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RESEARCH ARTICLE Open Access

Macrophage mediated recognition and
clearance of Borrelia burgdorferi elicits
MyD88-dependent and -independent
phagosomal signals that contribute to
phagocytosis and inflammation
Sarah J. Benjamin1,2, Kelly L. Hawley1,3, Paola Vera-Licona1,4,5,6, Carson J. La Vake1, Jorge L. Cervantes1,3,7,
Yijun Ruan8, Justin D. Radolf1,2,9,10,11 and Juan C. Salazar1,2,3,9,12*

Abstract

Background: Macrophages play prominent roles in bacteria recognition and clearance, including Borrelia
burgdorferi (Bb), the Lyme disease spirochete. To elucidate mechanisms by which MyD88/TLR signaling enhances
clearance of Bb by macrophages, we studied wildtype (WT) and MyD88−/− Bb-stimulated bone marrow-derived
macrophages (BMDMs).

Results: MyD88−/− BMDMs exhibit impaired uptake of spirochetes but comparable maturation of phagosomes
following internalization of spirochetes. RNA-sequencing of infected WT and MyD88−/− BMDMs identified a large
cohort of differentially expressed MyD88-dependent genes associated with re-organization of actin and
cytoskeleton during phagocytosis along with several MyD88-independent chemokines involved in inflammatory cell
recruitment. We computationally generated networks which identified several MyD88-dependent intermediate
proteins (Rhoq and Cyfip1) that are known to mediate inflammation and phagocytosis respectively.

Conclusion: Our findings show that MyD88 signaling enhances, but is not required, for bacterial uptake or
phagosomal maturation and provide mechanistic insights into how MyD88-mediated phagosomal signaling
enhances Bb uptake and clearance.

Keywords: Macrophage, Phagocytosis, Inflammation, Borrelia, MyD88

Background
Lyme disease (LD) is a highly prevalent tick-borne illness
caused by the spirochetal bacterium Borrelia burgdorferi
(Bb) [1–3]. The disease is characterized by a wide array
of clinical manifestations which vary in duration and se-
verity among patients. Early clinical manifestations of

LD include the characteristic “bullseye” rash known as
erythema migrans and flu-like symptoms, while late
manifestations include arthritis, carditis and neurological
compromise [4, 5]. The invading spirochete induces both
innate and adaptive immune responses, and it is believed
that the innate immune response to Bb contributes to
the development of clinical findings in LD [6]. The
macrophage is a principal cellular element of the innate
immune response to the bacterium at sites of infection
in both humans and mice [7–9]. Macrophages also play
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a prominent role in the pathogenesis of murine Lyme
carditis, and their recruitment to heart tissue is import-
ant in spirochetal clearance [10]. Macrophages have the
phagocytic and signaling machinery necessary to bind,
engulf, and degrade Bb. Binding of Bb to macrophages is
mediated by surface integrins, such as Complement Re-
ceptor 3 (CR3) [11, 12] and α3 [13]. Once attached,
phagocytosis of Bb is complex and can occur by either a
sinking or coiling mechanism [14, 15]. Both cases re-
quire rearrangements of the actin cytoskeleton to
internalize Bb into the endosome, where degradation
takes place [16].
Bb is an extracellular pathogen that needs to be taken

up and degraded for significant recognition by the host
immune system [17]. We have defined this process as
“phagosomal signaling” [14]. Spirochete degradation ex-
poses borrelial pathogen-associated molecular patterns
(PAMPs), such as lipoproteins and nucleic acids, to
endosomal toll-like receptors (TLRs) for recognition,
resulting in signaling cascades which induce pro-
inflammatory cytokine production [17–19]. Bb does not
contain LPS and, therefore, does not engage TLR4. The
cell envelope of Bb contains abundant triacylated lipo-
proteins [20], which are known to be recognized by
TLR1/2 heterodimers [21–26]. However, the three fatty
acid chains in the N-terminus of Bb lipoproteins, which
serve as the TLR2/1 PAMP, are tethered in the outer
membrane [27]. We have shown that this results in min-
imal recognition of lipoproteins in intact spirochetes at
the cell surface [17, 18, 21, 28]. Instead, principal recog-
nition of Bb TLR2 ligands occurs within macrophage
endosomal structures after the spirochete is phagocy-
tosed and degraded [17, 28]. Bacterial degradation re-
sults in exposure of both lipoprotein ligands and nucleic
acids, which are recognized by endosomal TLR2 and
TLRs 7, 8 and 9 respectively [18, 19, 29]. Signaling cas-
cades initiated by engagement of these TLRs utilize the
adaptor protein MyD88 [14, 30], indicating that this
adaptor protein is a crucial element in mediating the in-
flammatory response to Bb.
A role for MyD88 has been implicated in each of the

four general steps associated with phagocytic clearance
of bacterial pathogens: uptake, phagosome maturation,
degradation and cytokine production. Murine macro-
phages lacking MyD88 show markedly diminished up-
take of several bacterial species, including Bb [28, 31–
35]. In WT macrophages, prior studies have shown that
Bb-induced MyD88 signaling results in increased PI3K
activation and when PI3K is inhibited Bb uptake is de-
creased [36]. In addition, formin proteins (FMNL1,
mDia1, and Daam1) have been shown to play a critical
role in mediating phagocytosis of Bb [15, 37]. Whether
MyD88 increases activation of these formins, and the
role of PI3K signaling in this process, has not been

established. Degradation of bacteria is impaired in the
absence of MyD88 due to inefficient acidification of pha-
gosomes [38]. In the context of Bb infection, lysosome
maturation markers are recruited to Bb-containing pha-
gosomes in macrophages lacking MyD88 [28]. However,
the degree of phagosome maturation and acidification
required to expose Bb ligands from the bacteria cell en-
velope for recognition has not been studied. Murine
macrophages lacking MyD88 also show markedly dimin-
ished production of NFκB-triggered pro-inflammatory
cytokines, such as TNFα and IL-6, when stimulated with
different bacterial species, including Bb [28, 31]. Never-
theless, the key host components involved downstream
of these MyD88-mediated phagosome signals and their
effects have not been well studied in the context of Bb
infection.
The objective of these studies is to examine which

downstream effects of MyD88 phagosomal signaling po-
tentially enhance clearance of Bb. Using an ex vivo mur-
ine macrophage system, we show that MyD88 signaling
enhances, but is not required, for bacterial uptake or
phagosomal maturation. Through RNA-sequencing ana-
lysis, we provide evidence that MyD88 signaling drives
transcription of multiple genes involved in phagocytosis
and identify potential intermediate proteins that facili-
tate the association between MyD88 and bacterial up-
take. We also demonstrate that internalization of Bb by
macrophages induces robust MyD88-independent in-
flammatory responses via production of chemokines.
Our findings highlight the importance of MyD88 in effi-
cient uptake of the Lyme disease spirochete by macro-
phages and provide potential mechanistic insight into
how MyD88 mediates this process.

Methods
Mice
Female 6–8-week-old C57BL/6 J wild type (WT) and
C57BL/6 J MyD88−/− (MyD88−/−) mice used in these
studies were obtained from breeding colonies main-
tained in the UConn Health (UCH) Center for Com-
parative Medicine facility according to guidelines set by
the UCH Institutional Animal Care and Use Committee
(IACUC). Female mice were used exclusively in these
studies due to differences in expression of TLR7 be-
tween males and females [39]. Original WT breeding
pairs were purchased from The Jackson Laboratory. Ori-
ginal MyD88−/− breeding pairs were kindly provided by
Dr. Egil Lien at the University of Massachusetts with
permission from Dr. S. Akira in Osaka, Japan. Disruption
of the murine MyD88 gene was confirmed through PCR
[40]. Both WT and MyD88−/− breeding colonies are
maintained on the antibiotic Sulfatrim (sulfomethoxa-
zole [40 mg/mL] + trimethoprim [8 mg/mL]) diluted in
water 1:50, which has been previously shown to not
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impact the degree of Bb infection [41]. In preparation
for euthanasia, individual mice were exposed to isoflur-
ane to calm the animal prior to sedation by injection
with an overdose of an anesthetic cocktail [Ketamine
50–75mg/kg at 15 mg/ml, Xylazine 5–7.5 mg/kg at 2.5
mg/ml, and Acepromazine 0.5–1.25 mg/kg]. Following
euthanasia by cervical dislocation, each animal was con-
firmed to lack a heartbeat in accordance with the ap-
proved IACUC protocol.

Bacterial strains
Low-passage virulent wild-type Bb strain 297 [42] or a
strain 297 isolate containing a stably-inserted copy of
green fluorescent protein (GFP) under the control of the
constitutively-expressed flaB promoter (Bb914) [43]
were maintained in Barbour-Stonner-Kelly (BSK)-II
media supplemented with normal rabbit serum and gen-
tamicin (50 μg/μl) [43]. Cultures were grown at 23 °C for
at least 1 week prior to being shifted to 37 °C as previ-
ously described [43]. Spirochetes were centrifuged at
3300 x g for 20 min at 4 °C and resuspended in either
BSK-II for in vivo experiments or DMEM (Gibco, 15,
630–080) supplemented with sodium pyruvate (Gibco,
11,360–070) and HEPES (Gibco, 15,630–080) for ex vivo
experiments. After resuspension, the cultures were
counted by dark-field microscopy using a Petroff-
Hausser counting chamber (Hausser Scientific) and di-
luted accordingly. Staphylococcus aureus (Sa) was cul-
tured and fluorescently labeled with FITC as previously
described [44].

BMDM stimulation
Bone marrow-derived macrophages (BMDMs) were iso-
lated from 6 to 8-week-old WT and MyD88−/− mice as
described previously [18]. Single cell macrophage sus-
pensions were seeded into either 12-well tissue culture-
treated plates at a concentration of 1 × 106 cells/ml per
well or 1 × 105 cells/500 μL per well in 8-chamber cell
microscopy slides. Cells were then incubated overnight
at 37 °C/5% CO2 to allow cell adherence before experi-
mentation. Cells were incubated for either 0.5, 1, 4 or 6
h at 37 °C/5% CO2 with live GFP-Bb or labeled Sa at
multiplicities of infection (MOIs) of either 10 or 100.
Stimulation media was DMEM supplemented with 1%
sodium pyruvate and 1% HEPES. At the end of the incu-
bation period, culture supernatants were collected and
stored at − 80 °C until cytokine analysis. Cells stimulated
in chamber slides were processed for confocal micros-
copy. Cells stimulated in 12-well plates were processed
for RNA extraction. All culture media and reagents were
confirmed free of LPS contamination (< 10 pg/ml) by
Limulus amoebocyte lysate assay quantification (Cam-
brex, MA).

Confocal microscopy
After stimulation, BMDMs were fixed in 2% paraformal-
dehyde with 0.05% Triton-X-100 (Fisher, BP151–100)
for 10 min. Slide wells were then incubated with 5% bo-
vine serum albumin (BSA) solution in PBS overnight at
4 °C to block non-specific antibody binding. The next
day, cells were stained with different combinations of
anti-GFP (Thermo Scientific A-21311, 1:100), phalloidin
conjugated with Alexa Fluor 647 (Biolegend 424205, 1:
20), anti-MyD88 (Santa Cruz 11356, 1:100), anti-TLR2
(eBioscience 14–9021-82, 1:100), anti-TLR7 (R&D
MAB7156, 1:100), anti-ASC (Santa Cruz 22514-R, 1:100)
and anti-LAMP-1 (eBioscience 14–1071-82, 1:100). A
secondary antibody, Alexa Fluor 350, was used to detect
anti-MyD88, anti-TLR2, anti-ASC and anti-LAMP-1
(Life Technologies A21093, 1:100). Incubations with pri-
mary and secondary antibodies were done for 1 h each
at room temperature; slide wells were washed following
each incubation three times with PBS supplemented
with 0.5% Tween-20, with a final wash in distilled H2O
before mounting. After antibody staining, slides were
mounted using Vectashield (Vector H-1000) and imaged
using a Zeiss 880 confocal microscope. Image processing
and analysis were performed using ImageJ (NIH,
v1.41b). Colocalization values were determined by first
analyzing profile plots in ImageJ (Plug-in: “Plot Profile”)
across ten different phagosomes for each cell genotype
and then calculating the average difference between the
fluorescence intensity curves of the markers of interest
(i.e., LAMP-1 and Bb). Binding percentages were calcu-
lated by imaging 100–200 cells using a confocal micro-
scope and then measuring the ratio of cells containing at
least one surface-bound or internalized spirochete to the
total number of cells imaged for each condition, repre-
sented as %BMDMs interacting w/Bb. Uptake percent-
ages were calculated by imaging 100–200 cells using a
confocal microscope and then measuring the ratio of
cells containing at least one internalized spirochete to
the total number of cells imaged for each condition, rep-
resented as %BMDMs w/internalized Bb.

Western blotting of BMDM supernatants and lysates
Protein lysates were generated from BMDM cell culture
lysates and supernatants after Bb stimulation. In these
experiments, adenosine triphosphate (ATP) (Sigma,
3A6419-1G) was added to WT BMDMs (already stimu-
lated with Bb for 5 h) 1 h prior to harvest for generation
of lysates. Supernatants were treated with an equal vol-
ume of methanol and ¼ volume of chloroform, vortexed
and spun at 16000 x g for 10 min. After removal of the
upper phase, 500 μL of methanol was added to the inter-
mediate phase, which was then vortexed and spun at
16000 x g for 10 min. The pellets were then dried at
room temperature, resuspended in 30 μL of 2x Laemmli

Benjamin et al. BMC Immunology           (2021) 22:32 Page 3 of 16



buffer and incubated in a 37 °C water bath until proteins
became soluble. BMDMs were lysed using RIPA buffer
at − 80 °C and spun at maximum speed for 10 min. Pro-
tein pellets were resuspended in 2x Laemmli buffer. Ly-
sates were boiled at 99 °C for 10 min and run on a 12.5%
SDS-PAGE gel at 140 V for 1 h (5 μL per lane, 15 lanes).
Proteins were then transferred to nitrocellulose mem-
branes (Bio-Rad 162–0177) at 20 V for 20 min. Mem-
branes were blocked for 1 h in milk block solution and
then incubated overnight at 4 °C with primary antibodies
for either β-actin (Sigma A5441, 1:2000), IL-1β (R&D
AF401NA, 1:800) or caspase-1 (Adipogen AG-20B-0042,
1:1000) diluted in milk block solution. Membranes were
then washed 5 times for 5 min each in wash buffer (PBS
supplemented with 0.5% Tween-20) and incubated with
goat anti-mouse HRP-conjugated IgG (GE NA931) di-
luted 1:5000 (β-actin and Caspase-1) or 1:1000 (IL-1β)
in milk block for 2 h at room temperature. Following
additional washes, membranes were incubated in HyGlo
spray chemilunescent substrates (Denville Scientific,
E2400) for 5 min and imaged on a Biorad ChemiDoc
MP imaging system.

Cytokine analysis
The Cytokine Bead Array Mouse Inflammation kit (BD
Biosciences 552364) was used according to manufac-
turer’s instructions for simultaneous measurement of IL-
6, IL-10, CCL2, IFNγ, TNFα, and IL-12p70 in superna-
tants from stimulated BMDMs. General statistical ana-
lysis was performed using GraphPad Prism 4.0
(GraphPad Software, San Diego, CA), using an unpaired
Student t test. For each experiment, both the standard
deviation and the standard error of the mean were cal-
culated. P-values of < 0.05 were considered significant.

Identification of differentially expressed genes by RNA-
Seq
Total RNA was extracted from three biological replicates
of WT and MyD88−/− BMDMs, either unstimulated or
stimulated with Bb at MOI 10:1 or MOI 100:1 for 6 h.
Following stimulation, RNA was isolated using the
Macherey-Nagel total RNA isolation kit (Takara,
740955) and was used as input for the NuGen Ovation
RNA-seq V1 kit. cDNA output was analyzed for correct
size distribution with an Experion Standard Sensitivity
RNA chip and quantified using a Qubit Fluorometer. Se-
quencing libraries were produced using the NuGen En-
core NGS Library I kit. Libraries were multiplexed and
sequenced at The Jackson Laboratory for Genomic
Medicine Sequencing Core with an Illumina HiSeq 2500
as 2X50bp pair end reads. RNA-Seq reads from each in-
dividual library were mapped with Tophat2 RNA-Seq
spliced reads mapper (version 2.0.5) [45] to mouse gen-
ome build mm9 with parameter settings adjusted to suit

strand-specific pair-end RNA-Seq reads. The mapping
result bam files were used as input to the HTSeq high-
throughput sequencing data analysis package [46] to
quantify the read counts mapped to all genes in UCSC
mm9 mouse gene annotation set. The expression levels
of genes represented as mapped read counts were nor-
malized using the DESeq2 RNA-Seq analysis package
(function: estimateSizeFactor) [47]. Genes were consid-
ered expressed if the number of reads was above the
25th percentile for the normalized data set. For quality
control, only replicates with Pearson correlation coeffi-
cient above 0.9 on their FPKM values were considered
(Figure S1). Expressed genes were then further analyzed
for differential gene expression using the DEseq2 pack-
age with FDR cutoff: 0.1. Differential gene expression
was calculated in WT BMDMs stimulated 10:1 with Bb
relative to unstimulated WT BMDMs and MyD88−/−

BMDMs stimulated 100:1 with Bb relative to unstimu-
lated MyD88−/− BMDMs. Differentially expressed genes
(DEGs) were classified as either up-regulated or down-
regulated based on the log2 of the fold change compared
to the unstimulated control, which was calculated in R
statistical software using package “DESeq2”. Determined
DEGs were then separated into five groups based on
their expression profiles; WT (all DEGs in WT
BMDMs), MyD88−/− (all DEGs in MyD88−/− BMDMs),
MyD88-dependent (all DEGs in WT but not MyD88−/−

BMDMs), MyD88-independent (all DEGs in both WT
and MyD88−/− BMDMs), and MyD88-privative (all
DEGs in MyD88−/− but not in WT BMDMs).

Identification of enriched transcription binding sites and
master regulator analysis
Transcription factor binding sites in promoters of
differentially-expressed genes were analyzed using
known DNA-binding motifs described in the TRANSF
AC library [48], release 2017.2, available in the GeneX-
plain software (http://genexplain.com). Binding site en-
richment analysis for each one of our sets of DEGs was
carried out as part of a GeneXplain dedicated workflow.
The background consisted of 300 mouse house-keeping
genes and the TRANSFAC mouse Positional Weight
Matrices PWM (motifs) for binding site prediction with
p-value < 0.001 score cutoff. Promoters were extracted
by the workflow with a length of 600 bp (− 500 to + 100)
and an enrichment fold of 1.0.
Master regulatory molecules were searched for in sig-

nal transduction pathways upstream of the identified
transcription factors. The GeneXplain workflow available
for this analysis was used in conjunction with the Gene-
Ways database. Parameters set included a maximum ra-
dius of 10 steps upstream of the transcription factor
nodes, the DEG lists from the respective group as con-
text genes and a z-score cutoff of 1.0. All transcription
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factors and master regulators used in the network ana-
lysis had confirmed expression in respective conditions
using the total gene expression lists from the RNA-
sequencing data set.

Gene ontology (GO) enrichment analysis
A Gene Ontology (GO) enrichment analysis was per-
formed for the different sets of DEGs, transcription fac-
tors, and master regulators using the TRANSPATH [49]
database through GeneXplain software. Input sets were
the DEGs, transcription factors, or master regulators
from either the MyD88-dependent, MyD88-
independent, or MyD88-privative groups. Focus was di-
rected to the GO biological processes output. GO bio-
logical processes related to Bb uptake, inflammation,
and chemotaxis were identified by first reviewing previ-
ous studies for any genes involved in response to Bb re-
lating to these phenotypes. Enrichment analysis was
performed on these genes to identify GO biological pro-
cesses that hit at least 60% of the genes on the list, gen-
erating a list of relevant GO biological processes. Then
an intersection was performed between the list of GO
biological processes identified using our DEG, transcrip-
tion factor, or master regulator lists, and the GO bio-
logical processes identified from the relevant genes. Heat
maps of expressed genes hits in each biological process
were done in R statistical software using package
“ggplots”.

Network reconstruction and network analysis
Networks were constructed joining the three identified
layers on the networks: DEGs, transcription factors, and
master regulators. The subnetworks were extracted from
identified master regulators of interest. From the
MyD88-dependent master regulator group, effort was di-
rected on linking MyD88 with transcription factors that
had binding sites in the promoter regions of the
MyD88-dependent DEGs enriched in uptake biological
processes. These transcription factors were identified
using the TRANSPATH database with the enriched
DEGs of interest as input. The output list of transcrip-
tion factors was intersected with the list of transcription
factors that were only expressed in WT BMDMs. Net-
works were assembled and analyzed using Cytoscape
software [50]. To extract the desired subnetworks, we
used OCSANA [51] within the BiNOM plugin [52] in
Cytoscape 2.8.3. MyD88 was considered as a source
node and transcription factors from the intersected list
as target nodes. For MyD88-privative chemotaxis sub-
network construction the same analysis pipeline was ap-
plied. MyD88-privative master regulators significantly
enriched in chemotaxis were used as source nodes and
MyD88-privative transcription factors enriched in
chemotaxis were used as targets.

Results
MyD88-deficient macrophages show comparable binding
but reduced uptake of Bb
The macrophage is an essential cellular element of the
human inflammatory response to the LD spirochete [7].
Macrophages have also been shown as part of the in-
flammatory cell infiltrate in heart and joint tissue of
mice experimentally infected with Bb [10, 53], and the
importance of MyD88 in Bb clearance from mouse tis-
sues has been previously reported [41, 54, 55]. It has also
been well established that MyD88 enhances phagocytosis
of multiple bacterial species by macrophages [28, 32, 34,
35, 56]. To better understand the contribution of
MyD88 to spirochete binding, uptake and degradation
by macrophages, we utilized an ex vivo macrophage
model using WT and MyD88−/− BMDMs co-incubated
with Bb at MOIs of either 10:1 or 100:1 for 1, 4 or 6 h.
To quantify binding percentages, we imaged macro-
phages by confocal microscopy and determined the
number of cells with spirochetes either attached to the
surface or internalized because internalized spirochetes
had to bind to macrophages before being taken up
(Fig. 1a, yellow and white arrows respectively). We used
the same confocal images and total cell numbers to
quantify uptake percentages based on the number of
cells with internalized spirochetes. The percentages of
cells with spirochetes either bound or internalized were
comparable between WT and MyD88−/− BMDMs at all
three time points irrespective of MOI (Fig. 1b and c).
While macrophages of both genotypes were able to
phagocytose Bb, MyD88−/− BMDMs showed significantly
reduced spirochete uptake compared to WT BMDMs at
MOI 10:1 (Fig. 1d). Increasing the MOI to 100:1 signifi-
cantly enhanced uptake in both cell genotypes, but
MyD88−/− BMDMs never reached the phagocytic poten-
tial of their WT counterparts (Fig. 1e). These results fur-
ther support the necessity of MyD88 signaling for
efficient phagocytosis of Bb, irrespective of contact time
with the spirochete.

TLR2, TLR7 and MyD88 are recruited to Bb-containing
phagosomes in macrophages
Once spirochetes are phagocytosed by macrophages, re-
cruitment of TLR and MyD88 proteins to the phago-
some is essential to trigger MyD88-dependent signaling
cascades [57–60]. Importantly, we have demonstrated
that in human monocytes TLR2 and TLR8 co-localize to
endosomes containing Bb [19]. In addition, other investi-
gators have shown a prominent role for TLR7 in the Bb
inflammatory response [61]. Murine TLR8, unlike mur-
ine TLR7 and human TLR8, does not seem to utilize
ssRNA as its ligand [62]. We therefore next character-
ized co-localization of TLR2, TLR7 and MyD88 with
phagosomes containing Bb in BMDMs. By confocal
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microscopy, we observed that in WT BMDMs there is
colocalization of MyD88 (Fig. 2a), TLR2 (Fig. 2b) and
TLR7 (Fig. 2c) with Bb-containing phagosomes. Signals
from MyD88 and TLR2 distinctly overlap with Bb GFP
signals from phagosomes showing evidence of coiled or
degraded spirochetes (Fig. 2a and b, graphs), but the in-
tensity of MyD88 or TLR2 signal observed was higher
with phagosomes containing degraded spirochetes. We
also noted that TLR2 was expressed on the cell mem-
brane and showed colocalization with surface-bound spi-
rochetes (Fig. 2b). The absence of fluorescence in
controls with secondary antibody only confirmed that
this colocalization was not due to spectral overlap be-
tween color channels (Figure S2). TLR7 only showed
strong signal with phagosomes containing partially de-
graded Bb but did not colocalize with surface-bound or
recently internalized spirochetes (Fig. 2c). Taken to-
gether, these data confirm that endosomal TLR2, TLR7
and MyD88 colocalize to Bb-containing phagosomes to
facilitate recognition of bacterial ligands and early re-
sponse to infection.

Lack of MyD88 does not affect degradation of Bb in the
phagosome
Degradation of the spirochete in the phagosome is cru-
cial to expose bacterial ligands for recognition by endo-
somal TLRs [17]. This process, known as phagosome
maturation, requires reduction of phagosome pH and fu-
sion with lysosomes [63]. Given that both WT and
MyD88−/− BMDMs bind and internalize Bb, we next
sought to determine if spirochetes are similarly degraded
in phagosomes with and without MyD88. Confocal im-
ages taken after a 6-h stimulation at MOI 10:1 showed
that both WT and MyD88−/− BMDMs contained de-
graded GFP+ Bb within the cell actin matrix (Fig. 3a and
b). To assess phagosome maturation, we quantitated re-
cruitment of LAMP-1 to Bb-containing phagosomes by
looking at colocalization of LAMP-1 and GFP fluores-
cence intensity [64]. Both WT and MyD88−/− BMDMs
showed comparable LAMP-1 and Bb colocalization in
phagosomes (Fig. 3a and b, graphs). Colocalization be-
tween Bb and LAMP-1 was measured in multiple phago-
somes in BMDMs from both genotypes and no

A.

D.

C.

E.

B.

MyD MyDWT WT

Fig. 1 Quantitation of Bb binding and uptake by WT and MyD88−/− BMDMs. a Confocal 40x images of WT and MyD88−/− BMDMs after 6 h of
stimulation with Bb at MOI 10:1, highlighting bound (yellow arrows) and internalized (white arrows) spirochetes. Green is Bb, red is actin and blue
is cell nucleus. b-c Quantitation of bound spirochetes to WT (grey bars) or MyD88−/− (dark red bars) BMDMs after 1, 4 or 6 h of stimulation at a
MOI of 10:1 (b) or 100:1 (c). d-e Quantitation of internalized spirochetes to WT (black bars) or MyD88−/− (red bars) BMDMs after 1, 4 or 6 h of
stimulation at MOI 10:1 (d) or 100:1 (e). n = 3–5 mouse BMDM experiments per genotype *p-value< 0.05, **p-value< 0.01, ***p-value< 0.001,
NS = not significant
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significant differences were found (Fig. 3c). To confirm
MyD88 signaling in response to Bb we also measured
cytokine secretion after 1, 4 and 6 h of incubation with

spirochetes. WT BMDMs showed significant increase in
IL-6, TNFα and IL-10 secretion in the presence of spiro-
chetes, whereas MyD88−/− BMDMs did not (Figure S3A-
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Actin TLR2 Bb Merge

Actin TLR7 Bb Merge

Fig. 2 MyD88, TLR2 and TLR7 colocalize with Bb in phagosomes. a-c Confocal 40x images and colocalization analysis of internalized Bb with
MyD88 (a), TLR2 (b) or TLR7 (c) in WT BMDMs after stimulation at MOI 10:1. White box indicates phagosome depicted in inset. Large inset in (b)
shows coiling pseudopod formation around Bb on cell surface. Graph shows the intensity of each indicated pixel marker across the white line
(distance on x-axis). Green is Bb, blue is MyD88 (a), TLR2 (b) or TLR7 [7], and red is actin
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C). Consistent with prior studies by Behera et al. (2006),
both WT and MyD88−/− BMDMs secrete the macro-
phage chemokine CCL2 (Figure S3D).

Bb ligand recognition appears to occur solely from within
the phagosome
To test for the presence of bacterial products in the
cytosol, we measured cleaved caspase-1, which is indi-
cative of inflammasome activation. Western blot ana-
lysis of WT BMDM cell lysates and supernatants
showed no activation of caspase-1 by stimulation of
Bb alone (Fig. 3d), which is consistent with previously

published studies [65]. However, in discordance with
previous studies [66], we did not see cleavage of IL-
1β (Fig. 3d) unless exogenous ATP was added to the
stimulation. To further confirm lack of NLRP3
inflammasome activation, we assessed Apoptosis-asso-
ciated speck-like protein containing a CARD (ASC) in
BMDMs stimulated with either Bb or Staphylococcus
aureus (Sa) for 30 min or 6 h (Figure S4). As previ-
ously reported [67] (Figure S4A and C), ASC activa-
tion was observed with Sa, but no ASC was observed
in BMDMs stimulated with Bb at 30 min or 6 h (Fig-
ure S4B and D). Thus, recognition of Bb ligands ap-
pears to occur solely within the phagosome.

A.

B.

C. D.

WT

MyD

Fig. 3 Colocalization of phagosome markers with internalized Bb in WT and MyD88−/− BMDMs. a-b Confocal 40x images of WT (a) and MyD88
−/− (b) BMDMs after 6 h stimulation with Bb at MOI 10:1, depicting colocalization of Bb-containing phagosomes with LAMP-1. White box
indicates phagosome depicted in inset. Graph shows the intensity of each indicated pixel across the white line (distance on x-axis). Green is Bb,
red is LAMP-1 and yellow is actin. c Quantitation of colocalization between Bb and LAMP-1 in 10 phagosomes of WT (black dots) and MyD88−/−
(red dots) BMDMs by measuring intensity difference between LAMP-1 staining and Bb staining. d Western blot of protein lysate isolated from WT
BMDMs after 6 h stimulation with Bb +/− ATP (C = cell lysate, S = supernatant)
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MyD88-dependent signaling causes differential
expression of genes in macrophages that promote the
inflammatory response
Our results above show that MyD88 expression in mac-
rophages enhances their capacity to phagocytose spiro-
chetes (Fig. 1). To gain a better understanding of events
that occur downstream of signaling by MyD88 which re-
sult in this phenotype presentation, we performed RNA-
sequencing on WT and MyD88−/− BMDMs stimulated
with Bb for 6 h. This time point was selected based on
our data in Fig. 3 showing comparable maturation in
both WT and MyD88−/− BMDM phagosomes. We se-
quenced RNA from WT BMDMs at a MOI of 10:1 and
MyD88−/− BMDMs at a MOI of 100:1 for a comparative
analysis because the uptake percentages were not signifi-
cantly different between the two cell phenotypes under
these conditions (Fig. 4a). Both WT and MyD88−/−

BMDMs showed differentially expressed genes (DEGs)
when compared to their respective unstimulated con-
trols. We noted that the number of DEGs in WT
BMDMs was much higher than in MyD88−/− BMDMs
(2818 genes vs 141 genes respectively) (Fig. 4b). We saw
similar numbers of up- and down-regulated DEGs in
WT BMDMs (52 and 48%) (Fig. 4b). In the MyD88−/−

BMDMs, approximately 83% of the DEGs were up-
regulated (Fig. 4b). We classified the DEGs into three
categories for further analysis: genes differentially
expressed only in WT BMDMs (MyD88-dependent);
genes differentially expressed in both WT and
MyD88−/− BMDMs (MyD88-independent); and genes
that were differentially expressed only in MyD88−/−

BMDMs (MyD88-privative) (Fig. 4c).

Similar inflammatory and chemotactic processes are
enriched regardless of MyD88-mediated signaling but
utilize different regulatory proteins
MyD88-dependent mechanisms of inflammation have
been well characterized, but little work has been done to
understand the drivers of Bb-induced inflammation in
the absence of MyD88. To address this issue, we next
completed a comprehensive bioinformatics analysis to
gain insight into how the DEGs are regulated within Bb-
infected macrophages, both in the presence or absence
of MyD88. We first identified transcription factors with
potential binding sites in the promoter regions of the
DEGs for each of the three subsets (66 for MyD88-
dependent, 201 for MyD88-independent, and 39 for
MyD88-privative). We then identified master regulator
proteins upstream of these transcription factors and per-
formed a Gene Ontology (GO) enrichment analysis of
each group. Because data shown in Fig. 1 and Figure S3
indicate that in macrophages MyD88 affects both the in-
flammatory response and uptake of spirochetes, we fo-
cused our analysis on identifying whether any master

regulators enriched to inflammatory and/or phagocytic
biological processes in the MyD88-dependent and -priv-
ative conditions. Interestingly, similar inflammatory
biological processes enriched to both the MyD88-
dependent (including MyD88, Irak2 and Ly96) and
MyD88-privative (including Vcam1 and Cxcl2) master
regulators (Fig. 4d and e), but the individual master reg-
ulators involved were different for each subset (Fig. 4e).
Importantly, over three times as many master regulators
were identified for the MyD88-dependent DEGs than
the MyD88-privative DEGs (Fig. 4e), suggesting that
MyD88 signaling controls activation of more master reg-
ulators in the cell to control expression DEGs and en-
ables the cell to perform unique processes in response to
bacterial pathogens such as Bb.

MyD88-privative master regulators are involved in
multiple chemotactic biological processes not enriched in
WT BMDMs
We also observed significant overlap between the
chemotactic biological processes enriched in MyD88-
dependent and MyD88-privative master regulators.
However, MyD88-privative master regulators signifi-
cantly enriched to multiple biological processes involved
in chemotaxis that were not enriched in MyD88-
dependent master regulators (Figure S5A), suggesting
that the lack of MyD88 signaling allows for increased
up-regulation of processes to facilitate cell migration
into the tissues. The MyD88-privative master regulators
involved in these chemotactic processes also enriched to
inflammatory processes (Figure S5B and Fig. 4e), sug-
gesting that Bb may trigger other signaling cascades
which induce inflammation more skewed to cell recruit-
ment and localization.

MyD88 is a master regulator for transcription factors that
control the MyD88-dependent DEGs enriched in uptake
processes
Based on our observation that the presence of MyD88
enhances phagocytosis (Fig. 1), we also analyzed whether
any of the MyD88-dependent DEGs enriched to bio-
logical processes related to uptake. We identified 164
MyD88-dependent DEGs that enriched to five different
biological processes relating to phagocytosis (Actin Fila-
ment Polymerization, Regulation of Cell Shape, Actin
Cytoskeleton Organization, Cytoskeleton Organization,
and Actin Filament Organization). Of particular interest,
Daam1 and Fmnl1, encoding two proteins known to
play a role in phagocytosis of Bb [15, 37], were differen-
tially expressed in an MyD88-dependent manner.
Daam1, which was up-regulated, is a formin protein that
bundles actin fibers together to increase stability of coil-
ing pseudopods, which are more adept at capturing the
highly motile spirochetes [68]. In contrast to Daam1,
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Fmnl1 was down-regulated in response to Bb. Fmnl1 is
also a formin protein that severs actin branches to pro-
mote polymerization and increase filopodia protrusion
[68]. To determine whether MyD88 is a master regulator
in any of these processes, we first identified transcription
factors that map to promoter regions of the enriched
DEGs. Analysis of these transcription factors revealed
that Zic1 and Zeb1 have the capacity to bind to the pro-
moter regions of several of the MyD88-dependent DEGs
that significantly enriched to processes associated with

bacterial uptake (Fig. 5). Zic1 is controlled by the inter-
mediate protein ApoE, which is known to play a role in
cholesterol metabolism in macrophages [69] and the ab-
sence of ApoE increases Bb burdens in experimentally
infected mice [69]. We then used OCSANA, a special-
ized package available in Cytoscape [51] to link MyD88,
as a master regulator, with transcription factors that
map to DEGs in this specific subset. Based on this infor-
mation we constructed a network illustrating potential
links between MyD88-mediated signaling and up-

A.

B.

C.

D.

E.

Fig. 4 MyD88-dependent and independent MRs are significantly enriched in biological processes related to inflammation and chemotaxis. a
Comparison of Bb internalization by WT BMDMs (black bars) at MOI 10:1 with MyD88−/− BMDMs (red bars) at MOI 100:1. b Number of
differentially expressed genes (DEGs) in Bb-infected WT and MyD88−/− BMDMs determined by RNA-sequencing. Red bar indicates number of
upregulated DEGs and blue bar indicates number of down-regulated DEGs. Bar height represents total number of DEGs in each condition. c Venn
diagram depicting DEG classification. MyD88-dependent genes (light gray, left) are only differentially expressed in WT BMDMs. MyD88-
independent genes (center) are expressed in both cell types. MyD88-privative genes (dark gray, right) are only differentially expressed in
MyD88−/− BMDMs. d Venn diagram comparing biological processes (BP) relating to inflammation significantly enriched between MyD88-
dependent (light gray) and MyD88-privative (dark gray) master regulators. e Heat map showing fold change of master regulators enriched in
inflammation in WT (cyan) or MyD88−/− (yellow) BMDMs. GO numbers for significantly enriched BP are indicated on the x-axis. Heat maps were
generated using R statistical software, package “heatmap2”
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regulated DEGs that may contribute to enhanced phago-
cytic capability seen in WT cells. The network (Fig. 5)
shows Rhoa, Akt1, Rac1 and Cdc42 as genes that code
for proteins which appear as intermediates on the net-
work, meaning that their genes weren’t differentially
expressed in our analysis. Daam1 regulates Rhoa activ-
ity, which controls Cdc42, Rac1 and Akt1. Cdc42 acti-
vates a Rho GTPase, Rhoq, which is up-regulated in
response to Bb. Rac1 and Akt1, when translated, both
activate multiple proteins whose corresponding genes
are also up-regulated, indicating that while the genes for
these intermediate proteins aren’t differentially
expressed, they are still active in macrophages that have
been stimulated with Bb. Taken together, these data sug-
gest that MyD88 signaling upregulates multiple gene
products involved in regulating macrophage membrane

protrusions. Upregulation of these genes likely contrib-
utes to the reorganization of cell machinery that en-
hances the capability of the WT macrophage to take up
spirochetes.

Discussion
Previous studies by our group have emphasized that up-
take and degradation of Bb by phagocytic cells, including
monocytes and macrophages, are critical in eliciting the
inflammatory response to the bacterium [14, 17–19, 29].
The findings from these studies, as well as others [28],
show that the adaptor protein MyD88 plays a critical
role in bacterial uptake and phagosomal signaling in
macrophages. In the current study, we provide further
evidence that the macrophage is a key driver of inflam-
mation, even in the absence of MyD88. We also show

Fig. 5 MyD88 is a master regulator upstream of two transcription factors with binding sites in the promotor regions of upregulated MyD88-
dependent DEGs enriched in uptake processes. Ellipse nodes with black borders indicate transcription factors. MyD88, as a master regulator, is at
the top of the network. Ellipse nodes with purple borders indicate genes that significantly enriched to uptake biological processes. The varying
degree of red or blue hue in select nodes correlates with the gene’s Log2 Fold Change value. Red indicates positive fold change and blue
indicates negative fold change. Gray nodes represent genes that were not differentially expressed. Green arrows indicate that the source node
activates the target node. Red arrows indicate that the source node inhibits the target node. Black arrows indicate that the source node regulates
the target node. Blue arrows are used to distinguish that the transcription factor source node has predicted binding sites in the promotor region
of the target node
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that while MyD88 has a significant impact on spirochetal
uptake, phagosome maturation and bacterial degradation
are not affected (Fig. 1). Of particular novelty, phago-
somal signaling cascades induced by Bb ligands in
macrophages trigger a number of inflammatory and
chemotactic pathways (Figs. 4 and S5). Moreover, the in-
flammatory processes are mediated by different regula-
tory proteins depending on whether MyD88 is present
or absent, while induction of several chemotactic pro-
cesses occurs independently of MyD88. In-depth analysis
of these signaling cascades allowed us to identify previ-
ously underappreciated MyD88-dependent transcription
factors which could lead to enhanced spirochetal uptake
and clearance (Fig. 5).
To better understand the contribution of MyD88 to

spirochete binding, uptake, degradation and signaling by
macrophages, we used an ex vivo model. Murine macro-
phages lacking MyD88 show a phagocytic defect when
stimulated with Bb ex vivo compared to WT macro-
phages. This defect in uptake has been previously dem-
onstrated in macrophage stimulation experiments with
other bacteria strains [31, 34, 35, 38]. Our results reveal
that binding of Bb is not affected and that this phago-
cytic defect is not dependent on length of stimulation
(i.e. time dependent) and is only slightly rescued by in-
creasing the MOI. Thus, in the absence of MyD88, mac-
rophages are still capable of binding and taking up the
LD spirochete, but MyD88 signaling enhances the effi-
ciency of Bb phagocytosis by macrophages. We also
show here that when stimulated ex vivo, the macrophage
response to Bb is driven by the signaling cascades in-
duced by MyD88 as a result of bacterial ligands engaging
TLR2 and TLR7 receptors in the phagosome (Figs. 2 and
4). Recognition in the phagosome is driven by degrad-
ation of bacteria, since more TLR2, TLR7 and MyD88
marker intensity were observed colocalizing with de-
graded spirochetes. Our results in Fig. 3 indicate that in
the context of Bb infection, MyD88 is not required for
phagosome maturation, evidenced by the recruitment of
LAMP-1 to Bb-containing phagosomes in MyD88−/−

BMDMs. This is in contrast to Blander et al., who pub-
lished that MyD88−/− BMDMs infected with Sa or E. coli
did not colocalize with either Lysotracker or LAMP-1 to
the same degree as WT BMDMs [38]. One possible ex-
planation for the different findings with our study is that
the recruitment of LAMP-1 is delayed in MyD88−/−

BMDMs, given that Blander et al. measured phagosome
maturation at an earlier time point than in our studies.
This explanation is supported by Yates et al. who
showed slightly delayed acidification in MyD88−/−

BMDMs stimulated with TLR2 or TLR4 ligands for 40
min [56]. The fragility of the Bb membranes also sug-
gests that perhaps less acidification of the phagosome is
needed to expose Bb PAMPs.

Reduced uptake of bacteria in macrophages lacking
MyD88 is a phenotypic trait that has been extensively
detailed [28, 31–35], but not well understood. To better
understand the relationship between MyD88 signaling
and phagocytosis, we used a computational systems biol-
ogy approach. In prior studies, addition of TLR3 ligands
to Bb stimulation of MyD88−/− BMDMs significantly
rescues uptake [36], suggesting that in the absence of
MyD88 TRIF signaling can activate pathways that result
in similar actin rearrangement in the cell. This signaling
was shown to be mediated through PI3K [36], but inter-
estingly PI3K was not differentially expressed in our
macrophage stimulation. However, our network analysis
from RNA-sequencing data identified DEGs that are up-
regulated downstream of common phagocytosis effector
proteins (Fig. 5). Rhoq, activated by Cdc42 codes for
TC10, a protein involved in generating long filopodia
protrusions [70]. The gene Cyfip1, which encodes a part
of the WAVE complex that regulates actin
polymerization [71], was also up-regulated according to
the network through Rac1 protein interactions. The
WAVE complex has higher involvement with lamelli-
podia formations [72]. It is likely that MyD88 controls
transcription factors that upregulate these genes to pro-
mote phagocytosis through formation of coiling pseudo-
pods, which are more similar to lamellipodia, rather
than through straight filopodia protrusions. In addition
to MyD88, studies indicating that TLR2 can utilize TRIF
have also been completed, but this interaction only ap-
pears to contribute to the inflammatory response rather
than spirochete uptake [18, 73]. More recently, the leu-
kotriene LTB4 has been shown to promote phagocytosis
of Bb by macrophages [74], but in our BMDM sequen-
cing data we did not find differential expression of Ltb4
or its receptor Ltb4r1. This could possibly be due to the
later time point we selected for sequencing. It has also
been shown that spleen tyrosine kinase (Syk) has an im-
portant role in phagocytosis of Bb via integrin binding
[75]. The Syk gene (Syk) is significantly up-regulated in
an MyD88-dependent manner, suggesting that MyD88
drives over-expression of Syk to increase phosphoryl-
ation and activation of proteins involved in generating
actin branches. However, in our GO analysis Syk was
not one of the 164 MyD88-dependent genes that
enriched to uptake biological processes, and the tran-
scription factor Zic1, which has binding sites in the pro-
moter regions of a significant number of these genes, is
not predicted to bind in the promoter region of Syk.
Zic1 was of particular interest to us because it appeared
downstream of MyD88 in our network analysis (Fig. 5)
and is controlled by the intermediate protein ApoE.
Mice lacking ApoE have increased bacterial burdens
when infected with Bb [69], suggesting that ApoE signal-
ing plays a role in cell remodeling processes necessary to
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enhance uptake. In addition, a link between Bb phago-
cytosis and cholesterol has been postulated by Hawley
et al. who showed that CR3, a known phagocytic recep-
tor for Bb, is recruited to lipid rafts with the co-receptor
CD14 [76]. Thus, it is possible that MyD88 upregulates
ApoE to enhance lipid rafts on the macrophage mem-
brane, which can potentiate signaling to enhance uptake
and provide scaffolding for proteins involved in actin
remodeling.
Our computational analysis also supported that there

are non-canonical sources of inflammation in MyD88−/−

mice. Our results suggest that there is possibly another
receptor recruited to the phagosome that initiates che-
mokine production upon recognition of a Bb ligand. An-
other mechanism for triggering chemokine production
may be that the TLR receptors are utilizing another
adaptor protein to transmit signals out of the phago-
some, as postulated by Petnicki-Ocwieja et al. [73]. Net-
work analysis of DEGs from macrophages identified
multiple master regulators that could be controlling pro-
duction of these chemokines, but further investigation is
needed to determine if these master regulators are in
fact active in macrophages containing Bb. Additional
studies to test whether acidification of the phagosome is
required for Bb-induced chemokine production will also
give insight into which ligand-receptor interaction in-
duces this response.

Conclusions
In summary, our results emphasize that the macrophage
has a very important role in both recognition and clear-
ance of Bb and is at the epicenter of the immunologic
response to spirochete infection. The findings from these
studies have also advanced our understanding of how
phagosomal signaling drives spirochete uptake, recogni-
tion and inflammation. The adaptor protein MyD88
plays a critical role in these processes. Initial phagocyt-
osis of Bb by macrophages does not require MyD88, but
once taken up, recognition of Bb ligands exposed upon
spirochete degradation occurs through endosomal TLRs
which trigger MyD88-mediated signaling cascades. This
signaling results in cell remodeling to enhance phagocyt-
osis, as indicated by our ex vivo data, and allows macro-
phages to more efficiently internalize and clear the
highly motile spirochetes by using more dynamic mem-
brane protrusions. Further studies using the targets
identified in these experiments may also provide insight
into understanding the importance of phagocytosis in
other bacterial infections. We can use similar techniques
to look at the role of the macrophage response and
MyD88 signaling in human macrophages, with the goal
of increasing our understanding of the clinical spectrum
associated with Lyme disease pathogenesis.
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