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Abstract 1 

The notion of predictive sound processing suggests that the auditory system prepares for 2 

upcoming sounds once it has detected regular features within a sequence. Here we investigated 3 

whether predictive processes are operating at birth in the human auditory system. Event-related 4 

potentials (ERP) were recorded from healthy newborns to occasional ascending pitch steps 5 

occurring in the 2
nd

 or the 5
th

 position within trains of tones with otherwise monotonously 6 

descending pitch. If the trains were processed in a predictive manner only deviant pitch steps 7 

occurring in the later train position would elicit the discriminative mismatch response (MMR). 8 

Deviants delivered in the 5
th

 but not in the 2
nd

 position of the tone trains elicited a significant 9 

MMR response. These results suggest that newborns represent pitch trends within sound 10 

sequences and they process them in a predictive manner. 11 

 12 
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Newborn infants process sounds in a predictive manner. 20 
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1. Introduction 1 

 2 

Whereas the role of attention in perception has been acknowledged since the early days of 3 

psychology (e.g., James, 1890), the notion that perception may also be of essentially predictive 4 

nature has been only relatively recently considered in a systematic manner (e.g., Gregory, 1980). 5 

Some modern theories of perception specify Helmholtz‟ (1860/1962) theoretical framework of 6 

utilizing learned information for disambiguating the sensory input in terms of generative models 7 

providing predictions about distal objects and their behavior (e.g., Ahissar and Hochstein, 2004; 8 

Creutzig et al., 2009; Friston and Kiebel, 2009; Schütz-Bosbach and Prinz, 2007; Winkler et al., 9 

2009). Proponents of the predictive view of perception point out that it can be used to unify 10 

theories of perception and action (Friston, 2010; Hohwy, 2007; Hommel et al., 2001; Tishby and 11 

Polani, 2011) as well as to guide computational modelling of perceptual decisions (e.g., Hohwy 12 

et al., 2008; Mill et al., 2013) and brain responses elicited by unexpected stimuli (e.g., Garrido et 13 

al., 2009; Wacongne et al., 2011). Since predictive processing theories follow the empiricist 14 

tradition, one may ask whether the predictive principle itself is learned or it is an innate 15 

capability of the human brain. 16 

Applying predictive processing principles to auditory perception is especially attractive, because 17 

sounds are ephemeral and the patterns formed by them, which are regarded by some as the 18 

processing units or perceptual objects in the auditory modality (Kubovy and Van Walkenburg, 19 

2001; Griffith and Warren, 2004; Winkler, 2010), unfold in time. Predictive processing allows 20 

for faster assessment of sensory information (e.g., Bar, 2007; Bendixen et al., 2009), which is 21 

essential for the real-time decoding of complex auditory scenes (Bregman, 1990). There is still 22 

scarce direct evidence for predictive processing in the auditory system (for a review, see 23 

Bendixen et al., 2012). However, the properties of brain responses elicited by deviant auditory 24 

events (the mismatch negativity [MMN] event-related potential [ERP]) are generally compatible 25 

with the notion that predictions for upcoming sounds are checked against the actual sound input 26 

and deviations are processed as prediction errors (Winkler, 2007; Winkler and Czigler, 2012). 27 

Auditory deviance-related brain responses (termed the mismatch response [MMR] as they are 28 

not full equivalents of the adult MMN, see, e.g., Kushnerenko et al., 2007) have been recorded 29 

from newborn infants (Alho et al., 1990; for a review, see Kushnerenko et al., 2013). This allows 30 

one to assess whether the neonatal auditory system can detect violations of predictive acoustic 31 

regularities. 32 

In adults, two sets of deviance-detection paradigms provide the most compelling evidence for the 33 

notion that predictive processes underlie deviance detection: Violations of simple contingent 34 

inter-tone relations, such as “if the current sound is long, then the next will be high; if the current 35 

sound is short, then the next will be low” (Bendixen et al., 2008; Paavilainen et al., 2007) and 36 

those of sensory trends, such as monotonously falling of pitch (Tervaniemi et al., 1994), elicit 37 

MMN. Because the responses elicited by violations of inter-tone contingencies have been found 38 

to be of rather low amplitude in adults and the signal-to-noise ratio of ERP measurement in 39 

neonates is substantially lower than that in adults, we chose to measure in neonates the response 40 



to sensory trend violations. Although it is difficult to establish a direct analogy between the adult 1 

MMN and the infant MMR (see Trainor, 2012), deviations from both simple and complex pitch 2 

regularities have been shown to elicit MMR in newborn infants: e.g., MMR has been elicited by 3 

deviations from a repeating pitch (Novitski et al., 2007) irrespective of timbre variance (Háden et 4 

al., 2009), by violations of the constancy of the direction (Carral et al., 2005) and size (Stefanics 5 

et al., 2009) of pitch change within tone pairs varying in absolute pitch, as well as by rare chords 6 

categorically differing from the majority of chords (Virtala et al., 2013). 7 

These previous studies established that neonates encode the direction and size of pitch steps. 8 

Thus, it is possible that a series of tones with descending pitch will evoke prediction for the 9 

continuation of this trend in newborn infants. If this was the case, violating the pitch trend should 10 

elicit an error signal, such as the MMR. To test this possibility, we presented newborn infants 11 

with trains consisting of 6 tones descending in pitch in uniform 3-semitone steps (“standard”). 12 

Trains started with a pitch randomly taken from the 622-1480 Hz pitch range (Figure 1). Half of 13 

the trains contained a tone that was 3 semitones higher in pitch than the previous one (“deviant”). 14 

Ascending pitch steps occurred with equal probability either in the 2
nd

 or the 5
th

 position. 15 

Because the brain must first extract the descending-pitch regularity before forming a prediction 16 

for the continuation of the trend, we expected that MMR to the violation of the pitch trend could 17 

be elicited by the late but not by the early ascending-pitch tones. MMR elicitation by deviants at 18 

the early position would suggest that the newborn brain was sensitive to the overall probability 19 

of ascending vs. descending pitch steps in the stimulus block. No MMR found in either position 20 

would suggest that the newborn brain does not detect pitch trends. 21 

 22 

[Insert Figure 1. at about here] 23 

 24 

2. Results 25 

At Position 2, standard and deviant tones elicited ERP waveforms with their differences peaking 26 

at ca. 185 ms and 460 ms from stimulus onset at Cz (Figure 2). Both differences appeared to be 27 

more pronounced over posterior right electrodes. However, no significant main effect or 28 

interaction including Stimulus-type was obtained in the Stimulus-type (Deviant vs. Standard 29 

tone) × Frontality (Frontal vs. Central vs. Parietal electrodes) × Laterality (Left vs. Midline vs. 30 

Right electrodes) ANOVAs separately conducted on the amplitudes averaged from either the 31 

146-226 ms or the 420-500 ms interval. 32 

 33 

[Insert Figure 2. at about here] 34 

 35 

At Position 5, standard tones elicited a response with an early and late negative peak (note that 36 

the second peak followed the onset of the next tone in the sequence), whereas deviant tones 37 

elicited a slower positive response with a peak between 200 and 300 ms (Figure 3). The ANOVA 38 

(see structure above) for the early window (93-173 ms) showed a significant main effect of 39 

Stimulus-type (F(1, 32)=7.55, p=0.009, ηp
2
=0.19) as well as a significant interaction between 40 



Stimulus-type, Frontality, and Laterality (F(4, 128)=2.58, p=0.050, ηp
2
=0.07, ε=0.85). The 1 

interaction was due to more positive ERP responses elicited by the deviant tones over frontal and 2 

central midline locations compared to standard tones as shown by a post-hoc Tukey HSD test 3 

(df=128, p<0.05) . The ANOVA (see structure above) for the late window (242-322 ms) yielded 4 

only a significant main effect of Stimulus-type (F(1, 32)=6.83, p=0.014, ηp
2
=0.16). 5 

 6 

[Insert Figure 3. at about here] 7 

 8 

Deviant minus standard difference waveforms for the two positions were compared by Position 9 

[2
nd

 vs. 5
th

] × Frontality [Frontal vs. Central vs. Parietal] × Laterality [Left vs. Midline vs. 10 

Right]) ANOVAs for the two windows, where Position 5 deviant and standard responses 11 

significantly differed from each other (as the Position 2 deviant and standard responses did not 12 

significantly differ from each other).A significant main effect of Position(F(1, 32)=4.14, 13 

p=0.050, ηp
2
=0.11) was found in the early (93-173 ms) but not in the late (242-322 ms) . 14 

 15 

[Insert Figure 4. at about here] 16 

 17 

3. Discussion 18 

 19 

Significant discriminative ERP responses were elicited by ascending-pitch deviant tones 20 

embedded in descending-pitch tone trains in the 5
th

 but not in the 2
nd

 position of the trains. The 21 

deviant minus standard difference waveforms also differed between the two positions. These 22 

results support the hypothesis that the regularity of the descending pitch pattern was extracted by 23 

the newborn brain and a prediction for the continuation descending pitch has been formed. The 24 

discriminative MMR response then represents the mismatch between the prediction and the 25 

actual input. 26 

The lack of a significant discriminative response for 2
nd

 position deviants rules out the alternative 27 

interpretation that the low probability of the deviant ascending pitch steps would be the cause of 28 

the MMR response, because then2
nd

 position deviants should have elicited a similar response as 29 

the 5
th

 position deviants. Another possible alternative interpretation suggests that the infant brain 30 

represented the whole train as a single unit. However, the deviant trains were not too rare (25% 31 

of all trains, each separately) and this interpretation again cannot explain why MMRs were found 32 

in the 5
th

 but not for the 2
nd 

position deviants. 33 

Carral et al. (2005) showed MMRs to occasional pitch direction changes in sound pairs. 34 

Therefore, the absence of MMR response for the 2
nd

–position deviants needs further explanation. 35 

In Carral et al.‟s (2005) experiment the inter-stimulus interval (ISI) was 50 ms within and 410 36 

ms between sound pairs, promoting the tone sequences to be processed in terms of pairs. In 37 

contrast, in the current experiment, a uniform 200 ms ISI was set within the trains, which were 38 

separated by 600 ms of silence, thus promoting the tone sequences to be processed in terms of 39 

trains. In adults, temporal organization of sounds has been shown to act as a strong grouping 40 



factor that governs what regularities each sound is related to. For example, Sussman and 1 

Gumenyuk (2005) found that the AAAAB cyclical pattern was detected within an isochronous 2 

sequence and the “B” tones did not elicit MMN when the onset-to-onset interval was 200 ms. 3 

With slower presentation rates, the sequence was represented in terms of discrete tones and the 4 

“B” tones elicited the MMN response. Further, when tones have been grouped into short 5 

patterns, tones belonging to one group were not checked against the regularity of another group 6 

(Winkler et al., 2001). On this principle, the deviants occurring at the 2
nd

 position should not 7 

elicit an MMR because they are not compared to the previous “pairs” as “pairs” are not 8 

represented as units of the tone sequences. In support of this assumption, temporal grouping has 9 

been shown to occur in newborn infants. Using the paradigm of Sussman and Gumenyuk (2005), 10 

Stefanics and colleagues (2007) found no MMR to the “B” tones when the AAAAB pattern was 11 

cyclically repeated, but MMR was elicited by the B tones when the order of the tones was 12 

randomized. 13 

The current results are compatible with the notion of predictive processing occurring in the 14 

neonatal auditory system. If the newborn auditory system detected the regularity of descending 15 

pitches in the short sequences before the 5
th

 position (i.e., extracting the regularity from 3 16 

successive descending pitch steps), then it could form a prediction for the pitch of the next tone, 17 

which would be violated by the ascending pitch steps. This interpretation is compatible with the 18 

predictive interpretation of MMN (Bendixen et al., 2012; Winkler, 2007 and 2010). There are 19 

also some alternative explanations to be considered. Firstly, infants could have detected that 20 

most pitch steps were descending and thus found ascending ones being deviant. However, in this 21 

case, an MMR should have been elicited also at the 2
nd

 position. Secondly, infants could have 22 

detected that the majority of the trains had descending steps at each position (i.e., treating 23 

descending-only trains as the prototype). However, again, this explanation leads to expecting 24 

MMR elicitation also at the 2
nd

 position. Finally, it is possible that infants formed a pitch-step 25 

standard separately for each train (from the first three pitch step of each train) and compared that 26 

with the pitch steps occurring later in the train. Predictions from this explanation are inseparable 27 

from those of the predictive explanation. Therefore, the current results do not conclusively prove 28 

that the neonatal brain works in a predictive manner. If the MMR is a precursor of the adult 29 

MMN for which some results suggest predictive sound processing (e.g., Bendixen et al., 2008, 30 

2015; Paavilainen et al., 2007), then it is likely that the current results reflect predictive 31 

processing. For a definitive answer to this question, studies using one of these stimulus 32 

paradigms or that of Bendixen et al. (2009) should be conducted with newborns. 33 

In conclusion, newborn infants extract pitch trends from sound sequences and their responses to 34 

deviations from such pitch trends is compatible with the notion that they process sounds in a 35 

predictive manner. Predictive processing has been suggested as a basic principle of perception 36 

(e.g., Gregory, 1980). The current results suggest that this principle may already characterize 37 

human perception at birth. 38 

 39 

 40 



4. Experimental procedures 1 

 2 

4.1 Participants 3 

 4 

ERPs were recorded from 33 (18 male) healthy, full-term newborn infants during day 1-3 5 

postpartum in a dedicated experimental room at the maternity ward of the Military Hospital in 6 

Budapest. The mean gestational age of the infants was 39.18 weeks (SD=0.76), mean birth 7 

weight 3531 g (SD=313.44), and all infants had an Apgar score of 9/10 (1 minute/5 minute). An 8 

additional seven infant‟s (3 male) data was recorded, but discarded due to excessive electrical 9 

artifacts. The study was conducted in full accordance with the Helsinki Declaration and it was 10 

approved by the central medical research ethics committee of Hungary (ETT-TUKEB). Informed 11 

consent was obtained from the mother or both parents. The mother was given the possibility to 12 

be present at the recording and she could terminate the measurement at any point. 13 

 14 

4.2 Stimuli and procedure 15 

 16 

The experimental design was a modified version of Tervaniemi et al. (1994). Sinusoidal tones of 17 

~75 dB SPL and 50 ms duration including 5-5 ms rise and fall times (raised cosine ramp) were 18 

presented to newborn infants. Tones with a pitch between 220 Hz and 1480 Hz in twelve 3 19 

semitone steps (220, 262, 311, 370, 440, 523, 622, 740, 880, 1047, 1245, and 1480 Hz; 20 

numbered from 1 to 12) were presented binaurally by E-Prime software (Psychology Software 21 

Tools, Inc., Pittsburgh, PA) through ER-1 headphones (Etymotic Research Inc., Elk Grove 22 

Village, IL, USA) connected via sound tubes to self-adhesive ear-couplers (Natus Medical Inc., 23 

San Carlos, CA, USA) placed over the infants‟ ears. During the auditory stimulation the infant 24 

was lying on her back in an infant cot with a shaped pillow holding her head in position to avoid 25 

the infant inadvertently removing some electrodes. The experiment was terminated if the infant 26 

became fussy or cried for several minutes. A single stimulus block consisting of 3600 sounds 27 

was presented. The stimulus block contained 600 trains of 6 tones descending in pitch in 3-28 

semitone steps. The ISI was 200 ms within and 600 ms between trains. The pitch of the first tone 29 

of the train was randomly selected (with equal probability) from the upper half of the 12 values. 30 

Half of the trains included a deviant ascending step at Position 2 or 5 (150 trains, each). 31 

Descending only, Position-2 deviant and Position-5 deviant trains were delivered in a random 32 

order. The overall deviant (ascending step) probability was thus p=0.083. The total duration of 33 

the stimulus presentation was ca. 22 minutes. 34 

 35 

4.3 EEG recording 36 

 37 

The electroencephalogram (EEG) was recorded with Ag/AgCl electrodes attached to the scalp at 38 

the F3, Fz, F4, C3, Cz, C4, P3, Pz and P4 locations according to the International 10-20 System. 39 

The common reference electrode was placed on the tip of the nose and the ground electrode on 40 

the forehead. . Eye movements were monitored by measuring the voltage between an electrode 41 



placed lateral to the outer canthus of the left eye and an electrode placed at the 10-20 location 1 

termed Fp1. EEG was digitized with 24 bit resolution at a sampling rate of 1000 Hz by a direct-2 

coupled amplifier (V-Amp, Brain Products GmbH, Munich, Germany). The signals were on-line 3 

low-pass filtered at 110 Hz.  4 

 5 

4.4 Data Analysis 6 

 7 

EEG was filtered off-line between 1 and 30 Hz. For each stimulus, an epoch of 600 ms duration 8 

including a 100 ms pre-stimulus interval was extracted from the continuous EEG record. Epochs 9 

with a voltage change exceeding 100 µV on any EEG or EOG channel were rejected from 10 

further analysis. The remaining epochs were baseline-corrected by the average voltage in the 11 

100 ms pre-stimulus period (separately for each tone in the train) and averaged separately for 12 

standards and deviants at Positions 2 and 5 within the train. All artifact-free epochs were 13 

averaged together. Although some studies suggested morphological ERP differences as a 14 

function of the infant‟s sleep state (e.g. Friderici et al., 2002; Friedrich et al., 2004; Suppiej et al., 15 

2010), the specific differences were not reliably replicated (possibly because the assessment of 16 

sleep states was done by somewhat different procedures) and other studies found less clear 17 

differences (Cheour et al., 2002) or did not find significant morphological differences at all 18 

(Martynova et al, 2003). In the current study, infants were awake in only 6% of the recording 19 

time (62% in quiet, 32% in active sleep). Therefore, in accordance with the comparable studies 20 

(Carral et al., 2005; Stefanics et al., 2007), responses were not sorted according to sleep states for 21 

the current analysis. Further, although some studies separated infants showing positive and 22 

negative deviance-related responses into different groups (He et al., 2009; Partanen et al., 2013), 23 

in a developmentally homogeneous group, such as the current one (healthy infants born to term), 24 

there is no reason to do so. We treated all infants‟ data as exemplifying the same ERP response. 25 

Due to the makeup of the stimulus paradigm, the distribution of pitches differed between the 26 

standard and deviant tones at both train positions. Therefore, only epochs elicited by tones 6-10 27 

were analyzed for Position 2 and tones 4-8 for Position 5. By restricting the analyses to these 28 

specific pitches, the distribution of the pitches in the compared responses (i.e., standard and 29 

deviant at the same position of the train) became approximately equal. Only infants with more 30 

than 60% artefact free trials for all 4 stimulus types/position were included in the analyses. The 31 

mean number of artifact-free trials per infant was 175 (137-204, SD=18.35) for standards and 89 32 

(64-104, SD=10.58) for deviants at position 2 and 177 (133-204, SD=19.37) for standards and 88 33 

(70-104, SD=10.01) for deviants at position 5. 34 

Response amplitudes were averaged from 80 ms wide time windows centered on the peaks of 35 

group-average deviant minus standard waveforms at the Cz electrode, which typically shows the 36 

most reliable MMR response (cf. Figure 4). Measurement windows were separately established 37 

for Position 2 (yielding windows 146-226 ms and 420-500 ms) and 5 (yielding windows 38 

93-173 ms and 242-322 ms). The effects of the stimulus type were analyzed with three-way 39 

repeated-measures analysis of variance (ANOVA; Stimulus-type [Deviant vs. Standard] × 40 



Frontality [Frontal vs. Central vs. Parietal] × Laterality [Left vs. Midline vs. Right]), separately 1 

for Positions 2 and 5. The difference waveforms obtained at Positions 2 and 5 a series of Position 2 

[2
nd

 vs. 5
th

] × Frontality [Frontal vs. Central vs. Parietal] × Laterality [Left vs. Midline vs. 3 

Right]) ANOVAs were carried out on the Deviant minus Standard difference waves for the two 4 

positions. Measurement windows that produced significant Stimulus-type effects in the previous 5 

ANOVAs were used. Greenhouse-Geisser correction of the degrees of freedom was applied 6 

where appropriate and the ε correction factor is shown together with the ηp
2
 effect size value. 7 

 8 
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Figure captions 18 

 19 

Figure1.: 20 

Overview of the experimental paradigm with the three types of trains (Descending-only train, 2
nd

 21 

position deviant, 5
th

 position deviant). Frequency levels are shown on the y-axis, timing on the x-22 

axis. 23 

 24 

Figure 2.: 25 

Group-average (N=33) ERP responses to standard (dashed lines) and deviant (solid lines) tones 26 

in Position 2. The crossing of the axes is at the onset of the tone in Position 2 and the onset of the 27 

next one is indicated by an arrow. The measurement windows are indicated by grey-shaded 28 

rectangles.  29 

 30 

Figure 3.: 31 

Group-average (N=33) ERP responses to standard (dashed lines) and deviant (solid lines) tones 32 

in Position 5. The crossing of the axes is at the onset of the tone in Position 5and the onset of the 33 

next one is indicated by an arrow. The measurement windows are indicated by grey-shaded 34 

rectangles. 35 

 36 

Figure 4.: 37 

Group-average (N=33) deviant minus standard difference waves for responses elicited in 38 

Position 2 (dashed lines) and Position 5 (solid lines). The crossing of the axes is at the onset of 39 

the tone in the position of interest. A black arrow indicates the onset of the next tone. The 40 

measurement windows are indicated by grey-shaded rectangles. 41 
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Tukey HSD test results (p-value) for the Stimulus-type (Standard vs. Deviant tone; S, D 

respectively) × Frontality (Frontal vs. Central vs. Parietal electrodes; F, C, P respectively) × 

Laterality (Left vs. Midline vs. Right electrodes, 3, Z, 4 respectively) 

 
Cell No. 

Tukey HSD test; variable DV_1 (stddev5_93_173) 
Approximate Probabilities for Post Hoc Tests 
Error: Within MSE = ,42170, df = 128,00 

SD FCP 3Z4 1 
-,1842 

2 
-,4699 

3 
-,2907 

4 
-,3157 

5 
-,5066 

6 
-,4191 

1 1 1 1  0,947800 1,000000 0,999997 0,861635 0,992668 

2 1 1 2 0,947800  0,999738 0,999967 1,000000 1,000000 

3 1 1 3 1,000000 0,999738  1,000000 0,997223 0,999998 

4 1 2 1 0,999997 0,999967 1,000000  0,999398 1,000000 

5 1 2 2 0,861635 1,000000 0,997223 0,999398  1,000000 

6 1 2 3 0,992668 1,000000 0,999998 1,000000 1,000000  

7 1 3 1 0,996902 1,000000 1,000000 1,000000 1,000000 1,000000 

8 1 3 2 1,000000 0,982529 1,000000 1,000000 0,937755 0,998606 

9 1 3 3 1,000000 0,907729 0,999998 0,999974 0,791546 0,982465 

10 2 1 1 0,166368 0,000195 0,021193 0,011884 0,000083 0,000792 

11 2 1 2 0,000783 0,000036 0,000060 0,000046 0,000036 0,000036 

12 2 1 3 0,049548 0,000053 0,004202 0,002169 0,000040 0,000131 

13 2 2 1 0,032735 0,000044 0,002485 0,001258 0,000038 0,000085 

14 2 2 2 0,928885 0,030238 0,515672 0,397921 0,013187 0,083941 

15 2 2 3 0,008402 0,000037 0,000484 0,000243 0,000036 0,000042 

16 2 3 1 0,056280 0,000057 0,004966 0,002574 0,000041 0,000152 

17 2 3 2 0,873902 0,018450 0,410427 0,303572 0,007712 0,054710 

18 2 3 3 0,107121 0,000103 0,011563 0,006275 0,000055 0,000381 

 

 
Cell No. 

Tukey HSD test; variable DV_1 (stddev5_93_173) 
Approximate Probabilities for Post Hoc Tests 
Error: Within MSE = ,42170, df = 128,00 

7 
-,4021 

8 
-,2151 

9 
-,1642 

10 
,30721 

11 
,54252 

12 
,37400 

13 
,39394 

14 
,11194 

1 0,996902 1,000000 1,000000 0,166368 0,000783 0,049548 0,032735 0,928885 

2 1,000000 0,982529 0,907729 0,000195 0,000036 0,000053 0,000044 0,030238 

3 1,000000 1,000000 0,999998 0,021193 0,000060 0,004202 0,002485 0,515672 

4 1,000000 1,000000 0,999974 0,011884 0,000046 0,002169 0,001258 0,397921 

5 1,000000 0,937755 0,791546 0,000083 0,000036 0,000040 0,000038 0,013187 

6 1,000000 0,998606 0,982465 0,000792 0,000036 0,000131 0,000085 0,083941 

7  0,999540 0,991566 0,001272 0,000036 0,000200 0,000122 0,114010 

8 0,999540  1,000000 0,098401 0,000330 0,025812 0,016463 0,846895 

9 0,991566 1,000000  0,225759 0,001365 0,073344 0,049608 0,961688 

10 0,001272 0,098401 0,225759  0,992520 1,000000 1,000000 0,999194 

11 0,000036 0,000330 0,001365 0,992520  0,999886 0,999981 0,384899 

12 0,000200 0,025812 0,073344 1,000000 0,999886  1,000000 0,976804 

13 0,000122 0,016463 0,049608 1,000000 0,999981 1,000000  0,953538 

14 0,114010 0,846895 0,961688 0,999194 0,384899 0,976804 0,953538  

15 0,000047 0,003838 0,013578 0,999985 1,000000 1,000000 1,000000 0,796344 

16 0,000237 0,029650 0,082675 1,000000 0,999811 1,000000 1,000000 0,981882 

17 0,076088 0,764147 0,924265 0,999836 0,488298 0,990784 0,978756 1,000000 

18 0,000613 0,060142 0,150619 1,000000 0,998103 1,000000 1,000000 0,996255 
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Cell No. 

Tukey HSD test; variable DV_1 (stddev5_93_173) 
Approximate Probabilities for Post Hoc Tests 
Error: Within MSE = ,42170, df = 128,00 

15 
,45312 

16 
,36764 

17 
,13418 

18 
,33336 

1 0,008402 0,056280 0,873902 0,107121 

2 0,000037 0,000057 0,018450 0,000103 

3 0,000484 0,004966 0,410427 0,011563 

4 0,000243 0,002574 0,303572 0,006275 

5 0,000036 0,000041 0,007712 0,000055 

6 0,000042 0,000152 0,054710 0,000381 

7 0,000047 0,000237 0,076088 0,000613 

8 0,003838 0,029650 0,764147 0,060142 

9 0,013578 0,082675 0,924265 0,150619 

10 0,999985 1,000000 0,999836 1,000000 

11 1,000000 0,999811 0,488298 0,998103 

12 1,000000 1,000000 0,990784 1,000000 

13 1,000000 1,000000 0,978756 1,000000 

14 0,796344 0,981882 1,000000 0,996255 

15  1,000000 0,872205 0,999999 

16 1,000000  0,993148 1,000000 

17 0,872205 0,993148  0,998964 

18 0,999999 1,000000 0,998964  
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