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Abstract
The complex nature of agent-based modeling may reveal more descriptive accuracy 
than analytical tractability. That leads to an additional layer of methodological issues 
regarding empirical validation, which is an ongoing challenge. This paper offers a 
replicable method to empirically validate agent-based models, a specific indicator of 
“goodness-of-validation” and its statistical distribution, leading to a statistical test in 
some way comparable to the p value. The method involves an unsupervised machine 
learning algorithm hinging on cluster analysis. It clusters the ex-post behavior of 
real and artificial individuals to create meso-level behavioral patterns. By comparing 
the balanced composition of real and artificial agents among clusters, it produces 
a validation score in [0, 1] which can be judged thanks to its statistical distribu-
tion. In synthesis, it is argued that an agent-based model can be initialized at the 
micro-level, calibrated at the macro-level, and validated at the meso-level with the 
same data set. As a case study, we build and use a mobility mode-choice model 
by configuring an agent-based simulation platform called BedDeM. We cluster the 
choice behavior of real and artificial individuals with the same ex-ante given char-
acteristics. We analyze these clusters’ similarity to understand whether the model-
generated data contain observationally equivalent behavioral patterns as the real 
data. The model is validated with a specific score of 0.27, which is better than about 
95% of all possible scores that the indicator can produce. By drawing lessons from 
this example, we provide advice for researchers to validate their models if they have 
access to micro-data.
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Introduction

Modeling economies as complex systems has been attracting many scholars (Hamill 
and Gilbert 2016). Agent-based (AB) models are one of the modeling tools for com-
plex systems, which can provide a realistic way to model economies; thus, their 
usage has been growing in the field of economics (as well as in other disciplines) 
during the last 3 decades (Fagiolo et al. 2019; Hamill and Gilbert 2016). AB models 
consist of autonomous and decentralized entities (agents); each can have dynamic 
behavior and heterogeneous characteristics (Geanakoplos et al. 2012). The dynamic 
behavior of heterogeneous agents is governed by decision-making mechanisms 
(rules) derived from established empirical and theoretical foundations (Dawid et al. 
2014). Thus, agents do not necessarily make decisions based on the assumption of a 
representative agent who is intertemporally optimizing an objective function under 
rational expectations (Colander et al. 2008). The uses of these models in economics 
are collected under a common umbrella that we refer to as agent-based computa-
tional economics (ACE) (Tesfatsion 2002).

AB models have certain features that distinguish them from neoclassical ones 
(Arthur 1994). Economists often point to such features as a reason to use them 
(Hamill and Gilbert 2016). First of all, AB models have a bottom–up perspec-
tive. The macro-dynamics in these models are the emergent properties of micro-
level interactions and agents’ behavior, which is not constrained with equilibrium 
and hyper-rationality (Heckbert et  al. 2010). These emergent properties at the 
macro-level can be used to analyze complex and decentralized systems quantita-
tively (Duffy 2006). As Arthur (2006) states, emerging properties often feedback 
micro-level decisions, which leads to a perpetual novelty in the behavior. Thanks 
to the bottom–up perspective, AB models are capable of modeling each individu-
al’s micro-behavior separately, which allows us to have a high level of heterogene-
ity (Dawid et al. 2012). Secondly, AB models can contain non-trivial interactions, 
which were governed by ex-ante defined rules of behavior. These interactions are 
often non-linear, which makes tracing of the emergent macro-patterns harder (Win-
drum et al. 2007). The interactions can lead to having information and adaptation, 
which make AB models realistic, as individual decisions (in real world) are largely 
based on incomplete information and preferences, which indicates that decision-
making can evolve in case new information comes (Farmer and Foley 2009).

It is an asset for AB models (like other economic models) demonstrating how 
well the model Data Generating Process (mDGP) represents the real-world Data 
Generation Process (rwDGP) (Fagiolo et al. 2007; Klügl 2008; Bianchi et al. 2007; 
Murray-Smith 2015; Beisbart and Saam 2019). One way to do that is to compare 
the data generated by the mDGP and the rwDGP statistically; we call this proce-
dure empirical validation (Windrum et  al. 2007). AB models favor more descrip-
tive accuracy than analytical tractability, contrary to neoclassical ones due to the 
potential existence (by no means necessary) of non-linearities, macro-micro feed-
back, heterogeneous interactions (Fagiolo et al. 2007). That makes the relationship 
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and the comparison of AB model-generated data and real data problematic, which 
leads to complexity and consequently, methodical problems regarding the empirical 
validation of AB models (Heckbert et  al. 2010). Although there are contributions 
in the last decade, such as Barde (2020), Lamperti (2018a), and Guerini and Mon-
eta (2017), we still do not have standardized empirical validation methods for AB 
models that inevitably lead to a lack of robustness in terms of validation (Fagiolo 
et al. 2019). That was recognized by AB modelers themselves and shown as one of 
the reasons for the reluctance of neoclassical economists to move AB camp, even 
though they recognized the significance of AB critique (e.g., heterogeneity, learning, 
interactions, etc.) and try to update their models accordingly (Windrum et al. 2007).

Previous research recommends the involvement of machine learning techniques 
as for empirical validation methods (Fagiolo et al. 2019; Barde and Van Der Hoog 
2017), which allows us to perform more thorough comparisons of mDGP gener-
ated data and rwDGP generated data. The present paper has been motivated by this 
research and proposes an unsupervised machine-learning algorithm,1 specifically 
cluster analysis (Russell and Norvig 2002), as an empirical validation method. The 
method focuses on the AB models that use micro-data as input and produce results 
accordingly to address questions from the real world. It aims to compare model-
generated data and real data at the meso-level. To do this, it suggests clustering the 
ex-post behavior of real individuals and artificial agents, who have the same ex-ante 
given characteristics. Then, it quantitatively assesses how well the clusters are over-
lapping in a multidimensional latent space. Thus, the behavioral patterns in model-
generated data and real data are compared. The method is discussed in the next sec-
tion in detail. To apply the method as a case study, we build an AB model through 
configuring an AB simulation platform called Behavior Driven Demand Model 
(BedDeM) (Nguyen and Schumann 2019). The model and its features are explained 
in “Case study” thoroughly.

The rest of the paper is organized as follows. In “Methods”, which consists of 
three subsections, we first discuss the theoretical background of the validation of AB 
models in light of existing literature. Then, we touch on the recently introduced vali-
dation approaches. After that, we explain the proposed method and discuss how it 
could expand the existing literature. In “Case study”, we build an AB model to apply 
the method as a case study. “Results” shows and interprets the validation results of 
the case study. “Discussion” discusses the value of the method and its applicability 
to other AB models. It gives practical advice for the researchers who want to apply 
this validation method to their AB models. It also discusses what kind of AB models 
could be assessed by the method and provide some example models for the sake of 
clarity. Finally, the paper ends with the future works and conclusions sections.

1  Unsupervised machine learning detects previously undetected patterns in a data set with no pre-exist-
ing labels and with a minimum of human supervision. Cluster analysis is considered as one of the most 
common unsupervised machine-learning algorithms (Kassambara 2017).
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Methods

Theoretical background of validation of AB models

In this section, we follow a general-to-specific way to discuss the validation of AB 
models in the light of existing literature. First, we introduce the types of validation 
techniques (stages) for AB models in general terms. We utilize a procedure to vali-
date AB models, which was introduced by Klügl (2008), and discuss the validation 
stages that are ordered in that procedure. Then, we discuss one of these stages (the 
last one) called empirical validation in detail, since we introduce a novel method for 
that stage in this paper.

One of the major valuable aspects of using AB models is to explain and under-
stand a real-world phenomenon that is costly and sometimes difficult to analyze in 
real world (e.g., field experiments, real laboratory experiments, etc.) (Xiang et  al. 
2005). As Farmer and Foley (2009, p. 686) state, “AB models allow for the creation 
of a kind of artificial (virtual) universe in which many players act in complex and 
realistic ways”. Thus, such models enable to analyze—in silico—the future status 
of the original system under novel conditions. Assessing how well the artificial uni-
verse (i.e., AB models) represents a proportion of the original system (i.e., a part of 
the real world that is aimed to be modeled) is an asset for models that potentially 
makes the modeling results more credible (Klügl 2008). This assessment is called 
validation in the literature (Windrum et al. 2007; Bianchi et al. 2007). If the model 
is validated, the answers derived from the model can be utilized to answer questions 
directed to the original system (Klügl 2008).

Klügl (2008) introduced a framework (see Fig.  1) that places different valida-
tion stages in an order to validate AB models. Some stages in the framework are 

Fig. 1   A general procedure to validate AB models (Klügl 2008)
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also discussed in Balci (1994) separately (i.e., without being a part of a framework). 
The framework starts with face validity. In that stage, the modelers are supposed 
to contact to domain experts to assess whether the model behaves reasonably. The 
experts provide subjective judgments on the accuracy of the model. Sensitivity 
analysis comes next, where the impact of different parameters on the model output 
is assessed. It is assumed that the relationship between a parameter and the output 
occurring in the model should occur similarly in the original system as well. Once 
such impacts are analyzed, then the appropriate values are assigned in calibration 
for the parameters. Calibration aims for finding the “optimal” parameter set, which 
resembles the output of the model to the output from the original system. In general, 
AB model parameters are calibrated to aggregated (macro) patterns (Guerini and 
Moneta 2017). The plausibility check comes after calibration, where human experts 
assess the plausibility of the model outcome (e.g., dynamics and trends of the dif-
ferent output values of model runs). It is technically the same as the previously dis-
cussed face validity, as Klügl (2008) states. Finally, statistical tests are applied to 
compare model-generated data and real data as named empirical validation.

Empirical validation is the last stage of the procedure in Fig. 1 and aims to com-
pare the data coming from the rwDGP and the mDGP statistically. Assume that we 
have real data generated by the rwDGP, which contains different data points in a 
time-series. The data points can be at the micro-level as the expression in (1) denotes 
(Pyka and Fagiolo 2007; Windrum et al. 2007), where I represents the population of 
individuals whose heterogeneous behaviors are observed and contained in the vector 
of z in a finite time-series of n. For instance, for a mobility mode-choice model, z 
would be individual level mobility mode choice behavior:

The data points that the rwDGP generates at the micro-level can be aggregated to 
obtain macro-data points, as denoted in (2) (Pyka and Fagiolo 2007; Windrum et al. 
2007), where the vector of Z contains macro-data points of a population (i.e., I) over 
a time series. For instance, a household’s consumption behavior is represented by 
a micro-level data point, while the aggregation of all households in a population 
I is represented by a macro-level data point, which can then be used as a compo-
nent of the GDP. Modelers aim to approximate values for the vector of z or Z for 
which finding the optimal micro ( � , e.g., agent preferences) and macro ( Θ , e.g., the 
environment) parameters is needed for calibration. Once the optimal parameters are 
set, which is the one step before the empirical validation in Fig.  1, then the out-
put of the model can be compared empirically to real data from the original system 
(Fagiolo et al. 2007; Guerini and Moneta 2017). As Klügl (2008, p. 6) states, “cali-
bration and validation must use different data sets for ensuring that the model is not 
merely tuned to reproduce given data, but may also be valid for inputs that it was 
not given to before”. However, having two data sets from the same original system 
is not often possible. In such cases, the available data can be used on all available 
levels, as Klügl (2008) asserts. For instance, a model can use micro-data as input, 

(1)(z)i ={zi,t, t = t0,… , tn} i � I, n � ℕ

(2)(Z) ={Zt, t = t0,… , tn} n � ℕ.
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be calibrated at the macro-level, and be validated at the meso-level. Therefore, the 
same data set can be exploited at different levels without over-fitting.

Related works

In this section, we first discuss recently introduced validation methods. Then, we 
explain why our method is related to the discussed methods and how it could expand 
them for the sake of readers.

Lamperti (2018b) has offered an information theoretic criterion called General 
Subtracted L-divergence (GSL-div) as a validation method for AB models. The 
method measures the similarity between model-generated and real-world time-
series. It assesses the extend of models’ capability to mimic patterns (e.g., distri-
bution of time-series such as changes of values from one point in time to another) 
occurring in real-world time-series. It is related to our method, because our method 
aims to compare the similarity among patterns occurring in real data and model-
generated data as well. However, GSL-div focuses only on aggregated time-series 
data as Fagiolo et  al. (2019) indicate, while our method focuses rather on meso-
level behavioral patterns that are constructed by micro attributes. We discuss the 
advantages of the meso-level approach later. The authors state that the GSL-div can 
overcome certain shortcomings of the method of simulated moments (MSM), e.g., 
it does not need to resort to any likelihood function and provides a better represen-
tation about the behavior of complex time-series. Their method could be applied 
technically to any AB model that produces time-series data. Detailed explanation of 
the method, illustrative examples, and case studies can be found in Lamperti (2018a, 
2018b).

Barde (2020, 2016) has introduced another information theoretic criterion as a 
validation method for AB models. The method is called Markovian information cri-
terion (MIC). It follows the minimum description length (MDL) principle, which 
hinges on the efficiency of data compression to measure the accuracy of models’ 
output (Grünwald and Grunwald 2007). It first uses model-generated data to create 
a Markov transition matrix for the model, and then uses the real data to produce a 
log score for the model on the data. The method uses the Kullback–Leibler (KL) 
divergence to measure the distance between real and model-generated data; thus, 
the accuracy of the mDGP is assessed. As the author states, the method does not 
include estimation; instead, it is applied to already calibrated models to assess their 
output. It is related to our method from that aspect. However, similar to GSL-div, the 
application level of our method is different than MIC as we explain in detail in the 
following section.

Grazzini and Richiardi (2015) discuss estimation methods for dynamic stochas-
tic general equilibrium modeling (DSGE) models and analyze whether such models 
can also be applied to AB models. The authors mention the simulated minimum 
distance (SMD) methods, such as the method of simulated moments (MSM), as a 
natural approaches to the estimation of AB models. Such methods aim for estimat-
ing model parameters by minimizing the distance between the aggregates between 
model output and real data. Our approach differs from these methods, because it 
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focuses on the last step of the procedure of Klügl (2008) (see Fig. 1). In other words, 
it is applied to already calibrated models, similarly to the method of Barde (2016). 
Thus, the estimation methods in the class of SMD can be only complementary to 
our method. As we discussed in the future works section, in a future paper, we plan 
to couple an SMD method with our method to apply together on an AB model.

Differently from the previously discussed methods, Guerini and Moneta (2017) 
offer a method that aims to compare causal relationships in model-generated data 
and real-world data to validate AB models. The method hinges on estimating Struc-
tural Vector Autoregressive (SVAR) models through real and artificial time-series 
and comparing them to get a validation score. Our method does not rely on time-
series and we compare relationships at meso-level, while the method of Guerini and 
Moneta (2017) focuses only on aggregate time-series.

To conclude, as Fagiolo et  al. (2019,  p.  14) state in their critical review, “all 
these recently developed validation methods focus only on aggregate time-series, 
while most of AB models have been able to replicate both micro and macro stylized 
facts”. Some of the discussed methods could be applied in principle at the micro-
level, but there is no “proof-of-concept” yet. Besides, applications of such meth-
ods at the micro-level could lead to over-fitting if a model gets micro-data as input 
and its parameters are estimated to fit individual behavior one-to-one (e.g., fitting 
behavior of artificial agent to its real counterpart). Considering the increasing avail-
ability of micro-data, the number of AB models using micro-data as input increases 
(Macal and North 2014; Hamill and Gilbert 2016). Therefore, in this paper, we offer 
a meso-level validation method for the models drawing on micro-data. The method 
involves an unsupervised machine-learning algorithm along the lines suggested 
by Fagiolo et al. (2019) and Barde (2016). They represent contributions regarding 
machine-learning involvement on the side of estimation (van der Hoog 2019). How-
ever, such involvement is still lacking on the side of validation. Our method could 
expand the existing validation methods towards the direction of machine-learning 
and encourage future contributions. The further text is structured as follows: we dis-
cuss the overall concept of our method in the next section in detail. We also discuss 
for what kind of AB models the method could be applied and provide some example 
models from recent research in “An overview of AB models that might be validated 
with our method”.

The overall concept of the meso‑level validation method

This section introduces a meso-level empirical validation method for AB models 
drawing on micro-data first as a broad methodological choice, and then, we describe 
it in detail. In broad terms, we sharply distinguish the different phases and goals of 
the relationship between real (empirical) data and the model in the following way: 
the meso-level is exclusively used for validation, whereas the micro-level is used 
for input micro-data into the agents in terms of parameters (not of outcomes of their 
decision-making process, because this could lead to over-fitting) and the macro-
level for calibration. By this distinction, we radically eliminate any source of overlap 
between what is given to the model as input, what is used for calibrating its overall 
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results and macro–micro-parameters, and what is used for validation. More specifi-
cally, our method consists of sequential steps for which we created an overall con-
cept as in Fig. 2. We explain each step one after another, according to their sequence 
in the concept. The main goal of the concept is to compare model-generated data 
and real data at the meso-level to understand how well the mDGP can produce the 
behavioral patterns that occur in real data. It produces a quantitative score in a spec-
trum according to which we can assess the validity.

The overall concept gets two data sets as input. The first data set contains infor-
mation regarding the ex-ante characteristics of artificial individuals (i.e., agents) 
and their ex-post behavior, generated by the mDGP. The second data set involves 
information regarding the ex-ante characteristics of real individuals and their ex-
post behavior, generated by the rwDGP. Both data sets contain information at the 
individual level, since the mDGP of AB models produce data at the individual level 
(i.e., micro-level). Individuals are clustered according to their characteristics and 
behavior in the data sets, and these clusters are compared at meso-level quantita-
tively. An essential point for the comparison according to the method is that the real 
data should be the one that is used to initialize the model. In this case, individuals 
in real data are mapped to artificial agents one-to-one; thus, the number of real and 
artificial individuals becomes equal, which is a prerequisite to apply the validation 
method. The data sets can differ in what model-wise is an ex-post behavior, because 
an artificial agent might behave differently than a real individual with the same 
characteristics. The variables constituting the ex-ante characteristics should ideally 
be the ones influencing the ex-post behavior. By having this, the clusters involve a 
combination of the variables in individuals’ characteristics and consequent behavior. 
Hence, by comparing clusters, we can study the behavioral patterns (e.g., the rela-
tionship between the characteristics and the behavior) in model-generated data and 
real data.

Instead of clustering artificial and real data sets separately, we merge them as 
indicated in Fig. 2, and cluster them together to analyze the balance in the clusters 
(i.e., how many real and how many artificial individuals are in each cluster). Indi-
viduals in the merged data are placed in a multidimensional latent space based on 
their attributes (i.e., ex-ante characteristics and ex-post behavior). The latent space 

Fig. 2   The overall concept of the proposed empirical validation method
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is represented by a symmetric distance matrix.2 Several metrics exist to create that 
matrix, such as Euclidean, Manhattan, Gower, etc. (Bektas and Schumann 2019a). 
In the overall concept, we utilize the Gower distance metric, since it can handle dif-
ferent column types3 (e.g., categorical, numerical, ordinal, etc.) to place instances 
in the latent space (Gower 1971). For instance, the merged data might contain some 
attributes of households that can be categorical such as income level, or numerical 
such as age. Gower distance can determine the positions of the individuals in the 
latent space based on these columns without any transformation, while other metrics 
such as Euclidean accepts only numerical ones (Bektas and Schumann 2019a):

As for the clustering algorithm, we utilized the k-medoids clustering algorithm, 
since it is compatible with the latent space created by the Gower distance metric 
(Bektas and Schumann 2019a). However, k-medoids is an unsupervised algorithm; 
thus, we need to find ex-ante the optimal number of clusters. There are the good-
ness-of-fit metrics in the literature [e.g., Average Silhouette Width (ASW), Calinski 
and Harabasz Index (CH) and Pearson version of Hubert’s Γ (PH) (Campello and 
Hruschka 2006)], which can provide quantitative measurement scores regarding the 
quality of clustering with the different number of clusters. The ASW is one of the 
most widely used approaches that measures how well an instance is matched with its 
own cluster (Maulik and Bandyopadhyay 2002; Bektas and Schumann 2019a). As 
a goodness-of-fit measure, it reflects how well intra-cluster homogeneity and inter-
cluster dissimilarity are maximized (Rousseeuw 1987). The idea for pre-specifying 
the optimal number of clusters is to try different k-values in an interval and appoint 
one of them, which has the highest ASW value, as the optimal number of clusters. 
For each k number, the ASW value of the clusters is calculated according to Eq. (3), 
which depicts the Silhouette value of instance i. The feature ai represents average 
dissimilarity of i to all other objects in the cluster a (the smaller the value, the bet-
ter the assignment). Another feature bi reflects the minimum dissimilarity of the 
instance i to all objects in any other cluster (the closest cluster to i except its own 
cluster). Equation  (3) returns values between −1 and 1. Values close to 1 indicate 
that instance i is assigned to the proper cluster. Average Sil values of all instances 
(ASW) give an idea about the quality of the clustering (Rousseeuw 1987). 

(3)Sil =
bi − ai

max{ai, bi}
.

2  We provide to readers an example latent space, which we generated for the experiment in Online 
Appendix A.
3  Following the dominant language conventions in the distance metrics and cluster domains, columns 
mean attributes throughout the article. Rows are cases (agents) which are clusterised.
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After the instances are placed in a latent space, and the optimal number of clus-
ters are found, the k-medoids algorithm (see Algorithm 1) partitions the instances 
into k (the optimal number) clusters. To understand how well clusters from real 
and artificial data overlap, we compare the quantity of artificial and real individu-
als in the clusters according to the indicator (4). In the formulation of the indicator 
(4), R represents the number of real instances, A represents the number of artifi-
cial instances, and N is the optimal number of clusters. The indicator finds the dis-
similarity in the balance of artificial and real instances for each cluster. Finally, it 
returns a normalized score in a spectrum between zero and one. The indicator uses 
the L1 norm (i.e., least absolute deviation) similarly to the Manhattan distance, since 
it gives equal importance to all clusters that might have different dissimilarities (i.e., 
balance differences).4 Besides, the L1 form is more preferable for high-dimensional 
data applications (Aggarwal et al. 2001):

If an artificial agent behaves observationally equivalent to the real individual with 
whom it has the same characteristic, they are placed in the same position in the 
latent space; thus, they are supposed to be in the same cluster. If all artificial agents 
behave observationally equivalent with the real individuals with whom they have 
the same characteristics, it is expected that the clusters would have 50% artificial 
fifty percent real instances (as in the simple experiment in Online Appendix A). In 
this case, the indicator’s outcome (4) becomes zero, which indicates a perfect match. 
In other words, a zero score demonstrates that the behavior patterns in real data are 
perfectly overlapping with the ones from the artificial data. Conversely, if an arti-
ficial agent produces different ex-post behavior than his real counterpart, they are 
placed in different positions in the latent space. Thus, they are supposed to be in dif-
ferent clusters. That leads to unbalanced clusters and, consequently, a weak valida-
tion score according to the indicator in (4).

(4)
∑N

k=1
=

∣Rk−Ak ∣

Rk+Ak

N
.

4  The L2 norm puts more emphasis on the clusters with large balance discrepancies.
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The overall concept is completed with the determination of the place of the score 
in the distribution of all possible scores it could theoretically take, which allows us 
to interpret it. To determine a meaningful threshold, we obtain all possible scores 
it can have and their frequency in the exhaustive list of all possible cases, which 
is the state space. The state space contains all possible alternative ways in which a 
total can be distributed,5 with Page (2012) demonstrating a Java algorithm to obtain 
them in a broad variety of restrictions. In the case at hand, we study the scores that 
the indicator (4) generates in all possible subdivisions of the total number of artifi-
cial agents and of the total number of real individuals in the clusters. Accordingly, 
we obtain the distribution of possible scores, which allows us to judge the specific 
score—that a model achieves in the previous steps—concerning all other possible 
scores.

Overall, this procedure builds on the idea that a validated model should produce 
“indistinguishable” results from real data. Going beyond the inter-personal quali-
tative procedure proposed in Piana (2013), we deliver a method having a quanti-
tative indicator of “goodness-of-validation,” taking values from zero to one. The 
method can be used for the AB models having micro-data as input and produce 
results accordingly. We discuss such models and provide examples in “Discus-
sion”. The method provides these models two advantages: avoiding over-fitting of 
the micro-level validation and having more detailed validation than macro-level, as 
recommended in Fagiolo et al. (2019). In the next section, we apply the method to a 
specific model in the personal mobility domain, implementing a certain simulation 
platform.

Case study

This section consists of three subsections. In the first, we describe an AB simulation 
platform called Behavior Driven Demand Model (BedDeM) that we configured to 
build a specific model. The platform building process is discussed in Nguyen and 
Schumann (2019).6 and a use case is addressed in Bektas et al. (2018) and Bektas 
and Schumann (2019b). In the second subsection, we discuss the model building 
process by configuring the generic platform with empirical (real) data. The proposed 
validation method is applied to the built model, and the results are discussed in the 
next section. In the third subsection, we discuss the specific variables that constitute 
individuals’ ex-ante characteristics and ex-post behavior in the built model. These 
variables are used to place real and artificial individuals in a multidimensional latent 
space to compare meso-level patterns.

5  We provided a numerical example in Online Appendix B regarding how the total can be distributed 
among clusters. We provide also example state spaces for different clustering configurations.
6  The source code of the platform is available online at BedDeM (2020).
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The simulation platform

General features

The BedDeM platform has been developed as a generic tool that can be configured 
to address specific issues from different research domains (e.g., household consump-
tion, mobility, tourism, etc.). It comprises of the key theoretical tenets of the multi-
agent cognitive system, in which heterogeneous and autonomous agents are capable 
of making choices (decisions). It enables modeling the micro-behavior of each indi-
vidual (agent) separately.

The core element of the BedDeM platform is an agent-based simulator, written 
in Java based on the RePast library (Nguyen and Schumann 2019), complemented 
by key concepts from Triandis’ Theory of Interpersonal Behavior (TIB) (Triandis 
1979), described in “Agent’s decision-making mechanism”. TIB explains the origin 
of individual behavior, which is utilized as a decision-making framework (compo-
nent) in the platform. Hence, agents make their choices (decisions) according to the 
contained determinants in the TIB.

Overview of agent’s design

BedDeM consists of autonomous agents that have (not necessarily) heterogene-
ous characteristics and preferences. Agents are assigned tasks and are supposed to 
choose an option to perform their tasks according to the ex-ante defined behavioral 
rules (e.g., decision-making mechanism). Tasks and options are specified according 
to the application domain. For instance, agents might choose a tourist place to visit 
or choose a mobility mode to perform their trips, according to configuration.

When an agent performs a task, he first collects information. The perception 
module (see Fig. 3) gets information about the present state of the environment and 

Fig. 3   Overview of agent’s design (Nguyen and Schumann 2019)
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combines it with other agents’ opinions. It then brings the information to the deci-
sion-making module for reasoning. The obtained information is combined with het-
erogeneous preferences and also with the past decisions in the memory. As agents 
maintain their local state (the individual level memory, see Fig.  3), the decision-
making becomes time-inseparable. In the end, the agent lists all available options 
to perform the task and choose the most preferable one according to his individual 
reasoning. After the choice, he informs the other agents about his choice that can be 
used as information in others’ decision-making modules.

Agent’s decision‑making mechanism

Triandis’ theory of inter-personal behavior (TIB) Since micro-behavior is the main 
output of the mDGP, it should be well specified to obtain precise emergent proper-
ties with the original system. While the BedDeM platform was being constructed, 
first, the origin of individual behavior was addressed. The idea was obtaining a 
standard theory that depicts the origin of individual behavior and using this theory 
as agents’ decision-making mechanism. In cognitive science, there exist such theo-
ries, e.g., Ajzen’s theory of planned behavior (TBP) (Ajzen et al. 1991) and Ajzen 
and Fischbein’s theory of reasoned action (TRA) (Chang 1998). These theories state 
that individual’s intention to act is the key determinant of behavior (Bektas et  al. 
2018). There are several AB models and platforms they attempted to incorporate 
these theories (Nguyen and Schumann 2019).

Triandis extended these theories in his TIB model (see Fig.  4). He added two 
new components over them, habits and facilitating conditions. According to TIB, 
the frequency of past behavior forms a habit that partly impacts current behavior. 
Hence, the current behavior is determined by the current status of the environment 
(e.g., economic parameters) and the previous decisions in the individual memory. 

Fig. 4   Triandis TIB model (Triandis 1979)
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The theory as well as other empirical research state that intention is moderated by 
habit that leads to non-deliberate decision-making (Verplanken et al. 1994; Bamberg 
et al. 2003).

As Nguyen and Schumann (2019) state, TIB includes all aspects of TRA and 
TPB, as well as additional components such as habits that potentially improve its 
predictive power and descriptive accuracy. Although there is no proof which theory 
is more suited to build an AB platform, TIB was chosen for the BedDeM platform, 
since it provides a more comprehensive understanding of the origins of individual 
behavior.

Implementation of TIB as agent decision-making mechanism The full implemen-
tation of the TIB model as an agent decision-making mechanism is illustrated in 
Fig. 5. When a task is assigned to an agent, he first gets information from the envi-
ronment to have available options to perform the task. Then, according to each deter-
minant (d) (i.e., box in Fig. 5) in the first layer, the agents sorts available options 
(opt) in a list according to their score (see Eq. (5)). The score is calculated by com-
paring the property of an option with other’s ( Rd(opt) ). To calculate the scores in 
the first level, either a real numerical system (for quantitative determinants such 
as price) or a ranking function (for the determinants such as emotions) is utilized. 
Both numerical values and rankings can come from empirical data or be calibrated 
through experts’ assessment (Nguyen and Schumann 2019):

Fig. 5   Agent’s decision-making mechanism with mapping to TIB (Bektas et al. 2018)
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Once all options are ranked in lists according to each determinant in the first 
layer, the lists are merged and normalized with associated weights ( wd ) to pass in 
the next layer (see Eq.  (5)). The score of each option according to each determi-
nant is multiplied with the associated weight, which becomes the new score of the 
option. The weights in decision-making represent the importance of determinant. 
For instance, if it is desired to have time-separable decision-making, the weight of 
habit can set to zero, which means that the memory (i.e., past decisions) does not 
impact the current behavior. Once all decision-making steps are merged, the agent 
ends up with a sorted list of options according to their scores. According to the con-
figuration, he can choose the first best option deterministically in the list, or certain 
probabilities can be created over the scores; thus, he can choose an option stochas-
tically. More detailed information regarding the platform and its decision-making 
mechanism can be found in Nguyen and Schumann (2019).

Model building

We are currently applying the platform in the mobility domain. The BedDeM plat-
form becomes an AB mobility mode-choice model through the configuration, which 
aims to generate heterogeneous mobility demands at the household level. The model 
allows for mode-choices for mobility trips based on price and non-price signals 
through its decision-making mechanism. It has the ability to generate yearly data 
that can be interpreted at the granularity of historical evolution of mobility, which 
largely hinges on aggregate kilometers traveled and emissions produced by mode, 
including possible decarbonization trajectories (Bektas et al. 2018).

Input of the model We utilize the “Mobility and Transport Micro-census 
(MTMC)” (ARE/BfS 2017) data of the Swiss statistical office to build the model. 
The data are at the micro-level and can be easily mapped to the agents. The data 
contain information regarding Swiss households’ socio-economic characteristics 
(e.g., location, income level, car/travelcard ownership, etc.) and daily mobility activ-
ities. We map the real respondents one-to-one agents; thus, each agent represents a 
real Swiss household by having all his characteristics, including mobility activities. 
Besides, all the exogenous variables that are used to shape the environment, such as 
fuel prices, reflect the Swiss system.

Output of the model Each agent in the model is assigned a task list (i.e., trips of 
the real households) to perform. Agents evaluate existing options (e.g., car, public 

(5)

Rd(opt) =

C
∑

c=1

(

Rc(opt)∕

(

O
∑

o=1

Rc(o)

)

∗ wc

)

∙Rd(opt) is the score of an option (opt) at determinant d.

∙C is the set of the children of d(i.e., determinants connects with d

in the previous level).

∙O is the set of all available options.

∙wc is the weight of child determinant c.
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transportation, soft mobility, etc.) according to the decision-making mechanism 
introduced in the previous section and choose a mode for each of their trips. The 
model simulates each agent’s micro-behavior separately and generates micro-level 
heterogeneous mobility mode-choices as the core output. The output can be aggre-
gated to obtain macro-patterns (i.e., modal-split) over which the model has already 
been calibrated (Nguyen and Schumann 2019), including using data from the Swiss 
Household Energy Demand Survey (Weber et al. 2017). Each agent has a weight-to-
universe value, which is used as upscale factor to get macro-patterns. Through the 
aggregation, various sorts of outputs can be derived, e.g., total emissions and kilom-
eters traveled per mode; thus, the model can be used to test climate change policies 
in-silico, for instance.

Variable selection for the case study

To apply the validation method, the variables identifying the ex-post behavior and 
the ex-ante characteristics of individuals should be chosen and given to the valida-
tion method as input (see Fig. 2). As ex-post behavior, mode-choice should be in the 
chosen variables (the last variable in the list below). As for the variables constituting 
ex-ante characteristics, we identified the ones influencing mode-choice in our previ-
ous research (Bektas and Schumann 2019a) and use them in this case study (the first 
four variables in the list below). The full list of the used variables is demonstrated 
below:

–	 Number of cars in the household
–	 Number of daily trips
–	 Having a half-fare travelcard
–	 Daily distance
–	 Mode-choice.

Results

We apply the overall concept step-by-step and discuss the results of each step 
sequentially. We commenced the overall concept with a merged data set contain-
ing 3000 artificial and 3000 real (MTMC) individuals with the chosen variables. 
Before clustering the individuals, we obtained the optimal number of clusters. We 
utilized the Average Silhouette Width (ASW) score that gives statistics to determine 
the optimal number of clusters. As illustrated in Fig. 6, we clustered individuals in 
the final data set into a different number of clusters within an interval ([2:15]) for 
each, we calculated the ASW score. The results show that we get the highest cluster 
quality when we cluster the individuals into six clusters. In other words, we obtain 
the optimal intra-cluster homogeneity and inter-cluster heterogeneity by dividing 
individuals into six clusters. We utilized the score as a statistical ground and used 
the obtained optimal number of clusters to proceed the method.
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We placed the individuals into a multidimensional latent space based on the cho-
sen variables, divided them into six clusters according to their positions in the latent 
space, and analyzed such clusters’ composition. For each cluster, we got the quanti-
ties of artificial and real individuals to compute the indicator. The obtained quanti-
ties are demonstrated in Table 1.

After we obtained the quantity of artificial and real instances in the clusters, we 
applied the indicator (4) as the overall concept indicated and got the value 0.2750. 
By construction, it is between zero and one; the lower, the stronger the validation. 
But how to judge this specific value in general (e.g., independently on the number 
of clusters)? As anticipated in “Methods”, we iterate the computation of this indica-
tor (4) for all possible cases (i.e., balance combinations), which is the matrix prod-
uct of two identical state spaces. An example of such a case is the situation where 
the 3000 real agents are all in one cluster. That can be matched by the situation in 

Fig. 6   ASW values with different cluster numbers

Table 1   Quantity of artificial 
agents and real instances in 
the clusters and corresponding 
scores

Clusters Number of artificial 
agents

Number of real 
individuals

Score

Cluster 1 944 586 0.2339
Cluster 2 1329 990 0.1461
Cluster 3 203 439 0.3676
Cluster 4 175 382 0.3716
Cluster 5 164 322 0.3251
Cluster 6 185 281 0.2060
Overall 3000 3000 0.2750
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which all 3000 artificial agents are in the same cluster (good) or in another cluster 
(bad). Alternatively, 2750 artificial agents are in that cluster or in another. Examples 
like this are many thousands, but Page (2012) provides a computational method to 
elicit all of them. It computes not only how many but also enlist which ones they 
are. Mathematically speaking, it generates the weak composition of 3000 in 6. Since 
the full number is way too high to be computed in a reasonable time, we first quan-
tize and then fit the results with a continuous function. We quantize the 3000 in 20 
groups of 150 units each (in a procedure that is similar to bootstrap). We perform 
Page’s algorithm in what Piana et al. (2020) would call shapes (20, 6): a state space 
enlisting the ways in which 20 units (in our case groups of agents) can be separated 
into six classes (in our case: clusters). The code to compute this state space is dis-
tributed as complementary material to Piana et al. (2020), drawing on Page (2012), 
McGhee (2008) and McGhee (2006).

For each of its rows, the outcome of the indicator can be computed. By having 20 
groups (i.e., 150 quantum size of 3000 individuals) and 6 clusters, we obtained two 
states (for artificial and real individuals), each with around 50,000 combinations. 
For all possible number of artificial and real individual distributions in the clusters, 
we applied the indicator. Then, we obtained the density distribution of all the pos-
sible scores (i.e., outcomes of the indicator), which is illustrated in Fig. 7. Thus, we 
defined the space to see where our model’s validation score is, which enables us to 
judge the score.

Thanks to the computed all possible scores, we could easily judge the specific 
score that the model achieves. We summed up the number of cases that have a bet-
ter score than 0.2750. We divided it into the total number of cases to obtain the 
percentage. By this means, we calculate the area under the curve (integral) in Fig. 7. 

Fig. 7   Density distribution of all possible validation scores
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The results show us that approximately 4.2% of cases would produce a score equal 
to or lower than the score of the model, 0.2750. We interpret these results in this 
way that the model is validated at the conventional threshold of 5%.

Discussion

The findings show that the built model for the case study satisfactorily represents 
the original system at the meso-level for the given variables. The artificial agents in 
the model behave observationally similar to the real individuals, who have the same 
ex-ante given characteristics. It can be interpreted in this way that the mDGP mim-
ics the rwDGP by producing observationally similar data (behavior) with the given 
input data.

To judge the validation score that we obtained, we created the density distribu-
tion of all possible scores, as explained in “The overall concept of the meso-level 
validation method”. We utilized a simplification by setting the quantum size 150 to 
reduce high computational time. We tested whether the quantum size is relevant for 
the density distribution by applying another quantum size (300) (see Fig. 8 in Online 
Appendix C). We compared the functional forms of the density distributions to see 
whether different quantum sizes lead to different curves. It was observed that both 
150 and 300 quantum sizes produce almost identical curves. We report it to dem-
onstrate that the result is robust to the changes in simplified assumptions. Addition-
ally, in Online Appendix B, we provide two state spaces without quantization for the 
cases having a lower number of agents.

Discussion of the potential application of the meso‑level approach to validation 
upon further models

In this subsection, we discuss certain insights that we gained during the implemen-
tation in the case study that may turn out to be useful to other researchers who want 
to assess the empirical validation of a certain AB model drawing on micro-data.

Many AB models do not draw upon real data, and for that group, the method can-
not be applied. However, if the modeler’s golden rule laid down in Piana (2004) is 
followed, and agents are given rules that can be directly embedded in questionnaires 
to real people, then by actually carrying out such surveys, the modeler can have at 
her/his disposal micro-data with which he can initialize the artificial agents. Indeed, 
this is often the case: AB models are frequently built and initialized with micro-data, 
since they aim to model heterogeneous behavior of each individual separately and in 
a highly realistic way (Dawid et al. 2012). Such micro-data contain information at 
the individual level and can be mapped to artificial agents. Thus, artificial agents get 
their ex-ante characteristics from real individuals, and they are supposed to generate 
ex-post behavior according to the behavioral rules of the mDGP. As long as the ex-
post behavior of real individuals is known, the proposed empirical validation method 
can be applied to an AB model drawing on micro-data for which a meso-level can 
be computed, at which agents can be clustered and compared. For instance, in the 
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model that we built for the case study, agents represent households and it produces 
mobility mode-choice behavior. Since we also know real households’ behavior with 
the same characteristics, we could apply the method in a rather straightforward way. 
In another AB model, agents might represent real firms, and the micro-data contain-
ing information regarding real firms may come from accounting systems and decla-
rations to the statistical offices. Real and artificial firms’ behavior is clustered with 
their characteristics as the proposed method suggests and can be compared at the 
meso-level. Conversely, if in a macroeconomic AB model, there is a wide range of 
types of agents (firms, households, financial institutions, public institutions, etc.), 
our procedure might become too cumbersome if applied to all such types. In other 
words, the method is not dependent on the domain (scope), but its applicability is 
restricted to AB models for which a meso-level can be computed from available 
micro-data, possibly of only one type.

In the procedure of clustering, one needs to select the variables upon which clus-
tering occurs and determine the optimal number of clusters. After that, the applica-
tion of the indicator in (4) can be carried out. The variables should be available for 
both the artificial and the real agents; they should be relevant for the main behavior 
that the model is called to describe. In our use case, we used the variables that a pre-
vious analysis demonstrated having a large impact on the behavior. However, if one 
cannot proceed with such an analysis, one might take the neutral stance of taking 
all common variables across real and artificial agents. The optimal number of clus-
ters can be obtained as we did (by taking the number of clusters for which ASW is 
maximal), but any method that would single out a non-arbitrary number of clusters 
might be used, if appropriate. Finally, one needs to compute the probability of the 
goodness-of-validation to be higher than a certain threshold, much alike the p value. 
This probability is to be computed using the procedure indicated before.7

An overview of AB models that might be validated with our method

Keeping into account its general requirements, our methodology can be applied to 
many AB models such as the ones introduced in Axtell et al. (2014), Nelson et al. 
(2015), de  Koning and Filatova (2020), and Klein et  al. (2020). One should not 
expect that the authors did utilize our novel methodology to validate their models, 
and thus, their current validation method is inevitably different from those we are 
proposing. However, the description of the data they utilized for their AB model 
suggests applicability. Moreover, in their text, they commit to a certain vision we 
share: “we seek two classes of data to feed analysis and modeling: micro-data and 
event data. This fine resolution is necessary if we assume heterogeneous decision-
making, a hallmark of agent-based modeling. Aggregate statistics are insufficient. 
We need to have realistic household socio-demographic variables and resource 
endowments.” (Nelson et al. 2015, p. 1). “We live in the era of 1-to-1 computational 
instantiations of many complex systems, and agent-based computing is a way for 

7  One can download the state space from App. 1 of Piana et al. (2020) or compute it by executing the 
Java code, downloadable from Online Appendix B of the same paper.
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economics to join this zeitgeist of digital synthesis” (Axtell et al. 2014, p. 3). Axtell 
et al. (2014) provides the methodological explanation of an AB model of a metro-
politan housing market, which has been extended to the national level by Geana-
koplos et al. (2012), which in turn has been considered the best model to cover such 
issue by Carstensen (2015).

Klein et al. (2020) describe an AB model of the diffusion of electric vehicles. The 
initialization of its agents comes from micro-data collected by their original experi-
ment (a conjoint-analysis) conducted with 552 people, representing the German 
population. “Parametrization and initialization of the characteristics and behavior of 
consumer agents was done using empirical data from our own study. Using these 
data, each consumer agent of the ABS was then initialized based on the correspond-
ing characteristics of one real participant from our empirical study. Note, we also 
simulated larger populations in our sensitivity analysis. However, owing to relatively 
stable results, we decided to use 552 exactly matching consumers, which signifi-
cantly reduced the time of each simulation run. Additionally, this allowed the direct 
initialization of each consumer agent using the responses of exact one consumer 
from our empirical study” (Klein et al. 2020, p. 12).

de Koning and Filatova (2020) do not only describe an AB model to explore how 
urban housing markets evolve in the presence of climate-driven floods and behav-
ioral biases on the agent level for which an ad-hoc survey of 600 respondents has 
been utilized to initialize the agents, but it explicitly calls for multi-scale validation. 
It falls short of singling out the meso-level as particularly appropriate for valida-
tion, which is our novel claim. Moreover, in recognizing that “there is no definite 
answer as to how much empirical validation is enough in order to make a model use-
ful for its purpose” (p. 139), it implicitly valorizes our attempt to provide a metrics 
and a quantitative test with a threshold that can give a satisfactory interruption of 
a potentially never-ending cycle of reparametrizations (“Validation can be a con-
tinuous iterative process”, as this paper puts it at p. 139). Indeed, it is important to 
remark that after calibration and validation, and finally, our models need to produce 
results. For instance, after validating the model that we built by configuring the Bed-
DeM platform, we have been generating 320 alternative scenarios of mobility evolu-
tion 2015–2050 for Switzerland (currently delivered in an internal document for the 
funding agency).

Conclusion

Summary

The present work proposes an unsupervised machine learning algorithm—cluster 
analysis—as a meso-level empirical validation method for AB models drawing on 
micro-data. The model aims to cluster the ex-post behavior of real and artificial indi-
viduals with the same ex-ante given characteristics. It produces a validation score in 
[0, 1] by comparing the similarity among clusters. The clusters do not only contain 
the ex-post behavior of real and artificial individuals but also their ex-ante given 
characteristics that influence the behavior. Hence, comparing clusters enables us 
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to compare behavioral patterns in model-generated data and real data. To provide 
an instance of application of the method, we referred to an AB model that aims to 
model heterogeneous mobility mode-choice behavior. The specific model obtained a 
satisfactory validation score that shows that, in this case, the mDGP can mimic the 
rwDGP successfully for the given variables. More, in general, the proposed empiri-
cal validation method has certain advantages. First, it fully leverages the specific-
ity of agent-based models covering highly heterogeneous agents and their potential 
multi-level aggregation. An agent-based model can be initialized at the micro-level, 
be calibrated at the macro-level, and be validated at the meso-level with the same 
data set and for the same time frame. A procedure that is often used in time-series 
to calibrate the model for a first segment of time periods and then validate in out-
of-sample successive time suffers from the necessity of assuming that there are no 
structural breaks over time. This assumption may not be particularly suitable for 
models looking for emerging properties, high non-linearities, and, indeed, structural 
breaks. The second advantage is that with the meso-level validation, we can com-
pare the behavioral patterns that the mDGP and the rwDGP generate, respectively. 
It is not easy with macro-level validation, because it compares only the aggregates. 
Therefore, the relationship between the ex-ante given characteristics and ex-post 
generated behavior cannot be easily compared. In short, we offer to the community 
of researchers devising and using agent-based models a method to empirically vali-
date them, which is a crucial intermediate step in the overall useful application of 
this highly promising approach.

Future work

We envisage different dimensions in the frame of future works to take the present 
work forward. First, as discussed in the related work section, the simulated minimum 
distance (SMD) methods, including the method of simulated moments (MSM), can 
be complementary to our method. A model’s parameters can be estimated by an 
SMD method at the macro-level and its output can be validated by our method at 
the meso-level. We plan to research about the coupling of an SMD method and our 
method to use them together on the same model. Second, as our method aims to val-
idate AB models drawing on micro-data, we aim to introduce a new technique gen-
erating synthetic micro-data from macro-aggregates for the modelers having limited 
access to micro-data. Third, we aim to assess the impact of the number of agents 
and the optimal number of clusters on the method’s results in detail. We plan to 
apply the method on AB models having micro-data from different original systems 
and domains. Finally, we aim to explore the situations in which the output of an AB 
model is observationally similar with the real data at the macro-level but not at the 
meso-level.
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