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Abstract--Corrosion inhibition of carbon steel in neutral aqueous solutions by N-phosphono-methyl- 
glycine (NPMG) is based mainly on the formation of an inhibiting film that protects the base metal. In 
order to understand the structure and composition, the layers formed on carbon steel were sputtered by an 
argon beam to obtain a depth profile using Auger electron spectroscopy (AES). The influence of changes 
in the water composition using model solutions (with and without calcium) in contact with carbon steel on 
the formation and growth rate of the film was studied. In addition, the effect of several factors such as time 
of contact and the addition of some cations, such as Ca 2+ and Zn 2+ , on the formation and composition of 
the inhibiting films was investigated. In addition to surface analysis, weight loss method was used to 
optimize and characterize the inhibitor efficiency and the effect of synergism. 

I N T R O D U C T I O N  

CORROSION kinetics can he influenced by inhibitors. There are many types of 
chemicals that have corrosion inhibitive properties. One of these types are screening 
inhibitors where a film is formed in order to protect (isolate) the metal. 

Phosphonates are one class of this inhibitor type. They could be introduced alone 
or in combination with other metallic corrosion inhibitors, such as zinc ions. 
Research in this area has been stimulated by the need to develop inhibitor formu- 
lations that are free from chromates, nitrates and inorganic phosphorus compounds. 
Phosphonates contain phosphorus carbon (P-C) bonds in contrast to the 
phosphorus-oxygen bonds in inorganic phosphates. 

The P-C bonds are much more resistant to conversion into orthophosphate than 
are the P-O bonds in inorganic phosphates. Phosphonates when blended with 
certain cations and polymers in corrosion inhibitor mixtures further reduced the 
critical inhibitor concentration needed for inhibition, due to the synergistic effect of 
the components. 

Synergism is one of the most important effects in inhibition processes and serves 
as a basis for all modern corrosion inhibitor formulations. 1 

Once a compound is set to have inhibition properties, the other question arises on 
how does the inhibitor act? In other words, what is the inhibition mechanism? 
Different methods were utilized to study this branch of research. Surface analysis or 
film analysis techniques are recently widely used. Up to the early seventies, the 
characterization of the protective films formed by corrosion inhibitors on iron 
surface was very cumbersome. Mostly, these techniques required the removal of the 
protective film by a variety of methods, prior to examining the film by electron 
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diffraction. 2 Radiochemical techniques were also used to confirm the presence of 
radioactive isotopes of carbon. 3 

Then, in 1978, the advantages of studying protective films directly by AES were 
illustrated by producing Auger depth profile studies of films formed on iron. 2'4 Since 
the last decade, the Auger depth profile techniques have been used extensively to 
investigate surface films formed under different water and metal surface 
conditions. 5-7 

E X P E R I M E N T A L  M E T H O D  

In order to study the dependence of the inhibition characteristics of  N-phosphono-methyl  glycine 
(NPMG) on some variables such as the  contacting media,  contact t ime and the solution composition, 
solutions of 0.5 M NaCIO4 and model  water (see Table 1) were used to differentiate between two media. 
Contact  t imes of 4h, 24 h and 5 days were used to study the effect of t ime on film growth. 

Addit ion of some cations, such as zinc in the form of ZnSO 4 or calcium in the form of CaSO4 illustrated 
the synergistic effect of  changing solution composition. 

Weight-loss method 
This me thod  was used to optimize the concentrat ion of N P M G  needed  for inhibition of carbon steel. It 

was also used to illustrate the synergistic effect of calcium and zinc cations. Throughout  this method,  only 
sodium perchlorate was used as a contact solution. 

Carbon steel coupons  were acid cleaned, degreased by acetone and washed with distilled water prior to 
being weighed to obtain the initial weight of the coupon.  Duplicate coupons then were immersed  in an 800 
ml beaker  containing 500 rnl of 0.5 M NaCIO4 and different concentrat ions of N P M G  with adjusted pH in 
the range of 7.0 + 0.3. Contact  t ime was about  24 h for all runs at room temperature .  Rotat ing blades were 
used to keep species in the solution moving. At  the end of the measurement ,  the coupons  were cleaned, 
brushed,  washed with HC1 acid and placed in an ultrasonic vibrator to remove the corrosion products,  
then  washed with distilled water and acetone,  then allowed to dry prior to weighing again to get the final 
weight. The inhibitor efficiency (IE) was calculated from the following equation: 

IE% - Wo - Wi x 100 
Wo 

where  W o = corrosion rate without inhibitor, and Wi = corrosion rate with inhibitor. The  corrosion rate 
was measured  in m m  y- I  according to ASTM standard D-2688. 

Different  concentrat ion combinat ions of N P M G  and Ca 2+ or Zn  2+ were used to investigate 
synergism. The  gravimetric method  was used to study and optimize the concentrat ion of the inhibitor and 
cation blend. 

Auger depth profile technique 
Auger  depth  profiles were performed using a Perk in -Elmer  SAM 545/A scanning Auger  microprobe 

ins t rument .  The  ion gun and the analyser probe were mounted  onto an ultra-high vacuum system which 
uses  oil diffusion and turbo pumps.  The  base pressure of  this system was always in the range of 1 x 10 -9 
Torr.  

An  argon ion gun was used for the sputtering of the films. Argon  gas was introduced into the system by 
back-filling the chamber .  Dur ing sputtering the argon gas pressure in the vacuum chamber  was between 
10 -4 and 10 - s  Torr. Dur ing sputtering,  a derivative spectrum was recorded. By a computer  program,  the 

TABLE 1. MODEL WATER COMPOSITION 

Componen t  Concentra t ion (g I 1) 

NaHCO3 1.5 
M g S O 4 . 2 H 2 0  1.364 
CaC12 . 2H20  1.258 
CaSO 4 . 2H20  0.885 
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peak-to-peak height of the elements was determined and used as an intensity indicator. The peaks for each 
run were normalized and the resulting atomic percentage was then plotted vs sputtering time. 

EXPERIMENTAL RESULTS AND DISCUSSION 

Weight-loss tests 
Different  concentrations of N P M G  were used in order to find the criticat 

concentration level at which corrosion inhibition is achieved at best efficiency. A 
concentration of around 40 ppm of N P M G  appeared to be most efficient and 
produced the lowest corrosion rate. Synergism with Zn cations reduced the corrosion 
rate of carbon steel and reduced the concentration of N P M G  needed for opt imum 
protection. A concentrat ion ratio of 1:1 between zinc cations and N P M G  was 
optimal.  N P M G  concentrations between 10 and 60 ppm tend to reduce the corrosion 
rate, while at higher concentration the efficiency decreases. The synergistic effect in 
both cases of Zn and Ca was best at concentration ratios of about 1:1. 

These results indicate that protection or passivation of carbon steel is possible 
with the existence of some cations, such as zinc or calcium, dissolved in the contact 
solution. Zinc and calcium cations tend to form a complex compound with N P M G  in 
the form of N P M G - Z n  and N P M G - C a .  The presence of calcium cations in the 
solution leads to the formation of an N P M G - C a  complex which results in an increase 
in the adsorption of N P M G  on the metal  surface. Calcium ions are not directly 
responsible for passivation of carbon steel but are responsible for the formation of an 
insoluble N P M G - C a  complex on the metal  surface. Zinc and calcium cations play 
different roles for the corrosion inhibition by forming weakly soluble complex 
compounds  with NPMG.  Because the deposition of the N P M G - Z n  or N P M G - C a  
complex depends upon the saturation index of the complex which is a function of the 
concentrat ion of N P M G  and zinc or calcium ions, thus variations of N P M G  and Zn 2+ 
or Ca 2+ may lead to different films on the metal. 

Auger depth profiles 
The corrosion inhibition of N P M G  in this case was evaluated in two solutions, 

NaClO4 and a model  water,  and for different contacting times. The presence of 
dissolved ions was also studied. AES profiles were per formed to obtain information 
on the composit ion of the protective films. 

Iron and oxygen profiles 
Figure 1 shows a profile of the major  elements present  in the base metal  of carbon 

steel. The pr imary use of the iron and oxygen in the Auger  depth profiles was the 
determinat ion of the film thickness. All of the iron and oxygen depth profiles were 
very similar in shape but differed in intensities. The ratio of oxygen to iron changes 
drastically, as the base metal  is approached oxygen decreases and iron increases to a 
constant value. 

In Figs 2-7, the shape of the iron and oxygen depth profiles show atomic ratios 
through the oxide film that might indicate the formation of heterogeneous oxides 
such as v-Fe203 and/or Fe304. 

The initial iron signal intensity in the depth profiles ranged between 8 and 20% on 
the atomic percentage scale. As the protective films were penetra ted by argon ions, 
the iron profile showed a gradual increase until it became the major  component  
(about  80%),  at the interface and into the bulk metal. The gradual increase in iron 
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FIG. 1. Auger depth profile of untreated carbon steel coupon. 
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Auger depth profile of untreated carbon steel coupon in model water solution 

containing 40 ppm of NPMG. Contact time is 5 h. 

signal intensity might be as a result of a gradual increase in iron concentration and/or 
preferential sputtering. Oxygen is a major component  throughout the layer, The 
oxygen signal was high at the surface and then gradually decreased to a constant 
value at the interface. 

Carbon profiles 
The presence of carbon on the outer surface of the layer was attributed to 

impurities and contamination because the carbon signal was of an elemental type. 
The carbon, bonded signal, was present in all layers with initial intensities of 10-50% 
on the atomic scale (Figs 2-7) .  As the layer was penetrated, the carbon signal 
reduced to 1-4 at %. Through the layer the carbon signal detected was a bonded type 
which is attributed to the presence of calcium carbonate or other carbonate salts. The 
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Auger depth profile of untreated carbon steel coupon in NaCIO 4 solution contain- 
ing 20 ppm of NPMG and 20 ppm of Zn 2+ and contact time of 5 h. 

behaviour of the carbon signal changed from quite intense at the interface and then 
rapidly dropped to a trace value throughout the film. 

Calcium profiles 
Calcium intensities were monitored only in samples where model water was used 

as contact solution. Figures 2, 3 and 6 show that the initial calcium intensities on the 
outer film surface ranged from 0.5 to 20 on the atomic scale. The lower value was in 
the case of 5-h contact time (Fig. 2), while the higher value was for the 5-day period 
(Fig. 3). The calcium signal persisted into the film until the metal-film interface was 
approached. By comparison, the calcium signal shows similar behaviour to that of 
the carbon signal which suggests an association between the two in forming CaCO3 
or any other compounds.  
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FIG. 5. 
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Auger depth profile of untreated carbon steel coupons in model water solution 
containing 20 ppm NPMG and 20 ppm Zn 2+ and contact time of 5 h. 

Zinc profiles 
In cases  w h e r e  z inc  was  added to the contact  so lut ion,  the z inc intensit ies  were  

significant throughout  the outer  film (Figs 4 -7 ) .  
The  z inc signal decreased  into the film but persisted at low value  until the 

interface.  The  presence  of  z inc at high intensit ies  on the outer  film could be  an 
indication of  the format ion  of  Z n ( O H ) : ,  Z n C O  3 or z inc phosphonates .  W h e n  zinc 
was  added to m o d e l  water ,  a decrease  in the calc ium signal was  not iced due to 
gradual r e p l a c e m e n t  of  ca lc ium by zinc in the film by ion exchange .  

Sodium profiles 
S o d i u m  signals were  very difficult to distinguish f rom the z inc signal due to 

overlapping,  In Fig. 7, sod ium intensity was  present  throughout  the film but 
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Auger depth profile of untreated carbon steel coupons in NaCIO 4 solution 
containing 20 ppm Zn 2+ and contact time of 5 h. 

diminished at the interface. Since sodium is not of importance for the structure of the 
film, it could be regarded a minor element.  

Contact-time effect on film 
Variations of contact time provided some useful information on the growth rate 

of the film. By comparing Figs 4 and 5, the increase of contact t ime from 5 to 24 h 
increased the film thickness considerably. In time zinc penetra ted through the film 
and persisted until reaching the interface. In other comparisons,  the intensity of iron 
in the film increased by time which is an indication of the formation of more corrosion 
products. Figure 3 shows that the film formation is a self-limiting process. This 
process is hindered by an opt imum thickness of the film. 

Solution composition effect on film 
The change in solution composit ion could demonstra te  the influence of chemical 

parameters  on the formation and composit ion of the film. By comparing Figs 6 and 7, 
the model water  solution produced thinner film but the interface between the metal 
and the film was sharper in the case of NaCIO4. Zinc and calcium diffused into the 
outer  film and form complex products that further stabilize the film. 

CONCLUSION 
Corrosion inhibitors such as N P M G  form more complex corrosion inhibiting 

films under calcium containing water  than in NaCIO 4 solutions. Dissolved oxygen 
was mainly responsible for passivity in inhibited neutral solutions by virtue of its 
heterogeneous reaction with iron to form a film of oxides which hinders the 
formation of further corrosion products. The intense oxygen and iron signals 
throughout  the layer confirms the formation of iron oxides as the pr imary mechanism 
of corrosion inhibition of screening inhibitors. Calcium and zinc cations form a 
passivating complex with N P M G  which protects the metal  surface. Variations of 
N P M G  and Ca e+ or Zn 2÷ cause the formation of different films on the metal  surface. 
Zn 2+ cations addition produced better  inhibition efficiency due to a more insoluble 
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complex .  Z n  and Ca complexes  also play a role  in plugging the pores  of  the p ro tec t ing  

film hence  fu r the r  isolat ing the meta l .  
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