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Abstract  

Calcium (Ca2+) is a critical cofactor and signaling mediator in cells and the concentration of 

cytosolic Ca2+ is regulated by multiple proteins, including the plasma membrane Ca2+-ATPases 

(PMCAs), which use ATP to transport Ca2+ out of cells. PMCA isoforms exhibit different kinetic 

and regulatory properties, thus the presence and relative abundance of individual isoforms may 

help shape Ca2+ transients and cellular responses. We studied the effects of three PMCA isoforms 

(PMCA4a, PMCA4b, PMCA2b) on Ca2+ transients elicited by conditions that trigger store-

operated Ca2+ entry (SOCE) and that blocked Ca2+ uptake into the endoplasmic reticulum in 

HeLa cells, human embryonic kidney (HEK) 293 cells, or primary endothelial cell isolated from 

human umbilical cord veins (HUVECs).  The slowly activating PMCA4b isoform produced long-

lasting Ca2+ oscillations in response to SOCE.  The fast-activating isoforms PMCA2b and 

PMCA4a produced different effects. PMCA2b resulted in rapid and highly PMCA abundance-

sensitive clearance of SOCE-mediated Ca2+ transients; whereas PMCA4a reduced cytosolic Ca2+ 

resulting in the establishment of a higher than baseline cytosolic Ca2+ concentration. 

Mathematical modeling showed that slow activation was critical to the sustained oscillation 

induced by the “slow” PMCA4b pump. The modeling and experimental results indicated that the 

distinct properties of PMCA isoforms differentially regulate the pattern of SOCE-mediated Ca2+ 

transients, which would thus affect the activation of downstream signaling pathways.  

 

Introduction 

Different types of stimuli evoke Ca2+ release from the endoplasmic reticulum (ER) Ca2+ 

stores through inositol 3-phosphate (IP3) receptors, which are ligand-activated Ca2+ channels. 

When ER Ca2+ is diminished, STIM (stromal interaction molecule; STIM 1 and 2) molecules 

aggregate in the ER membrane and translocate to regions near the plasma membrane where they 
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activate ORAI (ORAI 1, 2, and 3), the pore forming subunits of store-operated calcium entry 

(SOCE) channels (1-3). Several downstream pathways are regulated by Ca2+ entry through SOCE 

rather than by Ca2+ released from internal stores (4-8). SOCE stimulates the calcium-regulated 

phosphatase calcineurin, which activates the transcription factor NFAT (9, 10), stimulates or 

inhibits adenylyl cyclases (5), stimulates transcription of the early gene, cfos (4), and activates 

cytoplasmic phospholipase A2 (cPLA2) (4, 11). 	
  

Following an increase in cytosolic Ca2+ concentration ([Ca2+]i), “excess” Ca2+ that is not 

buffered is removed from the cytoplasm by a combination of activities of plasma membrane 

transporters [Na+-Ca2+ exchanger (NCX) and Ca2+ ATPase pumps (PMCAs)], the mitochondrial 

Ca2+ uniporter, and the sarcoplasmic or endoplasmic reticulum (SERCA) and the secretory 

pathway (SPCA) Ca2+ ATPase pumps (12). Ca2+-activated cell functions depend on the amplitude 

and the spatial and temporal shape of the Ca2+ signal; hence, modulation of the signal by Ca2+-

removal mechanisms is predicted to impact the cellular response. 

PMCAs are key elements of the cytosolic Ca2+-removal system. There are four genes 

encoding mammalian PMCAs (PMCA1-4) and alternative splicing generates more than 20 

PMCA variants (13). Although all PMCAs are activated by Ca2+-calmodulin (CaM), they differ 

in the kinetics of activation by and affinity for Ca2+-CaM. Here, we focus on 3 isoforms: 

PMCA2b, PMCA4b, and PMCA4a (Table 1). The kinetics of binding (kon) of Ca2+-CaM to 

PMCA4b are very slow; whereasPMCA2b and PMCA4a exhibit fast Ca2+-CaM binding (14-17). 

The inactivation rates of the pumps are also different with PMCA2b and PMCA4b remaining 

active much longer than PMCA4a, which has a much faster Ca2+-CaM off rate (koff) (14, 18, 19). 

This long-lasting activity of PMCA2b and PMCA4b has been referred to as a “memory” of a past 

Ca2+ spike (19). It is also important to note that PMCA2b has the longest memory of all PMCAs 

(Table 1). The differences in their kinetics imply that each PMCA isoform will respond 
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differently to an incoming Ca2+ signal. Therefore, we speculated that each cell type has the 

appropriate set of PMCA isoforms such that cells that need to respond quickly to an incoming 

spike (for example, neurons) will have “fast” pumps and non-excitable cells will have “slow” 

pumps (18).  PMCA4 is ubiquitously distributed; PMCA4b is the major isoform of human 

erythrocytes, as well as of many epithelial cells such as in the kidney (20); whereas PMCA2b and 

PMCA4a are present in specific areas of the brain and other highly specialized cells and tissues 

(21). 

Data comparing the influence of different PMCA isoforms on the cytosolic Ca2+ signaling of 

live cells are limited. Experiments with Chinese hamster ovary (CHO) cells in which IP3-

mediated Ca2+ release from internal stores was measured together with Ca2+ entry through plasma 

membrane channels, and PMCA isoforms were overexpressed, the ubiquitously distributed 

PMCA isoforms PMCA1 and PMCA4 were less effective in Ca2+ clearance than the specialized 

“fast” pumps PMCA2 and 3 (22, 23). The faster clearance was attributed to the increased 

exporting activity of the PMCA2 and PMCA3 isoforms, and the differences in peak of the Ca2+ 

signal were ascribed to differences in either ER Ca2+ content or the efficiency of Ca2+ extrusion. 

However, most of these experiments examined global Ca2+ changes and only a few examined 

specifically the SOCE-mediated Ca2+ signals (22, 24-28). 

The Ca2+ signal initiated by SOCE is tuned by several mechanisms that finally determine the 

extent (in time and space) of the Ca2+ signal, which is then translated into different downstream 

events. Here, we examined how PMCA4a, PMCA4b, and PMCA2b, which have different 

activation and inactivation kinetics (Table 1), affected Ca2+ transients mediated by SOCE. We 

established a HeLa cell line in which PMCA4 was stably knocked down, expressed mCherry-

tagged PMCA variants of PMCA4a, PMCA4b, or PMCA2b, and measured the SOCE-induced 

Ca2+ signal by coexpressing the genetically-encoded Ca2+ indicator GCaMP2. We then developed 
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a simplified model that included specific kinetic features of the PMCAs and used the model to 

explore how the kinetic parameters of PMCA4b produced an oscillating Ca2+ signal in response 

to SOCE. The model also correctly replicated the experimentally observed SOCE-induced Ca2+ 

signal in cells expressing PMCA2b or PMCA4a and may thus be useful for predicting the pattern 

of Ca2+ signaling in cells containing different amounts and types of the PMCA pumps.	
  

Results 

SOCE-mediated Ca2+ signals are more uniform in PMCA4-knockdown HeLa cells than in 

wild-type HeLa cells.  

Cytosolic calcium transients are shaped by complex mechanisms, including Ca2+ influx 

through plasma membrane channels, Ca2+ release from intracellular stores, and multiple calcium-

removal systems. To understand how different PMCA isoforms influence Ca2+ signaling, we 

examined their effects on the Ca2+ transients generated by SOCE. We found that HeLa cells had 

relatively small amounts of PMCA1 and PMCA4b isoforms and that the abundance of PMCA4b 

increased when cells reached confluence (Fig. 1A). We had previously generated a stable HeLa 

cell line (sh-PMCA4) in which PMCA4 isoforms were knocked down with a short-hairpin RNA 

against PMCA4 (29) and we confirmed that this line lacked PMC4b in subconfluent and 

confluent cultures (Fig. 1A). We transiently transfected the sh-PMCA4 and wild-type HeLa cells 

with the fluorescent calcium indicator GCaMP2 and monitored Ca2+ signals in confluent cultures 

in response to SOCE using a Ca2+ re-addition protocol under conditions in which Ca2+ uptake into 

the ER was blocked with thapsigargin (Fig. 1B). To activate SOCE, we emptied the ER Ca2+ pool 

under nominally Ca2+-free conditions by the sequential additions of thapsigargin (to specifically 

inhibit SERCA) and ATP. In some experiments, we used thapsigargin in combination with low 

concentrations of the Ca2+ ionophore ionomycin, which primarily releases Ca2+ from the internal 

pool (30). After releasing Ca2+ from the ER pool in Ca2+-free medium, re-addition of Ca2+ to the 
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medium resulted in a large increase in [Ca2+]i that persisted for about 10-15 minutes in both the 

sh-PMCA4 and control HeLa cells (Fig. 1C, D). The sh-PMCA4 HeLa cells showed a greater 

uniformity in the Ca2+ transients compared to the control cells (see also movie S1). The [Ca2+]i in 

a subpopulation of control HeLa cells returned to baseline faster than in the other cells, indicating 

substantial variability in the extrusion capacity between cells. Because this subpopulation was 

absent in the sh-PMCA4 cells, differences in PMCA4 abundance in individual control cells may 

contribute to this variability. These experiments suggested that PMCA4 plays an important role 

in Ca2+ clearance during SOCE-induced Ca2+ transients, consistent with previous findings (24, 

27, 31, 32). 

Slow PMCAs generate an oscillating Ca2+ response following SOCE  

On the basis of their distinct activation and inactivation kinetics, PMCAs are categorized into 

slow and fast pumps, and pumps with a short or long “memory” of previous activation. To 

examine the influence of PMCAs in these different categories on the SOCE-mediated Ca2+ 

signal, we created mCherry-tagged PMCA constructs: mCherry-PMCA4b (slow with memory), 

mCherry-PMCA4a (fast with short memory), and mCherry-PMCA2b (fast with long memory). 

We have shown previously (33) that the plasma membrane delivery of PMCA4b was most 

efficient in confluent cells and that three consecutive leucine residues (Leu1167-1169) at the C-

terminal region were responsible for its enhanced internalization under subconfluent conditions. 

Therefore, in certain experiments we used the PMCA4b-LA mutant in which these leucines were 

replaced by alanines, resulting in enhanced plasma membrane localization of PMCA4b without 

affecting PMCA4b activity (33). We used the mCherry signal to identify the PMCA-transfected 

cells, enabling analysis of the SOCE-mediated Ca2+ signal and PMCA abundance simultaneously 

at the single-cell level. To allow direct comparison of the experimental data, we selected cells 
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with similar abundance of the PMCAs (mCherry intensity), analyzed confluent cultures, and 

acquired the data with identical acquisition parameters and settings.  

We analyzed the effect of the slow PMCA4b pump on SOCE-mediated Ca2+ transients in 

HeLa cells transiently transfected with GCaMP2 and mCherry-PMCA4b or mCherry-PMCA4b-

LA. Compared with the Ca2+ transients in control HeLa cells (Fig. 1C) or the sh-PMCA4 cells 

(Fig. 1D), the cells with either mCherry-PMCA4b or mCherry-PMCA4b-LA had a different 

pattern of Ca2+ transient (Fig. 2A, B): Following the first peak in [Ca2+]i, Ca2+ returned much 

faster to the baseline concentration in the either mCherry-PMCA4b or mCherry-PMCA4b-LA 

cells. Additionally, in many of the mCherry-PMCA4b or mCherry-PMCA4b-LA cells, we 

observed periodic baseline oscillations (Fig. 2A and B). The pattern of Ca2+ transients was more 

variable among different cells expressing mCherry-PMCA4b (Fig. 2A) compared with the highly 

synchronized oscillations in the mCherry-PMCA4b-LA-expressing cells (Fig. 2B, movie S2), 

which may be due to a more uniform plasma membrane localization of the mutant. The number 

of Ca2+ peaks during a 10-minute recording period was ~3-4 in mCherry-PMCA4b-LA cells and 

was 2-3 peaks in the mCherry-PMCA4b cells. We confirmed the presence of the mCherry-tagged 

proteins by Western blotting, which showed that these proteins were produced in excess of the 

endogenous proteins (Fig. 2C).  

Previous experiments suggested that PMCAs were primarily responsible for removing Ca2+ 

after a moderate SOCE-mediated spike and for determining resting [Ca2+]i in endothelial cells 

(26);(34). We found that primary endothelial cells isolated from human umbilical veins 

(HUVECs) had a greater abundance of PMCA4b than PMCA1b (Fig. 2C) and that PMCA2 or 

PMCA4a were not detectable. We analyzed the SOCE-mediated Ca2+ signal in HUVECs loaded 

with the Ca2+ indicator dye Fluo4. Because our previous studies suggested that the PMCA4b 

protein was in the plasma membrane only in confluent HUVEC cultures (33), we analyzed Ca2+ 
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signals using the Ca2+ re-addition method in confluent cultures. SOCE induced an initial peak 

that was followed by a few irregular Ca2+ spikes (Fig. 2D), similar to the pattern seen in the 

mCherry-PMCA4b-overexpressing HeLa cells (Fig. 2A, B). Application of the SOCE channel 

inhibitor BTP2 abolished Ca2+ entry (Fig. 2E), confirming that Ca2+ signal arose from SOCE, 

which is consistent with previous findings (35).  

Fast PMCAs with long or short memory generate distinct Ca2+ responses following SOCE  

We transiently expressed the fast with a short memory PMCA4a (tagged with mCherry) and 

the fast with a long memory PMCA2b (tagged with mCherry) along with GCaMP2 in the sh-

PMCA4 cells to evaluate if these different classes of PMCAs produced distinct patterns of Ca2+ 

signal in response to SOCE.  Cells expressing mCherry-PMCA4a exhibited a quick rise in Ca2+ 

that was followed by a rapid decline to a new, elevated [Ca2+]i (Fig. 2F). In contrast, cells 

expressing mCherry-PMCA2b rapidly cleared the Ca2+, returning [Ca2+]i to baseline in less than 

30 s (Fig. 2G).  

The patterns of Ca2+ transients induced by various stimuli are governed by the kinetic 

properties of the PMCA isoforms 

To determine if PMCA isoforms also influenced the patterns of Ca2+ signals produced in 

response to a SOCE-independent increase in [Ca2+]i, we used the calcium ionophore A23187 in 

the presence of 2 mM external calcium to promote a cytosolic calcium signal independent from 

the plasma membrane channels in HeLa cells. Surprisingly, the patterns of Ca2+ signals were 

quite similar to those triggered by SOCE in the presence of the various PMCAs (fig. S1). Control 

HeLa cells produced variable responses (fig. S1A), similar to those produced by SOCE (Fig. 1C).  

Cells expressing mCherry-PMCA4b-LA exhibited an oscillating pattern under both stimulation 

conditions (fig. S1B, Fig. 2B).  Expression of mCherry-PMCA2b resulted in rapid clearance and 
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Ca2+ declined to basal concentrations (fig. S1C, Fig. 2G), and expression of mCherry-PMCA4a 

resulted in an increased [Ca2+]i, following the initial spike (fig. S1C, Fig. 2F).  

Human embryonic kidney 293 (HEK293) cells are a widely used and easily transfected cell 

line. Therefore, we tested if the distinct pattern produced by the different PMCAs in HeLa cells 

was also generated in these cells. First, we determined by Western blotting that, although 

PMCA1 is the main isoform in both HeLa and HEK293 cells, the abundance of PMCA1 is 

greater in HEK293 cells than in HeLa cells (fig. S2A). Despite the relatively high abundance of 

PMCA1 in HEK293 cells, the SOCE-mediated signal changed dramatically when PMCAs were 

overexpressed in HEK293 cells, replacing the pattern seen in the control cells (fig. S2B-E) and 

suggesting that the kinetic property of the most abundant PMCA isoform determines the shape of 

the Ca2+ signal. 

The SOCE-induced Ca2+ transient is sensitive to the abundance of PMCA2b but less sensitive 

to the abundance of the PMCA4 variants  

To determine if the Ca2+ signal depended on the abundance of the PMCA isoform, we 

generated a HeLa cell line stably expressing GCaMP2 using the Sleeping-Beauty transposon 

expression system. This cell line provided uniform expression of the GCaMP2 sensor, enabling 

testing of the SOCE-meditated signal in cells expressing various amounts of PMCA by transient 

transfection of the cells with the appropriate mCherry-PMCA constructs. We quantified the peak 

areas of the Ca2+ signal from the Ca2+ transients (GCaMP2 signal) in individual cells and plotted 

those data against the mCherry-PMCA abundance determined from the relative fluorescence 

intensities of individual cells. Fluorescence intensity acquired in each confocal image was taken 

at the same acquisition parameters and settings for all mCherry-PMCA constructs. The influence 

of the abundance of mCherry-PMCA4b or mCherry-PMCA4a on the Ca2+ signal was relatively 

modest (Fig. 3A and B). In contrast, calcium handling in mCherry-PMCA2b-expressing cells was 
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highly sensitive to small alterations in the abundance of PMCA2b: The Ca2+ peak area dropped 

exponentially as mCherry-PMCA2b abundance increased (Fig. 3C and D). Further, the resting 

[Ca2+]i was independent of the presence of the mCherry-PMCAs (Fig. 3E and F), indicating that 

the characteristic changes in the Ca2+ signal were not due to differences in the resting [Ca2+]i.  

SOCE is responsible for the sustained Ca2+ entry   

To confirm that the Ca2+ entry was mediated by the SOCE channels, we tested the effects of 

the inhibitors SKF-96365 and BTP2 (36). We monitored Ca2+ signals in HeLa cells expressing 

mCherry-PMCA4a or mCherry-PMCA4b-LA but added SKF-96365 ten minutes after SOCE 

initiation (Fig. 4A, B) or BTP2 before SOCE initiation (Fig. 4C, D). The SOCE-induced Ca2+ 

signals were terminated and [Ca2+]i returned quickly to baseline after SKF-96365 addition in both 

the mCherry-PMCA4a-expressing or mCherry-PMCA4b-LA-expressing cells. BTP2 completely 

blocked the Ca2+ signal in the mCherry-PMCA4a-expressing cells (Fig. 4C) and eliminated the 

oscillations in the mCherry-PCMA4b-LA-expressing cells (Fig. 4D). These experiments suggest 

that the oscillations or sustained increase in [Ca2+]i resulted from an interplay between the 

activity of the SOCE channels and the PMCAs.  

The PMCA-controlled SOCE pattern is retained at different extracellular Ca2+ 

concentrations   

Because Ca2+ entry through SOCE channels and its inhibition by Ca2+-calmodulin depends on 

the extracellular concentration of Ca2+ ([Ca2+]e) (37), we tested how changing [Ca2+]e affected the 

SOCE-induced Ca2+ pattern in the presence of the different PMCAs (Fig. 5). To initiate SOCE 

following store depletion with thapsigargin, [Ca2+] of the incubation medium was increased by a 

stepwise addition of 0.5, 1, and 2 mM Ca2+, and Ca2+ signals were monitored for 5 minutes after 

each addition. In sh-PMCA4 cells each increase in [Ca2+]e resulted in an incremental increase in 

[Ca2+]i (Fig. 5A). In contrast, cells expressing the fast-activating, short memory mCherry-
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PMCA4a exhibited a return of [Ca2+]i to the same elevated baseline induced following the first 

increase in [Ca2+]e (Fig. 5B). Interestingly, the spike induced by 0.5 mM [Ca2+]e was the largest, 

suggesting that at the elevated baseline [Ca2+]i PMCA4a could respond more rapidly to the next 

increase in Ca2+, resulting in smaller peaks after the second and third additions of [Ca2+]e. Cells 

expressing the fast-activating, long memory mCherry-PMCA2b produced a smaller initial Ca2+ 

transient than either the sh-PMCA4 or mCherry-PMCA4a-expressing cells and the change in 

[Ca2+]i following the exposure to 1 mM and 2 mM [Ca2+]e was negligible (Fig. 5C). Cells 

expressing mCherry-PMCA4b-LA, which is the slow with memory isoform, exhibited equally 

large spikes after each addition (Fig. 5D). This indicated that PMCA2b remained mostly 

activated during the experiment; whereas PMCA4b became inactivated after each Ca2+ challenge 

by the end of the 5-minute incubation period. Thus, these experiments indicated that PMCAs 

with different memory properties and activation kinetics contribute to the character of the SOCE-

mediated Ca2+ signal even at distinct [Ca2+]e. 

Modeling of the SOCE-mediated Ca2+ signal supports the essential role of different PMCA 

isoforms in shaping the signal   

We generated a simplified kinetic model that accounts for steps including Ca2+ entry through 

the SOCE channel and Ca2+ extrusion from the cell through the PMCA (Table 2, chemical 

equations; text S1, differential equations). The model is based on a previously designed system 

(15) except that here Ca2+ handling through the ER Ca2+ pool is not considered (because our 

experimental system eliminated ER Ca2+ participation by the use of thapsigargin and pool 

depletion) and the representation of SOCE is updated. SOCE is indicated in equations (1-3) 

where equation (1) represents clustering of the channel molecules (STIM and ORAI); equation 

(2) represents Ca2+ entry through the channel; and equation (3) describes inhibition of the channel 

by Ca2+-CaM binding (37). Equations 4 through 12 describe reactions of PMCA-mediated Ca2+ 
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expulsion (15). The equations (4-5) and (9-10) represent the basal and the Ca2+-CaM-activated 

PMCA activity, respectively (38, 39). The formation of the Ca2+-CaM complex is described in 

equations (6) and (7). We could not obtain satisfactory fits of the PMCA4b data by the model 

unless we included 2 classes of sites for Ca2+ in CaM. Therefore, cooperative binding of Ca2+ to 

CaM was one property necessary to achieve oscillations. Equations (8) and (11-12) represent the 

association of the pump with and dissociation of the pump from Ca2+-CaM. Ca2+-CaM targets 

other than the SOC channel and PMCA, are summarized as T. The introduction of other Ca2+-

CaM targets was important to provide some buffering for free Ca2+-CaM. 

Because the rate constants for PMCA4b have already been published (15) (Table 3), we used 

the published parameters and fitted the data obtained from cells expressing mCherry-PMCA4b 

(Fig. 6A, B). Fitting the data from mCherry-PMCA2b-expressing and mCherry-PMCA4a-

expressing cells while using the parameters previously obtained from modeling the PMCA4b 

data [except the protein concentrations and the kinetic parameters of PMCA2b and 4a (15, 17, 

19); see Table 3] failed. Therefore, we only fixed the previously determined kinetic parameters of 

the PMCA isoforms (15, 19) and through fitting found the sets of parameters that yielded best fit 

curves within the error bars of experimental data. From these parameter sets, we chose the ones 

in which the parameters not directly related to PMCA were within an order of magnitude of the 

same parameters obtained for the PMCA4b fit (Table 3) and used them as starting points for 

further fitting. Eventually with this approach, we determined parameters that effectively 

reproduced the data (Fig. 6C, D), thereby providing mathematical support that the unique shape 

of each curve can be attributed to the different kinetic and regulatory characteristics of the PMCA 

isoforms.  

We used the model to explore how the properties of the system produced Ca2+ oscillations.  

We performed simulations of the change in [Ca2+]i over time using the parameters obtained by 
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data fitting (Table 3) and the DynaFit software (www.biokin.com).  Of the 3 PMCA variants 

tested, only the slow PMCA4b produced sustained oscillations (Fig. 2A, B) and the simulations 

showed that the slow activation of PMCA4b is important for generating the Ca2+ waves (Fig. 7).  

Simulations that produced Ca2+ oscillations like those observed in the PMCA4b-expressing cells 

indicated a temporal shift between the activation of the SOCE channel and the pump (Fig. 7A, 

B): The channel is predicted to become quickly activated followed by slower activation of the 

PMCA4b pump. After the first peak in activity, both the channel and pump activities are 

predicted to return to baseline (Fig. 7A). The simulations revealed a similar pattern of the 

activities of both pump and channel during the Ca2+ oscillatory phase, although at a smaller scale 

(Fig. 7B).  

We repeated the simulations varying the rate constant for Ca2+-CaM association to PMCA 

(k8) or dissociation from PMCA (k’8) (Fig. 7C, D). In the simulations, k8=0.2 s-1µM-1 and 

k’8=0.0008 s-1 represent curves with the kinetic values of PMCA4b (thick blue curve). These 

simulations revealed the importance of k8 in determining the presence of oscillations. The 

oscillatory pattern persisted when the value for k8 was below 0.2 (k8<0.2 s-1µM-1), imitating a 

super slow pump; the only difference was that the Ca2+ peaks became steeper and were shifted to 

the right. In contrast, when k8 was set to higher values (k8>0.2 s-1µM-1), representing a faster 

activating pump like PMCA2b, the oscillation dampened (Fig. 7D). Varying k’8 did not diminish 

the oscillations (Fig. 7E), indicating that the Ca2+ oscillations primarily required the slow 

activation of PMCA by Ca2+-CaM. The simulations indicated that slow binding allows Ca2+ to 

build up before PMCA is fully activated, such that Ca2+ entry peaks and Ca2+ extrusion become 

out of phase.  

Because our experiments suggested that the amount of pump present in the membrane was an 

important determine of Ca2+ oscillations, we explored this property with the model as well. We 
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found that varying the concentration of the pump in the simulations affected both the first peak 

and secondary spikes (Fig. 7F) in a manner similar to that determined experimentally (Figs. 2A 

and 3A). 

 

Discussion 

Previous studies documented that the PMCA is an essential component of SOCE-mediated 

Ca2+ signaling in non-excitable cells (26, 28, 40). In addition to its basic function as a global 

calcium efflux system, PMCAs can regulate IP3-mediated intracellular Ca2+ signaling by 

controlling the amount of phosphatidylinositol-4,5-bisphosphate in the plasma membrane, a 

function of these proteins that is at least partly independent of calcium-pumping activity (29). 

Here, we investigated how PMCA isoforms with different kinetic parameters changed the pattern 

of the SOCE-mediated Ca2+ signal and found that both activation and inactivation kinetics 

determined by the kinetics of the interaction between Ca2+-CaM and the specific PMCA played a 

role. We found that different shapes of Ca2+ signals (oscillation or discrete peaks) were 

characterized by the presence of fast or slow PMCA pumps.  

We then used our data to create a mathematical model of the contribution of PMCAs to 

shaping SOCE-induced Ca2+ transients, which confirmed that slow activation of PMCA4b due to 

its slow association with Ca2+-CaM was critical to producing oscillating Ca2+ signals. The rate 

constant determined by model fitting for the inactivation of the store-operated channel by Ca2+-

CaM is relatively high (k3~ 2.5 s-1µM-1), which would result in fast channel inactivation 

consistent with previous findings (37, 41). Thus, it is possible that the rhythm of the Ca2+ waves 

is controlled by the PMCA rather than by the SOCE channels (41). In agreement with this notion, 

artificially triggered Ca2+ entry by A23187 (fig. S1) mimicked the PMCA-mediated Ca2+ signal 
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patterns. However, in cells under normal stimulating conditions, both SOCE and PMCA likely 

contribute to the pattern of the Ca2+ signal.  

Because the slow activation of PMCA4b is a direct consequence of slow binding and the 

“conformational collapse” of CaM (42, 43), our model highlights the role of CaM in several 

aspects of the Ca2+ signal. Ca2+-CaM regulates not only the PMCA but also Ca2+ entry through 

the STIM-ORAI channels. Our model predicts that SOCE is inhibited by Ca2+-CaM and can close 

without store refilling in agreement with data obtained in HEK, HeLa, and human umbilical vein 

endothelial cells (37, 44, 45). Our findings also agree with those of Bird et al. (46) who showed 

transient activation of STIM1 during methacholin-induced Ca2+ oscillation in HEK293 cells.  

The regulation and complexity of Ca2+ oscillation have long been a challenge in the Ca2+-

signaling field and multiple modeling approaches have been applied to understand its 

mechanisms (47-49). Most computational models, however, use a plasma membrane Ca2+ 

channel and uptake of Ca2+ into and release of Ca2+ from the ER to sustain Ca2+ oscillations. 

These models incorporate PMCA as a simple Ca2+-efflux mechanism and use parameters 

allowing the best fit in the particular experimental and computational set-up. Here, by keeping 

the ER store empty, we could observe and model oscillations established by a slow PMCA and a 

Ca2+-entry channel. In addition to the data presented here, we know of only one other study in 

undifferentiated human bone marrow-derived mesenchymal stem cells that suggested that both 

Ca2+ entry through plasma membrane channels and Ca2+ extrusion mediated by PMCAs and 

NCXs were crucially important in generating sustained Ca2+ oscillations (50).  

The fast pumps generated a very different pattern of the Ca2+ signal from that of the slow 

PMCA4b. Among the fast pumps, PMCA2b has a long memory; whereas PMCA4a has a short 

memory (18, 19). Short memory indicates that CaM dissociates rapidly from the pump; therefore, 

the pump is inactivated quickly after the first Ca2+ spike. In a cell, the fast pumps will respond 
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quickly to the incoming Ca2+ signal. However, as the [Ca2+]i drops, PMCA4a becomes 

inactivated quickly because of its short memory, resulting in a relatively high steady-state [Ca2+]i 

after the spike. The sustained increase in [Ca2+]i requires constant Ca2+ influx, because [Ca2+]i 

will otherwise return to the baseline soon after SOCE is blocked (Fig. 4A). This short memory 

property of PMCA4a (15, 19) means that a cell with PMCA4a can respond to repeated stimuli 

(Fig. 5B). In contrast, PMCA2b - because of its long-lasting memory and a relatively high basal 

activity - stays active after [Ca2+]i declines and therefore depresses any additional incoming 

signal, even if the SOCE channel or other Ca2+ channels remain active after the spike. Thus, 

presence of the PMCA2b isoform allows discrete Ca2+ spikes - like the ones seen in cerebellar 

Purkinje neurons (51, 52) - but will restore [Ca2+]i to its low basal level despite the large demand 

on extrusion generated by the opening of the Ca2+ channels.   

The physiological situation is more complex than our simple model predicts. For example, in 

our model we assume one generic Ca2+-CaM target. In cells, there are hundreds of CaM targets, 

each with its own affinity for CaM and Ca2+. Indeed, the free CaM concentration may be limited 

depending on cell type and the relative abundance of the different CaM targets and CaM (53). 

Similarly, the cytosol contains several proteins that act as Ca2+ buffers but these were not 

included in our model nor were the effects of mitochondria. Although these factors are important 

in cells, they were not necessary to fit the model to the data accurately. 

The delayed activation of PMCA4b is a determining factor in shaping the SOCE response in 

endothelial cells (26, 28) and the tuning of the Ca2+ signal in T cell activation (24, 40). A physical 

interaction between STIM1 and PMCA4 occurs at the region of the immunological synapse, and 

this interaction inhibits PMCA-mediated Ca2+ clearance (27). Furthermore, STIM1, ORAI1, and 

POST (partner of STIM1) interact with and inhibit PMCA upon store depletion (54-56). 
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In conclusion, using HeLa and HEK293 cells, as well as primary endothelial cells, we showed 

that PMCA isoforms differentially affected the outcome of SOCE-induced signals. The slow 

PMCA4b sustained Ca2+ oscillations in the absence of store refilling; whereas the fast PMCA2b 

with its long-lasting memory efficiently cleared SOCE-induced Ca2+ signals back to baseline. 

PMCA4a, a fast pump with short memory, reduced SOCE-induced Ca2+ but produced a sustained 

elevation above baseline in [Ca2+]i without oscillations. The shape and kinetics of the SOCE-

induced Ca2+ responses were adequately described by a mathematical model that takes into 

account the Ca2+-CaM binding and activation kinetics of the PMCA isoforms. Our results provide 

evidence for the involvement of different PMCAs in shaping distinct Ca2+ responses. 

 

Materials and methods 

Reagents and antibodies.  

Pan-PMCA specific monoclonal mouse antibody 5F10, human PMCA4b-specific monoclonal 

mouse antibody JA3, and rabbit polyclonal antibody recognizing PMCA2 (NR2), have been 

described (57). A rabbit polyclonal antibody recognizing PMCA1 was obtained from Affinity 

BioReagents and a mouse monoclonal antibody recognizing Na,K-ATPase (α3 subunit) was from 

Enzo Life Sciences. Fugene HD Transfection Reagent was obtained from Roche Applied Science 

(Mannheim, Germany). All other chemicals used were of reagent grade. 

DNA constructs.  

pN1-GCaMP2 plasmid was a kind gift of Junichi Nakai, RIKEN Brain Science Institute, 

Saitama, Japan (58). Generation of the mCherry-PMCA4b construct (33) and the mCherry-

PMCA4b-L1167-1169A mutant construct (29) were described previously. mCherry-PMCA4a 

was made by replacing the 1.2 kb EcoRI fragment of mCherry-PMCA4b encoding the C terminus 

of PMCA4b with the corresponding 1.4 kb EcoRI fragment from pMM2-PMCA4a (17). The 
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mCherry-PMCA2b construct was created by replacing the EGFP fragment of pEGFP-C1-

PMCA2x/b (59) with the mCherry coding sequence from the pmCherry-C1 vector (Clontech) 

using the AgeI-KpnI restriction sites. 

Cell culture and transfection.  

HeLa and HEK293 cells were grown in DMEM supplemented with 10% FBS, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 2 mM glutamine under 5% CO2 at 37oC. One day prior to 

transfection cells were seeded into a Lab-TekTM II Chambered Slide (Nalge Nunc Int.) at 4-6x104 

cell density. Transfection was performed with FuGene HD (Roche) according to the protocol of 

the manufacturer. This procedure yielded about 70-80% transfected cells. Cells were analyzed 48 

hours after transfection. The sh-PMCA4 HeLa cell line was generated by transfecting HeLa cells 

with a PMCA4 shRNA plasmid (Santa Cruz Biotechnology, Inc.) as described (29). HUVEC 

cells were freshly isolated from human umbilical cord veins by the Institute of Pathophysiology 

(Semmelweis University, Budapest, Hungary) as described in (60, 61). Cells from passages 2–4 

were used for experiments. 

Generation of stable GCaMP2-expressing HeLa cell lines using the Sleeping Beauty (SB) 

transposon system.  

A DNA fragment encoding GCaMP2 was PCR-generated with AgeI(5')/BglII(3') restriction 

sites at its ends. Primer sequences were as follows: forward, 5’-

CTACCGGTCTCGCCACCAATG-3’; and reverse, 5’-AGATCTCCGCTCACTTCGCTGTC-3’. 

The complete GCaMP2 DNA-fragment was put into an SB-CAG-Amaxa GFP vector from which 

Amaxa GFP was excised with AgeI and BglII enzymes. The GCaMP2 fragment in the resulting 

vector is flanked on both sides by an inverted repeat-direct repeat (IRDR) region, which is the 

recognition motif of Sleeping Beauty (SB) transposase (62, 63), and the construct also contains a 

CAG promoter. Cells were cotransfected with a SB transposase plasmid and the SB-CAG-
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GCaMP2 transposon plasmid in a 10:1 ratio using FuGENE® HD reagent. An enhanced version 

of the transposase was used that has an approximately hundred-fold higher activity than the 

original transposase (64). Following transfection, cells were cultured for 2 weeks, trypsinized, 

and single cell clones were generated by dilution into 96-well plates. Individual GCaMP2-

expressing clones were identified by GFP fluorescence using a fluorescent microscope and 

expanded. HeLa-GCaMP2 clones were used in the experiments described in Figure 3. 

SOCE measurements using the ‘Ca2+-re-addition’ protocol.  

Cells were seeded into a Lab-TekTM II Chambered Slide (Nalge Nunc Int.). HeLa and 

HEK293 cells were transfected with the appropriate constructs using FuGENE® HD reagent as 

described above. Before confocal imaging, cells were switched to Phenol Red-free DMEM 

supplemented with 10% FBS, 10 mM HEPES (pH 7.4) and incubated for two hours. HUVECs 

were loaded with 1 µM Fluo4/AM at room temperature for 30 min. SOCE was measured 

according to the “Ca2+ re-addition” protocol with some modifications (65). In all cases, prior to 

Ca2+-store depletion the culture medium was replaced with nominally Ca2+-free Hank’s Buffered 

Salt Solution (HBSS) supplemented with 0.9 mM MgCl2, 100 µM EGTA, 100 µM CaCl2, and 20 

mM Tris (pH 7.6; ~2µM free Ca2+). SOCE channels are inhibited under acidic conditions; 

therefore, extracellular pH 7.6 was applied to ensure high SOCE channel activity (66). 

Intracellular Ca2+ stores were depleted by the addition of 2 µM thapsigargin (Tg) combined with 

100 µM ATP or 500 nM ionomycin to reach full store depletion in a relatively short period of 

time (5 minutes). The combined treatment was necessary to avoid long incubation of cells in the 

Ca2+-free media that may damage cell-cell junctions and result in cell detachment from cell 

culture surfaces (67, 68). SOCE was initiated by the re-addition of CaCl2 to adjust external Ca2+ 

concentration to 2 mM. Optionally, 50 µM SKF-96365 or 10 µM BTP2 was added, as indicated. 

Images were taken with an Olympus IX-81 laser scanning confocal microscope and Fluoview 
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FV500 (v4.1) software using an Olympus PLAPO 60× (1.4) oil immersion objective. For 

GCaMP2 and Fluo4 imaging, cells were excited at 488 nm and emission was collected between 

505 and 535 nm. mCherry-tagged PMCAs were illuminated at 543 nm and emission above 560 

nm was recorded. Images were acquired every 0.3 s, z-resolution was 1 µm. Time- lapse 

sequences were recorded with Fluoview Tiempo (v4.3) time course software at room 

temperature. The relative fluorescence was calculated as F/F0 (where F0 was the average initial 

fluorescence). GraphPad Prism4 software (http://www.graphpad.com) was used to analyze the 

experimental data. Images were processed with ImageJ and Prism Video File Converter Plus 

(v1.82) was used to generate QuickTime videos.  Maximum (Fmax) and minimum (Fmin) GCaMP2 

fluorescence were determined at the end of the experiments by the addition of 5 µM ionomycin 

and 10 mM EGTA, respectively. In some cases 0.1% DOC (deoxycholate) was also added to 

permeabilize the cells. [Ca2+]i in control and transfected HeLa-GCaMP2 cells was determined by 

using the Kd value and Hill coefficient described previously (69). 

Electrophoresis and Western blotting.  

HeLa and HEK293 cells were transfected with the appropriate constructs as above. Two days 

after transfection, cells were precipitated with ice-cold 6% trichloroacetic acid and resuspended 

in an electrophoresis sample buffer containing 62.5 mM Tris-HCl, pH 6.8, 2% SDS, 10% 

glycerol, 5 mM EDTA, 100 mM dithiothreitol and 125 mg/ml urea. If necessary, samples were 

neutralized by 1.7 M Tris, pH 8.8. Proteins in these cell lysates were separated by SDS-PAGE on 

7.5% acrylamide gels and were subsequently electroblotted onto PVDF membranes (Bio-Rad) 

and immunostained by antibodies recognizing all isoforms of PMCA [5F10 (1:5000)], PMCA4b 

[JA3 (1:1000)], PMCA1 (1:500), PMCA2 [NR2 (1:500)] or Na+,K+-ATPase (1:2000). Secondary 

antibody [anti-mouse-HRP or anti-rabbit-HRP (Jackson ImmunoResearch)] binding was detected 

by the ECL detection kit (Amersham).   
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Data fitting.  

To fit the data by model equations, we employed a weighted nonlinear least-squares method. 

The initial attempts of fitting with DynaFit software (www.biokin.com) did not yield satisfactory 

results. Therefore, we used custom-made software based on Simplex Induction Hybrid algorithm 

for minimization, which compares favorably with other algorithms for challenging optimization 

problems (70). Our software can limit parameter values within prescribed boundaries and 

includes many starting points that are generated automatically. The system of differential 

equations was solved by the fast and reliable LSODA numerical solver, which automatically uses 

appropriate methods for stiff and non-stiff equations  

(www.oecd-nea.org/tools/abstract/detail/uscd1227) that may alternate as a result of changing the 

rates during minimization. The weights for least-squares fitting were standard: inverse variances 

estimated from multiple measurements.  

To relate the fluorescence ratios generated by the GCaMP2 indicator to cytosolic Ca2+ 

concentrations, we determined Fmax and Fmin as described above and used the Hill equation with 

the parameters given by Willoughby et al. (69). Differential equations are included as text S1. 

The simulations performed (Fig. 7) were obtained with DynaFit, which was adequate for that 

task and more user friendly than our custom-made software. 

 

Supplementary Materials 

Text S1. The system of rate equations describing the kinetic model. 

Figure S1. A23187-induced Ca2+ signaling of control HeLa cells or HeLa cells expressing  

mCherry-PMCA4b-LA, mCherry-PMCA4a or mCherry-PMCA2b. 
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Figure S2. HEK293 cells generate the typical shape of the Ca2+ signals of the slow and fast 

PMCAs. 

Movie S1. SOCE signal in sh-PMCA4 HeLa cells. 

Movie S2. SOCE-mediated transients in HeLa cells cotransfected with mCh-PMCA4b-LA 

and GCaMP2. 
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Table 1. Basal activities and rate constants for binding (kon) and dissociation (koff) of CaM to the 

PMCAs. The kinetic properties are from (16, 18).  

 
PMCA 

PMCA4b 
Slow with 
memory 

PMCA4a 
Fast with no 
memory 

PMCA2b 
Fast with 
long memory 

Activity w/o CaM 
(% of maximum) 8.1-23 35-39 42-71 

kon
 (M-1 x s-1) 2x105 8x105 8x105 

koff (s-1) 8x10-4 2x10-2 2x10-4 

Kd=koff/kon (nM) 4 25 0.25 



	
   33 

 
Table 2. Theoretical Model. A: channel, AB: channel in clustered state, B: CaM-inhibited 

channel, P: PMCA, CaM: calmodulin, CaMh: CaM half-saturated with Ca2+, Cai: cytosolic Ca2+ 

concentration, Cae: extracellular Ca2+ concentration, T: generic calmodulin target other than 

channel and pump. See text S1 for the differential equations.   

 

A + A + A + A + A + A <==>  AB     k1  k’1 (1) 

AB + Cae ---->     AB + Cai    k2   (2) 

A + CaiCaM <==>  CaiB     k3  k’3 (3) 

_________________________________________________________________________ 

Cai + P <==>     CaiP     k4  k’4 (4) 

CaiP ---->       Cae + P    k5   (5) 

Cai + Cai + CaM <==>      CaiCaMh    k6  k’6 (6) 

Cai + Cai + CaiCaMh <==>      CaiCaM    k7  k’7 (7) 

CaiCaM + P <==>      PCaiCaM    k8  k’8 (8) 

Cai + PCaiCaM <==>      PCaiCaMCai    k9  k’9 (9) 

PCaiCaMCai ---->      Cae + PCaiCaM   k10        (10) 

PCaiCaM <==>   Cai+Cai+Cai+Cai+PCaM  k11  k’11 (11) 

PCaM ---->       P + CaM    k12        (12) 

CaiCaM + T <==>      TCaiCaM    k13  k’13 (13) 

------------------------------------------------------------------------ 
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Table 3. Parameter values. Extracellular calcium concentration [Cae](0)= 2000 µM.  

 

 

Parameter 4b 4a 2b Reference 

k1 (s-1 (µM)-5) 43879.2 15944.8 4217.4 this work 
k’1 (s-1) 0.0234 0.200 0.200 this work 

k2 (s-1 (µM)-1) 835.2 784.6 643.9 this work 

k3 (s-1 (µM)-1) 2.518 2.517 2.518 this work 

k’3 (s-1) 0.0186 0.0186 0.0186 this work 

k4 (s-1 (µM)-1) 10 10 80 (17, 38) for 
parameters k4, 
k’4 and k5 

k’4 (s-1) 50 50 50 

k5 (s-1) 5.5 12 12 

k6 (s-1 (µM)-2) 265.8 398.7 398.7 this work 
k’6 (s-1) 4895.9 2447.9 2447.9 this work 

k7 (s-1 (µM)-2) 419.3 252.9 515.1 this work 

k’7 (s-1) 0.0250 0.0343 0.0376 this work 

k8 (s-1 (µM)-1) 0.2 0.8 0.8 

 
(17, 19, 39) for 
parameters k8, 
k’8, k9, k’9, k10, 
k11, k’11, and 
k12 
 

 

k’8 (s-1) 0.0008 0.02 0.0002 

k9 (s-1 (µM)-1) 50 50 50 

k’9 (s-1) 10 10 10 
k10 (s-1) 30 30 30 

k11 (s-1) 0.0470 0.0957 0.0314 

k’11 (s-1 (µM)-4) 14.697 1.006 152.49 

k12 (s-1) 0.0331 0.0614 0.0340 

k13 (s-1 (µM)-1) 1.885 14.781 1.885 this work 

k’13 (s-1) 1.175x10-8 1.124x10-7 1.142x10-7 this work 

[A]T µM 0.00423 0.00711 0.01126 this work 

[T](0) µM 0.1355 0.2880 0.3014 this work 

[Cai](0) µM 0.0767 0.0700 0.0639 this work 

[P](0) µM 0.0173 0.0655 0.0356 this work 

[CaM(0)] µM 0.1840 0.3598 0.1249 this work 
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Figure 1. Generation and characterization of a PMCA4-knockdown HeLa cell line. (A) 

PMCA abundance in control HeLa (nontransfected) and sh-PMCA4 (sh4) HeLa cells grown for 

3, 5, or 7 days. Western blot analysis was performed with equal amounts (20 µg) of whole cell 

lysates using either the 5F10 antibody to detect both PMCA1 and PMCA4 (top) or JA3 antibody 

specific for PMCA4b (middle). Na,K-ATPase served as a loading control. (B) A representative 

experiment of the Ca2+ re-addition protocol for studying SOCE. The recordings are from sh-

PMCA4 HeLa cells. Thapsigargin (Tg) inhibits SERCA, ATP stimulates release from the ER 

store, addition of 2 mM Ca2+ initiates SOCE. (C) SOCE-mediated Ca2+ transients in individual 

control HeLa cells expressing GCaMP2. (D) SOCE-mediated Ca2+ transients in sh-PMCA4 HeLa 

cells expressing GCaMP2. The data in B-D are shown as normalized values (F/F0). The values 

are means ± 95% confidence interval (CI). Each panel represents >30 cells. 

Figure 2. The slow and fast PMCAs generate distinct SOCE-mediated Ca2+ transients. 

(A, B) Ca2+ transients in HeLa cells coexpressing GCaMP2 and mCherry (mCh)-PMCA4b or 

mCherry-PMCA4b-LA. Top shows confocal images of the cells showing the mCherry signal. 

Ca2+ signals were monitored in individual cells positive for mCherry in response to SOCE that 

was induced by the re-addition protocol adding 2 mM Ca2+ to cells after store depletion. (C) 

Western blot analysis of whole cell lysates of HeLa cells (40 µg) and HUVECs (40 µg) stained 

with the pan-PMCA antibody (5F10; upper blot) and PMCA4b-specific antibody (JA3; middle 

blot). The first lane shows a mixture of microsomal membrane preparation from COS-7 cells (2 

µg; representing PMCA1) mixed with microsomal membrane preparation from COS-7 cells 

transfected with the PMCA4b construct (0.05 µg; representing PMCA4b). The fourth lane shows 

lysates of HeLa cells transfected with mCh-PMCA4b (0.4 µg). The lower blot shows microsomal 

membrane preparation from COS-7 cells transfected with the PMCA2b construct (0.25 µg; 
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representing PMCA2b) and whole cell lysates of HUVECs (40 µg) stained with PMCA2-specific 

antibody (NR2). (D) Ca2+ transients in HUVECs monitored with the Ca2+ indicator Fluo4. SOCE 

was initiated by the re-addition of 0.8 mM Ca2+ after store depletion. (E) The effect of inhibition 

of SOCE channel with BTP2 (10 µM, 10 min) prior to store depletion and Ca2+ re-addition in 

HUVECs. (F, G) Ca2+ transients in HeLa cells coexpressing GCaMP2 and mCherry (mCh)-

PMCA4a or mCherry-PMCA2b. Data were acquired as described in A and B. The data in A, B, 

D, and E represent recordings from > 15 cells. The data in F and G show the averaged Ca2+ 

signals of at least 20-30 cells represented as the mean values ± 95% CI. 

Figure 3. The Ca2+ signal is highly sensitive to the abundance of PMCA2b but less 

sensitive to the abundance of the PMCA4b or PMCA4a. HeLa-GCaMP2 cells were 

transfected with the indicated mCherry-PMCA constructs, then SOCE was initiated with the Ca2+ 

re-addition protocol. (A, B, C) Relative mCherry-PMCA abundance were estimated from the 

fluorescence intensities of individual cells of the confocal images. We assumed that the intensity 

of mCherry fluorescence taken at the same acquisition parameters and settings for all constructs 

was directly proportional to mCherry-PMCA abundance in cells. Ca2+ signal peak area was 

quantified from Ca2+ transients measured after re-addition of external Ca2+. Ca2+ peak area (in 

arbitrary units) was then plotted against PMCA abundance (in arbitrary units) for cells expressing 

the indicated mCherry-PMCAs. Each point represents a single cell and data are from two 

independent experiments. (D) Confocal images of HeLa-GCaMP2 cells transfected with 

mCherry-PMCA2b. The first image indicates mCh-PMCA2b (red), the others show the GCaMP2 

signal (green) before (0 s) and after (10s and 50s) re-addition of Ca2+. The filled arrowhead 

indicates a cell with a higher abundance of mCherry-PMCA2b and the open arrowhead indicates 

a cell with lower abundance. (E) Resting [Ca2+]i in control and mCherry-PMCA4b- or mCherry-
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PMCA2b- transfected HeLa-GCaMP2 cells. Ca2+ concentrations were determined according to 

the Hill equation [nlogCa2+=log(Y-Ymin)/(Ymax-Y)+nlogKd, where Y=F/F0; Ymin=Fmin/F0; 

Ymax=Fmax/F0; Kd=1.71*10-7M; n=3.16. Fmax and Fmin were determined by the addition of 5 µM 

ionomycin and 10 mM EGTA, respectively.]. Data are shown as the mean ± SD of data points 

(N= 30-40 cells) from two independent experiments. (F) Resting [Ca2+]i in mCherry-PMCA2b-

transfected HeLa-GCaMP2 cells plotted as a function of PMCA2b abundance. 

Figure 4. SOCE-mediated Ca2+ transients are inhibited by SOCE channel inhibitors 

SKF-96365 and BTP2 in HeLa cells. (A) The effect of addition of SKF-96365 (50 µM) on 

SOCE-induced sustained elevation of [Ca2+]i in mCherry-PMCA4a-transfected HeLa cells. 

Average trace from 34 cells is shown (mean values ± 95% CI).  (B) The effect of addition of 

SKF-96365 (50 µM) on Ca2+ oscillations in cells expressing mCherry-PMCA4b-LA. The Ca2+ 

trace shown is representative of three separate experiments. (C, D) The effect of preincubation 

with BTP2 (10 µM, 10 min) prior to initiation of SOCE in HeLa cells expressing mCherry-

PMCA4a (C) or mCherry-PMCA4b-LA (D). Average trace from 20-30 cells is shown (mean 

values ± 95% CI). Ca2+ signals in all panels were detected by the fluorescence of GCaMP2. 

 

Figure 5. PMCA isoforms differentially affect SOCE induced at different extracellular 

Ca2+ concentrations. (A, B, C, D) Following store depletion, SOCE was initiated in HeLa cells 

expressing the indicated mCherry-PMCA constructs or in sh-PMCA4 HeLa cells by the stepwise 

addition of increasing [Ca2+]e and intracellular [Ca2+]i was followed for 5 minutes after each 

addition. Average traces from about 20 cells (or 8 cells for PMCA4b-LA) are shown (mean 

values ± 95% CI). Ca2+ signals in all panels were detected by the fluorescence of GCaMP2. 
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Figure 6. Fitting the kinetics of PMCA4b, PMCA4a, and PMCA2b to the experimental 

data. Data shown in Fig. 2 A, B, F, and G were fit to the model (Table 2 and text S1). The black 

lines correspond to the experimental data ± standard deviation (SD, dashed gray lines). The red 

lines represent the fits calculated by the simulations. (A, B) Data and fit of cells with PMCA4b 

shown on two different time scales. (C) Data and fit of cells with PMCA4a. (D) Data and fit of 

cells with PMCA2b.  

Figure 7. Simulations of SOCE, PMCA4b activities, and [Ca2+]i. (A, B) Simulations of the 

changes of [Ca2+]i and the fluxes of Ca2+ across the plasma membrane (JPMCA and Jchannel) during 

the first peak (A) and the subsequent Ca2+ oscillations (B) shown with different scales. JPMCA is 

the flux of Ca2+ through PMCA into the extracellular space (JPMCA = [PCaiCaMCai]*k10 + 

[CaiP]*k5). Jchannel is the flux of Ca2+ into the cytosol by the Ca2+ channel (Jchannel 

=[AB]*[Cae]*k2). (C, D) The effect of changing the association of PMCA4b with Ca2+/CaM (k8) 

on SOCE-generated Ca2+ signals. The thick blue curve with k8=0.2 s-1µM-1 represents the result 

using the fitted kinetic value of PMCA4b. (E) The effect of changing the dissociation of 

PMCA4b with Ca2+/CaM (k’8) on SOCE-generated Ca2+ signals.  The thick blue curve 

withk’8=0.0008 s-1 represents the result using the fitted kinetic value of PMCA4b. (F) The effect 

of changing the abundance (P) of PMCA4b on SOCE-generated Ca2+ signals. The thick blue 

curve with P = 0.2 µM represents the curve given by the fitted parameter P of the model. 

Simulations were performed with DynaFit software using the model as described in Table 2 and 

text S1. All unstated (or unmodified) parameters used in the simulations are given in Table 3. 
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