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  The frequency-following response (FFR) to voice pitch has been widely examined in research laboratories and has demonstrated its potential
to be transformed into a useful tool for patients with hearing, speech, and language disorders in the clinic. During the past decade, many aspects
of the FFR have been reported. The presence of such a response, however, still relies on subjective interpretation of the observer. Aside from a
recent study reporting two algorithms for detecting such a response, there has been limited number of studies reporting the development of an
automated procedure for FFR. The purpose of this study is (1) to develop an automated procedure that utilizes the statistical properties of the
temporal and spectral energy distributions in the recorded waveforms and (2) to examine the sensitivity and specificity of the automated
procedure.
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INTRODUCTION

Electrophysiological measurements have an important advantage in that they do not require awareness or active 
feedback from the participant, which make these measurements particularly suitable for populations that 
conventional behavioral tests could not be reliably tested on. Traditionally, these electrophysiological test 
procedures are complex in construction and technologically heavy, which consequently demands a fair amount of 
training to operate and to interpret the results. If some of the procedures of those electrophysiological measurements 
could be automated, it could dramatically promote the efficiency and portability of the tests for both research and 
clinical applications and most importantly, reduce the potential inconsistency in data interpretation due to subjective 
human judgments involved in the conventional data-interpretation process. Some electrophysiological 
measurements, such as the auditory brainstem response (ABR) and auditory steady-state response (ASSR), have 
fairly matured automated procedures readily available to researchers and clinicians. On the contrary, although the 
frequency-following response (FFR) to voice pitch has received a fair amount of attention in recent years, there has 
not been much of progress in the development of an automated procedure. Thus, the goal of this study was to 
develop an automated procedure for the advancement in the FFR research and its potential applications in clinical 
settings.

Voice pitch is an auditory perception that reflects the psychological representation of fundamental frequency (f0) 
of speech signal and carries important information for the perception of speech and music (Moore 2003). The 
accurate encoding of voice pitch and its temporal variation is essential and critical for listeners to perceive prosodic 
information and lexical cues in speech signals, as well as to appreciate melodies of music. The scalp-recorded FFR 
to voice pitch has been reported recently with results that correlate with behavioral tests of pitch perception (Akhoun 
et al., 2008; Skoe et al., 2010; Krishnan et al., 2012). Among the stimulus tokens that had been utilized in the FFR 
research, Mandarin Chinese syllables that contain different f0 contours and lexical meanings have been widely used 
(Krishnan et al., 2004, 2009; Xu et al., 2006; Wong et al., 2007; Song et al., 2008; Jeng et al., 2010, 2011a, 2011b, 
2011c, 2011d; Li & Jeng, 2011). Several aspects of the voice pitch elicited FFR have been examined. For example, 
children with autism spectrum disorders (Russo et al., 2008) and reading and spelling disorders (Chandrasekaran et 
al., 2009) have shown to have degraded voice-pitch tracking accuracy and decreased FFR amplitudes. There is also 
an emerging interest in defining the developmental trajectory of the human scalp-recorded FFR to voice pitch in 
recent years. Studies have reported the characteristics of the FFR to voice pitch in newborn infants of different 
parental language backgrounds (Jeng et al., 2011d), in maturing infants (Jeng et al., 2010) and in normal-hearing 
children (Johnson et al., 2008). With the extensive reports of recent advancement in the field of the voice pitch 
elicited FFR, naturally the next progress we want to make is to explore and develop algorithms and procedures that 
would promote the efficiency and portability of the FFR technology. 

METHOD

Thirty native Mandarin Chinese speakers (13 males), averaged age of 25.4 years, were recruited. Four 
monosyllabic Mandarin Chinese syllables with different pitch contours (Tone 1 flat /yi1/ 'clothes', Tone 2 rising 
/yi2/ 'aunt', Tone 3 dipping /yi3/ 'chair', Tone 4 falling /yi4/ 'meaning') were prepared. These voice samples were 
sampled to a unified duration of 250 ms with a rising/falling time of 10 ms. Each stimulus token were presented at 
70 dB SPL for blocks of 2000 accepted sweeps for each token. The inter-stimulus interval between adjacent 
stimulus tokens was set at 45 ms. To ensure that the stimulus artifact was appropriately eliminated from the 
recordings, in each testing session, a control condition was conducted at the end of each recording session to provide 
EEG wave forms that have no direct relationship to the stimulus presentation. Three gold-plated recording 
electrodes were applied to each participant on the forehead (Fpz, non-inverting), right mastoid (M2, inverting), and 
left mastoid (M1, ground). Continuous recordings were amplified using an Opti-Amp amplifier with a gain of 50k, 
online-filtered 100-3000 Hz 6 dB/octave and digitized at a rate of 20k samples per second. All data were digitally 
filtered using a brick-wall, linear-phase finite-impulse-response (FIR) band-pass filter (85-1500 Hz, 500th order). 
An artifact rejection limit of ±25 μV was used to ensure the quality of the recorded waveforms. For each condition, 
a total of 2000 accepted recording sweeps were collected. 
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Automated Response Detection Algorithms

Residue-Noise-Level based Temporal Algorithm

This study utilized two algorithms that focus on the temporal and spectral aspects: For the temporal properties, 
an algorithm that was based upon the residue noise level (RNL) index of the temporal property of the recorded 
waveform (Wong & Bickford., 1980). Briefly, this algorithm was implemented by first dividing all recorded sweeps 
into two separate banks - with all the odd-number sweeps stored in one bank and even-number sweeps in the other. 
Assuming each sweep contains a representation of the desired neural responses, the average of the two banks of 
sweeps would then represent the response waveform itself, while the difference would represent the noise. 

The average of the two banks essentially is the same as the average of all sweeps collected, and thus can be 
expressed using Formula 3.

A�(t)�������  =   
�

�
[� {EEG�(t)}� ] , (1)

where AN represents the averaged signal between the two banks, N is the number of sweeps, EEG indicates the 
recorded waveform for each sweep, and i denotes each individual sweep ranging from 1 to N. 

Similarly, the difference between the two banks can be expressed using Formula 4.
D�(t)�������  =  

�

�
[� {EEG�(t) � (�1)�}� ]   (2)

where DN represents the difference between the two banks, N is the number of sweeps, EEG indicates the 
recorded waveform for each sweep, and i denotes each individual sweep ranging from 1 to N.

Alternatively, each recording can be constructed by two components:
A�(t)������� = s(t) + n(t)����� (3)

where s(t) represents the physiological response and n(t) represents noise.
With increasing number of collected sweeps, the averaged response A�(t)�������would approach the real waveform of 

the elicited response s(t). On the other hand, the difference between the two banks (i.e., the noise D�(t)�������) would 
optimally approximate the true value of the noise n(t). Thus, if the recorded waveform were to contain an elicited 
neural response, which should then be temporal locked to the stimulus in each recorded sweep, the response 
component s(t) should not contribute in D�(t)�������, because it represents response and should have been cancelled out 
during the alternation of addition and subtraction. Thus, we would have two estimates that would approximate the 
elicited neural response A�(t)������� and noiseD�(t)�������, which is of the order of 1 	N
 .

To determine the presence/absence of a response signal, computation of an appropriate signal-to-noise ratio 
(SNR) is almost inevitable (Fig. 11). Because variance is in essence a measure of the overall amplitude of a response 
signal, the ratio of the variance of the response signal (i.e., A�(t)�������) to the variance of the noise (i.e., DN(t)) was used 
to indicate the magnitude that the response signal stood out from the noise (i.e., SNR). This concept can be 
expressed using Formula 6.

SNR =
��
(��(�)��������)

��
(��(�)��������)
(4)

where SNR stands for signal-to-noise ratio, Var(A�(t)�������) represents the variance of the average of the two banks, 
Var(D�(t)�������)indicates the variance of the difference between the two banks. If we continue to break down the SNR 
calculation, we have

SNR =
��
(��(�)��������)

��
(��(�)��������)
=

���� ����
 �� �(�)

���� ����
 �� �(�)
+

���� ����
 �� �(�) �� ��(�)��������

���� ����
 �� �(�)����(�)�������� (5)
Denote the second term in Formula 7 by F and using ��(n) N
 as the denominator of the first term, we have

SNR� N �
��(�)

��(�)
+ F = Nf � + F (6)

where f is the amplitude ratio of s(t) and n(t), i.e. the real SNR. Thus, when there is no response, where s(t)=0, 
and f=0, we have SNR=F, which is the F ratio of the noise. When there is a response, then SNR� Nf � + 1.

To implement the RNL algorithm on the automated response detection procedure for the FFR to voice pitch, the 
averaged recording (A�(t)�������) first went through a cross-correlation with the stimulus waveform to identify the time 
shift that produces the maximum cross-correlation value between the 3-10 ms response window. A 250 ms segment 
of data was then extracted from the averaged recording (starting from the maximum cross-correlation value) and 
was denoted as   A�(t)�������

�. The same procedure was applied to the estimate of the noise and the result was denoted as 
D�(t)�������

�. Thus, for the realm of the FFR to voice pitch, the magnitude of the voice-pitch elicited response can be
expressed in the form of SNR, which takes into account of the variance ratio between the estimated response and 
noise. In this study, the term pitch variance ratio (PVR) is introduced to indicate the SNR of each recording and will 
be used to determine the presence or absence of an FFR. In sum, the PVR can be expressed as Formula 10. 
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PVR =
��
(��(�)��������)!

��
(��(�)��������)!
(7)

For each recording, such a calculation was performed and a PVR value was obtained. Because the process of 
calculating a PVR index is in essence an F-test of equal variance between the estimated signal and noise, a PVRcritical
��������	�
������
��	���
���������
��������
�������������������
��	�����	����������
���������������������
���
��	���
�
the automated procedure. The underlying logic of the automated procedure was to use the PVRcritical value as a 
response detection criterion. Any recording that has a PVR value greater than the PVRcritical value will be considered 
to contain physiological energy that stands out from the background noise, thus will be considered to contain a voice 
pitch elicited FFR. Apparently the PVRcritical �������������
������	��	���	������������������������	���������
�������
freedom of the estimated signal and noise. For our FFR recordings, the degree of freedom is a constant (i.e., 5000 –
������������
�
���������������������	����	��	���������������������������!�!"#��	�$-statistic table gives a PVRcritical value 
�����!"��%	���������
���	�#����������������������!��!#��	�$-statistic table gives a PVRcritical value of 1.04. In this study, 
the more conservative PVRcritical value of 1.05 was used as the detection criterion in the automated response 
detection procedure.

One-way repeated measure ANOVA was conducted between the experimental conditions and the control 
condition to test the null hypothesis that PVR values obtained from the experimental conditions are not significantly 
different than those obtained from the control condition. 

To further explore the efficiency of the automated procedure, PVR values for all the experimental and control 
conditions were calculated as a function of number of sweeps. By gradually increasing the number of sweeps 
included in the averaged waveform (starting from the first recorded sweep), all recordings were reconstructed and 
re-calculated using the same data analysis procedures as mentioned above (including the averaging, filtering, 
segmentation, cross-correlation with the stimulus token, and the PVR computation).

Residue-Noise-Level based Temporal Algorithm

Extended from the “narrow-band spectrogram” algorithm (Jeng et al., 2011c), a distinctive statistics-amended 
response detection algorithm was used on the averaged EEG waveform and its corresponding spectral density 
distribution representation. With the stimulus (one of the four Mandarin syllables) information, the algorithm first 
read the pre-stored f0 contour array of the stimulus. It extends its searching range based upon the frequency value of 
the stimulus’ f0 contour. Within in each time segment, the algorithm has a range, ±5 Hz in this study, centered at the 
frequency value of the stimulus’ f0, within which it calculates the mean spectral energy value and it represents the 
energy of the signal. Outside the signal range, the algorithm also have two ranges that are used to calculate the mean 
spectral energy for the background noise, on above the upper frequency limit of signal range, 20 Hz in this study, 
and one below the lower frequency limit, 10 Hz in this study. With a spectral resolution of 1 Hz, the pooled noise 
part leaves the algorithm a total number of 30 frequency points for the estimation of the noise. A one-sample 
Student’s t-test is then conducted upon the mean spectral energy values of the signal and the noise, i.e. the t-test is 
carried out between the signal part and the combined noise part in every windowed segments. Thus, for each t-test, 
the algorithm tests the null hypothesis that the averaged energy in noise part is similar to the signal energy, with a 
confidence level of 95% and degree of freedom at 29.  If a significant difference is detected by the t-test, that 
windowed segment at the moment will be marked as a “response” segment; otherwise, it will be marked as a “non-
response” segment. The algorithm then continues along the temporal axis and repeats the above procedures until the 
end of the recorded waveform. As there are a total of 201 windowed segments, same t-tests are carried out in all of 
these segments. The results of these 201 t-tests form a vector of response marks: some would have a mark of 
“response” and others would be “non-response”. A response detection index, Relative Significance Level (RSL), 
was calculated at this point to be further used in the response detection procedure. For the windowed segments that 
were marked as a “response” segment, they were given a value of 1, whereas those marked “non-response” were 
given a value of 0. The RSL value was calculated as 

RSL =  � Segment�
�"�
�#� (8)

where the value of Segment is either 1 or 0, depending on the result of the t-test in that windowed segment. Thus, a 
strong voice pitch elicited FFR recording would have a perfect RSL score of 201, while the RSL value obtained 
from a control condition, i.e. no response, would have a score that was close to 0.

The response detection criterion that was used in the automated procedure was determined by selecting a desired 
RSL score (RSLcritical), i.e. the percentage of “significance” segments in the 201 total segments. The automated 
response detection procedure uses the criterion as a decision maker: if a recording provides a RSL value that is 
greater than RSLcritical, it would be considered to contain a voice pitch elicited FFR, otherwise it would be considered 
as a recording that contains no physiological response.
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RESULTS AND DISCUSSION

Pitch-Variance-Ratio based Temporal Algorithm

The PVR values obtained in both the experimental and control conditions are shown in Figure 1. A group 
comparison (Figure 1A) between the experimental and control conditions revealed that the PVR values obtained 
from the experimental conditions were significantly larger than those obtained in the control condition (p < 0.001). 
The PVR values obtained from the four experimental conditions had a mean of 1.738 (SD = 1.651), whereas the 
PVR values obtained from the control condition had a mean of 0.261 (SD = 0.042). Note the mean PVR value was 
approximately 6.7 times larger than that of the control condition. For the control condition, its PVR values were 
clustered within a much smaller rage than that of the experimental conditions (p < 0.001). 

FIGURE 1. Pitch Variance Ratio (PVR) values obtained in the experimental and condition conditions. Group comparison (panel 
A) shows that the PVR values obtained in the four experimental conditions were significantly larger than those obtained in the
control condition. Comparison for each individual tone (panel B) shows the PVR values obtained from each individual tone was 
also significantly larger than that of the control condition. Blue dotted horizontal lines indicate the mean PVR value for each 
condition; black solid lines indicate the medians. The upper and lower boundaries of the box indicate the 25th and 75th 
percentiles, respectively. Whisker bars indicate the 10th and 90th percentile.

For each individual tone (Figure 1B), the mean of its corresponding PVR values (Tones 1, 2, 3 and 4 mean ± SD 
= 1.799 ± 1.597, 1.134 ± 0.858, 2.550 ± 2.221 and 1.468 ± 1.351, respectively) was also significantly larger than 
that of the control condition (p < 0.001 for Tones 1, 3 and 4, p = 0.031 for Tone 2). A post hoc Tukey-Cremer 
analysis showed no statistical difference among the four tones with the exceptions that Tones 3 versus Tone 2 (p < 
0.001) and Tones 3 versus Tone 4 are significantly different from each other (p = 0.004).

Figure 2. Receiver Operator Characteristics (ROC) space, with marked points obtained from the outputs from PVR based 
procedure compared with human judgments. The abscissa represents the False Positive Rate, i.e. 1-specificity, whereas the 
ordinate represents the True Positive Rate, i.e., sensitivity.

ROC Space of the PVR Procedure
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Residue-Noise-Level based Spectral Algorithm

The RSL values obtained in both the experimental and control conditions are shown in Figure 3. A group 
comparison (Fig. 3A) between the experimental (Tones 1, 2, 3, and 4 combined) and control conditions revealed that 
the RSL values obtained from the experimental conditions were significantly larger than those obtained in the 
control condition (p < 0.001). The RSL values obtained from the four experimental conditions had a mean of 0.91 
(SD = 0.11), whereas the RSL values obtained from the control condition had a mean of 0.24 (SD = 0.25). Note the 
mean RSL value was approximately 4 times larger than that of the control condition. For the control condition, its 
RSL values were clustered within a much smaller rage than that of the experimental conditions (p < 0.001).

FIGURE 3. Relative Significance Level (RSL) values obtained in the experimental and condition conditions. Group comparison 
(panel A) shows that the RSL values obtained in the four experimental conditions were significantly larger than those obtained in 
the control condition. Comparison for each individual tone (panel B) shows the RSL values obtained from each individual tone 
was also significantly larger than that of the control condition. Blue dotted horizontal lines indicate the mean RSL value for each 
condition, black solid lines indicate the medians. The upper and lower boundaries of the box indicate the 25th and 75th 
percentiles, respectively. Whisker bars indicate the 10th and 90th percentile.

For each individual tone (Fig. 3B), the mean of its corresponding RSL values (Tones 1, 2, 3 and 4 mean ± SD = 
0.93 ± 0.11, 0.93 ± 0.09, 0.90 ± 0.09 and 0.88 ± 0.13, respectively) was also significantly larger than that of the 
control condition (p < 0.001 for all four tones). A post hoc Tukey-Cremer analysis showed no statistical difference 
among the four tones.

Figure 4. Receiver Operator Characteristics (ROC) space, with marked points obtained from the outputs from RSL based 
procedure compared with human judgments. The abscissa represents the False Positive Rate, i.e. 1-specificity, whereas the 
ordinate represents the True Positive Rate, i.e., sensitivity.

In summary, this study developed and evaluated an automated response detection procedure that was based on 
the statistical properties of the recorded data itself. The results were compatible with those obtained from a 
traditional method of human interpretation. The results also showed that the automated procedure could be used to 

ROC Space of the RSL Procedure
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replace the work that traditionally was completed by a human observer. By eliminating the observer’s input in the 
decision making process, this automated procedure is independent from the observer’s subjective interpretation and 
thus it would require less amount of training for an end user to record and determine the presence or absence of an 
FFR to voice pitch. This advantage promotes the efficiency and portability of the proposed technology and thus 
reduces the cost in its research and clinical applications.
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