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Abstract—Adaptive, model-free control of Type 1 Diabetes
Mellitus (T1DM) is a lack in the field of diabetes control, since,
most of the applied control strategies are model-based ones. The
main problem is that difficult to formulate exact mathematical
models to replicate the physiological processes, not just because
of their behavior, rather then these processes are changing
patient-by-patient. Furthermore, the developed models so far, are
highly non-linear and difficult to manage. A possible adaptive
control solution can be the recently developed Robust Fixed Point
Transformation (RFPT)-based control design method, which can
provide control action, based on the observations about the actual
output of a controlled system. In this paper we show a survey,
how can be used this novel technique related with a known, high-
order glucose-insulin model, to investigate the usability according
to diabetes control.

Index Terms—Robust Fixed-Point Transformation, RFPT,
T1DM, Control of Diabetes

I. INTRODUCTION

Diabetes Mellitus (DM) is a sub-group of the so-called

Chronic Metabolic Diseases (CMD), connected to the insulin

hormone, which is the key compound of the glucose uptake

by several types of body cells [1]. Glucose, beside other low

complex carbohydrates (CHO(s)) provides the energy for most

of the human body cells, among others, through the Citric-Acid

cycle.

The most dangerous type of DM is Type 1 DM (T1DM),

which occurs when the insulin producer β-cells of the pancreas

are annihilated by an autoimmune reaction. Hence, because of

the lack of insulin, the insulin-dependent cells of the human

body are going to be suffer energetic deficit on short term and

energetic collapse over time [2].

Modeling and control have absolute relevance on the dia-

betes research field. The main problems are associated with

the fact that the physiological processes in human body are

non-linear, thus, the control design is not trivial and demands

individual approach case-by-case [3].

Taking into account that it is very difficult to precisely

modeling and identifying any physiological processes, nonlin-

ear, robust or adaptive control solution can provide appropriate

control action based on approximate model of the real system.

One of the most common non-linear technique is based on

Lyapunov’s 2nd law [4], but this is difficult to handle mathe-

matically. Frequently used non-linear techniques are the Non-

linear Model Predictive Control (NMPC) [5], Soft Computing

techniques [6], [7], and Linear Parameter Varying (LPV) based

robust control methods [8]–[10]. Adaptive controllers can

nicely adapt themselves to need of the system under control

by observing its behavior, like the Model Reference Adaptive

Control (MRAC) [11].

In this paper we investigate how the recently developed

RFPT based control design can give a useful solution to

diabetes control [12], [13]. This method has several benefits

that will be detailed below.

The paper is structured as follows. First, we give a short

introduction about the handled problem. Following that we

present the investigated T1DM model and the control method

applied to it. At last, we summarize our results, draw the

conclusions, and outline a perspective for the future work.

II. T1DM MODEL

During the investigations, we used a well-known, high order

digestion (1) and T1DM (2) models, presented by [14]–[17].

Also, this models are the base of the UVA/Padova simulator

[18]. The model schematic figure are represented by Fig. 1.

Q̇sto(t) = Qsto1(t) +Qsto2(t)

Q̇sto1(t) = −kgriQsto1(t) + d(t)

Q̇sto2(t) = −kgut(t, Qsto)Qsto2(t) + kgriQsto1(t)

Q̇gut(t) = −kabsQgut(t) + kgut(t, Qsto)Qsto2(t)

Ra(t) =
fkabsQgut(t)

BW
.

(1)
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ĠM (t) = −kscGM (t) +
ksc

VG
Gp(t)

Ġp(t) = EGP (t) +Ra(t)− Uii − E(t)−
−k1Gp(t) + k2Gt(t)

Ġt(t) = −Uid + k1Gp(t)− k2Gt(t)

Ẋt(t) = −p2UX(t) + p2U [I(t)− Ib]

İd(t) = −kiId(t) + kiI1(t)

İ1(t) = −kiI1(t) + kiI(t)

İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka2S2(t)+
+ka1S1(t)

İl(t) = m2Ip(t)− (m1 +m3)Il(t)

Ṡ2(t) = −ka2S2(t) + kdS1(t)

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t) .

(2)

Figure 1. The schematic structures of the used models [(a) High-order T1DM
model, (b) Complex digestion model]

The unified complex model has two inputs and one out-

put, namely, u(t) [pmol/kg/min] is the injected insulin, d
[mg/min] is the amount of ingested glucose and GM (t) [mg/dl]

represents the subcutaneous glucose level. Other details are

available in the cited literature.

III. APPLIED CONTROL METHOD

The basic idea of the RFPT-based adaptive control is

the concept of the ”response function” that belongs to the

compound consisting of the ”rough initial model in use”

and the ”actual physical system under control”. For a purely
kinematically formulated ”desired response” of the controlled
system rDes the necessary control signal is designed by the

use of the approximate model. By applying this control signal

on the actual system, its realized response, rReal, will be a

function of rDes as rReal = f
(
rDes

) �= rDes due to the

modeling errors and the unknown external disturbances. The

task is to find the appropriate input r� to which the situation

rDes = f (r�) belongs. Normally r� can be found as the

limit of a sequence obtained by the iterative application of

a contractive map as rn+1 = G
(
rn; r

Des
)

that is composed

by the use of the response function f . (The discrete steps

correspond to the digital cycles of the controller.) The RFPT-

based design corresponds to giving a particular choice for

the function G. The convergence of the so obtained sequence

depends partly on the parameters of G and partly on the

behavior of f . It was shown that for a wide class of physical

systems this convergence can be guaranteed by properly setting

the parameters of G if ∂f
∂r satisfies some simple requirements

[19]. The mathematical background corresponds to Banach’s

”Fixed Point Theorem” [20] that states that the limit value of

an iterative sequence {xn+1 = G(xn)} generated a contractive

map G : �n �→ �n on a linear, normed, complete metric space

(Banach space) is the fixed point of G satisfying the equation

G(x�) = x�. For Single Input - Single Output (SISO) systems

rn+1 = G(rn; r
Des)

def
= (rn +Kc)×{

1 +Bc

[
tanh(Ac(f(rn)− rDes))

]}−Kc

(3)

where Kc, Ac, and Bc = ±1 are the adaptive control
parameters. Evidently we have two fixed points as r = −Kc

(that is trivial and cannot used in the control), and r� for

which f(r�) = rDes, that is the solution of the control

task. For convergence the
∣∣∣dfdr

∣∣∣ < 1 condition must be met.

Further explanation on appropriate setting the adaptive control

parameters can be found in [13].

IV. CONTROLLER DESIGN

A. Specifics of the Model

During the development, quite a few general control, phys-

iological and phenomenological constraints have to be consid-

ered, as listed below:

• With the caveats that each of the state variables de-

notes the concentration of certain chemical component,

therefore ot must have either positive value, or after the

depletion of the appropiate component- it must ramain

zero. These ”truncation-type” nonlinearities make the

application of any ”linearization” dubious, whenever a

given component is depleted. This fact seriously concerns

any considerations related to the frequency domain that

can widely used in the case of linear more or less

linearizable systems. In the sequel qualitative analysis of

present model is given.

• Each time-constant model parameter should be positive.

• Each state variable has its own exponential decay con-

stant.

• Any coupling between the coupled pairs of state variables

is of exponential nature: the decrease in the concentration

of given state variable generates increase in that of the

coupled one and vice-versa.

• Without finite input or extraction terms all the state

variables should converge to zero.
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• The state propagation quantities as Ẋ, İd, İ1, İp, İL, Ṡ2

and Ṡ1 are completely independent of the state variables

GM , Gp and Gt.

• Each element of the state propagation group ĠM , Ġp and

Ġt directly is concerned by the input Ṙa and the state

variables X and İd belonging to the other group.

• To sum up, u > 0 makes X increase. Increasing X

decrease Ġt and Gt. Decreasing Gt decreases Ġp due to

which (2) gives possibility for decreasing GM by properly

big insulin input u. It is important to note that depletion

of X -since dotX = 0 if X = 0- makes any possibility

for controlling GM via u cease. This introduces a strong

nonlinear asymmetry into the system: drastic glucose Ra

drastically increase GM , via drastic insulin input u its

effect can be contained.

• From 1 it is evident that u is directly related to a high

order time-derivative of the directly measureable state

variable GM .

B. The Effect chain of Control Action

To design the Rough Model (RM), which provides the

control signal, the effect chain of injected insulin (which is the

control signal) need to be mapped. This route defines, how can

we affect on the operation of the system, without knowledge

of the actually happening inside the system.

Figure 2. Effect chain of insulin

Fig. 2. shows the concrete effect chain of injected insulin

u(t). The physiological model specialties determine that how

the injected insulin affects on the GM (t), namely, through the

insulin-dependent glucose utilization (Uid), which is the glu-

cose uptake by insulin-dependent tissues and the endogenous

glucose production of the liver (EGP ), thus, the inhibition of

gluconeogenesis.

C. Design of Rough Model

It can be concluded based on the IV-B that a kinematic

prescription (which is used by the RFPT-method) are not

expedient in this case, since, the relative order of the control

chain is at least 8. That means, the kinematic prescription

should be contains the 8th time derivative of the GM , at the

same time, the required order of the control law should be 8

as well, in order to handle this high derivative. To avoid this

unpleasant effect, other approaches should be used. A possible

solution, if the exact model is ”hided”, as a black box and

only the input and output are investigated. Naturally, this step

is reducing the accuracy of the control, nevertheless, it can be

used, because of the adaptivity of the method. If the steady

state of the system can be approached over one cycle and the

GM is available at the end of this cycle, the necessary insulin

input which is need to be injected at the next cycle can be

calculated by the controller. However, this condition is not

usable itself, because of the glucose input dynamics is faster

then the system’s settling characteristics. Therefore, a simple

dynamic scheme has to be developed, which can describes not

only the Δũ determined by the actual glucose input, but also

the takes into account the affect of the past control actions

on the actual condition beside the appropriate time delays,

determined by the system’s dynamics. Here, we supposed that

the Ra is known, since the glucose input is regulated by us

and based on the (1), the G̃M (ũ; R̃a) can be calculated. The

selected equation is a quite simple one,

GM (t) ≈ a u(t) + b . (4)

Let ũ ∈ [250, 600] and G̃M is calculated, where R̃a = 60n,

where n ∈ {0..15} integer. Based on (4), with numerical ap-

proximation, the a and b are calculable. To reduce complexity,

a second order polynomials can be fitted on the a(Ra) and

b(Ra) which occurred with the calculation of a and b.

Figure 3. Results of curve fittings based on (4) (for example, beside n = 0,
R̃a = 0, ũmin = 250 and ũmax = 600), then G̃M,stac(umin) ≈ 200 and

G̃M,stac(umax) ≈ 40, the numerical calculation gives aest = −0.46 and
best = 314.29).

Due to the fact, that the polynomials are known, Δũ can

be estimated by:

ΔGDesired
M (t) ≈ da(Ra)

dRa
ΔRaũ + a(Ra)Δũ +

+
db(Ra)

dRa
ΔRa ,

(5)

where ΔG̃Desired
M (t) denotes the changing of the desired

subcutaneous glucose level determined by the measurements.

The prescribed approximation for ΔG̃Desired
M (t) is ”purely”

kinematic and contains several simplification from the control
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point of view. These simplifications are occurring as strong

constraints during the control and the inaccuracies should be

controlled by the adaptivity law.

The RM can be constructed with using the second order

polynomials and combine with (1), (4) and (5):

u̇Desired =
GM + ĠDesired

M − a(Ra)u− b(Ra)

a(Ra)
−

−
da(Ra)

dRa
u− db(Ra)

dRa

a(Ra)

(6)

The RM, according to the (6) gives an estimation about the

GM and u and provides the control signal as well. The tuning

parameters are the specifics of the polynomials, a(Ra) and

b(Ra). These approximation includes that physical constraint

at the same time that the control signal, namely, the injected

insulin cannot be negative. It can be seen, that finally, the

changing of the desired insulin level is determined by the

followings:

• Actual BG measurements (GM ), which are available at

every 5 minutes. We used this value, because the CGMS

systems on the market are operating with this sampling

time.

• The changing of the desired BG level (ĠM ), affected by

the control law.

• The used polynomials and the changing of them, affected

by the u. Furthermore, the polynomials are determined

by the glucose input, which is a good approximation of

the reality, where the insulin dosing is determined by the

ingested food, namely, the glucose input.

D. Control Law

The control law can be formalized with the kinematic

requirements. Due to the RM is a second order model, the

control law should be a second order one as well. From

simplicity reasons we implemented a ”Fixed Set-Point type of
Control” with GN as set-point parameter. The tracking error

is taken as a prescription and such a PID kind feedback with

a proportional term Λ > 0 could be suitable:

(
d

dt
+ Λ)3

t1∫
t0

(
GN (ξ)−G(ξ)

)
dξ = 0 (7)

where GN (t) is the nominal blood glucose concentration

of the nominal model, G(t) is the realized blood glucose

concentration and the exact requirement is that the error signal,

GN (t)−G(t), should converge to zero as t→∞. Naturally,

the fixed-set point control determines that the derivatives of

GN will be zero. With mathematical transformations of (7),

the desired GM derivate is equal to

G̈Desired
M (t) =

(
d

dt

)2

GN (t)+

+

2∑
s=0

(
3

s

)
Λ3−s

(
d

dt

)s
t1∫

t0

(
GN (ξ)−G(ξ)

)
dξ .

(8)

where GN (t) is the BG concentration of the nominal model,

G(t) is the realized blood glucose concentration and the exact

requirement is that the error signal, GN (t) − G(t), should

converge to zero as t → ∞. Naturally, the fixed-set point

control determines that the derivatives of GN will be zero.

We implemented a ”forgetting integral”, because the former

tracking errors were considered with lower weight to dismiss

the overload of the integrated error. The changing of ĠDesired
M

is reflecting in the RM and affects the injected insulin level at

every cycle.

E. Adaptivity Law

The suggested adaptivity law from [13] is the (3). We

selected an other adaptivity law, which also satisfies the

mathematical requirements of the RFPT-based method, which

was the following:

rn+1 = G(rn; r
Des)

def
= (rn +Kc)×{

1 +Bc

[
Ψ(Ac(f(rn)− rDes))

]}−Kc

(9)

where Kc, Ac, and Bc = ±1 are the adaptive control
parameters and Ψ is a sigmoid function (similar properties

as the hyperbolic tangent), namely Ψ(x) =
x

1 + |x|.

F. Control scheme

Fig. 4. shows the schematic control structure of the sys-

tem. The RFPT-based methodology is clearly visible on this

figure, thus, the control action is based on the known input

and the measurable output of the system and the controller

does not have knowledge about the inside conditions of the

controlled system. This philosophy has absolute relevance for

the physiological systems, where exact knowledge about the

inside operation of the controlled system is not available.

G. Constraints of Usability

In this given case, several constraints need to be considered

which come from the used models and adapted control scheme,

detailed below.

1) Constraints about the used models: The selected patient

model is a high order and complex one, with different inside

dynamics at glucose and insulin subsystems. The insulin

affects on the glucose subsystem through a complex route.

We implemented the model with the data given by [14]–[17],

without identification, which take in further uncertainty to the

system. We have considered, that the input of the patient

model is known at every moment, which is a simplification

as well, since, the real system’s input is the ingested food

(here, the dosed amount of glucose (d(t))), not the absorbed

glucose from the gastrointestinal system (Ra(t)). The goal of

this simplification was to describe more accurate the patient

2462



Figure 4. Schematic structure of the control environment

model’s dynamics with the rough model, the d(t) also can be

used for this purpose.

2) Constraints about the used control scheme: The most

advantage of the RFPT-based method, namely, the model-

free approach, it appears as a disadvantage in the accuracy,

which is the natural consequence of the fact that the controller

does not know anything about the controlled system’s inside

operation. The applied method to catch the dynamics of the

patient model includes inaccuracies, since, we not used the

patient model during the designing of the RM. The used

second order polynomials from simplification reason is not

to accurate and the whole system has other inside dynamical

effects, which are not necessarily reflecting in this solution.

The adaptive controller is responsible to maintain the side-

effects of the simplifications and inaccuracies through gives

information about the required of control signal to reach the

control goals. The main constraint with the adaptive controller

is the optimization of the control parameters, which requires

an individual approach case-by-case and the application will

determines it [21].

V. RESULTS

We have tested our solution with two glucose intake proto-

cols in the developed in-silico simulation environment with

different length. The first glucose intake protocol was the

following: 8 am, 50 g; 13 pm, 70 g; 20 pm, 70 g. This sequence

is repeating over a week, the total simulation time was 168

hours. The result can be seen on Fig. 5.

The Fig. 5. shows, that the controller can handle the

appearing glucose (Ra(t)) and adapted to the requirements

of the system with injecting insulin to reach the prescribed

set-point value. The variables started from the steady-state

condition and after the initial transient relaxation, because of

the recurring input the system showed the expected recurring,

oscillating behavior.

The second glucose intake protocol was a randomized one

with various intake amounts and time-points. On Fig. 6. can be

seen, that after the initial transients, the controller adapting to

Figure 5. Result of a one week simulation with first feeding protocol [Control
parameters: Λ = 0.015, Actrl = 1 exp− 4, Kctrl = −1000, Bctrl = 1,
Set-point (GN )=100 mg/dL ]

the systems needs, however, because of the randomized intake,

this adoption is changing all the time, as we expected. The

initial values of the simulation were calculated based on 2,

beside 36 μU/mL (≈ 250 pmol/L), because we would have

liked to that the initial conditions not to be optimal. Clearly

visible, that the controller can handle the uncertainties like this.

The last figure shows a CVGA result (which is a frequently

used evaluating method in diabetes control [22]) of a 53

days long simulation with the following control parameters:

Λ = 0.0125, Actrl = 1 exp−3, Kctrl = −1000, Bctrl = −1.

The randomized intake parameters were: 3 glucose intake at

every 24 hours with taking into account that the virtual patient

feeding happens during the first 16 hours with minimum 4

hours between the each intakes; the amounts are changing

between 40 g and 70 g, randomly. The results is shown by

Fig. 7.

The Fig. 7. shows that the controller can handle this various

environment, however, the unfavorable randomized intakes are

degrades the adaptivity and producing higher deviation in the

daily maximum and minimum of BG levels.

VI. CONCLUSION AND FUTURE WORK

In this paper, our goal was to proof the usability of the

RFPT-based control design method in the field of diabetes

control. We investigated several situations and the simulations

were encouraging, we presented here three of them. The RFPT-

based method is appropriate from different point of views,

which were detailed in the text. In our future work, we are

going to investigate the design method from different direc-

tions, namely, we will examine the possibilities of parameter
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Figure 6. Result of a 255 hours simulation with second feeding protocol
[Control parameters: Λ = 0.0125, Actrl = 1 exp−3, Kctrl = −1000,
Bctrl = −1, Set-point (GN )=95 mg/dL ]

Figure 7. Result of a 255 hours simulation with second feeding protocol
[Control parameters: Λ = 0.0125, Actrl = 1 exp−3, Kctrl = −1000,
Bctrl = −1, Set-point (GN )=95 mg/dL ]

identification and optimization, control law and adaptivity

function selection and other point of views.
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