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Non-concave utility maximisation

on the positive real axis in discrete time∗

Laurence Carassus† Miklós Rásonyi‡ Andrea M. Rodrigues§

30th September 2014

Abstract

We treat a discrete-time asset allocation problem in an arbitrage-free, generically

incomplete financial market, where the investor has a possibly non-concave utility func-

tion and wealth is restricted to remain non-negative. Under easily verifiable conditions,

we establish the existence of optimal portfolios.

Keywords: Discrete-time models ; Dynamic programming ; Finite horizon ; Incom-

plete markets ; Non-concave utility ; Optimal portfolio.

AMS MSC 2010: Primary 93E20, 91B70, 91B16, Secondary 91G10.

1 Introduction

We consider investors trading in a multi-asset and discrete-time financial market who are
aiming to maximise their expected utility from terminal wealth. If the utility function is
defined on the non-negative half-line, is concave, and the problem has a finite value function,
then there is always such a strategy, see Rásonyi and Stettner [19]. In the present paper,
we provide (mild) sufficient conditions on a possibly non-concave utility function which
guarantee the existence of an optimal strategy.

This problem has recently been addressed in Reichlin [20] in a continuous-time setting,
but assuming a complete market, just like in the studies Berkelaar, Kouwenberg and Post
[1]; Carassus and Pham [4]. The incomplete case is largely unexplored territory: in the
present setting we are aware of Chapter IV of Reichlin [21] and Rásonyi and Rodrigues [15]
only, where existence results were proved for some very specific market models.

By treating multi-step discrete-time markets, the present paper is the first to cover a
substantial class of incomplete models which can be fitted to arbitrary econometric data.

The case of utilities defined on the whole real line was treated in Carassus and Rásonyi
[5], while probability distortions (in the spirit of cumulative prospect theory) were studied in
Carassus and Rásonyi [6]; Rásonyi and Rodríguez-Villarreal [17] in the discrete-time setting.

Continuous-time studies involving non-concave utilities include Campi and Del Vigna
[3]; Carlier and Dana [7]; Jin and Zhou [11]; Rásonyi and Rodrigues [16], but these references
all make the assumption that the market is complete.
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Non-concave utility maximisation on the positive real axis in discrete time

A brief outline of this manuscript is as follows. Section 2 is dedicated to specifying the
market model and to introducing the relevant notation. In Section 3 we formulate our main
result. Next, in Section 4 we examine the problem in a one-step setting, whilst in Section 5
we prove our main result, using a dynamic programming approach. For the sake of a simple
presentation, the proofs of some technical results are collected in Appendix A.

2 Notation and set-up

2.1 The market

In what follows, we shall consider a frictionless and totally liquid financial market model
with finite trading horizon T ∈ N, in which the current time is denoted by 0 and trading is
assumed to occur only at the dates {0, 1, . . . , T }.

As usual, the uncertainty in the economy is characterised by a complete probability
space (Ω,F ,P), where F is a σ-algebra on the sample space Ω, and P is the under-
lying probability measure (to be interpreted as the physical probability). Moreover, all
the information accruing to the agents in the economy is described by a discrete filtration
F = {Ft; t ∈ {0, 1, . . . , T }} such that F0 contains all P-null sets. Finally, we assume for
convenience that the σ-algebra F0 is P-trivial, and also that F = FT .

Next, we fix a strictly positive integer d and consider a process S = {St; t ∈ {0, 1, . . . , T }},
so that St represents the time-t prices of d traded risky assets. Denoting by Ξn

t the family of
all Ft-measurable random vectors ξ : Ω → Rn for each n ∈ N and each t ∈ {0, 1, . . . , T }, we
assume that St ∈ Ξd

t for every t ∈ {0, 1, . . . , T }, i.e., S is F-adapted. We shall also assume,
without loss of generality, that the risk-free asset in this economy has constant price equal
to one at all times. Finally, for each t ∈ {1, . . . , T }, we define ∆St , St − St−1.

We recall that a self-financing portfolio is a process φ = {φt; t ∈ {1, . . . , T }}, with φt ∈
Ξd
t−1 for all t ∈ {1, . . . , T }, and its wealth process Πφ =

{
Πφ

t ; t ∈ {0, 1, . . . , T }
}

satisfies, for

every t ∈ {1, . . . , T },

Πφ
t = Πφ

0 +

t∑

s=1

〈φs,∆Ss〉 a.s..

We denote by Φ the class of all self-financing portfolios. In addition, we shall impose the
trading constraint that the value of a portfolio should not be allowed to become strictly
negative, so we say that a portfolio φ ∈ Φ is admissible for x0 ≥ 0 (and we write φ ∈ Ψ(x0))
if, for every t ∈ {1, . . . , T }, the inequality Πφ

t ≥ 0 holds a.s. with Πφ
0 = x0. Such a constraint

is natural and frequently imposed, see e.g. [14; 19].
No investor should be allowed to make a profit out of nothing and without risk.

Assumption 2.1. The market does not admit arbitrage, i.e.,

for all x0 ≥ 0, if φ ∈ Ψ(x0) with Πφ
T ≥ x0 a.s., then Πφ

T = x0 a.s.. (NA)

Now fix t ∈ {1, . . . , T }. We know that there exists a regular conditional distribution of
∆St with respect to Ft−1 under the physical measure P, which we shall denote by P∆St|Ft−1 .
Let Dt(ω) denote the affine hull in Rd of the support of P∆St|Ft−1(·, ω).

Under the no-arbitrage Assumption 2.1, it follows from Theorem 3 in Jacod and Shiryaev
[10] that Dt(ω) is actually a linear space for P-almost every ω.

Furthermore, for each fixed t ∈ {1, . . . , T }, we define two important families of functions.
Firstly, given any Ft−1-measurable random variable H ≥ 0 a.s., we set

Ξd
t−1(H) ,

{
ξ ∈ Ξd

t−1: H + 〈ξ,∆St〉 ≥ 0 a.s.
}
.

In the particular case where H = x a.s. for some x ≥ 0, we have

Ξd
t−1(x) ,

{
ξ ∈ Ξd

t−1: x+ 〈ξ,∆St〉 ≥ 0 a.s.
}
.
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Non-concave utility maximisation on the positive real axis in discrete time

On the other hand, we take Ξ̃d
t−1 to be the class of all random vectors ξ ∈ Ξd

t−1 such that
ξ(ω) ∈ Dt(ω) for P-a.e. ω. The notations Ξ̃d

t−1(x), Ξ̃
d
t−1(H) are self-explanatory.

Proposition 2.2. The following two statements are equivalent,

(i) (NA) holds true.

(ii) For every t ∈ {1, . . . , T }, there exist Ft−1-measurable random variables βt > 0, κt > 0

a.s. such that, for every ξ ∈ Ξ̃d
t−1, the inequality

P( 〈ξ,∆St〉 ≤ −βt ‖ξ‖|Ft−1) ≥ κt (2.1)

holds a.s. on {Dt(ω) 6= {0}}.

Proof. This is Proposition 3.3 in Rásonyi and Stettner [18].

Remark 2.3. We notice that the above ‘quantitative’ characterisation of (NA) holds true
only for Ft−1-measurable, Rd-valued functions ξ which belong to Dt a.s.. This will motivate
the use of orthogonal projections later on (cf. Section 4).

2.2 The investor

Investors’ risk preferences are described by a (possibly non-concave) utility function.

Definition 2.4 (Non-concave random utility). A random utility (on the non-negative
half-line) is any function u : (0,+∞)× Ω → R verifying the following two properties,

(i) for every x ∈ (0,+∞), the function u(x, ·) : Ω → R is F -measurable,

(ii) for every ω ∈ Ω, the function u(·, ω) : (0,+∞) → R is non-decreasing and continuous.

For each ω ∈ Ω, we set u(0, ω) , limx↓0 u(x, ω). Note that u(0, ω) may take the value
−∞.

Remark 2.5. As in this paper we restrict wealth to be non-negative, we consider utilities
which are defined only over the non-negative real line. Continuity and monotonicity are
standard assumptions. Also, as u will be used to assess the future wealth of the investor, it
may well depend on economic variables and hence it can be random, see Example 2.8 below.
Lastly, unlike most studies, we do not assume concavity or smoothness of u.

We proceed by noticing that, since for every ω ∈ Ω, u(·, ω) is a monotone function, the
limit u(+∞, ω) , limx→+∞ u(x, ω) exists (though it may not be finite). We shall require
the following.

Assumption 2.6. The negative part of u at 0 has finite expectation, i.e.,1

EP

[
u−(0, ·)

]
< +∞. (2.2)

In the sequel we shall often omit the dependence of u on ω in the notation.

Remark 2.7. If u is deterministic, then the above assumption is equivalent to u(0) > −∞.
This is admittedly restrictive, as it excludes that u(x) behaves like log(x) or −xα (with
α < 0) in the vicinity of 0. It still allows, however, a very large class of utilities.

We continue this subsection with an important example of a random utility function,
in the spirit of cumulative prospect theory (CPT, see Kahneman and Tversky [13]; Tversky
and Kahneman [22]).

1Here x+ , max {x, 0} and x− , −min {x, 0} for every x ∈ R. Furthermore, in order to make the
notation less heavy, given any function f : X → R, we shall write henceforth f±(x) , [f(x)]± for all x ∈ X.
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Example 2.8 (Reference point). Within the CPT framework, every investor is assumed to
have a reference point in wealth (also referred to in the literature as benchmark or status
quo, see e.g. Bernard and Ghossoub [2], He and Zhou [9], Carassus and Rásonyi [6]), with
respect to which payoffs at the terminal time T are evaluated. Therefore, the investors’
decisions are not based on the terminal level of wealth (as it is assumed in the Expected
Utility Theory of von Neumann and Morgenstern [23]), but rather on the deviation of that
wealth level from the reference point.

Mathematically, a reference point is any fixed scalar-valued and F -measurable random
variable B ≥ 0 a.s. Thus, given a payoff X at the terminal time T and a scenario ω ∈ Ω,
the investor is said to make a gain (respectively, a loss) if the deviation from the reference
level is strictly positive (respectively, strictly negative), that is, X(ω) > B(ω) (respectively,
X(ω) < B(ω)).

Note that B may be taken to be, for example, a non-negative constant (this is the case
in Berkelaar, Kouwenberg and Post [1]; Bernard and Ghossoub [2]). The reference point
can also be stochastic (for instance, to reflect the fact that the investors compare their
performance to that of another investor acting in a perhaps different market).

In this setting, the investor has a random utility defined as

u(x, ω) , ũ(x−B(ω)) , x > 0, ω ∈ Ω, (2.3)

with ũ : (− ess supB,+∞) → R a (deterministic) non-decreasing and continuous func-
tion satisfying ũ(− ess supB) > −∞ (where we set ũ(− ess supB) , limx↓− ess supB ũ(x), as
before). Obviously, EP[u

−(0, ·)] < +∞, so Assumption 2.6 is true for u.

We shall make the following assumption on the growth of the function u.

Assumption 2.9. There exist constants γ > 0 and x > 0, as well as a random variable
c ≥ 0 with EP[c] < +∞, such that

u(λx) ≤ λγu(x) + λγc, (2.4)

for all ω ∈ Ω, λ ≥ 1, x ≥ x and EP [u
+(x)] <∞.

Remark 2.10. For u deterministic, concave and continuously differentiable, we recall that

AE+(u) , lim sup
x→+∞

xu′(x)

u(x)

denotes the asymptotic elasticity of u at +∞ (see Kramkov and Schachermayer [14, p. 943]),
and that in this case we always have AE+(u) ≤ 1 (the reader is referred to Kramkov and
Schachermayer [14, Lemma 6.1]).

If, in addition, u(+∞) ≥ 0, then we know by Lemma 6.3 in Kramkov and Schachermayer
[14] that AE+(u) equals the infimum of all real numbers γ > 0 for which there exists some
x > 0 such that, for all λ ≥ 1 and all x ≥ x,

u(λx) ≤ λγu(x) .

This latter definition makes sense for possibly non-concave u and arbitrary γ > 0 as well, so
following Carassus and Rásonyi [5] we may define the asymptotic elasticity at +∞ of u as

AE+(u) , inf{γ > 0: ∃x ≥ 0 such that u(λx, ω) ≤ λγu(x, ω) , ∀ω ∈ Ω, ∀λ ≥ 1, ∀x ≥ x} ,

with the usual convention that the infimum of the empty set is +∞.
Hence, using this generalized notion of asymptotic elasticity, we see that condition (2.4)

holds under Assumption 2.6 if either u is nonnegative and bounded above (by a random
constant c), or AE+(u) ≤ γ.

We note that, if u is deterministic, concave and bounded, then AE+(u) ≤ 0 (again by
Kramkov and Schachermayer [14, Lemma 6.1]), but this fails in the non-concave case (see
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Example A.1 below). This shows that having finite asymptotic elasticity, despite being
sufficient, is not a necessary condition for a function to verify Assumption 2.9.

Besides, it follows as in Lemma 6.3 of Kramkov and Schachermayer [14] that, for a
continuously differentiable (but not necessarily concave) deterministic u having AE+(u) ≤ γ
for some γ > 0 is still equivalent to lim supx→+∞ xu′(x) /u(x) ≤ γ.

From this, we immediately get that AE+(u) < +∞ (and hence Assumption 2.9 holds) if
u is deterministic, continuously differentiable and if there exists some p > 0 such that

0 < lim inf
x→+∞

u′(x)

xp
≤ lim sup

x→+∞

u′(x)

xp
< +∞

Indeed, if the above condition is true for u, then on the one hand it is possible to find m > 0
for which there exists some x > 0 such that u′(x) > mxp for all x ≥ x. But this implies
that, for all x ≥ x,

u(x) ≥
∫ x

x

u′(y) dy ≥ m
xp+1 − xp+1

p+ 1
.

On the other hand, we can find M > 0 for which there is x > 0 such that u′(x) < M xp

for all x ≥ x. Defining x̂ , max {x, x} > 0, and combining the preceding inequalities finally
gives

xu′(x)

u(x)
≤ (p+ 1)

M

m

xp+1

xp+1 − xp+1

for all x ≥ x̂, therefore

lim sup
x→+∞

xu′(x)

u(x)
< +∞.

In particular, if u′(x) is asymptotically equivalent to a power function (that is, u′(x)/xp → 1,
x→ ∞) then Assumption 2.9 holds. A multitude of piecewise concave or S -shaped functions
(not only piecewise power functions) can be accomodated in this way, such as the ones
considered in Berkelaar, Kouwenberg and Post [1]; Carassus and Pham [4]; Jin and Zhou
[11]; Rásonyi and Rodrigues [15].

At last, suppose that u is the utility of Example 2.8. If the conditions below are satisfied:

(i) ess supB < +∞,

(ii) there exist real numbers γ > 0, x̃ > 0 and C ≥ 0 such that, for all λ ≥ 1 and all x ≥ x̃,

ũ(λx) ≤ λγ ũ(x) + λγC,

(iii) the function ũ is continuously differentiable on its domain, and there are real numbers
K > 0 and x̂ > 0 such that, for all x ≥ x̂,

ũ′(x) ≤ K,

then u fullfills Assumption 2.9. Indeed, setting x , max{x̃, x̂}+ ess supB > 0 yields

u(λx, ω) = ũ

(
λ

[
x− B(ω)

λ

])
≤ λγ ũ

(
x− B(ω)

λ

)
+ λγC

≤ λγ ũ(x−B(ω)) + λγKB(ω)

(
1− 1

λ

)
+ λγC

for all ω (outside a P-null set), λ ≥ 1 and x ≥ x. Note that u+(x) ≤ ũ(x) and the latter
is deterministic. Hence, choosing c , K ess supB + C (which is constant, thus trivially
integrable) gives the claimed result. We conclude by pointing out that any funcion ũ which
is concave for sufficiently large x satisfies the conditions (ii), (iii) above.
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We may now deduce the following auxiliary result, which provides an estimate for all
x ≥ 0, and not only for x ≥ x.

Lemma 2.11. Under Assumption 2.9 there is a random variable C ≥ 0 a.s. such that
EP[C] < +∞ and

u+(λx) ≤ λγu+(x) + λγC (2.5)

for all λ ≥ 1 and x ≥ 0.

Proof. See Appendix A.

3 Main results

The optimal portfolio problem consists in choosing the “best” investment in the given assets:
the one which maximises the expected utility from terminal wealth.

Definition 3.1. Let Assumption 2.6 be in force. Given any x0 ≥ 0, the non-concave
portfolio problem with initial wealth x0 on a finite horizon T is to find φ∗ ∈ ψ(x0) such that

v∗(x0) , sup
{
EP

[
u
(
Πφ

T

)]
: φ ∈ Ψ(x0)

}
= EP

[
u
(
Πφ∗

T

)]
. (3.1)

We call φ∗ an optimal strategy.

Remark 3.2. (i) Note that, due to Assumption 2.6, the expectations in (3.1) above exist,
though they may be infinite. It is also immediate to check that, under Assumption 2.6,
the strategy φ ≡ 0 is in Ψ(x0) for all x0 ≥ 0, so the supremum is taken over a non-
empty set. In particular, v∗(x0) ≥ EP[u(x0)] > −∞.

(ii) One may inquire why the existence of an optimal φ∗ is important when the existence of
ε-optimal strategies φε (i.e., ones that are ε-close to the supremum over all strategies)
is automatic, for all ε > 0.

Firstly, non-existence of an optimal strategy φ∗ usually means that an optimiser se-
quence

{
φ1/n; n ∈ N

}
shows a behaviour which is practically infeasible and counter-

intuitive (see Example 7.3 of Rásonyi and Stettner [18]).

Secondly, existence of φ∗ normally goes together with some compactness property
which would be needed for the construction of eventual numerical schemes to find the
optimiser.

Here comes the main result of the present paper. It says that the optimisation problem
(3.1) admits a solution.

Theorem 3.3. Let Assumptions 2.1, 2.6 and 2.9 hold true. Assume further that, for every
x0 ∈ [ 0,+∞) ,

v∗(x0) < +∞. (WP)

Then, for each x0 ∈ [ 0,+∞) , there exists a strategy φ∗ = φ∗(x0) ∈ Ψ(x0) satisfying

EP

[
u
(
Πφ∗

T

)]
= v∗(x0) . (3.2)

Proof. The proof will be given in Section 5, after appropriate preparations.

Remark 3.4. We would like to draw attention to the fact that, since Assumption 2.6 is in
force, the well-posedness condition (WP) is actually equivalent to the apparently stronger
one

sup
φ∈Ψ(x0)

EP

[
u+

(
Πφ

T

)]
< +∞.

To see this, we recall that Πφ
T ≥ 0 a.s. for every φ ∈ Ψ(x0), hence

sup
φ∈Ψ(x0)

EP

[
u+

(
Πφ

T

)]
≤ v∗(x0) + sup

φ∈Ψ(x0)

EP

[
u−

(
Πφ

T

)]
≤ v∗(x0) + EP

[
u−(0)

]
< +∞. (3.3)
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As a very simple, yet important example to which the preceding theorem clearly applies,
we mention the case of u non-negative and bounded above and S satisfying Assumption 2.1.
Another relevant example is given by the following theorem. First, define

W ,
{
Y ∈ Ξ1

T : EP[|Y |p] < +∞ for all p > 0
}
. (3.4)

Theorem 3.5. Let Assumptions 2.1, 2.6 and 2.9 hold true with c, u+(x) ∈ W . Assume
further that ‖∆St‖ , 1/βt ∈ W for every t ∈ {1, . . . , T }, where the βt are the random variables
figuring in Proposition 2.2. Then, for every x0 ∈ [ 0,+∞) , condition (WP) is satisfied and
there exists an optimal strategy φ∗ = φ∗(x0) ∈ A (x0).

Proof. See Section 5.

4 The one-step case

In this section, we consider an F -measurable function Y : Ω → Rd, and a σ-algebra G ⊆ F

containing all P-null sets of F . This setting will be applied in the multi-step case (see the
subsequent section) with G = Ft−1 and Y = ∆St, for every fixed t ∈ {1, . . . , T }.

Keeping in line with the notation of the previous section, we denote by Ξd the family of
all G -measurable functions ξ : Ω → Rd.

Moreover, let PY |G : B
(
Rd

)
× Ω → [0, 1] be the unique (up to a set of measure zero)

regular conditional distribution for Y given G . Now, for each ω ∈ Ω, let supp
(
PY |G(·, ω)

)

represent the support of PY |G(·, ω) (which exists and is non-empty), and let D(ω) denote
the affine hull of supp

(
PY |G(·, ω)

)
, that is, D(ω) , aff

(
supp

(
PY |G(·, ω)

))
.

We shall also assume the following.

Assumption 4.1. For every ω ∈ Ω, D(ω) is a linear subspace of Rd.

In addition, for every G -measurable random variable H : Ω → R satisfying H ≥ 0 a.s.,
define the set

Ξd(H) ,
{
ξ ∈ Ξd: 〈ξ, Y 〉 ≥ −H a.s.

}
.

Then in the particular case where H = x a.s., for some x ∈ [ 0,+∞) , we have

Ξd(x) ,
{
ξ ∈ Ξd: 〈ξ, Y 〉 ≥ −x a.s.

}
.

Finally, let Ξ̃d denote the family of all functions ξ ∈ Ξd such that ξ(ω) ∈ D(ω) for each
ω. The notations Ξ̃d(H), Ξ̃d(x) are self-explanatory.

We shall also impose the following condition, which can be regarded as absence of arbi-
trage (cf. Proposition 2.2).

Assumption 4.2. There exist G -measurable random variables β, κ > 0 a.s. such that

P( 〈ξ, Y 〉 ≤ −β ‖ξ‖|G ) ≥ κ a.s. on {D(ω) 6= {0}} , (4.1)

for all ξ ∈ Ξ̃d. We may and will assume β ≤ 1.

Assumption 4.3. Let the function V : [ 0,+∞) × Ω → R satisfy both properties below:

(i) for any fixed x ∈ [ 0,+∞) , the function V (x, ·) : Ω → R is measurable with respect to
F ;

(ii) for every ω ∈ Ω, the function V (·, ω) : [0,+∞) → R is continuous and non-decreasing.

We shall also need the following integrability conditions.

Assumption 4.4. For every x ∈ [ 0,+∞) ,

ess sup
ξ∈Ξd(x)

EP

[
V +(x+ 〈ξ(·) , Y (·)〉 , ·)

∣∣G
]
< +∞ a.s.. (4.2)
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Assumption 4.5. The conditional expectation of V −(0, ·) : Ω → [ 0,+∞) with respect to
G is finite a.s., i.e.,

EP

[
V −(0, ·)

∣∣G
]
< +∞ a.s.. (4.3)

Finally, we impose the following growth condition on V .

Assumption 4.6. There exist a constant γ > 0 and a random variable C̄ > 0 a.s. such
that EP

[
C̄
]
< +∞ and for each ω,

V +(λx, ω) ≤ λγV +(x, ω) + λγC̄(ω) , for all λ ≥ 1 and for all x ≥ 0. (4.4)

Next, we notice that denoting by ξ̂(ω) the orthogonal projection of ξ(ω) on D(ω) for
some ξ ∈ Ξd, we have ξ̂ ∈ Ξd and 〈ξ̂, Y 〉 = 〈ξ, Y 〉 a.s., the reader is referred to Carassus and
Rásonyi [5, Remark 8] for further details. This means that any portfolio can be replaced
with its projection on D without changing either its value or its desirability to the investor.
We now recall that the set of all admissible strategies in D is bounded.

Lemma 4.7. Given any x0 ≥ 0, there exists a G -measurable, real-valued random variable
Kx0

:= x0/β ≥ x0 such that, for every x ∈ [0, x0] and for every ξ ∈ Ξ̃d(x), we have

‖ξ‖ ≤ Kx0
a.s. (4.5)

Proof. This is Lemma 2.1 in Rásonyi and Stettner [19].

As for the next lemma, it will allow us to apply the Fatou lemma to a sequence of
conditional expectations tending to the essential supremum in (4.7) below.

Lemma 4.8. Given any x ≥ 0, there is a non-negative random variable L′ : Ω → R such
that E[L′|G ] < +∞ a.s., and for every ξ ∈ Ξ̃d(x) the inequality

V +(x+ 〈ξ(·) , Y (·)〉 , ·) ≤ Lx (4.6)

holds a.s. for Lx := (xγ + 1)L′.

Proof. See Appendix A.

Now a regular version of the essential supremum is shown to exist.

Lemma 4.9. There exists a function G : [ 0,+∞) × Ω → R satisfying the two properties
below:

(i) the function G(x, ·) is a version of ess supξ∈Ξd(x) EP[V (x+ 〈ξ(·) , Y (·)〉 , ·)|G ] for each
x ∈ [ 0,+∞) ;

(ii) for P-a.e. ω ∈ Ω, the function G(·, ω) : [0,+∞) → R is non-decreasing and continuous
on [ 0,+∞) .

Furthermore, given any G -measurable random variable H ≥ 0 a.s.,

G(H(·) , ·) = ess sup
ξ∈Ξd(H)

EP[V (H(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] a.s.. (4.7)

Proof. See Appendix A.

Proposition 4.10. For any G -measurable random variable H ≥ 0 a.s. there exists ξ̃(H) ∈
Ξ̃d(H) with

G(H(·) , ·) = EP

[
V
(
H(·) +

〈
ξ̃(H) , Y (·)

〉
, ·
)∣∣∣G

]
a.s.. (4.8)

Proof. See Appendix A.
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5 The multi-step case

In this section, we shall follow Carassus and Rásonyi [5]; Rásonyi and Stettner [18, 19], and
employ a dynamic programming approach to split the original optimisation problem into a
number of sub-problems at different trading dates. Our goal is to invoke the results of the
preceding section, thus allowing us to obtain an optimal solution at each stage. Combining
them in an appropriate way will yield a globally optimal investment strategy.

Proof of Theorem 3.3. We must prove that some crucial assumptions of Section 4 are pre-
served at each time step. So let us start by defining

UT (x, ω) , u(x, ω) , x ≥ 0, ω ∈ Ω.

We wish to apply the results of Section 4 with Y , ∆ST , G , FT−1 and V , UT .

(i) Since Assumption 2.1 holds by hypothesis, Theorem 3 in Jacod and Shiryaev [10]
implies that the affine space DT (ω) is a linear subspace of Rd a.s., therefore Assump-
tion 4.1 is verified (after trivial adjustments). It follows from Proposition 2.2 that
Assumption 4.2 holds as well.

(ii) We note further that Assumption 4.3 is also true. Indeed, if we fix any x ≥ 0,
then it follows immediately from the definition of a random utility that the func-
tion UT (x, ·) : Ω → R is FT -measurable and, for all ω, UT (ω, ·) is continuous and
nondecreasing on [ 0,+∞) .

(iii) We now claim that Assumption 4.4 is satisfied. In order to do so, fix an arbitrary
x ≥ 0. It can be easily shown that

{
EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
; ξ ∈ Ξd

T−1(x)
}

is directed upwards, so we can find a countable sequence of random vectors {ξn; n ∈ N} ⊆
Ξd(x) attaining the essential supremum, i.e., such that

lim
n→+∞

EP

[
U+
T (x+ 〈ξn(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]

= ess sup
ξ∈Ξd

T−1
(x)

EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
a.s.

in a non-decreasing way. Therefore, it follows from the Monotone Convergence Theo-
rem and from the definition of the conditional expectation that

EP

[
ess sup

ξ∈Ξd
T−1

(x)

EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
]

= lim
n→+∞

EP

[
EP

[
U+
T (x+ 〈ξn(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]]

= sup
n∈N

EP

[
U+
T (x+ 〈ξn(·) ,∆ST (·)〉 , ·)

]
.

Now, it is straightforward to check that, given any ξ ∈ Ξd(x), the Rd-valued process
defined by

(φξ)t ,

{
ξ, if t = T,
0, otherwise,

is a portfolio in Ψ(x), with

EP

[
u+

(
Π

φξ

T (·) , ·
)∣∣∣∣FT−1

]
= EP

[
u+(x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]

= EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
a.s.
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In particular, the preceding equality and condition (WP) imply that

EP

[
EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]]
= EP

[
u+

(
Π

φξ

T (·) , ·
)]

< +∞,

and so EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
< +∞ a.s. (thus, the conditional expec-

tation is well-defined and finite a.s.).

At last, setting φn , φξn , combining the results obtained above and invoking hypoth-
esis (WP) once again, we conclude that

EP

[
ess sup

ξ∈Ξd
T−1

(x)

EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
]

= sup
n∈N

EP

[
u+

(
Π

φn

T (·) , ·
)]

< +∞,

hence ess supξ∈Ξd
T−1

(x) EP

[
U+
T (x+ 〈ξ(·) ,∆ST (·)〉 , ·)

∣∣FT−1

]
< +∞ a.s..

(iv) The next step is to show that we have Assumption 4.5 as well. In fact, due to As-
sumption 2.6, it is immediate that

EP

[
EP

[
U−
T (0, ·)

∣∣FT−1

]]
= EP

[
U−
T (0, ·)

]
= EP

[
u−(0, ·)

]
< +∞,

so EP

[
U−
T (0, ·)

∣∣FT−1

]
< +∞ a.s..

(v) Lastly, let the constant γ > 0 and the integrable random variable C > 0 be those given
by Assumption 2.9 and Lemma 2.11, respectively. Then, for every ω ∈ Ω, we obtain

U+
T (λx, ω) = u+(λx, ω) ≤ λγu+(x, ω) + Cλγ = λγU+

T (x, ω) + Cλγ , (5.1)

for all λ ≥ 1 and x ≥ 0.

Hence, by Lemma 4.9, there exists a function GT−1 : [ 0,+∞) × Ω → R such that, for
every ω in a P-full measure set, the function GT−1(·, ω) : [0,+∞) → R is non-decreasing
and continuous on [ 0,+∞) . Moreover, for every x ∈ [ 0,+∞) ,

GT−1(x, ·) = ess sup
ξ∈Ξd

T−1
(x)

EP[UT (x+ 〈ξ(·) ,∆ST (·)〉 , ·)|FT−1] a.s..

In addition, Proposition 4.10 gives us, for each H ∈ Ξ1
T−1, an FT−1-measurable function

ξ̃T (H) : Ω → Rd such that

GT−1(H) = ess sup
ξ∈Ξd

T−1
(H)

EP[UT (H + 〈ξ(·) ,∆ST (·)〉 , ·)|FT−1]

= EP

[
UT

(
H +

〈
ξ̃T (H)(x, ·) ,∆ST (·)

〉
, ·
)∣∣∣FT−1

]
a.s..

Let us now proceed to the next stage of dynamic programming. Let UT−1 : [ 0,+∞) ×
Ω → R be the function given by UT−1(x, ω) , GT−1(x, ω). As before, we would like to use
the results of Section 4, this time with Y , ∆ST−1, G , FT−2 and V , UT−1.

(i) That Assumption 4.1 and Assumption 4.2 are both true follows as before.

(ii) Next, we prove that Assumption 4.3 holds. In fact, given any x ≥ 0, the function
UT−1(x, ·) : Ω → R is FT−1-measurable. On the other hand, for a.e. every ω, we
have by definition of UT−1 that UT−1(·, ω) is a non-decreasing continuous function on
[ 0,+∞) .
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(iii) We show that we also have Assumption 4.4. Indeed, letting x ≥ 0 be arbitrary, but
fixed, it can be easily checked, in the same way as before (the construction of the
portfolio becoming more involved, but totally analogous), that for every ξ ∈ Ξd

T−2(x),
the conditional expectation

EP [UT−1(x+ 〈ξ(·) ,∆ST−1(·)〉 , ·)|FT−2]

is not only well-defined, but also finite a.s.. Furthermore,

ess sup
ξ∈Ξd

T−2
(x)

EP

[
U+
T−1(x+ 〈ξ(·) ,∆ST−1(·)〉 , ·)

∣∣FT−2

]
< +∞ a.s.,

as desired.

(iv) We proceed with the proof that Assumption 4.5 is also verified. Given any x ≥ 0, it is
clear that

UT−1(x, ·) = GT−1(x, ·) ≥ EP [UT (x, ·)|FT−1] a.s.,

where the inequality is due to 0 ∈ Ξd
T−1(x) and to the definition of the essential supre-

mum, thus in particular we can use Jensen’s inequality (for the conditional expectation)
to obtain

EP

[
EP

[
U−
T−1(0, ·)

∣∣FT−2

]]
= EP

[
U−
T−1(0, ·)

]

≤ EP

[
EP

[
U−
T (0, ·)

∣∣FT−1

]]
= EP

[
U−
T (0, ·)

]
= EP

[
u−(0, ·)

]
,

which in turn implies (recall Assumption 2.6) that EP

[
U−
T−1(0, ·)

∣∣FT−2

]
< +∞ a.s..

(v) We finish by noting that, taking again γ > 0 and C > 0 to be, respectively, the real
numbers of Assumption 2.9 and Lemma 2.11, we have that, for every λ ≥ 1 and x ≥ 0,

U+
T−1(λx, ·) ≤ EP

[
U+
T

(
λx+

〈
ξ̃T (λx) ,∆ST (·)

〉
, ·
)∣∣∣FT−1

]

≤ λγEP

[
UT

(
x+

〈
ξ̃T (λx) /λ,∆ST (·)

〉
, ·
)∣∣∣FT−1

]
+ λγEP[C|FT−1] a.s.,

where the first inequality follows from the conditional Jensen inequality, and the second
one uses (5.1). It is easy to see that ξ̃T (λx) /λ ∈ Ξd

T−1(x) and we conclude that, for
every λ ≥ 1 and x ≥ 0, U+

T−1(λx, ·) ≤ λγU+
T−1(x, ·) + λγC̄ a.s. for C̄ := EP[C|FT−1].

Using the regularity of the paths of UT−1, we get that, for a.e. ω the inequality
U+
T−1(λx, ω) ≤ λγU+

T−1(x, ω) + λγC̄ holds for all λ ≥ 1 and x ≥ 0, so Assumption 4.6
is verified.

Consequently, we can apply Lemma 4.9 and Proposition 4.10 to obtain functions GT−2

and ξ̃T−1 satisfying the desired properties. Proceeding in a similar way for the remaining
values of t ∈ {T − 2, . . . , 1}, we construct the functions UT−2, . . . , U1, U0 and ξ̃T−2, . . . , ξ̃1.

We then inductively define Πφ∗

0 = x0, φ∗1 = ξ̃1(x0), φ∗t = ξ̃t(Π
φ∗

t−1). The remainder of the
proof, showing optimality of φ∗, unfolds exactly as the proof of Proposition 3.2 in Rásonyi
and Stettner [19].

Proof of Theorem 3.5. We will prove by backward induction that Ut(x) ≤ Jt[x
γ + 1] for

some Jt ∈ W , for all t. Assumption 2.9 shows that, for all x ≥ x,

UT (x) = u(x) ≤ (x/x)γ [u+(x) + c],

and for 0 ≤ x < x,
UT (x) ≤ u+(x),

so we can set
JT := max{[u+(x) + c]/xγ , u+(x)},
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and the latter is clearly in W by our assumptions. Let us assume that the statement has
been shown for t+ 1, . . . , T . Estimate, using Lemma 4.7,

Ut(x) = ess. sup
ξ∈Ξ̃d

t (x)

EP[Ut+1(x+ 〈ξ,∆St+1〉)|Ft] ≤

ess. sup
ξ∈Ξ̃d

t (x)

EP[Jt+1(x+ ||ξ|| ||∆St+1||)γ + Jt+1|Ft] ≤

xγEP[Jt+1(1 + ||∆St+1||/βt+1)
γ |Ft] + EP[Jt+1|Ft],

so we may set Jt := EP[Jt+1(1+||∆St+1||/βt+1)
γ |Ft] ∈ W . It follows that v∗(x) ≤ EU0(x) ≤

(1 + xγ)EJ0 <∞ and we can conclude using Theorem 3.3.

A Appendix: Proofs and auxiliary results

Except where explicitly stated otherwise, we stay in the setting of Section 4.

Example A.1. It is not difficult to find utilities which are bounded above and yet have non-
zero (actually, infinite) asymptotic elasticity, as the example below shows (the construction
being inspired by the proof of Lemma 6.5 in Kramkov and Schachermayer [14]).

In fact, let f : [ 0,+∞) → R be the continuous and strictly increasing function which
takes the values

f(n) ,
1

2
− 1

n+ 1
=

n− 1

2 (n+ 1)
,

f(n+ 1/2− an) , f(n) + an,

f(n+ 1/2 + an) , f(n+ 1)− an,

with an , 1/(4(n + 1)(n + 2)), and which is linear between the points where it has been
defined.

Clearly f(+∞) = 1/2 and f(1) = 0. We also note that f(0) = −1/2 > −∞. Moreover,
the piecewise linearity of f and trivial computations yield

f ′(x) =
f(n+ 1/2 + an)− f(n+ 1/2− an)

2an
= 1

for any x ∈ (n+ 1/2− an, n+ 1/2 + an), so in particular f ′(n+ 1/2) equals 1. Furthermore,
we have the following inequality,

f(n+ 1/2)

n+ 1/2
≤ f(n+ 1)

n+ 1/2
=

n

(n+ 2) (2n+ 1)
,

thus combining all of the above gives limn→+∞ (n+ 1/2)f ′(n+ 1/2) /f(n+ 1/2) = +∞,
and hence AE+(u) = +∞. We finish by noticing that, as in the proof of Lemma 6.5 in
Kramkov and Schachermayer [14], f can be slightly modified in such a way that it becomes
smooth and our conclusion is still valid.

Proof of Lemma 2.11. Let us begin by noticing that the inequality is trivial if u(λx) < 0 so
we may and will assume u(λx) = u+(λx). Consider an arbitrary x ∈ [0, x). Then we can
use the fact that u is non-decreasing and inequality (2.4), to obtain u+(λx) ≤ u+(λx) =
u(λx) ≤ λγu(x) + λγc for any λ ≥ 1.

On the other hand, for every x ≥ x, we have u+(λx) = u(λx) ≤ λγ [u(x)+c] ≤ λγ [u+(x)+
c] for all λ ≥ 1.

Hence, choosing C , u+(x) + c ≥ 0, and combining the two previous inequalities yields

u+(λx) ≤ max
{
λγ [u(x) + c], λγ [u+(x) + c]

}
≤ λγ [u+(x) + u+(x) + c] = λγu+(x) + λγC

for all λ ≥ 1 and for all x ≥ 0, as claimed. Lastly, note that EP[C] < +∞ since EP[u
+(x)] <

+∞.
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Proof of Lemma 4.8. Let Θ be the set of functions from {1, . . . , d} to {−
√
d,
√
d}. Let x > 0.

Then we have by 4.7, for all ξ ∈ Ξ̃d(x),

x+ 〈ξ, Y 〉 ≤ x(1 + ||Y ||/β) ≤ x(1 + (1/β)max
τ∈Θ

〈τ, Y 〉),

hence

V +(x + 〈ξ, Y 〉) ≤ V +(x(1 + (1/β)max
τ∈Θ

〈τ, Y 〉) ≤
∑

τ∈Θ

V +(x(1 + 〈τ/β, Y 〉))

a.s. Just like in the proof of Lemma 2.3 in Rásonyi and Stettner [19], one can show the
existence of g ∈ Ξd(x) and ετ ∈ Ξ1, ετ ∈ (0, 1) such that g̃τ := g + ετ (τ/β − g) ∈ Ξd(x). It
follows that, for x ≤ 1,

V +(x+ 〈ξ, Y 〉) ≤
∑

τ∈Θ

V +(1 + 〈τ/β, Y 〉),

and for x > 1,
V +(x + 〈ξ, Y 〉) ≤

∑

τ∈Θ

xγ(V +(1 + 〈τ/β, Y 〉) + C̄),

by Assumption 4.6. Applying the same assumption again, we get

V +

(
1 + 〈 τ

β
, Y 〉

)
≤ 1

ετ γ

(
V +

(
ετ

(
1 + 〈 τ

β
, Y 〉

))
+ C̄

)

≤ 1

ετ γ

(
V +

(
ετ (1 + 〈g, Y 〉) + ετ 〈

(
τ

β
− g

)
, Y 〉

)
+ C̄

)

≤ 1

ετ γ

(
V +

(
1 + 〈g, Y 〉+ ετ 〈

(
τ

β
− g

)
, Y 〉

)
+ C̄

)

=
1

ετ γ
(
V + (1 + 〈g̃τ , Y 〉) + C̄

)
,

where the last inequality holds true since 1 + 〈g, Y 〉 ≥ 0 a.s. Now let

L′ =
∑

τ∈Θ

(
1

ετ γ
(
V + (1 + 〈g̃τ , Y 〉) + C̄

)
+ C̄

)
+ V +(0),

where the last term is added to cover the case x = 0 as well. By assumption, EP[C̄|G ] <∞
and by Assumption 4.4 we have EP[V

+(1 + g̃τY )|G ] <∞, so the proof is completed.

Proof of Lemma 4.9. Let us first choose, for each positive rational number q, a version
F (q, ω) of ess supξ∈Ξd(q) EP[V (q + 〈ξ(·) , Y (·)〉 , ·)|G ].

Let us specify, for each x ∈ [ 0,+∞) ,

G(x, ω) , inf
q∈Q
q>x

F (q, ω) .

Clearly, when x ≥ 0 is in Q then G(x, ·) ≥ F (x, ·) a.s. In addition, for each x ≥ 0 we have
that G(x, ·) is G -measurable. We shall split the remainder of the proof into five separate
parts.

(i) With the above definition, it is straightforward to check that, for a.e. ω ∈ Ω, the
function G(·, ω) is non-decreasing. It is also clear that, for every ω outside a P-null
set, G(x, ω) < +∞ for all x ≥ 0.
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(ii) We proceed to show that, for all x ∈ [ 0,+∞) ,

G(x, ·) = ess sup
ξ∈Ξd(x)

EP[V (x+ 〈ξ(·) , Y (·)〉 , ·)|G ] a.s..

In order to do so, let us fix an arbitrary x ∈ [ 0,+∞) . Then, for every q ∈ Q, q > x,
the inequality

ess sup
ξ∈Ξd(x)

EP[V (x+ 〈ξ(·) , Y (·)〉 , ·)|G ] ≤ F (q, ·)

holds a.s., thus we get a.s.

ess sup
ξ∈Ξd(x)

EP[V (x+ 〈ξ(·) , Y (·)〉 , ·)|G ](ω) ≤ G(x, ω) .

It remains to verify that the reverse inequality is also true (except possibly on a set of
measure zero). This will be achieved in three steps.

(a) Let us start by taking a strictly decreasing sequence {qn; n ∈ N} of rational num-
bers satisfying x < qn < x + 1 and limn→+∞ qn = x. Now, given any n ∈ N, it
is straightforward that the family

{
EP [V (qn + 〈ξ(·) , Y (·)〉 , ·)|G ] ; ξ ∈ Ξd(qn)

}
is

directed upwards, therefore one can find ζn ∈ Ξd(qn) such that

EP [V (qn + 〈ζn(·) , Y (·)〉 , ·)|G ](ω) ≥ F (qn, ω)−
1

n
a.s.

(b) Next, fix an arbitrary n. It was observed above that ζn ∈ Ξd(qn) ⊆ Ξd(x+ 1).
Thus, taking ζ̂n to be its projection on D, we know that

EP

[
V
(
qn +

〈
ζ̂n(·) , Y (·)

〉
, ·
)∣∣∣G

]
= EP [V (qn + 〈ζn(·) , Y (·)〉 , ·)|G ]

≥ F (qn, ·)−
1

n
a.s.. (A.1)

Moreover, Lemma 4.7 allows us to conclude that ‖ζ̂n‖Rn ≤ Kx+1 a.s.. Therefore,

we can extract a random subsequence
{
ζ̂nk

; k ∈ N

}
such that limk→+∞ ζ̂nk

= ζ

a.s., for some G -measurable random variable ζ. But then

x+ 〈ζ(ω) , Y (ω)〉 = lim
k→+∞

(
qnk(ω) +

〈
ζ̂nk(ω)(ω) , Y (ω)

〉)
≥ 0

for P-a.e. ω ∈ Ω, i.e. ζ ∈ Ξd(x), which in turn implies that

ess sup
ξ∈Ξd(x)

EP[V (x+ 〈ξ(·) , Y (·)〉 , ·)|G ] ≥ EP[V (x+ 〈ζ(·) , Y (·)〉 , ·)|G ] a.s.. (A.2)

(c) Finally, let us define the random variables fk : Ω → R as follows,

fk(ω) , V
(
qnk(ω) +

〈
ζ̂nk(ω)(ω) , Y (ω)

〉
, ω

)
, ω ∈ Ω.

By virtue of the way the sequence {qn; n ∈ N} and the random subsequence{
ζ̂nk

; k ∈ N

}
were produced, and of the continuity of the paths of V (see As-

sumption 4.3), it is clear that limk→+∞ fk = V (x+ 〈ζ(·) , Y (·)〉 , ·) a.s.. We fur-
ther observe that, for P-a.e. ω ∈ Ω

fk(ω) ≤ V
(
x+ 1 +

〈
ζ̂nk(ω)(ω) , Y (ω)

〉
, ω

)
≤ (xγ + 1)L′(ω) ,
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where the first inequality follows from the monotonicity of V (again we refer to
Assumption 4.3), and the second inequality is a simple consequence of Lemma 4.8
combined with the fact that

x+ 1 +
〈
ζ̂nk(ω)(ω) , Y (ω)

〉
≥ qnk(ω) +

〈
ζ̂nk(ω)(ω) , Y (ω)

〉
≥ 0

a.s. Hence, we may apply the Fatou lemma to conclude that

EP[V (x+ 〈ζ(·) , Y (·)〉 , ·)|G ] ≥ lim sup
k→+∞

EP[fk|G ]

≥ lim inf
k→+∞

F
(
qnk(·), ·

)
− 1

nk
≥ inf

n∈N
F (qn, ·) a.s. (A.3)

Combining equations (A.2) and (A.3) finally gives the intended inequality

ess sup
ξ∈Ξd(x)

EP[V (x+ 〈ξ(·) , Y (·)〉 , ·)|G ] ≥ inf
n∈N

F (qn, ·) ≥ G(x, ·) a.s..

(iii) Thirdly, G is, by the way it was constructed, right-continuous a.s.

(iv) Now consider an arbitrary G -measurable random variable H ≥ 0 a.s.. We wish to see
that

G(H(ω) , ω) = ess sup
ξ∈Ξd(H)

EP[V (H(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] a.s.

This follows immediately when H is a G -measurable countable step-function.

Next, suppose H is any bounded, G -measurable, non-negative (a.s.) random variable,
so there exists some M > 0 such that H ≤ M a.s.. It is a well-known fact that
we can take a non-increasing sequence {Hn; n ∈ N} of G -measurable step-functions
converging to H a.s., and such that, for every n ∈ N, Hn ≤ M a.s.. Then, fixing an
arbitrary ξ ∈ Ξd(H), we have for every n ∈ N that Hn + 〈ξ, Y 〉 ≥ H + 〈ξ, Y 〉 ≥ 0 a.s.,
therefore

G(Hn(·) , ·) = ess sup
ζ∈Ξd(Hn)

EP[V (Hn(·) + 〈ζ(·) , Y (·)〉 , ·)|G ]

≥ EP[V (Hn(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] a.s.

(recall that the equality is true for step-functions), which in turn yields

lim inf
n→+∞

G(Hn(·) , ·) ≥ lim inf
n→+∞

EP[V (Hn(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] a.s.

But, on the one hand we get by the almost sure path right-continuity of G that
limn→+∞G(Hn(·) , ·) = G(H(·) , ·) a.s.. On the other hand, we can apply the Fatou
lemma (see Assumption 4.5) to conclude

lim inf
n→+∞

EP[V (Hn(·) + 〈ξ(·) , Y (·)〉 , ·)|G ]

≥ EP[V (H(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] a.s.,

hence ess supξ∈Ξd(H) EP[V (H(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] ≤ G(H(·) , ·) a.s. (by the arbitrari-
ness of ξ ∈ Ξd(H)). Now, to prove the reverse inequality, we can construct (as in
part (ii) of this proof) a sequence {ζn; n ∈ N} such that, for every n ∈ N, we have
ζn ∈ Ξd(Hn), ζn(ω) ∈ D(ω) for P-a.e. ω ∈ Ω, and

ess sup
ξ∈Ξd(Hn)

EP[V (Hn(·) + 〈ξ(·) , Y (·)〉 , ·)|G ]− 1

n

≤ EP[V (Hn(·) + 〈ζn(·) , Y (·)〉 , ·)|G ]
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We remark further that each ζn belongs to Ξd(M) (because M + 〈ζn, Y 〉 ≥ Hn +
〈ζn, Y 〉 ≥ 0 a.s.), so by Lemma 4.7 there exists a random variable KM such that
‖ζn‖ ≤ KM a.s.. Therefore we can select a random subsequence {ζnk

; k ∈ N} with
limk→+∞ ζnk

= ζ a.s., for some G -measurable ζ. Clearly,

H + 〈ζ, Y 〉 = lim
k→+∞

(Hnk
+ 〈ζnk

, Y 〉) a.s.,

and for every k ∈ N,

Hnk
+ 〈ζnk

, Y 〉 =
+∞∑

i=k

(Hi + 〈ζi, Y 〉) 11{ω∈Ω: nk(ω)=i} ≥ 0 a.s.,

hence ζ ∈ Ξd(H). Consequently,

ess sup
ξ∈Ξd(H)

EP[V (H(·) + 〈ξ(·) , Y (·)〉 , ·)|G ] ≥ EP[V (H(·) + 〈ζ(·) , Y (·)〉 , ·)|G ] a.s.,

by definition of essential supremum. Besides, we have by Lemma 4.8 that, for every
k ∈ N,

V +
(
Hnk(·)(·) +

〈
ζnk(·)(·) , Y (·)

〉
, ·
)
≤ V +

(
M +

〈
ζnk(·)(·) , Y (·)

〉
, ·
)
≤ LM a.s.,

(note that ζnk
∈ Ξd(M)), so Fatou’s lemma yields (cf. Assumption 4.4)

EP[V (H(·) + 〈ζ(·) , Y (·)〉 , ·)|G ]

≥ lim sup
k→+∞

EP

[
V
(
Hnk(·)(·) +

〈
ζnk(·)(·) , Y (·)

〉
, ·
)∣∣G

]

≥ lim sup
k→+∞

G
(
Hnk(·)(·) , ·

)
= G(H(·) , ·) a.s..

Combining the inequalities above, we establish (4.7) for any bounded H as well.

Finally, we extend the above result to an arbitrary G -measurable H ≥ 0 a.s.. Since
H =

∑
n∈NHn, with each Hn , H11{n−1≤H<n} G -measurable and bounded, we can

obtain the desired equality from the bounded case.

(v) Lastly, we claim as well that almost all sample paths of G are left-continuous. To
see this, let us begin with the remark that, as shown above, for every x ≥ 0, the
function G(x, ·) : Ω → R, being a version of the essential supremum of G -measurable
random variables, is itself measurable with respect to G . In addition, almost every
sample path of G is right-continuous. Therefore, by p. 70 of Castaing and Valadier
[8], G : [ 0,+∞) × Ω → R is measurable with respect to the product σ-algebra
B([0,+∞) )⊗ G .

Next, defining for every ω ∈ Ω,

G(x, ω) ,

{
supq∈Q

q<x
G(q, ω) , if x > 0,

G(0, ω) , otherwise,

it is obvious that G is B([0,+∞) )⊗ G -measurable too. Besides, it is trivial to check
that, for every ω ∈ Ω, the function G(·, ω) is non-decreasing on (0,+∞). We remark
further that, by construction, all paths of G are left-continuous on (0,+∞).

It follows immediately from the monotonicity of all the sample paths of G that the
inequality G(x, ω) ≥ G(x, ω) holds true for every x ≥ 0 and ω ∈ Ω. In particular, this
gives that, for P-a.e. ω ∈ Ω and for all x ≥ 0, it holds that G(x, ω) < +∞. At last, we
shall show that P

{
ω ∈ Ω: ∀x ≥ 0, G(x, ω) = G(x, ω)

}
= 1.
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(a) The proof is by contradiction, so let us suppose that the set

Ω1 ,
{
ω ∈ Ω: ∃x > 0 s.t. G(x, ω) > G(x, ω)

}

has strictly positive measure, i.e., P(Ω1) > 0. Note that, because (Ω,G ,P)
is a complete measure space, we can apply the measurable projection theo-
rem (see e.g. Theorem III.23 in Castaing and Valadier [8]) to deduce that2

Ω1 = ProjΩ

((
G−G

)−1
((0,+∞))

)
belongs to G .

Thus, the multi-function E : Ω ⇒ [ 0,+∞) given by

E (ω) ,

{ {
x > 0: G(x, ω) > G(x, ω)

}
if ω ∈ Ω1,

1, otherwise,

not only has domE = Ω, but also its graph

gphE = (Ωc
1 × {1}) ∪

(
[Ω1 × (0,+∞)] ∩

[(
G−G

)−1
((0,+∞))

])

is a G -random set. Consequently, we can apply the von Neumann-Aumann the-
orem to produce a G -measurable selector H : Ω → [ 0,+∞) of E . In particular,
this implies that

P
{
ω ∈ Ω: G(H(ω) , ω) > G(H(ω) , ω)

}
≥ P(Ω1) > 0. (A.5)

Also, note that H > 0. Furthermore, we may and shall assume, without loss of
generality, that there exists some ε ∈ (0, 1] such that H > ε.

(b) On the other hand, we shall see that G(H(ω) , ω) ≤ G(H(ω) , ω) holds for P-a.e.
ω ∈ Ω, thus contradicting (A.5).

Firstly, fix an arbitrary n ∈ N. As in part (ii) of this proof, it is possible to
construct some ζn ∈ Ξd(H) such that, for P-a.e. ω ∈ Ω,

EP[V (H(·) + 〈ζn(·) , Y (·)〉 , ·)|G ](ω) ≥ G(H(ω) , ω)− 1

n
.

Next, setting for every m ∈ N (recall that H > ε),

fm
n (ω) , V

(
H(ω)− ε

m
+
H(ω)− ε/m

H(ω)
〈ζn(ω) , Y (ω)〉 , ω

)
, ω ∈ Ω,

it is trivial by continuity (see Assumption 4.3) that {fm
n ; m ∈ N} converges a.s.

to V (H(·) + 〈ζn(·) , Y (·)〉 , ·), as m→ +∞. Thus, Fatou’s lemma gives

lim inf
m→+∞

EP

[
[fm

n ]
+
∣∣∣G

]
≥ EP

[
V +(H(·) + 〈ζn(·) , Y (·)〉 , ·)

∣∣G
]

a.s..

Secondly, we note that, for each m ∈ N, the random vector ζn (H − ε/m) /H
belongs to Ξd(H − ε/m), because

H − ε

m
+

〈
H − ε/m

H
ζn, Y

〉
=
H − ε/m

H
(H + 〈ζn, Y 〉) ≥ 0 a.s.

(recall that H > ε and ζn ∈ Ξd(H)).

2 Given a set E ⊆ X × Y , we recall that the projection of E on X is

Proj
X
(E) , {x ∈ X: ∃ y ∈ Y such that (x, y) ∈ E} , (A.4)

.
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Therefore, given Assumption 4.5 and the fact that, for everym ∈ N, the inequality
[fm

n ]
− ≤ V −(0, ·) is true a.s., we can apply the Fatou lemma to obtain

lim sup
m→+∞

EP

[
[fm

n ]−
∣∣∣G

]
≤ EP

[
V −(H(·) + 〈ζn(·) , Y (·)〉 , ·)

∣∣G
]

a.s..

Combining both inequalities yields

lim inf
m→+∞

EP[f
m
n |G ] ≥ EP[V (H(·) + 〈ζn(·) , Y (·)〉 , ·)|G ] a.s..

Besides,

ess sup
ξ∈Ξd(H−ε/m)

EP

[
V
(
H(·)− ε

m
+ 〈ξ(·) , Y (·)〉 , ·

)∣∣∣G
]
≥ EP[f

m
n |G ] a.s.

for every m ∈ N, and so

lim inf
m→+∞

ess sup
ξ∈Ξd(H−ε/m)

EP

[
V
(
H(·)− ε

m
+ 〈ξ(·) , Y (·)〉 , ·

)∣∣∣G
]

≥ lim inf
m→+∞

EP[f
m
n |G ] a.s..

On the other hand, let m ∈ N be arbitrary, but fixed. Then we know by the
preceding step that

ess sup
ξ∈Ξd(H−ε/m)

EP

[
V
(
H(·)− ε

m
+ 〈ξ(·) , Y (·)〉 , ·

)∣∣∣G
]
(ω)

= G
(
H(ω)− ε

m
, ω

)

for every ω outside a P-null set. Next, choosing qm ∈ Q, q > 0 such that
H(ω)−ε/m ≤ qm < H(ω), it follows immediately from the definition of G (recall
that H > ε > 0) and from the monotonicity of G (see the first part of this proof)
that

G(H(ω) , ω) = sup
q∈Q

q<H(ω)

G(q, ω) ≥ G(qm, ω)

≥ G(H(ω)− ε/m, ω) ≥ inf
k≥m

G(H(ω)− ε/k, ω) ,

consequently,

G(H(·) , ·) ≥ sup
m∈N

inf
k≥m

G(H(·)− ε/k, ·) = lim inf
m→+∞

G(H(ω)− ε/m, ω) a.s..

So, putting together all the inequalities above finally yields that, for every n ∈ N,
G(H(·) , ·) ≥ G(H(·) , ·)− 1/n a.s., hence

G(H(·) , ·) ≥ lim sup
n→+∞

(
G(H(·) , ·)− 1

n

)
= G(H(·) , ·) a.s.,

as claimed.

Proof of Proposition 4.10. Let ξn ∈ Ξd(H) be a sequence attaining the essential supremum.
We may assume ξn ∈ D a.s. and hence |ξn| ≤ H/β a.s. for all n, by Lemma 4.7. Lemma 2
of Kabanov and Stricker [12] implies the existence of a G -measurable random subsequence
nk such that ξnk

→ ξ a.s., k → ∞. Lemma 4.8 allows the use of the (conditional) Fatou
lemma hence we get that ξ̃(H) := ξ is as claimed.

Page 18/20



Non-concave utility maximisation on the positive real axis in discrete time

References

[1] Berkelaar, A. B.; Kouwenberg, R.; Post, T. (2004). Optimal portfolio choice under loss
aversion. Rev. Econom. Statist. 86, no. 4, pp. 973–987.

[2] Bernard, C.; Ghossoub, M. (2010). Static portfolio choice under Cumulative Prospect
Theory. Math. Financ. Econ. 2, no. 4, pp. 277–306.

[3] Campi, L., Del Vigna, M. (2011). Weak insider trading and behavioural finance. SIAM
J. Financial Math., 3, pp. 242–279.

[4] Carassus,L. and Pham, H. (2009). Portfolio optimization for nonconvex criteria func-
tions. RIMS Kôkyuroku series, ed. Shigeyoshi Ogawa, 1620, pp. 81–111, 2009.

[5] Carassus, L.; Rásonyi, M. (2014). Maximization of non-concave utility func-
tions in discrete-time financial market models. Submitted. Available online at
http://arxiv.org/abs/1302.0134v2

[6] Carassus, L.; Rásonyi, M. (2013). On optimal investment for a behavioral in-
vestor in multiperiod incomplete market models. Math. Finance, published online.
doi: 10.1111/mafi.12018

[7] Carlier, G; Dana, R.-A. (2011). Optimal demand for contingent claims when agents
have law invariant utilities. Math. Finance 21, no. 2, pp. 169–201.

[8] Castaing, C.; Valadier, M. (1977). Convex analysis and measurable multifunctions. Lec-
ture Notes in Mathematics 580. Springer-Verlag.

[9] He, X. D.; Zhou, X. Y. (2011). Portfolio choice under cumulative prospect theory: an
analytical treatment. Management Sci. 57, no. 2, pp. 315–331.

[10] Jacod, J.; Shiryaev, A. N. (1998). Local martingales and the fundamental asset pricing
theorems in the discrete-time case. Finance Stochast. 2, no. 3, pp. 259–273.

[11] Jin, H.; Zhou, X. Y. (2008). Behavioral portfolio selection in continuous time. Math.
Finance 18, no. 3, pp. 385–426.

[12] Kabanov, Y.; Stricker, C. (2001). A teacher’s note on no-arbitrage criteria. In:
Azéma, J.; Émery, M.; Ledoux, M.; Yor, M. (Eds.), Séminaire de Probabilités XXXV,
Lecture Notes in Mathematics 1755, pp. 149–152. Springer-Verlag.

[13] Kahneman, D.; Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
Econometrica 47, no. 2, pp. 263–292.

[14] Kramkov, D.; Schachermayer, W. (1999). The asymptotic elasticity of utility functions
and optimal investment in incomplete markets. Ann. Appl. Probab. 9, no. 3, pp. 904–
950.

[15] Rásonyi, M.; Rodrigues, A. M. (2013). Optimal portfolio choice for a behavioural in-
vestor in continuous-time markets. Ann. Finance 9, no. 2, pp. 291–318.

[16] Rásonyi, M.; Rodrigues, A. M. (2014). Continuous-time portfolio optimisation for a
behavioural investor with bounded utility on gains. Electron. Commun. Probab. 19,
no. 38, pp. 1–13.

[17] Rásonyi, M.; Rodríguez-Villarreal, J. G. (2013). Optimal investment under behavioural
criteria – a dual approach. To appear in Banach Center Publications. Available online
at http://arxiv.org/abs/1405.3812

Page 19/20

http://arxiv.org/abs/1302.0134v2
http://dx.doi.org/10.1111/mafi.12018
http://arxiv.org/abs/1405.3812


Non-concave utility maximisation on the positive real axis in discrete time

[18] Rásonyi, M.; Stettner, Ł. (2005). On utility maximization in discrete-time financial
market models. Ann. Appl. Probab. 15, no. 2, pp. 1367–1395.

[19] Rásonyi, M.; Stettner, Ł. (2006). On the existence of optimal portfolios for the util-
ity maximization problem in discrete time financial market models. In: Kabanov, Y.;
Liptser, R.; Stoyanov, J. (Eds.), From Stochastic Calculus to Mathematical Finance,
pp. 589–608. Springer.

[20] Reichlin, C. (2013). Utility maximization with a given pricing measure when the utility
is not necessarily concave. Math. Financ. Econ. 7, no. 4, pp. 531–556.

[21] Reichlin, C. (2012). Non-concave utility maximization: optimal investment, stability
and applications (PhD thesis). ETH Zürich, Switzerland.

[22] Tversky, A.; Kahneman, D. (1992). Advances in prospect theory: cumulative represen-
tation of uncertainty. Journal of Risk and Uncertainty 5, no. 4, pp. 297–323.

[23] von Neumann, J.; Morgenstern, O. (1944). Theory of games and economic behavior.
Princeton University Press.

Page 20/20


