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HIGHLIGHTS

* Novel non-invasive magnetic resonance imaging (MRI)
biomarkers of Alzheimer’s disease progression.
* Transfer learning.

* Deep convolutional neural networks.

1 | BACKGROUND

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder
that slowly degrades memory and cognitive functions. It is neu-
ropathologically defined by intracellular neurofibrillary tangles and
aggregated amyloid beta (AB) plaques,! both of which can currently
be estimated accurately only post mortem. The phenotype in current
case/control genome-wide association studies (GWAS) for late onset
AD (LOAD)?* are based largely on clinical assessments, in which
mild cognitive impairment (MCI) and AD are determined by designed
memory and cognitive tests and clinical observations. These criteria
fail to reflect early AD hallmark characteristics such as AS plaques and
neurofibrillary tangles and highlight advanced AD, leaving the MCI
category widely heterogeneous and poorly understood. Consequently,
current GWAS for LOAD usually exclude MCI and therefore may miss
critical genetic variants associated with early AD characteristics and
progression.

Non-invasive brain imaging modalities such as magnetic resonance
imaging (MRI) and positron emission tomography (PET) are promising
tools for monitoring AD progression and its diagnosis. Imaging pro-
vides precise quantitative phenotypes, and numerous methods have
been proposed for analyzing neuropathology with MRI.>-? However,
the high dimensionality of these phenotypes makes it challenging to
extract concise and interpretable information. Summary measures for
pre-defined regions of interest (ROI) are suboptimal for predicting the
onset and progression of AD because they are derived independently
of AD status.

In this article, we make use of deep convolutional neural networks
(CNN)10-13 to simultaneously extract relevant features and classify
patients using (structural) MRI data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) consortium. Deep CNN have become the
state-of-the-art methods for image classification'* due to their abil-
ity to form translation invariant hierarchical image features. To miti-
gate the scarcity of images in the ADNI dataset, and accommodate the
high number of model parameters that need to be learned, we adopt
a transfer learning technique.’1¢ This technique uses an indepen-
dent data-trained 3D CNN modell” that is then fine-tuned using our
dataset of 1381 images. This greatly augments our image dataset and
ensures the learned CNN model is more robust to overfitting. Because
our baseline MRI images were taken 3 years prior to clinical labeling
and provide holistic snapshots of brain states, our CNN-derived image
features reflect earlier and more specific AD characteristics than the

memory and cognitive performance features used for assessing AD and

RESEARCH IN CONTEXT

1. Systematic review: Case/control genome-wide associa-
tion studies (GWAS) for late onset Alzheimer’s disease
(AD) may miss genetic variants relevant for delineat-
ing disease stages because the cases highlight advanced
AD and widely heterogeneous mild cognitive impairment
patients are usually excluded. More precise phenotypes
for AD are in demand.

2. Interpretation: Convolutional neural networks (CNN)
trained on structural magnetic resonance imaging (MRI)
and clinical labels integrated AD classification and image
feature extraction in one step; transfer learning-trained
CNN were more robust to overfitting, yielding more accu-
rate image features that predict AD progression. CNN-
derived image phenotypes were significantly associated
with metabolites related to early lipid metabolic changes
and insulin resistance, and with genetic variants mapped
to candidate genes enriched for amyloid beta degrada-
tion, tau phosphorylation, calcium ion binding-dependent
synaptic loss, APP-regulated inflammation response, and
insulin resistance.

3. Future direction: Relating the MRI biomarkers to specific
regions in original MRI images that drive the AD classifi-

cation.

MCI. This is supported by the significant associations we find between
the CNN-derived phenotypes and early AD-related metabolites and
genes (Figure 1). To our knowledge, this is the first attempt to link non-

invasive MRI biomarkers with AD progression characteristics.

2 | METHODS

2.1 | MRI and clinically labeled data from the
ADNI consortium

Data for this study were obtained from the ADNI database
(adni.loni.usc.edu). ADNI is a longitudinal study in which initial
imaging is followed by annual reimaging. MRI images taken at the
initial stage are later categorized into four major classes based on their
follow-up status: control, AD, stable MCI subjects who maintain the
same disease status throughout the follow-up period, and progressive
MCI subjects who convert from MCI to AD sometime during the
follow-up period. MCI were counted as stable MCI only if they were
followed-up for at least 3 years in this study. The conversion and
follow-up timelines for the 526 MCI patients are shown in Table S1B in
supporting information.

We downloaded 817 screening images from the ADNI-1 cohort,
104 ADNI-GO new participants, and 624 ADNI-2 new participants.

Because AD patients rarely convert back, we included 162 Year 1
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FIGURE 1 Graphic summary of the analytical approach. AMP-AD,
Accelerating Medicines Partnership-Alzheimer’s Disease; APOE,
apolipoprotein E; CNN, convolutional neural network; GWAS,
genome-wide association studies; MRI, magnetic resonance imaging

and 95 Year 2 images from ADNI-1 patients who were diagnosed
as AD at screening, 155 of which also had MRIs at screening, total-
ing 1802 images (Table S1A). The adding of Year 1/2 AD images to
screening images was expected to help CNN more accurately rec-
ognize progression-related image features. However, there were no
duplicate subjects in the downstream metabolite and GWAS analy-
sis. Some subjects in ADNI-1 have two MRI scans from the same ses-
sion; we kept the one in the “Scaled_2” directory as recommended
by ADNI MRI core team. We filtered out Year 1 to 2 AD MRIs with
the rank of 4 or -1 (based on downloaded MRIMPRANK.csv) and
ADNI-GO/2 MRIs with the quality of 4 or none (based on downloaded
MAYOADIRL_MRI_IMAGEQC_12_08_15.csv). When there was more
than one MRI scan from the same session after filtering, we kept the
one with the highest quality or the latest timepoint when qualities were
equal.

FreeSurfer!81? software (-autorecon1 option) was applied to cor-
rect motions, normalize image intensities, and strip bone tissue, fol-
lowed by manual checking of sagittal slice 101 of each MRI image,
ensuring that the mean intensity of the white matter was around 110
and skull was stripped correctly (FreeSurfer suggestions). Inappropri-
ate skull stripping was rescued by running mri_watershed with dif-
ferent watershed thresholds. MRIs with incorrect mean intensity of
the white matter or inappropriate skull stripping after rescuing were
excluded. To investigate whether co-registration is necessary when
applying CNN to brain image analysis, we used the Talairach transfor-
mation calculated in FreeSurfer (-autorecon1) to obtain MNI305 atlas-
registered MRIs.

Disease Monitoring

Age, four cognitive scores (Mini-Mental State Examination [MMSE],
Clinical Dementia Rating-Sum of Boxes [CDR-SOB], Functional Activ-
ities Questionnaire [FAQ], Alzheimer’s Disease Assessment Scale
[ADAS]), and various image summary measures at screening as well as
sex, education level, apolipoprotein E (APOE) genotype, and ethnicity
were downloaded. The subjects used for training CNN had MRIs and
all selected covariates, with only one subject missing cognitive score
examination date at screening. Most of the MRIs had examination date
within 2 months from that of cognitive scores (Table S1C). The distribu-
tions of age, sex, MMSE, and APOE genotype are shown in Table 1.

2.2 | CNN and feature formation

CNN is a type of supervised multiple-layer neural network that adopts
learnable convolutional kernels to detect hierarchical image features.
Because the same kernel slides over the whole image, the detected
image features are translation invariant.2° To reinforce this, input
images are often augmented during CNN training via transformations
such as multiple scaling and cropping. A loss value at the last layer of
a CNN is computed in the forward pass and iteratively minimized by
back-propagating the loss to all hidden layers to update their weights
based on the stochastic gradient descent rule.2!

The pre-trained 3D CNN model used for the transfer learning
adopted ResNext101 network structure, which consists of 101 lay-
ers, and was trained using 300,000 Kinetics video clips.?2 Only the
parameters in the last few layers of ResNext101 were fine-tuned dur-
ing the training stage of our dataset. We added nodes to the second-
to-last layer in ResNext101 structure to accommodate covariates
(Figure S1 in supporting information). Our preliminary classification
results showed that progressive MCl was frequently predicted as AD
by the CNN model, suggesting that the CNN classification possibly
reclassified patients with pending diagnosis. We therefore trained our
CNN models with the target classes of controls, stable MCI, and broad
AD (AD and progressive MCI).

To maximize the chance of obtaining an accurate CNN model,
we generated 10-fold sample splits. The three classes of subjects were
evenly divided into 10 folds in a class-wise fashion; for each sample
split, one fold was used as an independent test set, the remaining nine
folds were randomly split into training and validation sets with the ratio
of 9:1. One CNN model was learned on the training and validation sets
in each of the 10 sample splits, and the one with the highest classifi-
cation accuracy on the (independent) test set was selected as the best
model for downstream analyses.

The second-to-last layer of our CNN was the only layer that pro-
vided input for the class probabilities at the last layer, and therefore
contained the features that are the most predictive of the classification.
This layer yielded 2048 image features in the adopted ResNext101
structure (Figure S1). Covariates entered CNN at this layer and their
effects were passed forward to compute the loss at the last layer, which
was propagated backward to all the hidden layers including the second-
to-last layer. Hence, when there are covariates in our CNN model,

the extracted image features are covariate adjusted. To reduce the
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TABLE 1 Demographic assessment and APOE ¢4 genotype distribution in ADNI and AIBL data
ADNI data AIBL data
No. of APOE &4 copies No. of APOE &4 copies
No. of No. of
subjects Age Male/female 0 1 2  subjects Age Male/female 0 1 2 MMSE
Control 373 743+ 6 182/191 274 91 9 107 70.8+7 51/56 76 30 1 291+11
AD 251 748+8 134/117 84 114 53 74 732+8 29/45 23 37 14 203+5.6
sMCI 424 73.1+8 255/169 246 141 37 10 772+7 8/2 5 4 1 28.0+15
pMCI 230 739+7 134/96 77 114 & | il 749+6 7/4 1 6 4 263+17
P-Value® 0.047 0.26 5.72x107%0 0.28 0.26 4.51x 10710 2.93x 1071
P-Value? 0.72 0.64 3.21x10°% 0.25 0.43 0.033 0.18

Notes: Age is presented in a mean + standard deviation format.

ADNI, sMCI, and pMCl were estimated until 3 years from screening (for CNN training); AIBL, sMCI, and pMCl were estimated until 6 years from baseline (for

CNN evaluation).
P-value®: P value of comparing AD and controls.
P-value?: P value of comparing sMCl and pMCI.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study
of Ageing; APOE, apolipoprotein E; MMSE, Mini-Mental State Examination; pMCI, progressive MCl; sMCI, stable MCI.

number of image features for downstream analyses, we applied prin-
cipal component analysis (PCA)23 to the 2048 image features, used the
broken stick model?* to estimate the number of PCs needed, followed
by a L;-norm regularized regression model (Lasso2°) to select the most
informative PCs for distinguishing stable and progressive MCls. These
PCs are hereafter referred to as CNN-derived image phenotypes. After
CNN was trained, covariates were not needed to obtain the image phe-
notypes, but needed for disease status predictions.

We generated two sets of CNN-derived phenotypes. For the first,
we trained a CNN model with age at screening, sex, education level,
MRI field strength indicator (1.5T or 3T), and ethnicity as covariates
(hereafter Image CNN). For the second set, we included APOE genotype
as an additional covariate, along with four APOE-correlated cognitive
scores at screening (hereafter Augmented CNN model).

To evaluate the performance of our CNN-derived image pheno-
types, we correlated them with metabolites and genetic variants. We
also compared them with conventional image summary measures, cog-
nitive scores, and clinical labels. See supporting information for addi-

tional details.

2.3 | AIBL MRIs as a validation dataset

We used MR images from the Australian Imaging, Biomarker &
Lifestyle Flagship Study of Ageing (AIBL) to evaluate the performance
of the trained CNNs. AIBL, designed similarly to ADNI, is a longitudi-
nal study that follows-up participants every 18 months until 6 years
from screening. All subjects were assumed to be White, a subset of
whose MRIs were provided at the ADNI website. We selected 207 sub-
jects who had one MRI scan at baseline and either remained as con-
trols/MCI/AD for at least 3 years or converted to AD during the 6-
year follow-up. There were only 10 stable MCl and 11 progressive MCI
among 207 subjects. The MRIs, 60 of which were of 1.5T magnetic
strength and 147 of 3T, went through the same pre-processing step

as ADNI MRIs. Participants’ characteristics were described in Dang
et al.2% and Ellis et al.2” Age, sex, APOE ¢4 genotype, and MMSE are
summarized in Table 1 and used here as covariates. Education level and
cognitive scores of ADAS and FAQ, not available to our access, were
assigned values of zero to remove their effects in our CNNs. CDR was
available and used here instead of CDR-SOB. Youden'’s J statistics2*
was applied to the class probabilities of CNN to determine the pre-

dicted class category.

3 | RESULTS
3.1 | Deep 3D CNN models classify transition
from MCI to AD accurately

The confusion matrices for the best CNN models on unregistered MRIs
are shown in Table 2. The Augmented CNN yielded prediction accuracy
of 0.992 for broad AD, 0.986 for controls, and between 0.911 (1-year
follow-up) to 0.801 (the final visit) for progressive MCI. In compari-
son, the Image CNN achieved prediction accuracy of 0.913 for broad
AD, 0.906 for controls, and between 0.822 (1-year follow-up) to 0.69
(the final visit) for progressive MCI. The Image CNN had lower power to
differentiate stable MCI from healthy controls. Both models had lower
error rate of predicting stable MCl as broad AD with longer follow-up
period (0.409 to 0.192 for Augmented CNN, 0.376 to 0.2 for Image CNN),
implying that some of the stable MCI that were predicted by CNN as
broad AD converted to AD when tracked for longer than 3 years. We
also trained the two CNN models using co-registered MRIs. As shown
in Figure 2A and B, CNN performance on non-registered and regis-
tered MRIs was not significantly different, verifying that CNN is able to
learn translation-invariant image features. However, Image CNN with
the same structure had a bigger performance difference between train-
ing and test samples on registered MRI than on non-registered MRI
(Figure 2C),implying that Image CNN might be somewhat overfitting for
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TABLE 2 Confusion matrix for CNN predictions

Image CNN (trained without APOE genotype and cognitive

score as covariates)

Disease Monitoring

Augmented CNN (trained with APOE genotype and
cognitive score as covariates)

Clinical label Control Stable MCI Broad AD Control Stable MCI Broad AD
3Y_ctrl (373) 0.895(334) 0.0107 (4) 0.0938(35) 0.96 (358) 0.0268(10) 0.0134(5)
AD (482) 0.0851 (41) 0.00207 (1) 0.913 (440) 0(0) 0.0083 (4) 0.992(478)
1Y_sMCI (425) 0.442(188) 0.181(77) 0.376(160) 0.231(98) 0.36(153) 0.409 (174)
2Y_sMClI (336) 0.518(174) 0.226 (76) 0.256 (86) 0.277 (93) 0.435 (146) 0.289(97)
3Y_sMCl (296) 0.551(163) 0.24(71) 0.209 (62) 0.297 (88) 0.476(141) 0.226 (67)
4Y_sMCI (278) 0.558 (155) 0.241(67) 0.201 (56) 0.317 (88) 0.478 (133) 0.205 (57)
5Y_sMCI (271) 0.561(152) 0.232(63) 0.207 (56) 0.325(88) 0.48 (130) 0.196 (53)
final_sMCI (255) 0.557 (142) 0.243(62) 0.2(51) 0.318 (81) 0.49 (125) 0.192 (49)
1Y_pMCI (101) 0.178(18) 0(0) 0.822(83) 0.0198(2) 0.0693(7) 0.911(92)
2Y_pMCI (190) 0.195(37) 0.00526 (1) 0.8(152) 0.0368 (7) 0.0737 (14) 0.889 (169)
3Y_pMCI (230) 0.209 (48) 0.0087 (2) 0.783(180) 0.0522(12) 0.0826(19) 0.865(199)
4Y_pMCI (248) 0.226 (56) 0.0403(10) 0.734(182) 0.0484(12) 0.109 (27) 0.843(209)
5Y_pMCI (255) 0.231(59) 0.0549 (14) 0.714(182) 0.0471(12) 0.118(30) 0.835(213)
final_pMCI (271) 0.255 (69) 0.0554 (15) 0.69 (187) 0.0701(19) 0.129 (35) 0.801(217)

Notes: Number of samples is given in parentheses. The fraction at each entry stands for the ratio of the number of CNN predictions belonging to the column
category to the number of samples belonging to the row (clinical) category. That pMCI or AD were predicted as broad AD, and control/sMCl were predicted

as non broad AD can be viewed as correct predictions in a broad sense.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CNN, convolutional neural network;

pMClI, progressive MCl; sMCI, stable MCI.

registered MRI. This is probably because the transferred pre-trained
CNN was trained on non-registered images. Hence, all the downstream
analyses are based on non-registered MRIs.

3.2 | Trained CNNs applied to AIBL MRIs

CNN analysis was also informative in our AIBL validation dataset, espe-
cially for Image CNN as the relevant cognitive data were not available
for Augmented CNN. Area under the curve (AUC) of distinguishing con-
trols from AD was 0.78 for Image CNN and 0.76 for Augmented CNN.
AUC of differentiating stable and progressive MCl were lower—0.61
and 0.6, respectively (Table S3 in supporting information)—probably
due to the smaller sample size (21 subjects total). The Augmented CNN
performed worse than the Image CNN, probably because ADAS, FAQ
and CDR-SOB were not available. Potential reasons for the reduced
AUC compared to ADNI analysis include (1) MRI acquisitions in ADNI
and AIBL used slightly different protocols and (2) some overfitting in
the trained CNN in spite of the transfer learning, as the trained CNN
was fitted to a North American population whereas AIBL data were
drawn from Australia.

3.3 | Image phenotypes derived from 3D CNNs

25 we selected principal components 1, 4, and 9 as infor-

Using Lasso,
mative phenotypes from Image CNN model (hereafter imageCNN.PC1,

imageCNN.PC4,imageCNN.PC9), explaining 0.257,0.035,0.019 of the

variance of the 2048 CNN-derived image features, respectively. Only
PC 2 (hereafter augmentedCNN.PC2) was selected from Augmented
CNN model, explaining 0.064 of the variance of the 2048 image fea-
tures. Only imageCNN.PC4 and augmentedCNN.PC2 had a high cor-
relation coefficient of 0.72; all other pairwise correlations of PCs were
below 0.3.

3.4 | Image phenotypes are associated with early
AD-related metabolites

Seven metabolites were found to be significantly (P < 0.05/55 =
0.0009) associated with the four CNN-derived phenotypes in the
ADNI-1 participants (Table S4 in supporting information), including
two phosphatidylcholines (PC) metabolites (PC ae C44:4 associated
with imageCNN.PC1, PC aa C32:3 with augmentedCNN.PC2), and
three sphingomyelin (SM) metabolites (SM C16:1, SM C18:0, and SM
C20:2, with augmentedCNN.PC2). These PC or SM metabolites were
previously found to be significantly associated with cerebrospinal fluid
(CSF) AB 1-42 and/or CSF tau in ADNI-1 cohort, either directly or
indirectly.?8 Significant branched-chain amino acids included histidine
(withimageCNN.PC9) and isoleucine (with augmentedCNN.PC2), both
of which have been previously implicated in insulin resistance.?%2? We
need to caution the reader that the interpretation may be overstated as
the metabolite association was performed only in ADNI-1 participants
while image-derived phenotypes were obtained from ADNI-1/GO/2
participants.
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FIGURE 2 Average AUC (area under the receiver operating characteristic curve) of predicting stable and progressive mild cognitive
impairment (MCI) among 10 sample splits for six follow-up periods, comparing registered and non-registered images. A, Image CNN model on test
samples (with error bar). B, Augmented CNN model on test samples (with error bar). C, Comparison of average AUC between training and test
samples. CNN, convolutional neural network; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment
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3.5 | GWAS using CNN-derived image phenotypes
The results for meta GWAS on imputed SNPs (see supporting infor-
mation) using the four CNN-derived image phenotypes are shown in
Table 3 and Table S5 in supporting information. QQ plots for all phe-
notypes show no obvious inflation of large P-values (> 1 x 107%4), with
Agc between 0.993 and 1.01, indicating that our association analyses
have accounted for population substructure well (Figure S2 in support-
ing information).

Using imageCNN.PC1 as a phenotype, we obtained genome-
wide significant P-values (<5 x 1078) for genetic variants at the
APOE/TOMM40 locus (Figure S2A). However, its QQ plot shows
no upward deviation from the diagonal line when single nucleotide
polymorphisms (SNPs) at the APOE/TOMM40 locus are excluded
(Figure S2B), suggesting that imageCNN.PC1 is not significantly asso-
ciated with any genetic variants outside APOE given the current
sample size. In contrast, using imageCNN.PC4, imageCNN.PC9, and
augmentedCNN.PC2 as phenotypes revealed no significant variants at
the APOE/TOMMA40 locus (P < 1 x 1072). Their QQ plots show moderate
excess of low P-values even when SNPs at the APOE/TOMMA40 locus are
excluded (Figure S2C-2E), suggesting that these phenotypes are signif-
icantly associated with variants outside APOE given the current sample
size.

GWAS based onimageCNN.PC4 and imageCNN.PC?9 identified 116
and 41 significant (P < 1 x 1072) SNPs, respectively (Figure 3A), which
were mapped to 17 protein-coding genes (within +15 kb) according to
FUMA %0 |dentified SLC24A4 (rs12588868, P = 9.07 x 107¢) is a known
AD gene;* two genes, CACNAIC (rs11062078, P = 3.14 x 107%) and
DYSF (rs34707417, P = 6.38 x 107%), were significantly enriched in the
Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD)
gene co-expression submodules (Figure S3 in supporting information).
The Gene Ontology (GO) annotations for the enriched submodules
include regulation of action potential and calcium-mediated signaling
for CACNA1C and regulation of endocytosis for DYSF (Table S7 in sup-
porting information). DYSF has been reported to be significantly asso-
ciated (P < 1 x 10~#) with AD in an exome array association study.3!

AugmentedCNN.PC2 identified 130 SNPs with P-values < 1 x
107> (Figure 3B), which were mapped to 12 protein-coding genes
(within +15 kb) according to FUMA. Two genes, CDH13 (rs67805160,
P =4.26x 107) and ENSA (rs112175941, P = 2.48 x 107) were sig-
nificantly enriched in AMP-AD gene co-expression submodules (Fig-
ure S3), whose GO annotations include calcium-dependent cell-cell
adhesion for CDH13, negative regulation of dephosphorylation, and
regulation of hormone/insulin secretion for ENSA (Table S8 in support-

ing information).
3.6 | Candidate genes link image phenotypes
to AD-related functions

For Image CNN, three candidate genes (SLC24A4, CACNA1C, DYSF) are

related to the GO term of calcium ion binding, which may in turn play

Disease Monitoring

arole in synaptic plasticity.3? NCAM2 mediates synaptic adhesion, and
Ap-dependent disruption of NCAM2 functions in the AD hippocampus
contributes to synapse loss.23 BRSK1 is the eQTL target gene of signif-
icant rs429498 in the AMP-AD RNA-Seq data, and mediates phospho-
rylation of tau.®* Therefore, we believe that Image CNN detected image
patterns that are related to calcium ion binding, AB-mediated synaptic
loss, and tau phosphorylation.

For Augmented CNN, CDH13 negatively regulates axon growth®> and
LMF1 is required for maturation and transport of active lipoprotein
lipase (LPL).3¢ Previous studies have established that LPL is a novel AB-
binding protein promoting cellular uptake and subsequent degradation
of AB.37 ENSA is an inhibitor of protein phosphatase 2A (PP2A)38 that
regulates tau phosphorylation directly. ADCY3 loss-of-function vari-
ants increase the risk of obesity and type 2 diabetes.3? ZC3H12A (a.k.a.
MCPIP1), detected by both CNN models, is an APP-regulated inflam-
mation respondent in NT2 cells.*? All together, we believe that aug-
mentedCNN.PC2 represented both early (AB and tau related) and late
(insulin resistance/diabetes and inflammation response) AD character-

istics.

4 | DISCUSSION

Augmented CNN model achieves higher prediction accuracy than Image
CNN model in the ADNI cohort. The high accuracy achieved by both
models, as well as the four cognitive scores and APOE genotype, for dis-
tinguishing stable and progressive MCI (Table S2 in supporting infor-
mation) implies that image, cognitive performance, and genetics have
complementary roles in disease status prediction.

ImageCNN.PC1 is the only CNN-derived phenotype to identify
genome-wide significant SNPs at the APOE locus because principal
components are uncorrelated with one another by definition and Aug-
mented CNN-derived image features were APOE-adjusted. This pheno-
type also had the highest power (AUC = 0.784) to predict the clini-
cal conversion of MCl to AD among all the phenotypes we considered
(Table S2), and the highest Pearson correlation with cognitive scores
(0.55 with ADAS and 0.52 with CDR-SOB). However, its QQ plot shows
no excess of low P-values outside of the APOE locus. We therefore
believe that imageCNN.PC1 represents image features that are mainly
redundant with APOE genotype and cognitive performance.

The other three CNN-derived phenotypes show low correlations
with cognitive scores (<0.1) and have relatively low power to predict
the clinical conversion of MCI to AD (Table S2). This is probably due
to the conversion assessment being largely based on cognitive perfor-
mance in the first place. However, these phenotypes are associated
with early-stage markers of disease. For example, augmentedCNN.PC2
is significantly associated with the largest number of lipid metabolites
(three sphingomyelin and one phosphatidylcholines; Table S4), which
have been previously found significantly associated with CSF Aj 1-42
and/or CSF tau.2® Furthermore, imageCNN.PC9 is significantly asso-
ciated with a metabolite of histidine, which has been implicated in

insulin resistance and p-tau.2?#! Their most significant SNPs map to
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FIGURE 3 Manhattan plots for (A) principal components (PCs) 1, 4, and 9 of the Image CNN-derived image features, and (B) PC 2 of the
Augmented CNN-derived image features. Gene names in red text are for imageCNN.PC1, those in blue text are for imageCNN.PC4,

imageCNN.PC9, and augmentedCNN.PC2

protein-coding genes that are enriched for diverse AD stages, rang-
ing from early AB, tau phosphorylation, and calcium ion binding-
related synaptic loss to late energy hypo-utilization and inflammation
response. Moreover, our CNN-derived phenotypes compare favorably
to other AD-related phenotypes (cognitive scores, image summary
measures, and clinical labels) in terms of metabolite association and
GWAS findings (Table S4 and Sé in supporting information). Although
the CNN-derived image phenotypes could be explained to some degree
by a linear combination of image summary measures from ROls—with
the highest explaining R2 of 0.358 for imageCNN.PC1 (Figure S4A in
supporting information), followed by the explaining R2 of 0.133 for
augmentedCNN.PC2 (Figure S4B) the majority of the image pheno-
types were unexplained by the ROls, showing that the CNN-derived
image phenotypes provide novel MRI biomarkers.

These findings suggest that our CNN-derived image phenotypes
reflect AD progression better than other common phenotypes and
refine the genetic associations to key subprocesses for LOAD. Three
reasons may explain this. First, the transfer learning technique greatly
augments the ADNI image data,’” making the learned CNN mod-
els more robust to overfitting. Second, unlike our image phenotypes,
case/control LOAD GWAS often exclude MCI due to their uncertain
disease status and could misdiagnose healthy controls that develop AD

later, yielding a less precise and less specific phenotype. Third, the cate-

gorical clinical labels are more prone to errors due to the use of thresh-
olds than the continuous CNN-derived image phenotypes.*?

Although we have applied FreeSurfer to the downloaded pre-
processed MRI images to correct motion and normalize image inten-
sities, we acknowledge that some confounding effects may not have
been accounted for, due to the different MRI acquisition parameters
adopted at different sites. This could also explain the lower prediction
power in the independent AIBL MRIs.

One direction for future studies is to explore CNN training strate-
gies that can better tolerate inaccurate target labels; another one is to
identify the regions in the original MRI images that drive the CNN clas-
sification.
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