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Abstract— Sensory dead zones are intrinsic components of
the neural control of human balancing. Numerical and ana-
lytical studies of the resulting time-delayed switching models
for balance control suggest that transient stabilizations of an
inverted pendulum are possible. In other words, falls can be an
intrinsic property of the same mechanisms designed to prevent
them! These observations raise the possibility that the increased
risks of falling in the elderly may be a consequence of age-
dependent changes in the size of sensory dead zones.

I. INTRODUCTION

Falls are leading causes of mortality and morbidity in
the elderly. However, little is known about the mechanisms
that cause falls. Recently, video capture studies have shown
that only ≈ 24% of falls in elderly subjects who live in an
extended care facility can be attributed to “slips and trips”
[1]. The majority of falls were associated with incorrect
weight transfer and, in particular, 13% of falls occured
during quiet standing. These observations support the utility
of investigations into human balance control based on the
study of fluctuations in the vertical displacement angle, θ, or
alternatively in the center of pressure (COP) while subjects
are standing. Here we suggest that the statistical properties of
the fluctuations in θ as well as the occurence of falls can be
attributed, at least in part, to the presence of a sensory dead
zone for the detection of θ. By the term “sensory dead zone”
we mean the presence of a threshold below which changes in
sensory input are not reflected by changes in motor output.

II. BALANCE CONTROL

Current control theoretic investigations into human bal-
ance are motivated by considerations of the stabilization of
an inverted pendulum by time-delayed feedback [2-4]. The
equations of motion take the form of second-order delay
differential equations (DDE), for example

θ̈(t)− ω2
n sin θ(t) = f(θτ , θ̇τ ) , (1)

where τ is the time delay and ωn is the natural angular
frequency of the pendulum hung downward [4]. Postural
balance during quiet standing is typically modeled as a
planar pendulum and hence ωn =

√
3g/2` where g is
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Fig. 1. Block diagram of a time-delayed negative feedback system. The
’-’ sign indicates that the feedback signal acts to decrease the value of the
controlled variable and e(t) is the error signal.

the acceleration due to gravity and ` is the length of the
pendulum. Stick balancing at the fingertip is modeled as
a pendulum on a moving cart and hence ωn =

√
6g/`.

Plausible choices of the feedback, f , can be obtained from
a knowledge of the shortest pendulum that can be stabilized
for a given τ [2]. In writing (1) we have introduced the
notations θτ := θ(t − τ), θ̇τ := θ̇(t − τ); θ̇ := dθ/dt;
and θ̈ := d2θ/dt2. In order to obtain a solution it is
necessary to define appropriate initial functions, Φ(s), where
s ∈ [t0 − τ, t0] for the initial time t0.

Feedback control corresponds to a looped structure in
which the output is fed back, after a time delay τ , to influence
future outputs (Figure 1). The plant corresponds to the left-
hand side of (1) and the error signal, e(t), is equal to the
difference between θ(t) and the desired outcome, θdes. For
balance control, θdes = 0 and is equal to the fixed point of (1)
determined by setting θ̈(t) = 0, θ̇(t) = 0 and θ(t) = θdes.
The determination of the stability of the feedback control
corresponds to the linear stability analysis of the fixed point.
The linearized equation for the error is

ë(t)− ω2
ne(t) = −kpeτ − kdėτ

where eτ := e(t − τ), ėτ := ė(t − τ), ë(t) := d2e/dt2,
and kp, kd are, respectively, the proportional and derivative
gains. The goal of the feedback is to make e(t) as small as
possible and hence the negative signs in the right-hand side.
This corresponds to negative feedback.
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III. SENSORY UNCERTAINTY

A critical question for feedback control concerns the
sensitivity of the sensor for measuring changes in e(t). In
mathematical models, such as (1), it is implicitly assumed
that infinitesimally small changes in e(t) can be accurately
measured. However, all real sensors, including those in the
peripheral nervous system, have limited sensitivity, namely

e(t) =
{

0 if |e(t)| < Π ,
e(t) otherwise , (2)

where Π is a sensory threshold. Consequently when |e(t)| <
Π changes in sensory input do not result in changes in
controlling forces. Hence there is a sensory dead zone.
When Π is very small compared to the fluctuations in the
controlled variable, it would be expected that the effects of
a sensory dead zone on dynamics would be buried within
the intrinsic noisy perturbations. However, in the case of
human balance control it is possible that Π is large enough
to influence the observed dynamics. A well known example
of threshold crossing in human balance control is the “safety
net” characteristics of the ankle-hip-step strategies used by
humans to maintain balance in the face of increasingly large
perturbations [18].

During quiet standing the fluctuations in θ are of the
order of tenths of a degree. The vertical displacements of
the center of pressure (COP) are of the order of 0.004-
0.006m. Hence, if we assume an inverted pendulum of length
1m, the fluctuations in θ are of the order of 0.2 − 0.4o.
The magnitude of these fluctuations are too small for the
detection of movements by both visual and vestibular sensors
[5-6]. Consequently the primary sensors for estimating e(t)
are proprioceptive, namely muscle spindles, Golgi tendon
organs, and cutaneous mechanoreceptors. Estimates of the
threshold for the detection of ankle movements suggest that
Π ≈ 0.05 − 0.08o for unmodulated muscle activity in the
ankle joint [5,7]. The threshold increases ten-fold to ≈ 0.5o

when agonist muscles are actively modulated [8]. Taken
together these observations suggest that muscle contraction
is not the only force available for balance control during
quiet standing, but that the biomechanical properties of the
hip, knee and ankle joints make important contributions.

Dynamic evidence in support of these observations comes
from the analysis of the fluctuations in the COP during
quiet standing in terms of a correlated random walk [9]. In
this approach, the two-point correlation function, K(∆t), is
interpreted as

K(∆t) ≈ ∆t2H , (3)

where H = 0.5 for a simple random walk. Experimental
observations indicate that for small ∆t the random walk
exhibits persistence (H < 0.5), namely movements in one
direction are followed by movements in the same direction.
Persistence can be interpreted as open-loop control for small
∆t, an observation that is consistent with the presence of a
sensory dead zone [7]. Figure 2 shows that when H = 0.5
for postural sway, ∆t ≈ 0.4s. The average velocity for

Fig. 2. Scaling exponent, H , for 9 healthy subjects, ages 18-25 years. The
fluctuations in the COP were measured using a force platform while subjects
stood quietly with eyes closed. The horizontal dashed line corresponds to
H = 0.5.

human postural sway is 0.2 − 0.3o/s [10-11] implying that
Π ≈ 0.08o.

In the case of stick balancing the sensory dead zone is
related to the difficulty that the visual system experiences
in estimating θ in the anterior-posterior (AP) plane [12-
13]. Three observations suggest that this is a major control
problem for stick balancing: 1) highly skilled stick balancers
are unable to maintain stick balancing for longer than 5s
when one eye is covered; 2) the fluctuations in θ are larger
in the AP plane than in the medial-lateral (ML) plane; and 3)
stick falls primarily occur in the AP plane. Figure 3 shows
the AP and ML error when a person attempts to quickly align
their fingertip under a hanging target under conditions when
they cannot viewed both the hanging target and their fingertip
at the same time. The alignment error is much greater in the
AP (≈ 3o for 4 subjects; 120 trials) than in the ML (≈ 0.3o)
direction.

IV. SWITCHING MODELS

The presence of a sensory dead zone suggests that (1)
becomes of the form [7,14-17], for example,

θ̈(t)− ω2
nθ(t) =

{
0 if |θτ | < Π ,

−kpθτ − kdθ̇τ otherwise .
(4)

The dynamics of (4) are complex [7,16,19-21]. Briefly, the
sensory dead zone is a strong small scale nonlinearity since
the fixed point is destroyed. The presence of the dead zone
has no effect on large-scale stabilization. In other words
if the linear system is asymptotically stable when Π = 0,
then it will be stable when Π 6= 0. However, the presence
of this nonlinearity can lead to to small amplitude chaotic
oscillations, referred to as micro-chaos. From this point of
view it is important to note that it was suggested previously
by Yamada [22] that the fluctuations in COP during quiet
standing are chaotic.



Fig. 3. The error between the position of the fingertip and hanging spherical
reflective marker (9mm diameter) in the AP (solid line) and ML (dashed
line) direction. The negative sign means that the subject under-estimates
the position of the suspended marker. A reflective marker was attached to
a thimble placed on the finger and the errors were measured using three
motion capture cameras (Qualisys Oqus 300, 500 Hz). Time pressure was
enforced by having the subject quickly reposition their fingertip under a
different marker every 3s. The vertical distance between the fingertip and
hanging marker was maintained at 0.56m. Under these conditions the subject
could not simultaneously see both markers.

Figure 4 draws attention to a counter-intuitive property
of (4), namely the inverted pendulum can be transiently
stabilized for up to 1-2 minutes [2,7,16]. In this computer
simulation the two gains kp and kd are chosen such that the
fixed point is asymptotically unstable.

V. EXAMPLE

In order to explore the relationship between a sensory
dead zone, time-delayed feedback and transient stabilization
we consider the Eurich-Milton model for postural sway
during quiet standing [14]. In dimensionless form this model
becomes

ẋ(t) =

 x(t) + C if xτ < −1 ,
x(t) if −1 ≤ xτ ≤ 1 ,
x(t)− C if xτ > 1 ,

(5)

where xτ := x(t − τ). This model incorporates three
properties of human balance control: 1) an unstable upright
position in the absence of feedback, 2) stabilizing time-
delayed feedback, and 3) a sensory dead zone. The fixed
point is unstable. Whenever x exceeds a threshold a constant
corrective force C is applied after a time delay τ . The
solutions of (5) depend only on two parameters, τ and
C. It can be readily shown that three types of limit cycle
oscillations are possible [14].

Now, assume that the threshold condition is checked only
at certain discrete time instants tj = j∆t where τ = r∆t
with r an integer [16,23]. This assumption is justified since
neural feedback is not likely to be a continuous function
of time, but presumably has a digital quality reflecting the
observation that spatially separated neurons communicate by

Fig. 4. a) Stability diagram and b) time series (bottom) for (4). The stable
domain is indicated by the gray shading. The time series was obtained
by setting the control gains (A • in top figure) in the unstable region,
i.e., both the open-loop and closed-loop systems are unstable. However,
the switching due to the dead zone creates a transient chaos. ` = 1.7m
and initial conditions: θ(0) = 0o, θ̇(0) = 0.4os−1, Φ(s) = 0o with
s ∈ [−τ, 0).

discrete action potentials. Thus (5) becomes

ẋ(t) =

 x(t) + C if x(tj − r∆t)) < −1 ,
x(t) if −1 ≤ x(tj − r∆t) ≤ 1 ,
x(t)− C if x(tj − r∆t) > 1

(6)

where t ∈ [tj , tj+1).
If r = 0, then the solution of (6) gives the scalar map

x(tj+1) =

 ax(tj) + b if x(tj) < −1 ,
ax(tj) if −1 ≤ x(tj) ≤ 1 ,
ax(tj)− b if x(tj) > 1 ,

(7)

where a = exp(∆t) and b = C(exp(∆t)−1). In the interval
xj ∈ [−2, 2], the map shown in Figure 5 is identical to the
micro-chaos map [16,21]. In this case micro-chaos results
from a discretely sampled time delayed system with a dead
zone, which is a kind of quantization of the input signal
around the origin [7,16]. For different values of a and b, the
system experiences different behaviors. If b < a − 1 then
the system is unstable. If b < a(a− 1), then the solution is
transiently bounded for a period of time, then exponentially
grows. This is the case of transient micro-chaos. Finally
when b > a(a− 1) there is micro-chaos around the origin.

Figure 6 summarizes the behaviors of (7) in terms of C and
∆t. For the same parameters that (7) exhibits micro-chaos
(regions labelled MC1, MC2 and MC3), (5) exhibits stable
limit cycle oscillations [7,16]. Each of the parameter spaces
for which the micro-chaotic solutions exist are extended by
a region of transient microchaos (regions labelled TC1, TC2



Fig. 5. The map given by (7). Over the interval xj ∈ [−2, 2] this map is
identical to the micro-chaos map.

Fig. 6. The steady state behavior of (7) as a function of C and ∆t.

and TC3). In other words, the effect of the transient micro-
chaos is to extend the parameter range for which balance can
be maintained temporarily.

VI. DISCUSSION

Our observations suggest that falls can be a manisfestation
of the same control mechanisms designed to prevent them.
In particular an increased risk of falling may be related to
age-dependent changes in sensory dead zones which result
in the control system being tuned to transient micro-chaos.
This mechanism may provide an explanation as to why some
falls occur in active elderly subjects during quiet standing
after a certain time in the absence of cardiac arrhythmias or
epileptic seizures [1].

The role of a sensory dead zone in the control of balance
during quiet standing remains an open question. There are
certainly a number of advantages of switching-type feedback

for balance control. During quiet standing part of balance
control can be attributed to the biomechanical properties of
the ankle, knee and hip joints. Thus it would be anticipated
that neural control strategies which act “only when needed”
would be energetically favored [24-25]. Moreover in the
presence of noisy perturbations the addition of a threshold
minimizes the destabilizing effects of over control.

Many investigators have favored the use of continuous
types of feedback control for balance [26-28]. However, it
has proven to be surprisingly difficult to distinguish a nested
control strategy that contains both open and closed-loop con-
trol from a strategy that relies on continuous feedback using
systems identification techniques [16,29]. The importance
of the possibility that sensory dead zones are involved in
balance control is that it suggests that the increased risk
of falling in the elderly may be related to age-dependent
changes in Π. If so, then our observations would support the
utility of techniques based on chaos control and stochastic
resonance for lowering the risk of falling. An obvious
advantage of these approaches is that they can safely and
readily implemented.
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