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Abstract

Introduction:Genome-wide association studies (GWAS) for late onsetAlzheimer’s dis-

ease (AD)maymiss genetic variants relevant for delineating disease stageswhen using

clinically defined case/control as a phenotype due to its loose definition and hetero-

geneity.

Methods: We use a transfer learning technique to train three-dimensional convolu-

tional neural network (CNN) models based on structural magnetic resonance imaging

(MRI) from the screening stage in theAlzheimer’sDiseaseNeuroimaging Initiative con-

sortium to derive image features that reflect AD progression.

Results: CNN-derived image phenotypes are significantly associated with fasting

metabolites related to early lipid metabolic changes as well as insulin resistance and

with genetic variants mapped to candidate genes enriched for amyloid beta degrada-

tion, tau phosphorylation, calcium ion binding-dependent synaptic loss, APP-regulated

inflammation response, and insulin resistance.

Discussion: This is the first attempt to show that non-invasive MRI biomarkers are

linked toADprogression characteristics, reinforcing their use in earlyADdiagnosis and

monitoring.

KEYWORDS

Alzheimer’s disease, convolutional neural networks, deep learning, disease progression, imaging
phenotypes, machine learning, magnetic resonance imaging; transfer learning
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HIGHLIGHTS

∙ Novel non-invasive magnetic resonance imaging (MRI)

biomarkers of Alzheimer’s disease progression.

∙ Transfer learning.

∙ Deep convolutional neural networks.

1 BACKGROUND

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder

that slowly degrades memory and cognitive functions. It is neu-

ropathologically defined by intracellular neurofibrillary tangles and

aggregated amyloid beta (Aβ) plaques,1 both of which can currently

be estimated accurately only post mortem. The phenotype in current

case/control genome-wide association studies (GWAS) for late onset

AD (LOAD)2–4 are based largely on clinical assessments, in which

mild cognitive impairment (MCI) and AD are determined by designed

memory and cognitive tests and clinical observations. These criteria

fail to reflect early AD hallmark characteristics such as Aβ plaques and
neurofibrillary tangles and highlight advanced AD, leaving the MCI

category widely heterogeneous and poorly understood. Consequently,

current GWAS for LOAD usually exclude MCI and therefore may miss

critical genetic variants associated with early AD characteristics and

progression.

Non-invasive brain imaging modalities such as magnetic resonance

imaging (MRI) and positron emission tomography (PET) are promising

tools for monitoring AD progression and its diagnosis. Imaging pro-

vides precise quantitative phenotypes, and numerous methods have

been proposed for analyzing neuropathology with MRI.5–9 However,

the high dimensionality of these phenotypes makes it challenging to

extract concise and interpretable information. Summary measures for

pre-defined regions of interest (ROI) are suboptimal for predicting the

onset and progression of AD because they are derived independently

of AD status.

In this article, we make use of deep convolutional neural networks

(CNN)10–13 to simultaneously extract relevant features and classify

patients using (structural)MRI data from theAlzheimer’sDiseaseNeu-

roimaging Initiative (ADNI) consortium. Deep CNN have become the

state-of-the-art methods for image classification14 due to their abil-

ity to form translation invariant hierarchical image features. To miti-

gate the scarcity of images in the ADNI dataset, and accommodate the

high number of model parameters that need to be learned, we adopt

a transfer learning technique.15,16 This technique uses an indepen-

dent data-trained 3D CNN model17 that is then fine-tuned using our

dataset of 1381 images. This greatly augments our image dataset and

ensures the learned CNNmodel is more robust to overfitting. Because

our baseline MRI images were taken 3 years prior to clinical labeling

and provide holistic snapshots of brain states, our CNN-derived image

features reflect earlier and more specific AD characteristics than the

memoryand cognitive performance features used for assessingADand

RESEARCH INCONTEXT

1. Systematic review: Case/control genome-wide associa-

tion studies (GWAS) for late onset Alzheimer’s disease

(AD) may miss genetic variants relevant for delineat-

ing disease stages because the cases highlight advanced

AD and widely heterogeneous mild cognitive impairment

patients are usually excluded. More precise phenotypes

for AD are in demand.

2. Interpretation: Convolutional neural networks (CNN)

trained on structural magnetic resonance imaging (MRI)

and clinical labels integrated AD classification and image

feature extraction in one step; transfer learning–trained

CNNweremore robust to overfitting, yieldingmore accu-

rate image features that predict AD progression. CNN-

derived image phenotypes were significantly associated

with metabolites related to early lipid metabolic changes

and insulin resistance, and with genetic variants mapped

to candidate genes enriched for amyloid beta degrada-

tion, tau phosphorylation, calcium ion binding-dependent

synaptic loss, APP-regulated inflammation response, and

insulin resistance.

3. Future direction: Relating theMRI biomarkers to specific

regions in original MRI images that drive the AD classifi-

cation.

MCI. This is supported by the significant associations we find between

the CNN-derived phenotypes and early AD-related metabolites and

genes (Figure 1). To our knowledge, this is the first attempt to link non-

invasiveMRI biomarkers with AD progression characteristics.

2 METHODS

2.1 MRI and clinically labeled data from the
ADNI consortium

Data for this study were obtained from the ADNI database

(adni.loni.usc.edu). ADNI is a longitudinal study in which initial

imaging is followed by annual reimaging. MRI images taken at the

initial stage are later categorized into fourmajor classes based on their

follow-up status: control, AD, stable MCI subjects who maintain the

same disease status throughout the follow-up period, and progressive

MCI subjects who convert from MCI to AD sometime during the

follow-up period. MCI were counted as stable MCI only if they were

followed-up for at least 3 years in this study. The conversion and

follow-up timelines for the 526MCI patients are shown in Table S1B in

supporting information.

We downloaded 817 screening images from the ADNI-1 cohort,

104 ADNI-GO new participants, and 624 ADNI-2 new participants.

Because AD patients rarely convert back, we included 162 Year 1
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APOE genotype and 4  
cognitive scores

MRI

3 phenotypes: imageCNN.PC1,
 imageCNN.PC4, imageCNN.PC9 1 phenotype: augmentedCNN.PC2

 Image CNN model  Augmented CNN model

metabolite association, GWAS, FUMA gene mapping, AMP-AD 
gene co-expression submodule enrichment analysis

Legend:

analysis derived phenotypes  input

F IGURE 1 Graphic summary of the analytical approach. AMP-AD,
AcceleratingMedicines Partnership-Alzheimer’s Disease; APOE,
apolipoprotein E; CNN, convolutional neural network; GWAS,
genome-wide association studies; MRI, magnetic resonance imaging

and 95 Year 2 images from ADNI-1 patients who were diagnosed

as AD at screening, 155 of which also had MRIs at screening, total-

ing 1802 images (Table S1A). The adding of Year 1/2 AD images to

screening images was expected to help CNN more accurately rec-

ognize progression-related image features. However, there were no

duplicate subjects in the downstream metabolite and GWAS analy-

sis. Some subjects in ADNI-1 have two MRI scans from the same ses-

sion; we kept the one in the “Scaled_2″ directory as recommended

by ADNI MRI core team. We filtered out Year 1 to 2 AD MRIs with

the rank of 4 or -1 (based on downloaded MRIMPRANK.csv) and

ADNI-GO/2MRIs with the quality of 4 or none (based on downloaded

MAYOADIRL_MRI_IMAGEQC_12_08_15.csv). When there was more

than one MRI scan from the same session after filtering, we kept the

onewith thehighest quality or the latest timepointwhenqualitieswere

equal.

FreeSurfer18,19 software (-autorecon1 option) was applied to cor-

rect motions, normalize image intensities, and strip bone tissue, fol-

lowed by manual checking of sagittal slice 101 of each MRI image,

ensuring that the mean intensity of the white matter was around 110

and skull was stripped correctly (FreeSurfer suggestions). Inappropri-

ate skull stripping was rescued by running mri_watershed with dif-

ferent watershed thresholds. MRIs with incorrect mean intensity of

the white matter or inappropriate skull stripping after rescuing were

excluded. To investigate whether co-registration is necessary when

applying CNN to brain image analysis, we used the Talairach transfor-

mation calculated in FreeSurfer (-autorecon1) to obtainMNI305 atlas-

registeredMRIs.

Age, four cognitive scores (Mini-Mental State Examination [MMSE],

Clinical Dementia Rating-Sum of Boxes [CDR-SOB], Functional Activ-

ities Questionnaire [FAQ], Alzheimer’s Disease Assessment Scale

[ADAS]), and various image summary measures at screening as well as

sex, education level, apolipoprotein E (APOE) genotype, and ethnicity

were downloaded. The subjects used for training CNN had MRIs and

all selected covariates, with only one subject missing cognitive score

examination date at screening.Most of theMRIs had examination date

within 2months from that of cognitive scores (Table S1C). The distribu-

tions of age, sex, MMSE, and APOE genotype are shown in Table 1.

2.2 CNN and feature formation

CNN is a type of supervised multiple-layer neural network that adopts

learnable convolutional kernels to detect hierarchical image features.

Because the same kernel slides over the whole image, the detected

image features are translation invariant.20 To reinforce this, input

images are often augmented during CNN training via transformations

such as multiple scaling and cropping. A loss value at the last layer of

a CNN is computed in the forward pass and iteratively minimized by

back-propagating the loss to all hidden layers to update their weights

based on the stochastic gradient descent rule.21

The pre-trained 3D CNN model used for the transfer learning

adopted ResNext101 network structure, which consists of 101 lay-

ers, and was trained using 300,000 Kinetics video clips.22 Only the

parameters in the last few layers of ResNext101 were fine-tuned dur-

ing the training stage of our dataset. We added nodes to the second-

to-last layer in ResNext101 structure to accommodate covariates

(Figure S1 in supporting information). Our preliminary classification

results showed that progressive MCI was frequently predicted as AD

by the CNN model, suggesting that the CNN classification possibly

reclassified patients with pending diagnosis. We therefore trained our

CNNmodels with the target classes of controls, stable MCI, and broad

AD (AD and progressiveMCI).

To maximize the chance of obtaining an accurate CNN model,

we generated 10-fold sample splits. The three classes of subjects were

evenly divided into 10 folds in a class-wise fashion; for each sample

split, one fold was used as an independent test set, the remaining nine

foldswere randomly split into training andvalidation setswith the ratio

of 9:1. One CNNmodel was learned on the training and validation sets

in each of the 10 sample splits, and the one with the highest classifi-

cation accuracy on the (independent) test set was selected as the best

model for downstream analyses.

The second-to-last layer of our CNN was the only layer that pro-

vided input for the class probabilities at the last layer, and therefore

contained the features that are themostpredictiveof the classification.

This layer yielded 2048 image features in the adopted ResNext101

structure (Figure S1). Covariates entered CNN at this layer and their

effectswere passed forward to compute the loss at the last layer, which

waspropagatedbackward to all thehidden layers including the second-

to-last layer. Hence, when there are covariates in our CNN model,

the extracted image features are covariate adjusted. To reduce the
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TABLE 1 Demographic assessment and APOE ε4 genotype distribution in ADNI and AIBL data

ADNI data AIBL data

No. of APOE ε4 copies No. of APOE ε4 copies
No. of

subjects Age Male/female 0 1 2

No. of

subjects Age Male/female 0 1 2 MMSE

Control 373 74.3± 6 182/191 274 91 9 107 70.8± 7 51/56 76 30 1 29.1± 1.1

AD 251 74.8± 8 134/117 84 114 53 74 73.2± 8 29/45 23 37 14 20.3± 5.6

sMCI 424 73.1± 8 255/169 246 141 37 10 77.2± 7 8/2 5 4 1 28.0± 1.5

pMCI 230 73.9± 7 134/96 77 114 39 11 74.9± 6 7/4 1 6 4 26.3± 1.7

P-Value1 0.047 0.26 5.72× 10–30 0.28 0.26 4.51× 10–10 2.93× 10–16

P-Value2 0.72 0.64 3.21× 10–09 0.25 0.43 0.033 0.18

Notes: Age is presented in amean± standard deviation format.

ADNI, sMCI, and pMCIwere estimated until 3 years from screening (for CNN training); AIBL, sMCI, and pMCIwere estimated until 6 years from baseline (for

CNN evaluation).

P-value1: P value of comparing AD and controls.

P-value2: P value of comparing sMCI and pMCI.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study

of Ageing; APOE, apolipoprotein E;MMSE,Mini-Mental State Examination; pMCI, progressiveMCI; sMCI, stableMCI.

number of image features for downstream analyses, we applied prin-

cipal component analysis (PCA)23 to the 2048 image features, used the

broken stick model24 to estimate the number of PCs needed, followed

by a L1-norm regularized regressionmodel (Lasso25) to select themost

informative PCs for distinguishing stable and progressive MCIs. These

PCs are hereafter referred to asCNN-derived imagephenotypes. After

CNNwas trained, covariateswere not needed to obtain the image phe-

notypes, but needed for disease status predictions.

We generated two sets of CNN-derived phenotypes. For the first,

we trained a CNN model with age at screening, sex, education level,

MRI field strength indicator (1.5T or 3T), and ethnicity as covariates

(hereafter Image CNN). For the second set, we includedAPOE genotype

as an additional covariate, along with four APOE-correlated cognitive

scores at screening (hereafter Augmented CNNmodel).

To evaluate the performance of our CNN-derived image pheno-

types, we correlated them with metabolites and genetic variants. We

also compared themwith conventional image summarymeasures, cog-

nitive scores, and clinical labels. See supporting information for addi-

tional details.

2.3 AIBL MRIs as a validation dataset

We used MR images from the Australian Imaging, Biomarker &

Lifestyle Flagship Study of Ageing (AIBL) to evaluate the performance

of the trained CNNs. AIBL, designed similarly to ADNI, is a longitudi-

nal study that follows-up participants every 18 months until 6 years

from screening. All subjects were assumed to be White, a subset of

whoseMRIswere provided at theADNIwebsite.We selected 207 sub-

jects who had one MRI scan at baseline and either remained as con-

trols/MCI/AD for at least 3 years or converted to AD during the 6-

year follow-up. Therewere only 10 stableMCI and 11 progressiveMCI

among 207 subjects. The MRIs, 60 of which were of 1.5T magnetic

strength and 147 of 3T, went through the same pre-processing step

as ADNI MRIs. Participants’ characteristics were described in Dang

et al.26 and Ellis et al.27 Age, sex, APOE ε4 genotype, and MMSE are

summarized in Table 1 and used here as covariates. Education level and

cognitive scores of ADAS and FAQ, not available to our access, were

assigned values of zero to remove their effects in our CNNs. CDR was

available and used here instead of CDR-SOB. Youden’s J statistics24

was applied to the class probabilities of CNN to determine the pre-

dicted class category.

3 RESULTS

3.1 Deep 3D CNN models classify transition
from MCI to AD accurately

The confusionmatrices for the best CNNmodels on unregisteredMRIs

are shown in Table 2. The Augmented CNN yielded prediction accuracy

of 0.992 for broad AD, 0.986 for controls, and between 0.911 (1-year

follow-up) to 0.801 (the final visit) for progressive MCI. In compari-

son, the Image CNN achieved prediction accuracy of 0.913 for broad

AD, 0.906 for controls, and between 0.822 (1-year follow-up) to 0.69

(the final visit) for progressiveMCI. The Image CNN had lower power to

differentiate stableMCI from healthy controls. Bothmodels had lower

error rate of predicting stable MCI as broad AD with longer follow-up

period (0.409 to0.192 forAugmentedCNN, 0.376 to0.2 for ImageCNN),

implying that some of the stable MCI that were predicted by CNN as

broad AD converted to AD when tracked for longer than 3 years. We

also trained the two CNN models using co-registered MRIs. As shown

in Figure 2A and B, CNN performance on non-registered and regis-

teredMRIswas not significantly different, verifying that CNN is able to

learn translation-invariant image features. However, Image CNN with

the samestructurehadabiggerperformancedifferencebetween train-

ing and test samples on registered MRI than on non-registered MRI

(Figure2C), implying that ImageCNNmightbe somewhatoverfitting for
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TABLE 2 Confusionmatrix for CNN predictions

Image CNN (trainedwithoutAPOE genotype and cognitive
score as covariates)

Augmented CNN (trainedwithAPOE genotype and
cognitive score as covariates)

Clinical label Control StableMCI Broad AD Control StableMCI Broad AD

3Y_ctrl (373) 0.895 (334) 0.0107 (4) 0.0938 (35) 0.96 (358) 0.0268 (10) 0.0134 (5)

AD (482) 0.0851 (41) 0.00207 (1) 0.913 (440) 0 (0) 0.0083 (4) 0.992 (478)

1Y_sMCI (425) 0.442 (188) 0.181 (77) 0.376 (160) 0.231 (98) 0.36 (153) 0.409 (174)

2Y_sMCI (336) 0.518 (174) 0.226 (76) 0.256 (86) 0.277 (93) 0.435 (146) 0.289 (97)

3Y_sMCI (296) 0.551 (163) 0.24 (71) 0.209 (62) 0.297 (88) 0.476 (141) 0.226 (67)

4Y_sMCI (278) 0.558 (155) 0.241 (67) 0.201 (56) 0.317 (88) 0.478 (133) 0.205 (57)

5Y_sMCI (271) 0.561 (152) 0.232 (63) 0.207 (56) 0.325 (88) 0.48 (130) 0.196 (53)

final_sMCI (255) 0.557 (142) 0.243 (62) 0.2 (51) 0.318 (81) 0.49 (125) 0.192 (49)

1Y_pMCI (101) 0.178 (18) 0 (0) 0.822 (83) 0.0198 (2) 0.0693 (7) 0.911 (92)

2Y_pMCI (190) 0.195 (37) 0.00526 (1) 0.8 (152) 0.0368 (7) 0.0737 (14) 0.889 (169)

3Y_pMCI (230) 0.209 (48) 0.0087 (2) 0.783 (180) 0.0522 (12) 0.0826 (19) 0.865 (199)

4Y_pMCI (248) 0.226 (56) 0.0403 (10) 0.734 (182) 0.0484 (12) 0.109 (27) 0.843 (209)

5Y_pMCI (255) 0.231 (59) 0.0549 (14) 0.714 (182) 0.0471 (12) 0.118 (30) 0.835 (213)

final_pMCI (271) 0.255 (69) 0.0554 (15) 0.69 (187) 0.0701 (19) 0.129 (35) 0.801 (217)

Notes: Number of samples is given in parentheses. The fraction at each entry stands for the ratio of the number of CNN predictions belonging to the column

category to the number of samples belonging to the row (clinical) category. That pMCI or ADwere predicted as broad AD, and control/sMCI were predicted

as non broad AD can be viewed as correct predictions in a broad sense.

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CNN, convolutional neural network;

pMCI, progressiveMCI; sMCI, stableMCI.

registered MRI. This is probably because the transferred pre-trained

CNNwas trained onnon-registered images.Hence, all the downstream

analyses are based on non-registeredMRIs.

3.2 Trained CNNs applied to AIBL MRIs

CNNanalysiswas also informative in ourAIBL validationdataset, espe-

cially for Image CNN as the relevant cognitive data were not available

for Augmented CNN. Area under the curve (AUC) of distinguishing con-

trols from AD was 0.78 for Image CNN and 0.76 for Augmented CNN.

AUC of differentiating stable and progressive MCI were lower—0.61

and 0.6, respectively (Table S3 in supporting information)—probably

due to the smaller sample size (21 subjects total). The Augmented CNN

performed worse than the Image CNN, probably because ADAS, FAQ

and CDR-SOB were not available. Potential reasons for the reduced

AUC compared to ADNI analysis include (1) MRI acquisitions in ADNI

and AIBL used slightly different protocols and (2) some overfitting in

the trained CNN in spite of the transfer learning, as the trained CNN

was fitted to a North American population whereas AIBL data were

drawn fromAustralia.

3.3 Image phenotypes derived from 3D CNNs

Using Lasso,25 we selected principal components 1, 4, and 9 as infor-

mative phenotypes from Image CNNmodel (hereafter imageCNN.PC1,

imageCNN.PC4, imageCNN.PC9), explaining 0.257, 0.035, 0.019of the

variance of the 2048 CNN-derived image features, respectively. Only

PC 2 (hereafter augmentedCNN.PC2) was selected from Augmented

CNN model, explaining 0.064 of the variance of the 2048 image fea-

tures. Only imageCNN.PC4 and augmentedCNN.PC2 had a high cor-

relation coefficient of 0.72; all other pairwise correlations of PCs were

below 0.3.

3.4 Image phenotypes are associated with early
AD-related metabolites

Seven metabolites were found to be significantly (P < 0.05/55 =

0.0009) associated with the four CNN-derived phenotypes in the

ADNI-1 participants (Table S4 in supporting information), including

two phosphatidylcholines (PC) metabolites (PC ae C44:4 associated

with imageCNN.PC1, PC aa C32:3 with augmentedCNN.PC2), and

three sphingomyelin (SM) metabolites (SM C16:1, SM C18:0, and SM

C20:2, with augmentedCNN.PC2). These PC or SM metabolites were

previously found to be significantly associated with cerebrospinal fluid

(CSF) Aβ 1-42 and/or CSF tau in ADNI-1 cohort, either directly or

indirectly.28 Significant branched-chain amino acids included histidine

(with imageCNN.PC9) and isoleucine (with augmentedCNN.PC2), both

of which have been previously implicated in insulin resistance.28,29 We

need to caution the reader that the interpretationmaybeoverstatedas

the metabolite association was performed only in ADNI-1 participants

while image-derived phenotypes were obtained from ADNI-1/GO/2

participants.
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F IGURE 2 Average AUC (area under the receiver operating characteristic curve) of predicting stable and progressivemild cognitive
impairment (MCI) among 10 sample splits for six follow-up periods, comparing registered and non-registered images. A, Image CNNmodel on test
samples (with error bar). B, Augmented CNNmodel on test samples (with error bar). C, Comparison of average AUC between training and test
samples. CNN, convolutional neural network; pMCI, progressivemild cognitive impairment; sMCI, stable mild cognitive impairment
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3.5 GWAS using CNN-derived image phenotypes

The results for meta GWAS on imputed SNPs (see supporting infor-

mation) using the four CNN-derived image phenotypes are shown in

Table 3 and Table S5 in supporting information. QQ plots for all phe-

notypes show no obvious inflation of large P-values (> 1 × 10–4), with

λGC between 0.993 and 1.01, indicating that our association analyses

have accounted for population substructurewell (Figure S2 in support-

ing information).

Using imageCNN.PC1 as a phenotype, we obtained genome-

wide significant P-values (<5 × 10–8) for genetic variants at the

APOE/TOMM40 locus (Figure S2A). However, its QQ plot shows

no upward deviation from the diagonal line when single nucleotide

polymorphisms (SNPs) at the APOE/TOMM40 locus are excluded

(Figure S2B), suggesting that imageCNN.PC1 is not significantly asso-

ciated with any genetic variants outside APOE given the current

sample size. In contrast, using imageCNN.PC4, imageCNN.PC9, and

augmentedCNN.PC2 as phenotypes revealed no significant variants at

theAPOE/TOMM40 locus (P<1×10–5). TheirQQplots showmoderate

excess of lowP-values evenwhenSNPs at theAPOE/TOMM40 locus are

excluded (Figure S2C-2E), suggesting that these phenotypes are signif-

icantly associatedwith variants outsideAPOE given the current sample

size.

GWASbased on imageCNN.PC4 and imageCNN.PC9 identified 116

and 41 significant (P < 1 × 10–5) SNPs, respectively (Figure 3A), which

were mapped to 17 protein-coding genes (within ±15 kb) according to

FUMA.30 Identified SLC24A4 (rs12588868,P=9.07×10–6) is a known

AD gene;4 two genes, CACNA1C (rs11062078, P = 3.14 × 10–6) and

DYSF (rs34707417, P= 6.38× 10–6), were significantly enriched in the

Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD)

gene co-expression submodules (Figure S3 in supporting information).

The Gene Ontology (GO) annotations for the enriched submodules

include regulation of action potential and calcium-mediated signaling

for CACNA1C and regulation of endocytosis for DYSF (Table S7 in sup-

porting information). DYSF has been reported to be significantly asso-

ciated (P< 1× 10–4) with AD in an exome array association study.31

AugmentedCNN.PC2 identified 130 SNPs with P-values < 1 ×

10–5 (Figure 3B), which were mapped to 12 protein-coding genes

(within ±15 kb) according to FUMA. Two genes, CDH13 (rs67805160,

P = 4.26 × 10–6) and ENSA (rs112175941, P = 2.48 × 10–6) were sig-

nificantly enriched in AMP-AD gene co-expression submodules (Fig-

ure S3), whose GO annotations include calcium-dependent cell–cell

adhesion for CDH13, negative regulation of dephosphorylation, and

regulation of hormone/insulin secretion for ENSA (Table S8 in support-

ing information).

3.6 Candidate genes link image phenotypes
to AD-related functions

For Image CNN, three candidate genes (SLC24A4, CACNA1C, DYSF) are

related to the GO term of calcium ion binding, which may in turn play

a role in synaptic plasticity.32 NCAM2mediates synaptic adhesion, and

Aβ-dependent disruption of NCAM2 functions in the AD hippocampus

contributes to synapse loss.33 BRSK1 is the eQTL target gene of signif-

icant rs429498 in the AMP-AD RNA-Seq data, and mediates phospho-

rylation of tau.34 Therefore, we believe that Image CNNdetected image

patterns that are related to calcium ion binding, Aβ-mediated synaptic

loss, and tau phosphorylation.

ForAugmentedCNN,CDH13negatively regulates axongrowth35 and

LMF1 is required for maturation and transport of active lipoprotein

lipase (LPL).36 Previous studies have established that LPL is a novel Aβ-
binding protein promoting cellular uptake and subsequent degradation

of Aβ.37 ENSA is an inhibitor of protein phosphatase 2A (PP2A)38 that

regulates tau phosphorylation directly. ADCY3 loss-of-function vari-

ants increase the risk of obesity and type 2 diabetes.39 ZC3H12A (a.k.a.

MCPIP1), detected by both CNN models, is an APP-regulated inflam-

mation respondent in NT2 cells.40 All together, we believe that aug-

mentedCNN.PC2 represented both early (Aβ and tau related) and late
(insulin resistance/diabetes and inflammation response) AD character-

istics.

4 DISCUSSION

Augmented CNNmodel achieves higher prediction accuracy than Image

CNN model in the ADNI cohort. The high accuracy achieved by both

models, aswell as the four cognitive scores andAPOE genotype, for dis-

tinguishing stable and progressive MCI (Table S2 in supporting infor-

mation) implies that image, cognitive performance, and genetics have

complementary roles in disease status prediction.

ImageCNN.PC1 is the only CNN-derived phenotype to identify

genome-wide significant SNPs at the APOE locus because principal

components are uncorrelated with one another by definition and Aug-

mented CNN-derived image features were APOE-adjusted. This pheno-

type also had the highest power (AUC = 0.784) to predict the clini-

cal conversion of MCI to AD among all the phenotypes we considered

(Table S2), and the highest Pearson correlation with cognitive scores

(0.55withADAS and 0.52withCDR-SOB). However, itsQQplot shows

no excess of low P-values outside of the APOE locus. We therefore

believe that imageCNN.PC1 represents image features that aremainly

redundant with APOE genotype and cognitive performance.

The other three CNN-derived phenotypes show low correlations

with cognitive scores (<0.1) and have relatively low power to predict

the clinical conversion of MCI to AD (Table S2). This is probably due

to the conversion assessment being largely based on cognitive perfor-

mance in the first place. However, these phenotypes are associated

with early-stagemarkers of disease. For example, augmentedCNN.PC2

is significantly associated with the largest number of lipid metabolites

(three sphingomyelin and one phosphatidylcholines; Table S4), which

have been previously found significantly associated with CSF Aβ 1-42
and/or CSF tau.28 Furthermore, imageCNN.PC9 is significantly asso-

ciated with a metabolite of histidine, which has been implicated in

insulin resistance and p-tau.29,41 Their most significant SNPs map to
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F IGURE 3 Manhattan plots for (A) principal components (PCs) 1, 4, and 9 of the Image CNN-derived image features, and (B) PC 2 of the
Augmented CNN-derived image features. Gene names in red text are for imageCNN.PC1, those in blue text are for imageCNN.PC4,
imageCNN.PC9, and augmentedCNN.PC2

protein-coding genes that are enriched for diverse AD stages, rang-

ing from early Aβ, tau phosphorylation, and calcium ion binding-

related synaptic loss to late energy hypo-utilization and inflammation

response. Moreover, our CNN-derived phenotypes compare favorably

to other AD-related phenotypes (cognitive scores, image summary

measures, and clinical labels) in terms of metabolite association and

GWAS findings (Table S4 and S6 in supporting information). Although

theCNN-derived imagephenotypes couldbeexplained to somedegree

by a linear combination of image summary measures from ROIs—with

the highest explaining R2 of 0.358 for imageCNN.PC1 (Figure S4A in

supporting information), followed by the explaining R2 of 0.133 for

augmentedCNN.PC2 (Figure S4B) the majority of the image pheno-

types were unexplained by the ROIs, showing that the CNN-derived

image phenotypes provide novelMRI biomarkers.

These findings suggest that our CNN-derived image phenotypes

reflect AD progression better than other common phenotypes and

refine the genetic associations to key subprocesses for LOAD. Three

reasons may explain this. First, the transfer learning technique greatly

augments the ADNI image data,17 making the learned CNN mod-

els more robust to overfitting. Second, unlike our image phenotypes,

case/control LOAD GWAS often exclude MCI due to their uncertain

disease status and couldmisdiagnose healthy controls that developAD

later, yielding a less precise and less specific phenotype. Third, the cate-

gorical clinical labels aremore prone to errors due to the use of thresh-

olds than the continuous CNN-derived image phenotypes.42

Although we have applied FreeSurfer to the downloaded pre-

processed MRI images to correct motion and normalize image inten-

sities, we acknowledge that some confounding effects may not have

been accounted for, due to the different MRI acquisition parameters

adopted at different sites. This could also explain the lower prediction

power in the independent AIBLMRIs.

One direction for future studies is to explore CNN training strate-

gies that can better tolerate inaccurate target labels; another one is to

identify the regions in the originalMRI images that drive the CNN clas-

sification.
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