
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/256147788

Hedging,	Arbitrage,	and	Optimality	with
Superlinear	Frictions

ARTICLE		in		SSRN	ELECTRONIC	JOURNAL	·	AUGUST	2013

DOI:	10.2139/ssrn.2317344

CITATIONS

5

READS

68

2	AUTHORS,	INCLUDING:

Paolo	Guasoni

Dublin	City	University

41	PUBLICATIONS			481	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Paolo	Guasoni

Retrieved	on:	16	November	2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42940149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.researchgate.net/publication/256147788_Hedging_Arbitrage_and_Optimality_with_Superlinear_Frictions?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/256147788_Hedging_Arbitrage_and_Optimality_with_Superlinear_Frictions?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Paolo_Guasoni?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Paolo_Guasoni?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Dublin_City_University?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Paolo_Guasoni?enrichId=rgreq-f2e19d67-5129-400a-a61e-2b84012397d3&enrichSource=Y292ZXJQYWdlOzI1NjE0Nzc4ODtBUzoxMDQ3OTkwOTc4NTE5MTBAMTQwMTk5NzQ2MDM5NA%3D%3D&el=1_x_7


Hedging, arbitrage, and optimality with superlinear frictions
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Abstract

In a continuous-time model with multiple assets described by cadlag processes, this paper
characterizes superhedging prices, absence of arbitrage, and utility maximizing strategies,
under general frictions that make execution prices arbitrarily unfavorable for high trading
intensity. With such frictions, dual elements correspond to a pair of a shadow execution
price combined with an equivalent martingale measure. For utility functions defined on the
real line, optimal strategies exist even if arbitrage is present, because it is not scalable at
will.
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1 Introduction

In financial markets, trading moves prices against the trader: buying more, and faster,
increases execution prices, while selling does the opposite. This aspect of liquidity, known as
market depth [5] or price-impact, is widely documented empirically [19, 11], and has received
increasing attention in models of asymmetric information [28], illiquid portfolio choice [35, 20],
and optimal liquidation [1, 4, 36]. These models depart from the literature on frictionless
markets, where prices are the same for any amount traded. They also depart from transaction
costs models, in which prices differ for buying and selling, but are insensitive to quantities.

The growing interest in price-impact has also highlighted a shortage of effective theoretical
tools. In these models, what is the analogue of a martingale measure? Which contingent claims
are hedgeable, and at what price? What it the optimality condition for utility maximization?
In discrete time, several researchers have studied these fundamental questions [2, 32, 31, 18],
but extensions to continuous time have proved challenging. This paper aims at filling the gap.

Tackling price-impact in continuous-time requires to clarify two basic concepts, which remain
concealed in discrete models: the relevant classes of trading strategies and of pricing functionals.
First, to retain price-impact effects in continuous time, execution prices must depend on quan-
tities per unit of time, i.e. trading intensity, rather than on quantities themselves, otherwise
price-impact can be avoided with judicious policies [8, 10, 9]. Various classes of trading strate-
gies have appeared in different models ([10] [36]), but a general definition of feasible strategy
has not yet emerged. The second key concept is the relevant notion of pricing functional – the
analogue of a martingale measure. In the transaction costs literature, such a pricing functional
are identified as a consistent prices system, a pair (S̃, Q) of a price S̃ evolving within the bid-ask
spread, and a probability Q under which S̃ is a martingale. Such a definition suggests that with
frictions, passing to the risk-neutral setting requires both a change in the probability measure,
and a change in the price process.

Superlinear frictions, such as price-impact models, entail that execution prices become ar-
bitrarily unfavorable as traded quantities grow per unit of time: buying too fast is impossibly
expensive, and selling intolerably punitive. As a result, trading is feasible only at finite rates
– the number of shares is absolutely continuous. This feature sets apart superlinear frictions
from frictionless markets, in which the number of shares are predictable processes, and from
transaction cost models, in which they have finite variation.

Finite trading rates have two central implications: first, portfolio values are well-defined
for asset prices that follow general cadlag processes, not only for semimartingales. Second,
immediate portfolio liquidation is impossible, and therefore the usual notion of admissibility,
based on a lower bound for liquidation values, is inappropriate with superlinear frictions. We
define a feasible strategy as any trading policy with finite trading rate and trading volume,
without any lower bounds on portfolio values. In frictionless markets, or with transaction costs,
this approach would fail for two reasons: first, such a class would not be closed in any reasonable
sense, as a block trade is approximated by intense trading over small time intervals. Second,
portfolios unbounded from below allow doubling strategies, which lead to arbitrage even with
martingale prices.

Neither issue arises with superlinear frictions. Block trades are infeasible, even in the limit,
as intense trading incurs exorbitant costs: put differently, bounded losses imply bounded trading
volume (Lemma 3.4). The bound on trading volume in turn yields the closedness of the payoffs
of feasible strategies (Proposition 3.5), and the martingale property of portfolio values under
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shadow execution prices, which excludes arbitrage through doubling strategies (Lemma 5.4).
Arbitrage is also different from frictionless or transaction cost models. Unlike these settings,

in which an arbitrage opportunity scales freely, superlinear frictions imply that scaling trading
rates results in a less than proportional scaling of payoffs. In fact, we prove a stronger result,
whereby all payoffs are dominated by a single random variable, the market bound, which depends
on the friction and on the asset price only (Lemma 3.5). This bound implies, in particular, that
price-impact defeats arbitrage, if pursued on a large scale.

All these definitions and properties come together – and are sustained by – the main super-
hedging result, Theorem 3.7, which characterizes the initial asset positions that can dominate
a given claim through trading, in terms of shadow execution prices. The main message of this
theorem is that the superhedging price of a claim is the supremum of its expected value under a
martingale measure for an execution price, minus a penalty, which reflects how far the shadow
price is from the base price. The penalty depends on the dual friction, introduced by [18] in
discrete time, and is zero for any equivalent martingale measure of the asset price. Impor-
tantly, the theorem is valid even if there are no martingale measures, or if the price is not a
semimartingale.

The superhedging theorem, which does not assume absence of arbitrage, characterizes a
large class of models that do not admit arbitrage of the second kind (strategies that lead to
a sure minimal gain) even in limited amounts. As for transaction costs, this class contains
any price process that satisfies the conditional full support property [22], including fractional
Brownian motion.

We conclude the paper addressing utility maximization with superlinear frictions. First, a
general theorem guarantees that optimal solutions exist – even with arbitrage, which must be
chosen optimally, lest price-impact offset gains. Second, optimal strategies are identified by
a version of the familiar first-order condition that the marginal utility of the optimal payoff
be proportional to the stochastic discount factor. Some technicalities aside, price-impact leads
to a novel condition, which prescribes that the stochastic discount factor makes the shadow
execution price, not the base price, a martingale. In models of transaction costs this criterion
formally reduces to the usual shadow price approach for optimality [26].

The rest of the paper proceeds with section 2, which describes the model in detail. The
main theoretical tools are developed in section 3, which proves the market bound, the trading
volume bound, the closedness of the payoff space, and the main superhedging result. Section
4 discusses the implications for arbitrage of the second kind, and its absence with prices with
conditional full support. Section 5 concludes with the results on utility maximization.

2 The Model

Let T > 0 denote a finite time horizon, and consider a filtered probability space (Ω,F , (Ft)t∈[0,T ], P )
with F0 trivial, satisfying the usual hypotheses as well as F = FT . O denotes the optional
sigma-field on Ω× [0, T ]. The market includes a safe asset S0, used as numeraire, hence S0

t ≡ 1,
t ∈ [0, T ], and d risky assets, described by càdlàg, adapted processes (Sit)

1≤i≤d
t∈[0,T ]. Henceforth

S denotes the d-dimensional process with components Si, 1 ≤ i ≤ d, the concatenation xy of
two vectors x, y of equal dimensions denotes their scalar product, and |x| denotes the Euclidean
norm of x. For a (d+ 1)-dimensional vector x, its coordinates are denoted by x0, . . . , xd.

The next definition identifies those strategies for which the number of shares changes over
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time at some finite rate φ, hence the number of shares is a.s. differentiable.

Definition 2.1. A feasible strategy is a process φ in the class

A :=

{
φ : φ is a Rd-valued, optional process,

∫ T

0
|φu|du <∞ a.s.

}
. (1)

In this definition, the process φ represents the trading rate, that is, the speed at which the
number of shares in each asset changes over time, and the condition

∫ T
0 |φu|du <∞ means that

absolute turnover (the cumulative number of shares bought or sold) remains finite in finite time.
The above definition compares to that of admissible strategies in frictionless markets as

follows. On one hand, it relaxes the solvency constraint typical of admissibility, since a feasible
strategy can lead to negative wealth. On the other hand, this definition restricts the number
of shares to be differentiable in time, while usual admissible strategies an have an arbitrarily
irregular number of shares.1

With this notation, in the absence of frictions the self-financing condition would imply a
position at time T in the safe asset (henceforth, cash) equal to2:

z0 −
∫ T

0
Stφtdt, (2)

where z0 represents the initial capital, and the integral reflects the cost of purchases and the
proceeds of sales. For a given trading strategy φ, frictions reduce the cash position, by mak-
ing purchases more expensive, and sales less profitable. With a similar notation to [18], we
model this effect by introducing a function G, which summarizes the impact of frictions on the
execution price at different trading rates:

Assumption 2.2 (Friction). Let G : Ω× [0, T ]×Rd → R+ be a O⊗B(Rd)-measurable function,
such that G(ω, t, ·) is convex with G(ω, t, x) ≥ G(ω, t, 0) for all ω, t, x. Henceforth, set Gt(x) :=
G(ω, t, x), i.e. the dependence on ω is dropped, and t is used as a subscript.

With this definition, for a given strategy φ ∈ A and an initial asset position z ∈ Rd+1, the
resulting positions at time t ∈ [0, T ] in the risky and safe assets are defined as:

V i
t (z, φ) :=zi +

∫ t

0
φiudu 1 ≤ i ≤ d, (3)

V 0
t (z, φ) :=z0 −

∫ t

0
φuSudu−

∫ t

0
Gu(φu)du. (4)

The first equation merely says that the cumulative number of shares V i
t in the i-th asset is

given by the initial number of shares, plus subsequent flows. The second equation contains
the new term involving the friction G, which summarizes the impact of trading on execution
prices. The convexity of x 7→ Gt(x) implies that trading twice as fast for half the time may only
increase execution costs – speed is expensive. The condition G(ω, t, x) ≥ G(ω, t, 0) means that

1In the definition of feasible strategy an optional trading rate leads to a continuous, hence predictable, number
of shares, as for usual admissible strategies.

2By the càdlàg property of St, the function St(ω), t ∈ [0, T ] is bounded for almost every ω ∈ Ω, hence the

integral in (2) is finite a.s. for each φ satisfying
∫ T
0
|φt|dt <∞ a.s.
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inactivity is always cheaper than any trading activity. Indeed, for most models in the literature
G(ω, t, 0) = 0, but the above definition allows for G(ω, t, 0) > 0, which is interpreted as a cost
of participation in the market, such as the fees charged by exchanges to trading firms. Finally,
note that in general V 0

t may take the value −∞ for some (unwise) strategies.
With a single risky asset, the above specification is equivalent to assuming that a trading

rate of φt implies an execution price equal to

S̃t = St +Gt(φt)/φt (5)

which is (since G is positive) higher than St when buying, and lower when selling. Thus,
G ≡ 0 boils down to a frictionless market, while proportional transaction costs correspond to
Gt(x) = εSt|x| with some ε > 0. Yet, this paper focuses on neither of these settings, which
entail either zero or linear costs, but rather on superlinear frictions, defined as those that satisfy
the following conditions.

Assumption 2.3 (Superlinearity). There is α > 1 and an optional process H such that3

inf
t∈[0,T ]

Ht > 0 a.s., (6)

Gt(x) ≥ Ht|x|α, for all ω, t, x, (7)∫ T

0
sup
|x|≤N

Gt(x)dt < ∞ a.s. for all N > 0, (8)

sup
t∈[0,T ]

Gt(0) ≤ K for some constant K. (9)

Condition (7) is the central assumption of superlinearity, and prescribes that trading twice
as fast for half the time increases costs by a minimum positive proportion. Condition (6)
requires that frictions never disappear, and (8) that they remain finite in finite time. By (9),
the participation cost must be uniformly bounded in ω ∈ Ω. In summary, these conditions
characterize nontrivial, finite, superlinear frictions.

The most common examples in the literature are, with one risky asset, the friction Gt(x) :=
Λ|x|α for some Λ > 0, α > 1 and, in multiasset models, the friction Gt(x) := x′Λx for some
symmetric, positive-definite, d× d square matrix Λ.

Remark 2.4. Our results remain valid assuming that (7) holds for |x| ≥ M only, with some
M > 0. Such an extension requires only minor modifications of the proofs, and may accommo-
date models for which a low trading rate incurs either zero or linear costs.

3 Superhedging and Dual Characterization of Payoffs

Despite their similarity to models of frictionless markets and transaction costs, superlinear
frictions lead to a surprisingly different structure of attainable payoffs, as shown in this section.
First, note that the class of feasible strategies considered above, while still well-defined even in
a model without frictions or with proportional transaction costs, is virtually useless in these
settings, where such a class is not closed in any reasonable sense. Indeed, optimal policies in

3We implicitly assume that inft∈[0,T ]Ht is a random variable, which is always the case if H is progressively
measurable, in addition to optional.
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such models are not smooth, as the number of shares follows a diffusion in a typical frictionless
model, and a nondifferentiable function of finite variation in a transaction costs setting.

With superlinear frictions, feasible strategies are closed in a strong sense. The intuitive
reason is that approximating a nonsmooth strategy would require trading at increasingly high
speed, and hence infinite turnover.

3.1 The Market Bound

Superlinear frictions lead to a striking boundedness property: for a fixed initial position,
all payoffs of feasible strategies are bounded above by a single random variable B < ∞, the
market bound, which depends on the friction G and on the price S, but not on the strategy.
This property clearly fails in frictionless markets, where any payoff with zero initial capital
can be scaled arbitrarily, and therefore admits no uniform bound. In such markets, a much
weaker boundedness property holds: Corollary 9.3. of [12] shows that the set of payoff of
x-admissible strategies is bounded in L0 if the market is arbitrage-free, in the sense that the
condition (NFLVR) holds, and a similar result holds with transaction costs under the (RNFLVR)
property [21].

A central tool in this analysis is the function G∗, the Fenchel-Legendre conjugate of G,
which we call dual friction. Its importance was first recognized by [18], who used it to derive a
superhedging result in discrete time. G∗ is defined as 4

G∗t (y) := sup
x∈Rd

(xy −Gt(x)), y ∈ Rd, t ∈ [0, T ] , (10)

and the typical case d = 1, Gt(x) = Λ|x|α leads to G∗t (y) = α−1
α α

1
1−αΛ

1
1−α y

α
α−1 (in particular,

G∗t (y) = y2/(4Λ) for α = 2). With this notation, observe that:

Lemma 3.1. Under Assumption 2.3, the random variable B :=
∫ T

0 G∗t (−St)dt is finite almost
surely.

Proof. Consider first the case d = 1. Then, by direct calculation,

G∗t (y) ≤ sup
r∈R
{ry −Ht|r|α} =

α− 1

α
α

1
1−αH

1
1−α
t y

α
α−1 (11)

Noting that supt∈[0,T ] |St| is finite a.s. by the càdlàg property of S, and knowing that inft∈[0,T ]Ht

is a positive random variable, it follows that

sup
t∈[0,T ]

G∗t (−St) <∞ a.s.,

which clearly implies the statement. If d > 1, then note that

G∗t (y) ≤ sup
r∈Rd

(
d∑
i=1

riyi −Ht|r|α
)
≤

d∑
i=1

sup
r∈Rd

(
riyi − (Ht/d)|r|α

)
≤

d∑
i=1

sup
x∈R

(
xyi − (Ht/d)|x|α

)
(12)

and the conclusion follows from the scalar case.
4Note that the supremum can be taken over Qd, hence G∗ is O ⊗ B(Rd)-measurable. Note also that, under

Assumption 2.3, G∗t (·) is a finite, convex function satisfying G∗t (x) ≥ −K for all x, see the proof of Lemma 3.1.
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The key observation is that:

Lemma 3.2. Under Assumption 2.3, any φ ∈ A satisfies

V 0
T (z, φ) ≤ z0 +B a.s.

Proof. Indeed, this follows from 4, the definition of G∗t , and Lemma 3.1.

Since B <∞ a.s, it is impossible to achieve a scalable arbitrage, that is an arbitrarily large
profit from zero initial capital with positive probability. Even if an arbitrage exists, amplifying it
too much backfires, because the superlinear friction eventually overrides profits. Yet, arbitrage
opportunities can exist in limited size (cf. section 4 below).

3.2 Trading Volume Bound

For Q ∼ P , denote by L1(Q) the Banach space of (d+ 1)-dimensional, Q-integrable random
variables; L0(A) denotes the set of A-valued random variables for some subset A of a Euclidean
space, equipped with the topology of convergence in probability. EQX denotes the expectation
of a random variable X under Q. From now on, fix 1 < β < α, where α is as in Assumption
2.3. Let γ be the conjugate number of β, defined by

1

β
+

1

γ
= 1.

The next definition identifies a class of reference probability measures with integrability
properties that fit the friction G. As it will be clear later, this class identifies those probabilities
under which some shadow execution price may have the martingale property.

Definition 3.3. P denotes the set of probabilities Q ∼ P , such that

EQ

∫ T

0
H
β/(β−α)
t (1 + |St|)βα/(α−β)dt <∞.

P̃ denotes the set of probabilities Q ∈ P such that

EQ

∫ T

0
|St|dt <∞ and EQ

∫ T

0
sup
|x|≤N

Gt(x)dt <∞ for all n ≥ 1

For a (possibly multidimensional) random variable W , define

P(W ) := {Q ∈ P : EQ|W | <∞}, P̃(W ) := {Q ∈ P̃ : EQ|W | <∞}.

Under Assumption 2.3, note that [14, page 266], P̃(W ) 6= ∅ for all W .

The next lemma shows that, if a payoff has a finite negative part under some of these
probabilities, then its trading rate must also be integrable. There is no analogue to such a
result in frictionless markets, but transaction costs [21, Lemma 5.5] lead to a similar property,
whereby any admissible strategy must satisfy an upper bound on its total variation. In both
cases, the intuition is that, with frictions, excessive trading causes unbounded losses. Hence, a
bound on losses translates into one for trading volume.

In the sequel, x− denotes the negative part of x ∈ R.
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Lemma 3.4. Let Q ∈ P and φ ∈ A be such that EQξ− <∞, where

ξ := −
∫ T

0
Stφtdt−

∫ T

0
Gt(φt)dt.

Then

EQ

∫ T

0
|φt|β(1 + |St|)βdt <∞.

Proof. For ease of notation, set T := 1. Define φt(n) := φt1{|φt|≤n} ∈ A, n ∈ N. As n → ∞,
clearly φt(n)→ φt for all t and ω ∈ Ω, and the random variables

ξn :=−
∫ 1

0
Stφt(n)dt−

∫ 1

0
Gt(φt(n))dt = (13)

−
d∑
i=1

∫ 1

0
Sitφ

i
t(n)[1{Sit≤0,φit≤0} + 1{Sit>0,φit≤0} + 1{Sit≤0,φit>0} + 1{Sit>0,φit>0}]dt (14)

−
∫ 1

0
Gt(φt(n))dt (15)

converge to ξ a.s. by monotone convergence. (Note that each of the terms with an indicator
converges monotonically, and that Gt(0) ≤ Gt(x) for all x.) Hölder’s inequality yields∫ 1

0
|φt(n)|β(1 + |St|)βdt =

∫ 1

0
|φt(n)|βHβ/α

t

1

H
β/α
t

(1 + |St|)βdt ≤ (16)

[∫ 1

0
|φt(n)|αHtdt

]β/α ∫ 1

0

(
1

H
β/α
t

(1 + |St|)β
)α/(α−β)

dt

(α−β)/α

≤

[∫ 1

0
Gt(φt(n))dt

]β/α ∫ 1

0

(
1

H
β/α
t

(1 + |St|)β
)α/(α−β)

dt

(α−β)/α

.

All these integrals are finite by Assumption 2.3 and the càdlàg property of S. Now, set

m :=

∫ 1

0

(
1

H
β/α
t

(1 + |St|)β
)α/(α−β)

dt

(α−β)/α

,

and note that, by Jensen’s inequality,∫ 1

0
|φt(n)|(1 + |St|)dt ≤ [

∫ 1

0
|φt(n)|β(1 + |St|)βdt]1/β. (17)

Note also that if x ≥ 1 and x ≥ 2
β

α−βm
α

α−β then x1/β − (x/m)α/β ≤ x − 2x = −x. This
observation, applied to

x :=

∫ 1

0
|φt(n)|β(1 + |St|)βdt

7



implies that ξn ≤ −x on the event {x ≥ 2
β

α−βm
α

(α−β) + 1}. Thus,∫ 1

0
|φt(n)|β(1 + |St|)βdt ≤ (ξn)− + 2

β
α−βm

α
(α−β) + 1, a.s.

Letting n tend to ∞, it follows that∫ 1

0
|φt|β(1 + |St|)βdt ≤ ξ− + 2

β
α−βm

α
(α−β) + 1, (18)

which implies the the claim, since EQξ− < ∞ by assumption, and EQm
α

α−β < ∞ from Q ∈
P.

3.3 Closed Payoff Space

The central implication of the previous result is that the class of multivariate payoffs su-
perhedged by a feasible strategy, defined as C := [{VT (0, φ) : φ ∈ A} − L0(Rd+1

+ )] ∩ L0(Rd+1),
is closed in a rather strong sense. This is the key property, which confirms that this class of
strategies is suitable for a superhedging result.

Proposition 3.5. Under Assumption 2.3, the set C ∩ L1(Q) is closed in L1(Q) for all Q ∈ P
such that

∫ T
0 |St|dt is Q-integrable.

Proof. Take T = 1 for simplicity, and assume that ρn := ξn − ηn → ρ in L1(Q) where
ηn ∈ L0(Rd+1

+ ) and ξn = V1(0, ψ(n)) for some ψ(n) ∈ A are such that ρn ∈ L1(Q). Up to
a subsequence, this convergence takes place a.s. as well.

Lemma 3.4 implies that EQ
∫ 1

0 |ψt(n)|β(1 + |St|)βdt must be finite for all n since (ξn)− ≤
(ρn)− and the latter is in L1(Q). Applying (18) with the choice φ := ψ(n) we get∫ 1

0
|ψt(n)|β(1 + |St|)βdt ≤ (ρn)− + 2

β
α−βm

α
(α−β) + 1.

Now, since Q ∈ P, and the sequence ρn is bounded in L1(Q) because it is convergent in L1(Q),
it follows that

sup
n≥1

EQ

∫ 1

0
|ψt(n)|β(1 + |St|)βdt <∞. (19)

Consider L := L1(Ω,F , Q;B), the Banach space of B-valued Bochner-integrable functions,
where B := Lβ([0, 1],B([0, 1]), Leb) is a separable and reflexive Banach space. The functions
ψ·(n) : Ω → B are easily seen to be weakly measurable, hence also strongly measurable by the
separability of B. By (19), the sequence φ·(n) is bounded in L, so Lemma 15.1.4 in [12] yields
convex combinations

ψ̃·(n) =

M(n)∑
j=n

αj(n)ψ·(n)

which converge to some ψ̃· ∈ L a.s. in B-norm.
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By the bound in (19), supnEQ
∫ 1

0 |φt(n)|(1 + |St|)dt < ∞. Now apply Lemma 9.8.1 of [12]

to the sequence ψ̃·(n) in the space of (d+ 1)-dimensional random variables L1(Ω× [0, 1],O, ν),
where ν is the measure defined by

ν(A) :=

∫
Ω×[0,1]

1A(ω, t)(1 + |St|)dtdQ(ω)

for A ∈ O (which is finite by the choice of Q). This lemma yields convex combinations ψ̂·(n) of
the ψ̃·(n) such that ψ̂·(n) converges to ψ· almost everywhere in ν, and hence almost everywhere
in P × Leb. This shows, in particular, that ψ is O-measurable.

In particular, since ψ̃·(n) converge a.s. in B-norm, also ψ̂·(n)→ ψ̃ a.s. in B-norm, so ψ = ψ̃,
P × Leb-a.e. and hence ψ̃· → ψ· a.s. in B-norm.

Define ξ̃n :=
∑M(n)

i=n αj(n)ξj and η̃n :=
∑M(n)

i=n αj(n)ηj . It holds that limn→∞
∫ T

0 ψ̃t(n)Stdt =∫ T
0 ψtStdt almost surely, and also

lim
n→∞

ξ̃in = lim
n→∞

∫ T

0
ψ̃it(n)dt =

∫ T

0
ψitdt a.s. for i = 1, . . . , d.

Hence, η̃in → ηi a.s. with ηi :=
∫ T

0 ψ̃itdt− ρi ∈ L0(R+). By the convexity of Gt,

ρ0 = lim
n→∞

(ξ̃0
n − η̃0

n)

≤ lim sup
n→∞

[
−
∫ 1

0
ψ̃t(n)Stdt−

∫ 1

0
Gt(ψ̃t(n))dt− η̃0

n

]
≤ lim sup

n→∞

[
−
∫ 1

0
ψ̃t(n)Stdt−

∫ 1

0
Gt(ψt)dt−

∫ 1

0
Gt(ψ̃t(n))dt+

∫ 1

0
Gt(ψt)dt− η̃0

n

]
= −

∫ 1

0
ψ̃tStdt−

∫ 1

0
Gt(ψt)dt+ lim sup

n→∞

[
−
∫ 1

0
Gt(ψ̃t(n))dt+

∫ 1

0
Gt(ψt)dt− η̃0

n

]
.

Now Fatou’s lemma and η̃n ∈ L0(Rd+1
+ ) imply that the limit superior is in −L0(R+) (note that

Gt(·) is continuous by convexity), hence there is η0 ∈ L0(R+) such that

ρ0 = −
∫ 1

0
ψtStdt−

∫ 1

0
Gt(ψt)dt− η0,

which proves the proposition.

The closedness property above is in fact stronger than closedness in probability, as the
following corollary shows.

Corollary 3.6. Under Assumption 2.3, the set C is closed in probability.

Proof. Let ρn ∈ C tend to ρ in probability. Up to a subsequence, convergence also holds almost
surely. There exists Q ∈ P (see page 266 of [14]) such that ρ, supn |ρ − ρn|,

∫ T
0 |St|dt are all

Q-integrable. Then ρn → ρ in L1(Q) as well and Proposition 3.5 implies that ρ ∈ C.
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R Rd Rd+1

x̄ = (x1/x0, . . . , xd/x0)1{x0 6=0} x = (x0, x1, . . . , xd)

x̃ = (x1, . . . , xd) x̂ = (1, x1, . . . , xd)
c č = (c, 0, . . . , 0)

Table 1: Summary of vector notation.

3.4 Superhedging

Finally, the main superhedging theorem. To the best of our knowledge, Theorem 3.7 is the
first dual characterization in continuous-time of hedgeable contingent claims with price-impact.
Results in discrete time include [2, 32, 31, 18]. Our result is inspired, in particular, by Theorem
3.1 of [18] for finite probability spaces.

Note that both terminal claims and initial endowments are multivariate, for a good reason.
With price impact, which forces finite trading rates, thereby prohibiting instant purchases or
sales, even in the Black-Scholes model it is impossible to buy one share of the risky asset for a
sure price in finite time. Thus, superhedging of general claims in terms of cash yields mostly
trivial results.

In the multivariate notation below, inequalities among vectors are understood component-
wise: x ≤ y means that xi ≤ yi for all i. Also, for a (d + 1)-dimensional vector x, define x̄ as
the d-dimensional vector with x̄i = (xi/x0)1{x0 6=0}, i = 1, . . . , d, while x̂ denotes the (d + 1)-

dimensional vector with coordinates x̂i = xi, i = 1, . . . , d and x̂0 = 1. (See Table 1 for a
summary of notation.)

Theorem 3.7. Let W ∈ L0(Rd+1), z ∈ Rd+1 and let Assumption 2.3 hold. There exists φ ∈ A
such that VT (z, φ) ≥W a.s. if and only if

Z0z ≥ EQ(ZTW )− EQ
∫ T

0
Z0
tG
∗
t (Z̄t − St)dt, (20)

for all Q ∈ P and for all Rd+1
+ -valued bounded Q-martingales Z with Z0

0 = 1 satsifying Zit = 0,
i = 1, . . . , d on {Z0

t = 0}.

The proof of the theorem in fact yields also the following slightly different version, in terms
of bounded martingales only.

Theorem 3.8. Let W ∈ L0(Rd+1), z ∈ Rd+1 and let Assumption 2.3 hold. Fix a reference
probability Q ∈ P̃(W ). There exists φ ∈ A such that VT (z, φ) ≥W a.s. if and only if

Z0z ≥ EQ(ZTW )− EQ
∫ T

0
Z0
tG
∗
t (Z̄t − St)dt, (21)

for all Rd+1
+ -valued bounded Q-martingales Z with Z0

0 = 1 satsifying Zit = 0, i = 1, . . . , d on
{Z0

t = 0}. 2

Defining dQ′/dQ := Z0
T one can state Theorem 3.8 in the following form, in which martingale

probabilities Q are replaced by stochastic discount factors Z:
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Corollary 3.9. Let W ∈ L0(Rd+1), z ∈ Rd+1 and Assumption 2.3 hold. Fix a reference
probability Q ∈ P̃(W ). There exists φ ∈ A such that VT (z, φ) ≥W a.s. if and only if

Ẑ0z ≥ EQ′(ẐTW )− EQ′
∫ T

0
G∗t (Zt − St)dt, (22)

for all Q′ � P with bounded dQ′/dQ and for all Rd+-valued Q′-martingales Z such that (dQ′/dQ)ZT
is bounded. 2

Finally, in the case of a finite Ω Theorem (3.8) reduces to a simple version, without any
integrability conditions:

Theorem 3.10. Let Ω be finite. Let W ∈ L0(Rd+1), z ∈ Rd+1 and let Assumption 2.3 hold.
Fix any reference probability Q ∼ P . There exists φ ∈ A such that VT (z, φ) ≥ W a.s. if and
only if

Z0z ≥ EQ(ZTW )− EQ
∫ T

0
Z0
tG
∗
t (Z̄t − St)dt, (23)

for all Rd+1
+ -valued Q-martingales Z with Z0

0 = 1, and satisfying Zit = 0, i = 1, . . . , d on
{Z0

t = 0}. 2

Proof of Theorem 3.7. For a (d + 1)-dimensional vector x, x̃ denotes the d-dimensional vector
x̃i := xi, i = 1, . . . , d (cf. Table 1). First, assume that VT (z, φ) ≥ W . Take Q ∈ P(W ) and a
bounded Q-martingale Z with nonnegative components (more generally, it is enough to assume
that ZTW is Q-integrable and that ZT ∈ Lγ(Q)), satisfying Zit = 0, i = 1, . . . , d on {Z0

t = 0}.
Note that EQ|W | < ∞ and W 0 ≤ z +

∫ T
0 [−φtSt −Gt(φt)] dt because VT (z, φ) ≥ W , hence

Lemma 3.4 implies

EQ

∫ T

0
|φt|β(1 + |St|)βdt <∞. (24)

Again, since VT (z, φ) ≥W , it follows that

ZT (W − z) ≤
∫ T

0

[
−Z0

TφtSt − Z0
TGt(φt) + Z̃Tφt

]
dt. (25)

By (24), Fubini’s theorem applies and the properties of conditional expectations imply that

EQ(ZTW ) ≤ zEQZT + EQ

∫ T

0

[
−Z0

TφtSt − Z0
TGt(φt) + Z̃Tφt

]
dt

= zZ0 +

∫ T

0
EQ(−Z0

TφtSt − Z0
TGt(φt) + Z̃Tφt)dt

= zZ0 +

∫ T

0
EQ(−Z0

t φtSt − Z0
tGt(φt) + Z̃tφt)dt

= zZ0 +

∫ T

0
EQ(−Z0

t φtSt − Z0
tGt(φt) + Z0

t Z̄tφt)dt

≤ zZ0 + EQ

∫ T

0
Z0
tG
∗
t (Z̄t − St)dt,

which proves the first implication of this theorem.
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To prove the reverse implication, suppose there is no φ such that VT (z, φ) ≥ W , which
means that W − z /∈ C. Fix Q ∈ P̃(W ). The set C ∩ L1(Q) is closed in L1(Q) by Proposition
3.5. The Hahn-Banach theorem then provides a nonzero, bounded (d+ 1)-dimensional random
variable Z̃ such that

EQ[Z̃(W − z)] > sup
X∈C∩L1(Q)

EQ[Z̃X]. (26)

Since −L0(Rd+1) ⊂ C, Z̃ ≥ 0 a.s, otherwise the supremum would be infinity. Define now
the (deterministic) processes ψ(n, i) for all n ∈ N and i = 1, . . . , d by setting ψit(n, i) := n,
ψjt (n, i) = 0, j 6= i for all t ∈ [0, T ].

We claim that EQZ̃
0 > 0. Otherwise, for some i > 0 one should have EQZ̃

i > 0. By
Assumption 2.3 ψ(n, i) ∈ A. By the choice of Q, we even have VT (0, ψ(n, i)) ∈ C ∩ L1(Q) and
EQZ̃VT (0, ψ(n, i)) = nTEQZ̃

i → ∞ as n → ∞, which is impossible by (26). So we conclude
that EQZ̃

0 > 0. Up to a positive multiple of Z, EQZ̃
0 = 1. Define Zt := EQ[Z̃|Ft], t ∈ [0, T ].

We also claim that, for all i = 1, . . . , d,

(P × Leb)(Ai) = 0, where Ai := {(ω, t) : Z0
t (ω) = 0} \ {(ω, t) : Zit(ω) = 0}). (27)

If this were not the case for some i, define ψi(n, i) := n1Ai , ψ
j(n, i) := 0, j 6= i. Clearly,

ψ(n, i) ∈ A and VT (0, ψ(n, i)) ∈ C ∩ L1(Q) while EQVT (0, ψ(n, i)) → ∞, n → ∞, which is
absurd, proving (27).

By the measurable selection theorem applied to the measure space (Ω× [0, T ],O, P ⊗ Leb)
(see Proposition III.44 in [13]), there is an optional process χ̃(n) such that

−K ≤ χ̃t(n)[Z̄t − St]−Gt(χ̃t(n)) ≤ G∗t (Z̄t − St) ∧ n

and

χ̃t(n)[Z̄t − St]−Gt(χ̃t(n)) ≥ [G∗t (Z̄t − St) ∧ n]− 1

n
,

for (P ×Leb)-almost every (ω, t). Here K denotes the bound for supt∈[0,T ]Gt(0) from (9). Now
define χt(n) := χ̃t(n)1{|χ̃t(n)|≤N(n)} where N(n) is chosen such that (P×Leb)(|χ̃t(n)| > N(n)) ≤
1/n2. By Assumption 2.3, χ(n) ∈ A and by the choice of Q, VT (0, χ(n)) ∈ C ∩ L1(Q). By
construction,

lim
n→∞

χt(n)[Z̄t − St]−Gt(χt(n)) = G∗t (Z̄t − St), (P × Leb)− a.e.

Since ZT is bounded, Fatou’s lemma implies that

lim inf
n→∞

EQZTVT (0, χ(n)) = lim inf
n→∞

EQ

∫ T

0
χt(n)[Z̃T − Z0

TSt]− Z0
TGt(χt(n))]dt (28)

= lim inf
n→∞

EQ

∫ T

0
χt(n)[Z̃t − Z0

t St]− Z0
tGt(χt(n))dt

= lim inf
n→∞

EQ

∫ T

0
χt(n)Z0

t [Z̄t − St]− Z0
tGt(χt(n))dt

≥ EQ
∫ T

0
Z0
tG
∗
t (Z̄t − St)dt. (29)
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From (26) we infer that

zZ0 < lim sup
n→∞

[EQ(WZT )− EQZTVT (0, χ(n))] =

EQ(WZT )− lim inf
n→∞

EQZTVT (0, χ(n)) ≤

EQ(WZT )− EQ
∫ T

0
Z0
tG
∗
t (Z̄t − St)dt.

This concludes the proof.

Remark 3.11. The proof of Theorems 3.7 and 3.8 also shows that the statement remains valid
by replacing the class of bounded martingales with the class of Q-martingales with ZT ∈ Lγ(Q)
such that ZTW is Q-integrable.

For a real number c, denote by č the (d+ 1)-dimensional vector (c, 0, . . . , 0)T (cf. Table 1).
The next corollary specializes Theorem 3.7 to the situation in which a claim in cash is hedged
from an initial cash position only.

Corollary 3.12. Let W ∈ L0(R), c ∈ R and let Assumption 2.3 hold. There exists φ ∈ A such
that V 0

T (č, φ) ≥W a.s. and V i
T (č, φ) ≥ 0, i = 1, . . . , d if and only if

c ≥ EQ(Z0
TW )− EQ

∫ T

0
Z0
tG
∗
t (Z̄t − St)dt, (30)

for all Q ∈ P(W ) and for all Rd+1
+ -valued bounded Q-martingales Zt with Z0

0 = 1 satisfying
Zit = 0, i = 1, . . . , d on {Z0

t = 0}. 2

To understand the meaning of (30), it is helpful to consider its statement in the frictionless
case, at least formally5. If St itself is a Q-martingale, then with the choice of Z0

t := 1, Zit := Sit ,
i = 1, . . . , d the penalty term with G∗ vanishes. It follows that, in order to super-replicate W ,
the initial endowment c must be greater than or equal to the supremum of EQW over the set of
equivalent martingale measures for St. This shows that our findings are formally consistent with
well-known superhedging theorems for frictionless markets. The results are similarly consistent
with superhedging theorems for proportional transaction costs [24], formally obtained with
G = εSt|x|.

4 Arbitrage

The superhedging result proved in the previous section holds regardless of arbitrage. As a
result, it can detect arbitrage, because any positive payoff that is superhedged for strictly less
than zero is an arbitrage. Such opportunities, which start from an insolvent position and, by
clever trading, yield a solvent one, are known in the literature as arbitrage of the second kind,
and date back to [23]. (see also [25] in the context of large financial markets). This definition
is used with markets frictions in [16, 17], and, more recently, in [33, 15, 7, 6, 30].

5The theorem does not apply to the frictionless case because G = 0 does not satisfy Assumption 2.3, and
feasible strategies differ from admissible strategies
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Definition 4.1. An arbitrage of the second kind is a strategy φ ∈ A, such that VT (č, φ) ≥ 0 for
some c < 0. Absence of arbitrage of the second kind (NA2) holds if no such opportunity exists.

Note that this definition requires that S has positive components. Otherwise, a a non-
negative position in an asset with negative price (as VT (č, φ) ≥ 0 stipulates) cannot be inter-
preted as solvent.

The following theorem is a direct consequence of Corollary 3.12 and Remark 3.11.

Theorem 4.2. Let Assumption 2.3 hold. Then, (NA2) holds if and only if, for all ε > 0, there

exists Q ∈ P and an Rd+1
+ -valued Q-martingale Z with ZT ∈ Lγ(Q) such that EQ

∫ T
0 Z0

tG
∗
t (Z̄t−

St)dt < ε.

A broad class of models enjoys the (NA2) property. Let D ⊂ (0,∞)d be nonempty, open
and convex. We denote by C[t, T ](D) (resp. Cx[t, T ](D)) the set of continuous functions f from
[t, T ] to D (resp. satisfying f(t) = x). Both spaces are equipped with the Borel sets of the
topology induced by the uniform metric. Recall that a continuous stochastic process S on [t, T ]
can be understood as a C[t, T ](D)-valued random variable, and its support is defined in this
(metric) space.

Definition 4.3. A process S has conditional full support in D (henceforth, CFS-D) if S ∈
C[0, T ](D) a.s. and

suppP (S|[t,T ] ∈ ·|Ft) = CSt [t, T ](D) a.s. for all t ∈ [0, T ].

Theorem 4.4. Let Assumption 2.3 hold with Ht := H constant. If S has the CFS-D property,
then (NA2) holds.

Proof. It follows from [29] that for all ε there is Q ∼ P and a Q-martingale Mt evolving in
D ⊂ Rd+ such that |St −Mt| < ε a.s. for all t. Define Zit := M i

t for i = 1, . . . , d and Z0
t := 1 for

all t.
In [29] (see also [22]) it is shown that ST and hence ZT are in L2(Q). A closer inspection

of the proof reveals that in fact there exist ZT ∈ Lp(Q) for arbitrarily large p. Take p :=
max{γ, αβ/(α − β)}. Then Q is easily seen to be in P and ZT is in Lγ(Q). The estimate
(11) in Lemma 3.1 implies that

EQ

∫ T

0
G∗t (Z̄t − St)dt = EQ

∫ T

0
G∗t (Mt − St)dt ≤

∫ T

0
`(ε)dt ≤ T`(ε)

for a continuous (deterministic) function `, which clearly tends to 0 as ε → 0. Now the claim
follows by Theorem 4.2.

Theorem 4.4 has an immediate implication for fractional Brownian motion. The arbitrage
properties of fractional Brownian motion have long been delicate: in a frictionless setting it
admits arbitrage of the second kind [34] but, with transaction costs, it does not even have
arbitrage of the first kind [22]. With price-impact, the above theorem implies that it does
not admit arbitrage of the second kind, since it satisfies the CFS-D property [22]. Whether
arbitrage of the first kind (a positive, and possibly strictly positive, payoff from nothing) is still
an open question.
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5 Utility Maximization

This section discusses utility maximization in price-impact models. The first result (Theorem
5.1 below) shows that optimal strategies exist under a simple integrability assumption, which
is easy to check in practice. In particular, optimal strategies exist regardless of arbitrage, since
such opportunities are necessarily limited. Put differently, the budget equation is nonlinear,
therefore one cannot add to an optimal strategy an arbitrage opportunity, and expect the
resulting wealth to be the sum.

The second result establishes the first-order condition for utility maximization, which pro-
vides a simple criterion for optimality, and helps understand the differences with the corre-
sponding results for frictionless markets and transaction costs. In particular, it shows that the
analogue of a shadow price for price-impact models is a hypothetical frictionless price for which
the optimal strategy would coincide with the execution price of the same strategy in the original
price-impact model. This notion reduces to that of shadow price for markets with transaction
costs.

Importantly, these results consider only utilities defined on the real line, such as exponential
utility, but exclude power and logarithmic utilities, which are defined only for positive values.
This setting is consistent with the definition of feasible strategies, which do not constrain wealth
to remain positive. One technical challenge to optimality in such a setting is to show that
wealth processes are martingales (or supermartingales) with respect to martingale measures,
and Lemma 5.4 below implies such a property for any feasible strategy. Finally, since the focus
is on utility functions defined on a single variable, and with price impact there is no scalar
notion of portfolio value, the results below assume for simplicity that all strategies begin and
end with cash only.

Let W be an arbitrary real-valued random variable (representing a random endowment) and
c ∈ R the investor’s initial capital.

Theorem 5.1. Let U : R → R be concave and nondecreasing, and let E|U(c + B + W )| < ∞
hold. Under Assumption 2.3, there is φ∗ ∈ A′(u) such that

EU(V 0
T (č, φ∗) +W ) = sup

φ∈A′(u,c)
EU(V 0

T (č, φ) +W ),

where A′(u, c) = {φ ∈ A : V i
T (č, φ) = 0, i = 1, . . . , d, EU−(V 0

T (č, φ) +W ) <∞}.

This theorem applies, in particular, for U bounded above and W bounded below.

Proof. Corollary 3.6 implies that

C ′ := č+
(
C ∩ {X : Xi = 0 a.s., i = 1, . . . , d}

)
is closed in probability.

Let φ(n) be a sequence in A′(U, c) with

lim
n→∞

EU(V 0
T (č, φ(n)) +W ) = sup

φ∈A′(U,c)
EU(V 0

T (č, φ) +W ).

Since V 0
T (č, φ(n)) ≤ c+B a.s. for all n, by Lemma 9.8.1 of [12] there are convex combinations

such that
∑M(n)

j=n αj(n)V 0
T (č, φ(j)) → V a.s. for some [−∞, c + B]-valued random variable V .
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By convexity of G, we have that for φ̃(n) :=
∑M(n)

j=n αj(n)φ(j),

V 0
T (č, φ̃(n)) ≥

M(n)∑
j=n

αj(n)V 0
T (č, φ(j)),

so
∑M(n)

j=n αj(n)VT (č, φ(j)) ∈ C ′ for each n.
By the concavity of U ,

EU

M(n)∑
j=n

αj(n)V 0
T (č, φ(j)) +W

 ≥ M(n)∑
j=n

αj(n)EU(V 0
T (č, φ(j))).

Fatou’s lemma implies that EU(V ) ≥ supφ∈A′(u)EU(V 0
T (č, φ) + W ), in particular, V is

finite-valued and hence V̌ ∈ C ′ by the convexity and closedness of C ′. It follows that V =
V 0
T (č, φ∗) − Y 0 for some φ∗ ∈ A′(U, c) and Y ∈ L0

+. Clearly, EU(V 0
T (č, φ∗) + W − Y 0) =

supφ∈A′(U,c)Eu(V 0
T (č, φ)+W ). Necessarily, EU(V 0

T (č, φ∗)+W ) = supφ∈A′(U,c)EU(V 0
T (č, φ)+W )

as well.6 This completes the proof.

Remark 5.2. The proofs of Theorem 5.1 and Proposition 3.5 use Lemmata 9.8.1 and 15.1.4
in [12]. They could be replaced, with minor modifications, with Komlós’s theorem [27] and its
extensions [3, 37].

While the previous result shows the existence of optimal strategies, the next theorem pro-
vides a sufficient conditions for a strategy’s optimality, through a variante of the usual first
order condition.

Theorem 5.3. Let Assumption 2.3 hold, and

a) let U be concave, continuously differentiable, with U ′ strictly decreasing, and

U(x) ≤ −C|x|δ, x ≤ 0, (31)

for some C > 0 and δ > 1;

b) denoting by Ũ the convex conjugate function of U , i.e.

Ũ(y) := sup
x∈R
{U(x)− xy}, y > 0,

assume that Ũ ′′(y) exists and is strictly positive for all y > 0;

c) let W be a bounded random variable;

d) let Q ∈ P be such that
dQ/dP ∈ Lη, (32)

where (1/η) + (1/δ) = 1. Let Z be a càdlàg process with ZT ∈ Lγ
′

for some γ′ > γ;

e) let Gt(·) be P × Leb-a.s. twice continuously differentiable in x and G′′t (x) > 0 for all x;

6Note that U can be constant on an (infinite) interval hence Y 0 6= 0 is possible.
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f) let φ∗ be a feasible strategy such that, for some y∗ > 0, the following conditions hold:

i) Z is a Q-martingale;

ii) U ′(V 0
T (x, φ∗) +W ) = y∗(dQ/dP );

iii) Zt = St +G′t(φ
∗
t ) a.s. in P × Leb;

iv) EQ

(
V 0
T (x, φ∗)−

∫ T
0 G∗t (Zt − St)dt

)
= x.

Then the strategy φ∗ is optimal for the problem

max
φ∈A′(U,c)

E
[
U(V 0

T (x, φ) +W )
]
. (33)

Proof. For any feasible strategy (φt)t≥0 such that Φt =
∫ t

0 φsds satisfies ΦT = 0, the final payoff
equals

V 0
T (x, φ) = x−

∫ T

0
Stφtdt−

∫ T

0
Gt(φt)dt. (34)

Let Zt be as in the statement of the Theorem, and rewrite the above payoff as:

V 0
T (x, φ) =x−

∫ T

0
Ztφtdt+

∫ T

0
(Zt − St)φtdt−

∫ T

0
Gt(φt)dt.

By definition of G∗t it follows that:

V 0
T (x, φ) ≤ x+

∫ T

0
Ztφtdt+

∫ T

0
G∗t (Zt − St)dt, (35)

and equality holds if Zt − St = G′t(φt), P × Leb-a.s., that is, when iii) holds.
It follows from Lemma 5.4 that:

0 ≤ EQ
[(
x− V 0

T (x, φ) +

∫ T

0
G∗t (Zt − St)dt

)]
(36)

Thus, for any payoff V 0
T (x, φ) +W and any y > 0 the following holds:

E
[
U(V 0

T (x, φ) +W )
]
≤E

[
U(V 0

T (x, φ) +W ) + y(dQ/dP )

(
x− V 0

T (x, φ) +

∫ T

0
G∗t (Zt − St)dt

)]
≤E

[
Ũ(y(dQ/dP )) + y(dQ/dP )

(∫ T

0
G∗t (Zt − St)dt+W

)]
+ yx. (37)

Equality holds if both conditions ii) and iii) are satisfied. Since the above inequality holds for
any y > 0, it follows that:

sup
φ∈A′(U,c)

E
[
U(V 0

T (x, φ) +W )
]
≤ inf

y>0

(
E

[
Ũ(y(dQ/dP )) + y(dQ/dP )

(∫ T

0
G∗t (Zt − St)dt+W

)]
+ yx

)
(38)

The infimum on the right-hand side is achieved at y∗ if the following condition holds:

EQ

[
−Ũ ′(y∗(dQ/dP ))−

(∫ T

0
G∗t (Zt − St)dt+W

)]
= x. (39)
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Since −Ũ ′ = (U ′)−1, the above condition, combined with ii), reduces to

EQ

(
V 0
T (x, φ)−

∫ T

0
G∗t (Zt − St)dt

)
= x (40)

which coincides with condition iv). Thus, if conditions i), ii), iii) and iv) hold for φ∗ then, by
(37),

E
[
U(V 0

T (x, φ∗) +W )
]

= E

[
Ũ(y∗(dQ/dP )) + y∗(dQ/dP )

(∫ T

0
G∗t (Zt − St)dt+W

)]
+ y∗x.

For all φ ∈ A′(U, c)

E
[
U(V 0

T (x, φ) +W )
]
≤ E

[
Ũ(y∗(dQ/dP )) + y∗(dQ/dP )

(∫ T

0
G∗t (Zt − St)dt+W

)]
+ y∗x,

by (38). Hence the strategy φ∗ is indeed optimal.

Lemma 5.4. Under the assumptions of the previous Theorem, any φ ∈ A′(U, c) satisfies

EQ

∫ T

0
φtZtdt = 0.

Proof. Assume T = 1. Define

Φ+
t :=

∫ t

0
(φs)+ds, Φ−t :=

∫ t

0
(φs)−ds.

We will show EQ
∫ 1

0 ZtdΦ+
t = EQ

∫ 1
0 ZtdΦ−t = 0.

Since φ ∈ A′(U, c), (31) and Hölder’s inequality imply that EQ[V 0
1 (x, φ)]− < ∞, hence

Lemma 3.4 implies that

EQ

∫ 1

0
|φt|β(1 + |St|)βdt <∞,

a fortiori,

EQ(Φ+
1 )β = EQ

(∫ 1

0
(φt)+dt

)β
<∞. (41)

Define Φ+
t (n) := Φ+(kn(t)) where

kn(t) := max{i ∈ N :
i

n
≤ t}.

and observe that dΦ+
t (n)→ dΦ+

t a.s. in the sense of weak convergence of measures on B([0, 1]).
As Zt is a.s. càdlàg, its trajectories have countably many points of discontinuity (a.s.). By
dΦ+

t � Leb, this implies

Y +
n :=

∫ 1

0
ZtdΦ+

t (n)→
∫ 1

0
ZtdΦ+

t =: Y +,
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almost surely. Furthermore,

|
∫ 1

0
ZtdΦ+

t (n)| = |
n∑
k=1

Zk/n[Φ+
k/n(n)− Φ+

(k−1)/n(n)]| ≤ sup
t
|Zt|Φ+

1 (42)

where supt∈[0,T ] |Zt| ∈ Lγ
′
by assumption and Φ+

1 ∈ Lβ by (41). It follows by Hölder’s inequality
that the sequence Y +

n is Q-uniformly integrable, so EQY
+
n → EQY

+, n → ∞. From (42) we
get, noting that Φ+

0 (n) = 0,

EQY
+
n = EQ

[
n−1∑
l=0

(Zl/n − Z(l+1)/n)Φ+
l/n(n)

]
+ EQZ1Φ+

1 (n) = EQZ1Φ+
1 (n), (43)

by the Q-martingale property of Z. Analogously, as n→∞,

EQY
−
n = EQZ1Φ−1 (n)→ EQY

−,

where Y −n is defined analogously to Y +
n using dΦ−t instead of dΦ+

t and

Y − :=

∫ 1

0
ZtdΦ−t .

Since Φ1(n) = Φ1 = 0, (43) implies that EQ(Y +
n − Y −n ) = 0 for all n, whence also

EQ(Y + − Y −) = EQ

∫ T

0
φtZtdt = 0,

concluding the proof.
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[33] M. Rásonyi. Arbitrage under transaction costs revisited. In Optimality and risk—modern
trends in mathematical finance, pages 211–225. Springer, Berlin, 2009.

[34] L. C. G. Rogers. Arbitrage with fractional Brownian motion. Math. Finance, 7(1):95–105,
1997.

[35] L. C. G. Rogers and S. Singh. The cost of illiquidity and its effects on hedging. Math.
Finance, 20(4):597–615, 2010.
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