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Opioid peptides are potent analgesics with therapeutic potential in the treatment of acute
and chronic pain. Their efficacy is limited by peptidases (enkephalinases). Opiorphin
pentapeptide (QRFSR) is the first characterized human endogenous inhibitor of enkepha-
linases. The peptide is able to increase the binding and affinity of endogenous opiates to
mu opioid receptors; thus, the mechanism of opiorphin may provide a new therapeutic
approach in pain management. The analgesic effect of opiorphin was proven in several
earlier published in vitro and in vivo studies. Our aim was to test the transfer of opiorphin
through a blood-brain barrier model for the first time. The flux of opiorphin was tested on
a blood-brain barrier culture model consisting of rat brain endothelial, glial and pericyte
cells. Brain endothelial cells in this triple co-culture model form tight monolayers char-
acterized by transendothelial electrical resistance measurement. Relative quantity of the
peptide was estimated by mass spectrometry. The transfer of opiorphin through the blood-
brain barrier model was estimated to be |3%, whereas the permeability coefficient was
0.53 � 1.36 � 10�6 cm/s (n5 4). We also observed rapid conversion of N-terminal gluta-
mine into pyroglutamic acid during the transfer experiments. Our results indicate that
opiorphin crosses cultured brain endothelial cells in the absence of serum factors in a sig-
nificant amount. This is in agreement with previous in vivo data showing potentiation of
enkephalin-mediated antinociception. We suggest that opiorphin may have a potential as
a centrally acting novel drug to treat pain. � 2015 IMSS. Published by Elsevier Inc.
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Introduction

Opioid analgesics are still one of the most effective drugs
against pain; however, their clinical usefulness is limited
by several side effects including physical dependence,
respiratory depression, gastrointestinal effects and toler-
ance (1). New opioid peptides could have therapeutic po-
tential for central nervous system (CNS) diseases, but
they have a short half-life and low metabolic stability
(2,3). Opiorphin (QRFSR) is an endogenous peptide that
inhibits Zn-dependent metallo-ecto-peptidases, neutral
endopeptidase (NEP EC3.4.21.11) and aminopeptidase
(AP-N EC3.4.11.2) (4). These enzymes metabolize opioid
peptides such as enkephalins and their derivatives in vivo
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and in vitro (5). Opiorphin as an enkephalinase inhibitor
exerts analgesic and antidepressive effects by the protec-
tion of endogenous enkephalins released after pain stimuli
(6,7). Opiorphin is the only natural enkephalinase-
inhibitor characterized in humans and has similar pain-
suppressive potency to morphine but without adverse
effects (4,6). The efficacy of opiorphin has been verified
by in vitro methods and its analgesic activity was also
shown in different in vivo pain studies (4,6,8). According
to our previous in vitro maximal binding and affinity mea-
surements, opiorphin is able to increase the binding and
affinity of endogenous opiates to opioid receptors (9).

In this study we were interested in the opiorphin transfer
across the BBB. Opioid peptides have restricted penetration
to the CNS across the BBB (10,11). The transfer of opioid
peptides through the BBB was studied previously with
isotopically labeled peptides showing a penetration index
!0.01% (12e14). Specific features of the BBB, mainly in-
terendothelial tight junctions and efflux transporters (15), as
-6-2015 20-16-18
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well as peptidase activity in blood, brain microvessels and
brain tissue may be responsible for limiting the transfer of
these potential biotherapeutics from the blood to brain.

The aim of the study was to test the transfer of unlabeled
opiorphin across a well-characterized culture model of the
BBB. Mass spectrometry was used to detect the passage
of the peptide across the BBB in vitro.
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Materials and Methods

Materials

All reagents used in the study were purchased from Sigma-
Hungary Ltd. (Budapest, Hungary) unless otherwise indi-
cated. Wistar rats were obtained from the animal facility
of the BRC. All animals were treated in strict accordance
with the NIH Guide for Care and Use of Laboratory Ani-
mals (NIH Publications No. 80e23) and as approved by
the local authority, Csongr�ad County Animal Health and
Food Control Station (Permit number: XVI./834/2012).

Peptide Synthesis

Opiorphin was synthesized manually using Fmoc (fluore-
nylmethyloxycarbonyl) solid phase synthesis on Na-
Fmoc-Arg(Pmc)-Wang resin. Na-Fmoc-protected amino
acids were used. The side chain protecting groups used to
build the peptide sequence were the following: trityl (Trt)
for Gln, tert-butyl (t-Bu) for Ser and 2,2,5,7,8-
pentamethylchroman (Pmc) for Arg. The couplings were
performed by 1-hydroxybenzotriazole (HOBt) and N,N0-
diisopropylcarbodiimide (DIC). The coupling efficiencies
were monitored by the Kaiser test. The Fmoc groups were
removed by a solution of 20% piperidine in dimethylforma-
mide. After assembly of the peptide sequence, a cocktail of
TFA/TIS/H2O (trifluoroacetic acid/triisopropylsilane/water,
95: 2.5: 2.5) was used to remove the side chain protecting
groups and to cleave the peptide from the resin. The resin
was filtered and the filtrate was cooled at �20�C. After
precipitating with diethyl ether, the peptide was redissolved
in water and lyophilized. The crude peptide was purified
ARCMED2032_proof ■ 3

Figure 1. Culture model of the blood-brain barrier (A). The model is a co-cultur

(PC) and rat astrocytes (AC). In the permeability assay (B) culture inserts with EC

The direction of the transfer from the donor to the acceptor compartment is ind

(mean � SD, n 5 4).
using a semipreparative RP-HPLC column (Altima HP
C18, 1 cm � 25 cm, 5 mm particle size). The homogeneity
of the final peptide was determined by analytical RP-HPLC
(Altima HP C18 0.46 cm � 25 cm, 5 mm particle size) col-
umn, retention time: 6.5 min. ESI-MS analysis confirmed
the molecular mass of the peptide ([MþHþ]found: 693.5;
([MþHþ]theoretical: 693.4 Da).

Blood-Brain Barrier Model

Primary brain endothelial cells, astrocytes and pericytes
were isolated from 1-month-old Wistar rats. Cell isolation
and the preparation of the co-culture BBB model was per-
formed as previously described (16). Brain endothelial cells
and pericytes were seeded on the opposite surfaces of
collagen IV and fibronectin coated Costar Transwell poly-
carbonate inserts (12 mm diameter, 0.4 mm pore size; Corn-
ing, Corning, NY) and kept in co-culture with glial cells to
reach good barrier properties for the permeability measure-
ments (Figure 1A). The tightness of the model was checked
by transendothelial electrical resistance (TEER) measure-
ment using an EVOM resistance meter and STX-2 elec-
trodes (World Precision Instruments, USA). TEER of
coated, cell-free filters was subtracted from measured
TEER values of the BBB model. TEER of rat brain endo-
thelial cell layers was 593 � 47 U cm2 (mean � SD;
n 5 12) in agreement with our previous data (17).

Bidirectional Permeability Assay

To measure the transfer of opiorphin across the BBB
model, cell culture inserts were transferred to 12-well plates
containing 1.5 mL Ringer-Hepes solution (136 mM NaCl,
0.9 mM CaCl2, 0.5 mM MgCl2, 2.7 mM KCl, 1.5 mM
KH2PO4, 10 mM NaH2PO4, 25 mM glucose and 10 mM
Hepes, pH 7.4) in the lower or acceptor compartments.
The peptide was dissolved in distilled water to yield a
10-mM solution, which was further diluted in Ringer-
Hepes buffer. In the upper or donor chambers, culture me-
dium was replaced by 0.5 mL Ringer Hepes containing
opiorphin at 10 mM concentration or permeability markers
fluorescein (10 mg/mL; molecular weight: 376 Da) or
0-6-2015 20-16-19

e of three cells types, primary rat brain endothelial cells (EC), rat pericytes

and PC cells are used. Blue circles represent opiorphin, our test molecule.

icated by an arrow. Clearance of opiorphin across the culture model (C)
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Figure 2. Extracted ion chromatograms of m/z: 347.1932 � 5 ppm corre-

sponding to the doubly charged peptide ion of opiorphin. Upper panel: sam-

ple from the receiver compartment (‘‘brain side’’) after 30 min incubation,

middle panel: sample from the receiver compartment after 60 min incuba-

tion, bottom panel: sample from the donor compartment (‘‘blood side’’) after

60 min incubation. Peak labels denote retention time and m/z value.
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bovine serum albumin (1%, molecular weight: 65 kDa)
bound to Evans blue (165 mg/mL) (Figure 1B). To measure
peptide flux from the upper to lower compartment (blood
to brain direction) the inserts were transferred at 30 and
60 min to new wells containing Ringer-Hepes solution.
Opiorphin in samples from the donor and acceptor com-
partments (n 5 4) were detected by mass spectrometry.
Evans blue-albumin content of samples was measured
at 584 nm excitation and 680 nm emission wavelengths
(Fluostar Optima, BMG Labtechnologies, Germany).
Fluorescein concentrations were determined by the same
instrument using 485 nm excitation and 520 nm emission
wavelengths. Clearance and the apparent permeability co-
efficient (Papp) were calculated as described earlier (16) by
the following equations:

Cleared volume ðmlÞ5CA �VA

CD

where C is concentration of the peptide in the acceptor or
donor compartments and V is the volume of the acceptor
compartment (1.5 ml).

Pappðcm=sÞ5 D½C�A �VA

A� ½C�D �Dt

where D[C]A is the concentration difference of the peptide
in the acceptor compartments after 1 h and CD is the con-
centration in the donor compartments at 0 h, and VA is
the volume of the acceptor compartment (1.5 mL), and A
is the surface area available for permeability (1.1 cm2).
The quantity of opiorphin transfer was calculated from
areas under curve from the chromatograms representing
the intact opiorphin peptide.
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Mass Spectrometry

LC-MS experiments were performed on a nanoAcquity
UPLC (Waters) on-line coupled to an Orbitrap-Elite
(Thermo Scientific) hybrid tandem mass spectrometer oper-
ated in the positive ion mode. Five ml of the samples con-
taining the peptide was injected onto a trapping column
(Waters Symmetry C18; 180 mm � 20 mm, 5 mm particle
size) and after washing with 1% solvent B for 5 min was
transferred onto the separating column (Dionex Acclaim
PepMap; 75 mm � 25 cm, 2 mm particle size, 100 �A pore
size) developing a linear gradient of 1e35% solvent B in
10 min using a flow rate of 200 nl/min (solvent A: 0.1% for-
mic acid/water; solvent B: 0.1% formic acid/acetonitrile).
For MS experiments, mass range of m/z: 200e600 was
monitored at resolution of 60000 using internal calibration
to the background polysiloxane ion (m/z: 445.120024).
Relative quantity of opiorphin was estimated using the ex-
tracted ion chromatogram (XIC) of m/z: 347.1932 (�5
ppm) peak intensity corresponding to the doubly charged
opiorphin peptide cation.
ARCMED2032_proof ■ 30
Results

MS/MS characterization of the synthetic opiorphin peptide
was performed using both collision-induced dissociation
and higher energy collisional activation. The observed m/
z value of the protonated peptide ions and fragmentation
pattern were in good agreement with those expected for
the QRFSR sequence. Signal intensities in the receiver
compartment samples were 1e2 � 106 as opposed to 1.5
� 108 in the donor compartment samples (Figure 2).

The relative quantity of opiorphin that penetrated through
the BBB model was calculated to be 2.91 � 1.13% based on
the area under curve of the doubly charged opiorphin peptide
ion m/z 347.1932. As a comparison, 0.41 � 0.03% of fluo-
rescein and 0.03� 0.01% of albumin crossed the brain endo-
thelial cell layers in parallel inserts from the same cell
isolation under identical assay conditions.

The clearance of opiorphin is shown in Figure 1C. Papp
of opiorphin was 0.53 � 1.36 � 10�6 cm/s (n 5 4). In par-
allel inserts from the same cell isolation under identical
assay conditions the Papp of fluorescein was 1.03 � 0.09
� 10�6 cm/s (n 5 4) and that of albumin 0.07 � 0.04 �
10�6 cm/s (n 5 4).

We also observed rapid conversion of N-terminal gluta-
mine into pyroglutamic acid both in 0.1% formic acid and
in Ringer-Hepes buffer used for BBB penetration experi-
ments. We monitored the pyroglutamic acid-containing
peptide using its calculated molecular mass [monoisotopic
MW: 675.3453 yielding a doubly charged protonated pep-
tide ion m/z:338.6799 (z 5 2)].
Discussion

We measured the transfer of opiorphin across a BBB cul-
ture model for the first time. The resistance data and Papp
-6-2015 20-16-19
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values for passive hydrophilic permeability markers fluo-
rescein and albumin were in accordance with our previous
data and indicated a tight barrier (16,17). Instead of radio-
labeling we used the native form of the peptide and a
sensitive method, LC-MS, to detect opiorphin. A mass
spectrometry method was already applied for the quantifi-
cation of opiorphin in human saliva (18). Our data indicate
that opiorphin crosses the BBB in vitro in the absence of
plasma factors at a slow rate, which is lower than that of
the paracellular marker fluorescein but higher than that of
the passive transcellular marker albumin. At the same time
the extent of penetration was significant, |3% in contrast to
the low amount of the paracellular markers. As a compari-
son, numerous endogenous peptides or regulatory proteins
have !0.1%/g uptake in brain and are still effective in
the CNS after peripheral administration (12e14,19).
Among the opiates, the centrally active morphine has an
uptake of only !0.02%/g brain (20).

The amount of opiorphin transferred across the BBB
culture model indicates that a specific transport mechanism,
a peptide transport system or receptor-mediated transcyto-
sis, may be involved in its transfer. Six transport systems
(PTS1-6) have been identified for peptides at the BBB,
which transport enkephalins, arginine vasopressin, or pitui-
tary adenylate cyclase-activating polypeptides, among
others (11). The peptide/histidine transporter 2 (PHT2,
SLC15a3) was described at the BBB carrying di- and tri-
peptides, whereas larger peptides or proteins like insulin
or transferrin cross the BBB by receptor-mediated transcy-
tosis (15). To reveal if carriers or transporters participate in
opiorphin transfer, further experiments are needed.

We observed the conversion of N-terminal glutamine
into pyroglutamic acid in the peptide samples. Peptide N-
terminal glutamines are prone to cyclization yielding pyro-
glutamic acid. This reaction can be catalyzed enzymatically
by cyclization of L-glutamine and L-glutaminyl peptides
(21), but the reaction also happens spontaneously, espe-
cially at acidic pH values. The presence of glutaminyl
cyclase is described in brain but not known at the level of
brain capillaries and there are no data on how pyrogluta-
mate formation modifies the transport of peptides across
the BBB. The tripetide thyrotropin-releasing hormone con-
tains a pyroglutamate and has a slow, but in vivo measur-
able penetration across the BBB (22).

The relative quantity of opiorphin penetration through
the BBB culture model is obviously more elevated than
values obtained with iv-administered labeled opioid pep-
tides (14). A possible explanation for this difference is that
in our culture system no serum factors were present during
the experiments, which is a limitation of the model. Pepti-
dases are active in blood and rapidly cleave the native
opiorphin peptide, which has a metabolic half-life of 6
min in human plasma; therefore, enzyme activity limits
the transfer of opiorphin to the CNS in vivo (4,23,24).
In vivo data suggest that even in the presence of serum
ARCMED2032_proof ■ 3
peptidases opiorphin can cross the BBB in sufficient
amounts to raise the concentration of endogenous opioid li-
gands by inhibiting enkephalinases; thus, it can be appro-
priate for producing central effects.

In conclusion, our results indicate that opiorphin crosses
cultured brain endothelial cells. These data are in agreement
with observations that opiorphin potentiates enkephalin-
mediated antinociception and exerts antidepressant-like
effects. We suggest that opiorphin may have a potential for
further development as a centrally acting novel drug for
the treatment of pain or depression.
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