can be used. The performance of each sparse method will be demonstrated by fitting a
sparse Gaussian process to a set of n = 5000 data points that are simulated from f(x) =
|x− 5| cos(2x),

julia> using Random

# The true function we will be simulating from is,
julia> function fstar(x::Float64)

return abs(x-5)*cos(2*x)
end

julia> σy = 10.0 # observation noise
julia> n=5000 # number of observations
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julia> Random.seed!(1) # for reproducibility
julia> Xdistr = Beta(7,7)
julia> εdistr = Normal(0,σy)
julia> x = rand(Xdistr, n)*10
julia> X = Matrix(x')
julia> Y = fstar.(x) .+ rand(εdistr,n)

The set of inducing point locations Xu used here will be consistent for each method and are
defined explicitly.
julia> Xu = Matrix(quantile(x, [0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7, 0.98])')

With the inducing point locations defined, we can now fit each of the sparse Gaussian process
approximations. The practitioner is free to select from any of the sparse approaches outlined
in Section 2.3, each of which can be invoked using the below syntax. The only syntactic
deviation is the full scale approach, which requires the practitioner to choose the covariance
matrix’s local blocks. In this example,m blocks have been created, with a one-to-one mapping
between block and inducing point locations.
# Subset of Regressors
julia> gp_SOR = GaussianProcesses.SoR(X, Xu, Y, MeanConst(mean(Y)),

k, log(σy));

# Determinetal Training Conditional
julia> gp_DTC = GaussianProcesses.DTC(X, Xu, Y, MeanConst(mean(Y)),

k, log(σy));

# Fully Independent Training Conditional
julia> gp_FITC = GaussianProcesses.FITC(X, Xu, Y, MeanConst(mean(Y)),

k, log(σy));

# Full Scale
julia> inearest = [argmin(abs.(xi.-Xu[1,:])) for xi in x]
julia> blockindices = [findall(isequal(i), inearest) for i in 1:size(Xu,2)]

julia> GaussianProcesses.FSA(X, Xu, blockindices, Y, MeanConst(mean(Y)),
k, log(σy));

Prediction is handled in the same way as a regular Gaussian process, using the predict_f
function.
As discussed in Section 2.3, each sparse method yields a computational acceleration, however,
this often comes at the cost of poorer predictive inference, as shown in Figure 10. This is
no more apparent than in the SoR approach, where the posterior predictions are excessively
confident, particularly beyond the range of the inducing points. Both the DTC and FITC are
more conservative in the predictive uncertainty as the process moves away from the inducing
points’ location, while sacrificing little in terms of computational efficiency9 - see Table 1 for
computational timing results.

9All simulations run on a Linux machine with a 1.60GHz i5-8250U CPU and 16GB RAM.
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(a) SoR (b) DTC

(c) FITC (d) Full Scale

Figure 10: Comparison of sparse approximations to an exact Gaussian process. The verti-
cal purple lines in panel d indicate the dividing lines between blocks where an information
discontinuity will occur.

CPU Runtime (seconds) Memory Allocation (MiB)
Exact 1.417324 572.320
SoR 0.004076 2.032
DTC 0.003104 2.033
FITC 0.022644 3.902
Full Scale 0.383900 156.025

Table 1: The computational efficiency of fitting each of sparse approximations to the training
data.
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Kernel GaussianProcesses.jl GPy GPML
fix(SE(0.0,0.0), σ) 730 1255
SE(0.0,0.0) 800 1225 1131
Matern(1/2,0.0,0.0) 836 1254 1246
Masked(SE(0.0,0.0), [1])) 819 1327 1075
RQ(0.0,0.0,0.0) 1252 1845 1292
SE(0.0,0.0) + RQ(0.0,0.0,0.0) 1351 1937 1679
Masked(SE(0.0,0.0), [1])
+ Masked(RQ(0.0,0.0,0.0), collect(2:10)) 1562 1893 1659

(SE(0.0,0.0) + SE(0.5,0.5)) * RQ(0.0,0.0,0.0) 1682 1953 2127
SE(0.0,0.0) * RQ(0.0,0.0,0.0) 1614 1929 1779
(SE(0.0,0.0) + SE(0.5,0.5)) * RQ(0.0,0.0,0.0) 1977 2042 2206

Table 2: Benchmark results, ordered by running time in GaussianProcesses.jl. All times are
in milliseconds, and the fastest run-time is bolded. The kernels are labelled with their function
name from the package: SE is a squared exponential kernels; RQ is a rational quadratic kernel;
Matern(1/2,..) is a Matérn 1/2 kernel; sum and product kernels are indicated with + and
*; fix(SE(0.0,0.0), σ) has a fixed variance parameter (not included in the gradient); and
Masked(k,[dims]) means the k kernel is only applied to the covariates dims.

5. Comparison to other packages
In this section we compare the performance of GaussianProcesses.jl to two leading Gaussian
process inference packages for the fundamental task of computing the log-likelihood, and its
gradient, in a simulated problem with a Gaussian likelihood. We use version 4.1 of the MAT-
LAB package GPML (Rasmussen and Nickisch 2010, 2017), which was originally written to
demonstrate the algorithms in Rasmussen and Williams (2006), and has since become a ma-
ture package, often integrating new algorithms from the latest research on Gaussian processes.
The package is mostly written in pure MATLAB, except for a small number of optimisation
and linear algebra routines implemented in C. We also compare to version 1.9.2 of GPy (GPy
since 2012), a python package dedicated to Gaussian processes, with core components written
in cython. We first simulated n = 3, 000 standard normal observations, each with 10 co-
variates also simulated as standard normals. We reuse the same simulated dataset for every
benchmark. In each package, we benchmark the function that updates the log-likelihood and
its gradient given a set of parameters, by running it 10 times and reporting the duration of
the shortest run. We compare the packages’ performance for a variety of covariance kernels,
with all variance, length-scale, or shape parameters set to 1.0. The results are presented in
Table 2, and the benchmark code for each package is available with the GaussianProcesses.jl
source code.
We find that GaussianProcesses.jl is highly competitive with GPML and GPy. It has the
fastest run-times for all of the 10 kernels considered, including the additive and product
kernels.

6. Future developments
GaussianProcesses.jl is a fully formed package providing a range of kernel, mean and likelihood
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functions, and inference tools for Gaussian process modelling with Gaussian and non-Gaussian
data types. The inclusion of new features in the package is ongoing and the development of
the package can be followed via the Github page10. The following are package enhancements
currently under development:

• Automatic differentiation - The package provides functionality for maximum likelihood
estimation of the hyperparameters, or Bayesian inference using an MCMC algorithm.
In both cases, these functions require gradients to be calculated for optimisation or
sampling. Currently, derivatives of functions of interest (e.g., log-likelihood function)
are hand-coded for computational efficiency. However, recent tests have shown that
calculating these gradients using automatic differentiation does not incur a significant
additional computational overhead. In the future, the package will move towards imple-
menting all gradient calculations using automatic differentiation. The main advantage
of this approach is that users will be able to add new functionality to the package more
easily, for example creating a new kernel functions.

• Gaussian Process Latent Variable Model (GPLVM) - Currently the package is well
suited for supervised learning tasks, whereby an observational value exists for each
input. GPLVMs are a probabilistic dimensionality reduction method that use Gaus-
sian processes to learn a mapping between an observed, possibly very high-dimensional,
variable and a reduced dimension latent space. GPLVMs are a popular method for
dimensionality reduction as they transcend principal component analysis by learning a
non-linear relationship between the observations and corresponding latent space. Fur-
thermore, a GPLVM is also able to express the uncertainty surrounding the structure
of the latent space. In the future, the package will support the original GPLVM of
Lawrence (2004), and its Bayesian counterpart Titsias and Lawrence (2010).
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Function
D
escription

p(y
i |
f
i ,θ)=

Transform
θ

=
BernLik

Bernoulli-
y
i ∈
{0
,1}

g
y

i
i

(1
−
g
i ) (1−

y
i )

g
i =

Φ
(f
i )

f
i

BinLik
Binom

ial-
y
i ∈
{0
,1
,...,n}

y
i !

n!(n−
y

i )! g
y

i
i

(1
−
g
i ) (1−

y
i )

g
i =

exp(f
i )

1+
exp(f

i )
f
i

ExpLik
Exponential-

y
i ∈

R
+

g
i exp(−

g
i y
i )

g
i =

exp(−
f
i )

f
i

GaussLik
G
aussian

-
y
i ∈

R
1
/ √

2
π
σ

2exp
(−

(y
i −

f
i ) 2/2

σ
2)

f
i

(f
i ,log

σ)
PoisLik

Poisson
-
y
i ∈

N
0

g
y

i
i

exp(−
g
i )/y

i !
g
i =

exp(f
i )

f
i

StuTLik
Student-t

-
y
i ∈

R
Γ((ν+

1)/2)
√

Γ(ν
/2)π

ν
σ (1

+
1ν ( (y

i −
f

i )
σ

) 2) −
(ν+

1)/2
f
i

(f
i ,log

σ)

Table
4:

List
ofavailable

likelihood
functions

Function
D
escription

m
θ (x)=

θ
=

MeanZero
Zero

0
∅

MeanConst
C
onstant

θ,
θ

=
(θ1 ,...,θ

d )
θ

MeanLin
Linear

x
>
θ,

θ
=

(θ1 ,...,θ
d )

θ

MeanPoly
Polynom

ial(ofdegree
D
) ∑

Dj=
1
θ
j x
j,

θ
j =

(θ1
j ,...,θ

dj )
θ
j
∀
j
∈
{1
,2
,...,D

}
+

Sum
∑
i m

θ (x)
∅

*
Product

∏
i m

θ (x)
∅

Table
5:

List
ofavailable

m
ean

functions

Function
D
escription

q(f|u)=
q(f ∗|u)=

SoR
Subset

ofregressors
N

(K
f,u K

−
1

u
,u u

,0)
N

(K
∗
,u K

−
1

u
,u u

,0)
DTC

D
eterm

inistic
Training

C
onditional

N
(K

f,u K
−

1
u
,u u

,0)
N

(K
∗
,u K

−
1

u
,u u

,K
∗
,∗ −

Q
∗
,∗ )

FITC
Fully

Independent
Training

C
onditional

N
(K

f,u K
−

1
u
,u u

,diag [K
f,f −

Q
f,f ])

N
(K
∗
,u K

−
1

u
,u u

,K
∗
,∗ −

Q
∗
,∗ )

FSA
FullScale

A
pproxim

ation
N

(K
f,u K

−
1

u
,u u

,blockdiag [K
f,f −

Q
f,f ])

N
(K
∗
,u K

−
1

u
,u u

,K
∗
,∗ −

Q
∗
,∗ )

Table
6:

List
ofavailable

sparse
approxim

ations
and

their
im

posed
conditionaldistributions
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