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A B S T R A C T 
 

Farm-Oriented Open Data in Europe (FOODIE) will provide specific and high-value 

applications and services for the support in the planning and decision-making processes 

of farmers and other stakeholders groups related to the agricultural and environmental 

domains. This paper focuses on FOODIE services based on machine learning algorithms 

and other artificial intelligence techniques providing, for instance, forecasting models to 

predict crop diseases or proposing management zones by means of clustering 

homogeneous zones of land. In particular, the service for the automatic delimitation of 

management zones is reviewed and tested in a case study. The results show the great 

potential of this smart agro-service for land classification. 

  

1. Introduction 

Smart services require huge amounts of data in order to train the models (Vapnik 2000), transforming 

data into valuable information. In particular, the agriculture domain deals with satellite imagery, agro-

meteorological sensor networks, weather forecast, measurement of current soil and crop parameters or 

even data provided by farmers. However, such volume of data is not always available or easily 

accessible. Hence, platforms are needed to gather, unify and analyze these data converting them into 

valuable information, not only for experts but also for farmers. To that end, the FOODIE project (Farm-

oriented Open Data in Europe 2014) is building an open and interoperable agricultural specialized 

platform hub on the cloud (Figure 1). This platform is intended to provide specific and high-value 

applications and services for supporting the planning and decision-making processes of different 

stakeholders groups related to agricultural and environmental domains.  

Among these services, automatic land delimitation is one of the most challenging ones. In fact, the 

identification of homogeneous zones of crop land areas is a key factor (Schepers et al. 2004). These 

management zones (MZs) (Ferguson, Lark and Slater 2003) address spatial variability of crops grouping 

areas that share similar soil properties in order to apply specific farming practices to each MZ. For 

instance, farmers could apply site-specific treatments providing variable-rate fertilization (Yu et al. 

2010) based on the current needs of the soil, the conditions of the crops and its phenological stage. 

Although the knowledge of the farmer about crops and soil could be a starting point for MZs 

identification, other systematic approaches are required. In particular those more time- and cost-efficient 

methodologies that does not require exploring the whole parcel with any special equipment or taking 

samples of the soil for laboratory analysis. To this aim, we present the techniques considered by the 

FOODIE smart agro-service for the automatic delimitation of MZs. The remainder of the paper is 

organized as follows. Section 2 provides an overview of the FOODIE service platform. Section 3 
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describes the FOODIE smart agro-service for the automatic delimitation of MZs. Finally, Section 4 

shows the conclusions and future work. 

2. FOODIE. Open and Interoperable Agricultural Specialized Platform Hub 

FOODIE project aims at providing a service platform in the cloud, which is built on principles of 

access and use of open data, interoperability and use of standards that supports the decision-making 

activities of different stake-holders groups across Europe in the agricultural area. Thus, the cloud based 

approach will seriously decrease the investment, necessary for accessing to spatial data and services for 

all these different communities and it will help to business and governmental organisation in utilisation 

of spatial data. The project FOODIE aim at accomplishing the following technological objectives: 

 To make use of existing spatial information resources and services for various Copernicus 

domains coming from different initiatives like INSPIRE (Directive, 2007/2/EC) or 

GMES/Copernicus (Copernicus 2015). 

 To design and provide an open and interoperable geospatial platform hub on the cloud based on 

existing software components from research results and available solutions in the market. 

 The integration of external agriculture production and food market data using principles of Open 

Linked Data.  

 The inclusion of open and flexible lightweight Application Programming Interfaces (APIs), that 

will allow private and public stakeholders in the agricultural and environmental area to publish 

their own datasets and make them available in the platform hub as open linked data. 

 To provide specific and high-value applications and services for the support in the planning and 

decision-making processes of the different stakeholders groups. 

 The provision of security mechanisms to prevent the unauthorised access and use of the platform 

users’ personal information as well as the data published by them. 

 To provide a marketplace where data can be discovered and exchanged but also external 

companies can publish their own agricultural applications based on the data, services and 

applications provided by FOODIE. 

 

Figure 1. FOODIE service platform hub in cloud 

3. FOODIE Smart Agro-Service for the Automatic Delimitation of MZ 

Computer services for the agriculture domain could be improved by means of machine learning 

algorithms and other artificial intelligence (AI) techniques related with prediction, classification and 

clustering. FOODIE platform could provide smart services intended to recommend the use of 
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phytosanitary treatments using forecasting models to predict mildew, oidium or botrytis diseases, whilst 

other ones will be focused on yield prediction or on providing recommendations related with needs of 

irrigation (see Table 1). Among these smart agro-services, the automatic clustering of land areas (Figure 

2) sharing similar soil properties (Ferguson, Lark and Slater 2003) is a key factor (Schepers et al. 2004) 

in order to apply specific farming practices. Although the knowledge of the farmer about crops and soil 

could be a starting point for MZs identification, other systematic approaches are required. In particular 

those more time- and cost-efficient methodologies that not require exploring the whole parcel with a 

specific equipment or taking samples of the soil for laboratory analysis. 

Table 1. Examples of smart agro-services considered by the FOODIE platform 

 

FOODIE Main Source 

Automatic clustering of crop land areas Soil variability predicted by means of remote sensing 

Site-specific mildew disease treatments Forecasting of risk of mildew disease 

Site-specific oidium disease treatments Forecasting of risk of oidium disease 

Site-specific botrytis disease treatments Forecasting of risk of botrytis disease 

Site-specific fertilization needs Vegetation indices and remote sensed data 

Site-specific irrigation needs Moisture indices and vegetation indices 

Recommendations about harvesting Maturity indices and weather forecast 

Yield forecasting 
Historical records of weather conditions, past yields, 

soil nutrients and weather forecasts 

Automatic zoning has been largely studied and researches had proposed various methods such as the 

classification of apparent soil electrical conductivity (Johnson et al. 2003; Peralta and Costa 2013) or 

the analysis of yield maps (Blackmore 2003). Referring to previous researches and the type of features 

considered in the automatic delimitation of MZs, the methods could be classified as follows: 

 Soil properties. In order to identify MZ, chemical properties of the soil were compared (Ortega 

and Santibáñez 2007) with several techniques such as PCA and cluster analysis. Supervised 

classification algorithms were tested with different datasets including soil maps, digital 

elevation models and apparent soil electrical conductivity (Simbahan and Dobermann 2006). In 

the same line other authors considered soil properties (Moral et al. 2011) (Fu, Wang and Jiang 

2010) and also yield and crop quality (Aggelopooulou et al. 2013).  

 Topographical characteristics. Homogeneous zones of a cotton field were identified (Schuster 

et al. 2011) considering two datasets: the first one with two estimators of yield and the second 

one considering geo-referenced field properties such as topographical characteristics and 

treatments applied to the field. 

 Biophysical features. The use of biophysical features such as annual moisture deficit/surplus 

and mean annual precipitation was proposed (Liu and Samal 2002). The authors tested the same 

dataset with k-means and fuzzy algorithms concluding that fuzzy approach generates more 

accurate delineations. 

 Remote-sensed data. Other approaches (Kumar et al. 2011) studied the use of the k-means 

algorithm with the MODIS-based greenness index and the seasonal leaf area index, developing 

a parallel implementation been able to delimit 1,000 agroecozones in 700 seconds using 2,048 

processors. 
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FOODIE smart service for the automatic identification of MZs relays in a clustering algorithm and 

remote-sensed data from Landsat 8 satellite. The following subsections explain the techniques used by 

the service. 

3.1. Data Input 

Landsat 8 (Landsat 2015) satellite provide radiometric data valuable for precision agriculture 

(Villajos et al. 2008). This satellite takes about 400 images every day using the instruments: Operational 

Land Imager (OLI) and Thermal Infrared Sensor (TIRS). The first one collects data from 8 spectral 

bands with a spatial resolution of 30 meters and from a panchromatic band of 15 m. The second one 

offers two thermal bands of 100 m. resampled to 30 m. All the data collected by these instruments are 

publicly available in GeoTIFF format via web portals such as Earthnet Online (Earth Online 2015) or 

EarthExplorer (EarthExplorer 2014). 

In order to generate the data input for the MZs identification process, we consider the raw values of 

the thermal infrared band B10 from TIRS data product. In particular, the values of that band for the 

extension of the case-of-study plot during a period of time of four months. These value are normalized 

and provided as input to the cluster algorithm. Next subsection details the clustering algorithm. 

3.2. Clustering Algorithm 

As it was aforementioned, the data input for the algorithm correspond to remote-sensed thermal 

infrared values of the considered plot during a four-month period. To obtain the automatic delimitation 

of the MZs, we used a partition clustering algorithm called Partitioning Around Medoids (PAM) using 

Manhattan distance as metric of similarity. The main characteristics of PAM (Li 2009) are the following: 

 It is a partitioning algorithm. Thus, it breaks the input data up into groups until some stability 

condition is reached. 

 The number of groups is defined in advance. 

 PAM stands for “Partition Around Medoids”. It tries to find a set of objects called medoids that 

are centrally located in clusters.  

 PAM is an algorithm more robust than K-means because it minimizes a sum of dissimilarities 

instead of a sum of squared euclidean distances.  

The main difference between this algorithm and the classical K-means method is that PAM uses 

medoids as centers of the clusters and these medoids are selected among the objects to be clustered. The 

algorithm involves three steps: 

1. Initialization. Select, at random, the k medoids from the data points 

2. Assignment. For each point, locate the closest medoid and assign it to the corresponding cluster 

3. Update. For each cluster, compute the new medoid from the points assigned to the cluster. The 

new medoid will be the point that minimizes the dissimilarity to the rest of the elements in the cluster.  

Steps 2 and 3 are repeated until the clusters are no longer modified. Once the number of clusters is 

computed, the cluster assignment is retrieved, providing the land delimitation. 

3.3. Selection of K clusters 

A large number of ways of evaluating the goodness of a clustering algorithm have been proposed in 

the literature. In fact, the evaluation of clustering structures is the most difficult task in clustering 

algorithms. In this case, we selected the Silhouette coefficient (Rousseeuw 1987) and the Calinski-

Harabasz index (Caliński and Harabasz 1974) methods in order to validate the clustering. 

The Silhouette coefficient is based on the comparison of cluster tightness and separation. This 

Silhouette shows which objects lie well within their cluster, and which ones are merely somewhere in 

between clusters. The average silhouette width provides an evaluation of the clustering validity, and can 

be used to select an ‘appropriate’ number of clusters.  
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On the other hand, Calinski-Harabasz index evaluates the cluster validity considering the error sum 

of squares between different clusters and the squared differences of all objects in a cluster from their 

respective cluster center. The index is calculated as follows (Maulik and Bandyopadhyay 2002): 

 

where nk is the number of points in cluster k and z is the centroid of the entire data set. 

Therefore, to select the optimum k according to the Silhouette coefficient and to the Calinski-

Harabasz index, we use an implementation (Hennig 2010) of these methods and we consider both values 

of k. The implementation follows a procedure, similar to the one described below in order to select the 

best value of k using the Silhouette coefficient (suppose that the number of points to cluster is n and that 

K* is the maximum number of clusters, which is equal to or less than n): 

for  j = 1,K* do 

for  i = 1,n do 

 

end for 

  

end for 

 

A similar procedure is followed by Calinski-Harabasz implementation, computing the index for each 

k and selecting the k with the highest index. 

3.4. Evaluation and Experimental results 

In order to verify the validity of the smart agro-service, we applied it to a case of study for the 

vineyards of Terras Gauda, a well-known wine producer in Galicia, Spain. Three different vineyard 

parcels with dissimilarities in topographical characteristics were considered. The outcomes were 

evaluated according to a previous study at this location for the delimitation of the MZs based on the 

experience and knowledge of the viticulture expert of Terras Gauda. The study considered factors such 

as yield production, topographical characteristics and soil properties in order to identify homogeneous 

zones of the vineyard and deploy an agro-meteorological station in each representative zone. However 

the study did not provide the contour of the MZs but the geolocation of the agro-meteorological stations. 

To address this lack of MZs delimitation, we calculated the extension of each MZ using a Voronoi 

partition (Voronoï 1908) considering the geolocations of the sensors (Figure 2). Then we compared the 

tessellation with the proposed clusters (Figure 2) by means of a confusion matrix (Kohavi and Provost 

1998) in order to calculate the following metrics: 

 

 True Positive Rate (TPR) or Recall. The percentage of positive cases that were correctly 

identified. Is calculated as  
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 True Negative Rate (TNR) or Specificity. The percentage of negatives cases classified correctly. 

Is calculated as  

 Positive Predictive Value (PPV) or Precision. The percentage of the predicted positive cases 

that were correct. Is calculated as  

 Accuracy (ACC). The percentage of spatial data points correctly classified. Is calculated as 

 

Considering true negatives (a) as the points correctly classified as land without vineyard, False 

positives (b) as the number of points incorrectly classified as vineyard (even vineyard belonging to other 

nearby parcels outside Terras), False negatives (c) as the points incorrectly classified as land without 

vineyard and True positives (d) as the number of spatial data points correctly classified as vineyard. 

The overall measurement results show an average of approximately 95% accuracy, 97% specificity, 

73% recall and a 80% of precision. The results suggest than the use of PAM clustering algorithm with 

thermal infrared data from TIRS instrument is a promising method for the automatic MZs delimitation. 

 

 

Figure 2. The figure at the left shows the Voronoi tesellation based on the actual location of the agro-

meteorological stations, represented by dots, in a vineyard parcel. The figure at the right shows the 

proposed delimitation for the MZ based on the clustering algorithm. Each spatial data point is labeled 

with its corresponding cluster number. 

4. Conclusions 

The results obtained in the case of study show the great potential of the FOODIE smart agro-service 

for MZ delimitation by means of PAM clustering algorithms with data collected from TIRS sensors of 

the Landsat 8 satellite. In particular, clustering the spatial data points of the land according the values 

of the thermal infrared band B10. However, further research on how to optimize k for identifying the 

number of MZs is still required. 

Future work will involve the optimization of k and the evaluation of the smart agro-service with other 

types of crops and countries. 

http://dx.doi.org/10.17700/jai.2015.6.4.234


Journal of Agricultural Informatics (ISSN 2061-862X) 2015 Vol. 6, No. 4:65-72 

 

doi: 10.17700/jai.2015.6.4.234  71 
Rodolfo B. Arango , Cristina Monteserín , Ismael S. Cerezo , Antonio M. Campos: Smart Agro-Services in the Farm-Oriented 
Open Data in Europe (FOODIE) Platform: Insights from the Automatic Delimitation of Management Zones 

References 

Aggelopooulou, K, Castrignanò, A, Gemtos, T and Benedetto, DD 2013, 'Delineation of management zones in 

an apple orchard in Greece using a multivariate approach', Computers and Electronics in Agriculture, vol. 90, 

no. 0, pp. 119 – 130. doi: 10.1016/j.compag.2012.09.009 

Blackmore, S, Godwin, RJ and Fountas, S 2003, 'The analysis of spatial and temporal trends in yield map data 

over six years', Biosystems engineering, vol. 84, no. 4, pp. 455–466. doi: 10.1016/s1537-5110(03)00038-2 

Caliński, T and Harabasz, J 1974, 'A dendrite method for cluster analysis', Communications in Statistics-theory 

and Methods, vol. 3, no. 1, pp. 1–27. doi: 10.1080/03610917408548446 

Copernicus 2015. Available from: < http://www.copernicus.eu/>. [28 May 2015] 

Directive, I. N. S. P. I. R. E. 2007. Directive 2007/2/EC of the European Parliament and of the Council of 14 

March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). 

Official Journal. 25 April. 

Earth Online 2015, Data Access. Available from: <https://earth.esa.int/web/guest/data-access>. [24 March 2015] 

Earthexplorer 2014. Available from: < http://earthexplorer.usgs.gov/>. [24 March 2015] 

Farm-oriented Open Data in Europe, 2014. Available from: <http://www.foodie-project.eu>. [24 March 2015]. 

Ferguson, R, Lark, R, and Slater, G 2003 'Approaches to management zone definition for use of nitrification 

inhibitors', Soil Science Society of America Journal, vol. 67, no. 3, pp. 937–947. doi: 10.2136/sssaj2003.0937 

Fu, Q, Wang, Z and Jiang, Q 2010, 'Delineating soil nutrient management zones based on fuzzy clustering 

optimized by fPSOg', Mathematical and Computer Modelling, vol. 51, no. 11–12, pp. 1299 – 1305.  

doi: 10.1016/j.mcm.2009.10.034 

Hennig, C 2010, 'fpc: Flexible procedures for clustering', R package version, vol. 2, pp. 0–3. 

Johnson, CK, Mortensen, DA, Wienhold, BJ, Shanahan, JF and Doran, JW 2003, 'Site-specific management 

zones based on soil electrical conductivity in a semiarid cropping system', Agronomy Journal, vol. 95, no. 2, pp. 

303–315. doi: 10.2134/agronj2003.0303 

Kohavi, R and Provost, F 1998, 'Glossary of terms', Machine Learning, vol. 30, no. 2-3, pp. 271–274. 

Kumar, J, Mills, RT, Hoffman, FM and Hargrove, WW 2011, 'Parallel k-means clustering for quantitative 

ecoregion delineation using large data sets', Procedia Computer Science, vol. 4, pp. 1602–1611.  

doi: 10.1016/j.procs.2011.04.173 

Landsat 2015. Available from: <http://landsat.usgs.gov/>. [24 March 2015] 

Li, X 2009, 'K-Means and K-Medoids' in Encyclopedia of Database Systems, eds Springer US, pp. 1588–1589. 

doi: 10.1007/978-0-387-39940-9_545 

Liu, M and Samal, A 2002, 'A fuzzy clustering approach to delineate agroecozones', Ecological modelling, vol. 

149, no. 3, pp. 215–228. doi: 10.1016/s0304-3800(01)00446-x 

Maulik U and Bandyopadhyay, S 2002, 'Performance evaluation of some clustering algorithms and validity 

indices', Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 12, pp. 1650–1654.  

doi: 10.1109/tpami.2002.1114856 

Moral, F, Terrón, J and Rebollo, F 2011, 'Site-specific management zones based on the rasch model and 

geostatistical techniques', Computers and Electronics in Agriculture, vol. 75, no. 2, pp. 223–230.  

doi: 10.1016/j.compag.2010.10.014 

Ortega, RA and Santibáñez, OA 2007, 'Determination of management zones in corn (Zea mays L.) based on soil 

fertility', Computers and Electronics in agriculture, vol. 58, no. 1, pp. 49–59.  

doi: 10.1016/j.compag.2006.12.011 

Peralta, NR and Costa, JL 2013, 'Delineation of management zones with soil apparent electrical conductivity to 

improve nutrient management', Computers and Electronics in Agriculture, vol. 99, pp. 218–226.  

doi: 10.1016/j.compag.2013.09.014 

Rousseeuw, PJ 1987, 'Silhouettes: A graphical aid to the interpretation and validation of cluster analysis', 

Journal of Computational and Applied Mathematics, vol. 20, no. 0, pp. 53 – 65.  

doi. 10.1016/0377-0427(87)90125-7 

http://dx.doi.org/10.17700/jai.2015.6.4.234
http://dx.doi.org/10.1016/j.compag.2012.09.009
http://dx.doi.org/10.1016/s1537-5110(03)00038-2
http://dx.doi.org/10.1080/03610917408548446
http://www.copernicus.eu/
https://earth.esa.int/web/guest/data-access
http://earthexplorer.usgs.gov/
http://www.foodie-project.eu/
http://dx.doi.org/10.2136/sssaj2003.0937
http://dx.doi.org/10.1016/j.mcm.2009.10.034
http://dx.doi.org/10.2134/agronj2003.0303ú
http://dx.doi.org/10.1016/j.procs.2011.04.173
http://landsat.usgs.gov/
http://dx.doi.org/10.1007/978-0-387-39940-9_545
http://dx.doi.org/10.1016/s0304-3800(01)00446-x
http://dx.doi.org/10.1109/tpami.2002.1114856
http://dx.doi.org/10.1016/j.compag.2010.10.014
http://dx.doi.org/10.1016/j.compag.2006.12.011
http://dx.doi.org/10.1016/j.compag.2013.09.014
http://dx.doi.org/10.1016/0377-0427(87)90125-7


Journal of Agricultural Informatics (ISSN 2061-862X) 2015 Vol. 6, No. 4:65-72 

 

doi: 10.17700/jai.2015.6.4.234  72 
Rodolfo B. Arango , Cristina Monteserín , Ismael S. Cerezo , Antonio M. Campos: Smart Agro-Services in the Farm-Oriented 
Open Data in Europe (FOODIE) Platform: Insights from the Automatic Delimitation of Management Zones 

Schepers, AR, Shanahan, JF, Liebig, MA, Schepers, JS, Johnson, SH, and Luchiari, A 2004 'Appropriateness  of  

management  zones  for characterizing  spatial  variability  of  soil  properties  and  irrigated cornyields across 

years', Agronomy Journal, vol. 96, no. 1, pp. 195–203. doi: 10.2134/agronj2004.0195 

Schuster, E, Kumar, S, Sarma, SE, Willers, J and Milliken, G 2011, 'Infrastructure for data-driven agriculture: 

identifying management zones for cotton using statistical modelling and machine learning techniques', in 

Emerging Technologies for a Smarter World (CEWIT), 2011 8th International Conference Expo, Long Island, 

New York, pp. 1–6. doi: 10.1109/cewit.2011.6163052 

Simbahan, GC and Dobermann, A 2006, 'An algorithm for spatially constrained classification of categorical and 

continuous soil properties', Geoderma, vol. 136, no. 3, pp. 504–523. doi: 10.1016/j.geoderma.2006.04.019 

Vapnik, V 2000. The nature of statistical learning theory. Springer. doi: 10.1007/978-1-4757-3264-1 

Villajos, SO, Villar, AA, Peña, MM, Arroyo, MP, Alcázar, GV, Morera, JP and García, LP 2008, 'Los satélites 

de media y baja resolución espacial como fuente de datos para la obtención de indicadores ambientales' IX 

Congreso Nacional de Medio Ambiente, Madrid. 

Voronoï, G 1908, 'Nouvelles applications des paramètres continus à la théorie des formes quadratiques. 

deuxième mémoire. recherches sur les parallélloèdres primitifs', Journal für die reine und angewandte 

Mathematik, vol. 134, pp. 198–287. doi: 10.1515/crll.1908.134.198 

Yu, H, Liu, D, Chen, G, Wan, B, Wang, S, and Yang, B 2010 'A neural network ensemble method for precision 

fertilization modeling', Mathematical and Computer Modelling, vol. 51, no. 11, pp. 1375–1382.  

doi: 10.1016/j.mcm.2009.10.028 

http://dx.doi.org/10.17700/jai.2015.6.4.234
http://dx.doi.org/10.2134/agronj2004.0195
http://dx.doi.org/10.1109/cewit.2011.6163052
http://dx.doi.org/10.1016/j.geoderma.2006.04.019
http://dx.doi.org/10.1007/978-1-4757-3264-1
http://dx.doi.org/10.1515/crll.1908.134.198
http://dx.doi.org/10.1016/j.mcm.2009.10.028

