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Abstract Stabilizability of the turning process subjected to
a digital proportional-derivative controller is analyzed. The
governing equation involves a term with continuous-time
point delay due to the regenerative effect and terms with
piecewise-constant arguments due to the zero-order hold of
the digital control. The resulting hybrid system can be rep-
resented as a delay-differential equation with time-periodic
delay, for which the stability properties are analyzed using
the semi-discretization method. The critical depth of cut is
determined, which limits the stabilizability of the machining
process for a given spindle speed in the sense that machining
operation at larger than the critical depth of cut cannot be sta-
bilized by the applied digital controller for a fixed sampling
period. The resulted stabilizability diagram shows some sim-
ilarities to the traditional stability lobe diagram of machining
processes.
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1 Introduction

Machine tool chatter is the large amplitude vibration between
the tool and the workpiece involving intermittent loss of
contact. Chatter is deteriorative to the machining process:
it results in poor workpiece surface quality, increases the
tool wear and can even damage the tool. Since the pioneer-
ing work of Tobias and Tlusty [1,2], the most commonly
accepted explanation for chatter is the so-called regenera-
tive effect [3,4]: the cutting edge interferes with its own past
oscillation recorded on the wavy surface cut on the work-
piece. For turning processes, the tool cuts the surface that was
modulated by the tool one turn earlier. For milling processes,
the cutting edge cuts the surface that was modulated by the
previous cutting edge one tooth-pass period earlier. In the
next passage of the cutting edge these vibration marks gen-
erate further undulations of the tool-workpiece system. Due
to its hereditary nature, this phenomenon can be described
by delay-differential equations (DDEs).

In the manufacturing community, the stability proper-
ties of machining processes are usually depicted by the so-
called stability lobe diagrams (SLDs), which plot the max-
imum stable depths of cut versus the spindle speed. These
diagrams provide a guide to the machinist to select the
optimal technological parameters in order to achieve max-
imum material removal rate without chatter [5–7]. The avail-
able chatter-free technological parameters however often
do not allow the full utilization of the capacity of the
machine center. Machining at high spindle speeds with
large depths of cut, which the machine tool structure and
the spindle are capable of, are often limited by chatter. In
order to operate the machine in these regions, chatter sup-
pression techniques should be applied. These techniques
show a big variety including passive, semi-active and active
methods.
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One semi-active strategy is to perturb the time delay of
the process by continuously modulating the spindle speed
[8–11]. The advantage of this method is that the frequency
and amplitude of the spindle speed variation can easily be
adjusted in computer numerical control (CNC) machines
even during the machining process. The disadvantage of the
method is that it can be applied only for low spindle speeds,
since its application is limited by the actuation power and the
inertia of the spindle. Another concept is the application of
passive chatter control techniques such as vibration absorbers
or passive dampers [12–15]. Advantages of these techniques
are that they are cheap, they do not require external energy
and they never destabilize a stable system. Drawbacks are
that limited amount of damping can be achieved, and it is
not necessarily concentrated on the critical modes of the sys-
tem. They should accurately be tuned to the system and they
are not robust against changing machining conditions. Active
chatter control techniques aim at reducing chatter vibrations
by applying damping to the spindle or the tool in an active
way, thus lifting the stability lobe diagrams around a specific
spindle speed [16–18]. Several actuators can be applied, such
as active magnetic bearings [19,20], piezo-electric [21,22]
and electro-hydraulic actuators [23]. These techniques are
also called alteration of the spindle dynamics, because the
underlying control algorithm can be considered as a kind
of artificial dynamics, which is coupled to the original tool-
workpiece system. For instance, in an ideal single-degree-of-
freedom case, a velocity feedback presents a clear damping
with the feedback gain representing the artificial damping
parameter. Practical realizations of the control system, how-
ever, involve implementation imperfections. In case of digital
control, the sampling effect attributes an intermittent dynam-
ics to the otherwise continuous-time system. This result in
a hybrid system involving terms with point delay and terms
with piecewise-constant arguments in the governing equa-
tions [24]. Also, the control loop involves feedback delays
which may interfere with the regenerative delay of the sys-
tem. Note that for high-speed machining operations, the tooth
passing frequency and the natural frequencies of the spindle
are in the region of the sampling frequency of the controller.

It is known that stabilization by digital feedback has limi-
tations. For a simple inverted pendulum controlled by a digi-
tal proportional-derivative (PD) controller with a fixed sam-
pling period, there is a critical length for stabilizability. If
the pendulum is shorter than this critical length, then it can-
not be balanced by the PD controller [25]. The goal of this
paper is to determine the limit of stabilizability of machining
processes in a similar sense as it is used for the inverted pen-
dulum. We consider a simple two-degree-of-freedom model
of a turning process subjected to a digital PD controller. As
opposed to the inverted pendulum, where the open loop sys-
tem is described by an ordinary differential equation (ODE),
in case of chatter control, the open loop system is already

described by a DDE due to the regenerative effect, which
presents an extra difficulty in the stability analysis. The sta-
bility of this hybrid system is analyzed using the third-order
two-point semi-discretization method according to [24,26].
As a main contribution of this paper, we introduce the stabi-
lizability diagram, which shows the maximum depths of cut
versus the spindle speed that can be achieved by a digital PD
controller with a fixed sampling period. The outline of the
paper is as follows. First the mechanical model is presented
in Sect. 2. Then the stabilizability of the hybrid system is
investigated using the semi-discretization method in Sect. 3.
The stabilizability diagram is presented in Sect. 4. Finally,
the results are concluded in Sect. 5.

2 Mechanical model

A sketch of the turning process can be seen in Fig. 1. Since
the stiffness of the tool in direction z is orders of magnitudes
higher than in directions x and y, therefore vibrations of the
tool in direction z can be neglected and the cutting process can
be described with a two-degree-of-freedom model, shown in
Fig. 2. The governing equations of the tool are given as

mẍ(t) + cx ẋ(t) + kx x(t) = Fx (t), (1)

mÿ(t) + cy ẏ(t) + ky y(t) = Fy(t) − Q(t), (2)

where m is the modal mass of the tool, cx , cy and kx , ky are
the modal damping and stiffness of the tool in the tangential
(x) and normal (y) directions, respectively, Fx (t) and Fy(t)
are the x and y components of the cutting force and Q(t)
is the control force. The formula of the cutting force can be
given by the empirical power law

Fx (t) = Kxwhq(t), (3)

Fy(t) = Kywhq(t), (4)

where Kx , Ky are the cutting force coefficients in the tan-
gential and the normal directions, respectively, w denotes
the chip width (which is equal to the depth of cut in this

Fig. 1 Chip removal in orthogonal turning
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Fig. 2 Two-degree-of-freedom model of the digitally controlled turn-
ing process

case), h(t) is the instantaneous chip thickness and q is the
cutting force exponent. We assume that the vibration ampli-
tudes in the tangential direction are significantly smaller than
the diameter of the workpiece, thus the regenerative delay is
considered to be constant [27]. The chip thickness can be
given as

h(t) = v f τ + y (t − τ) − y(t), (5)

where v f is the feed velocity and τ = 60/� the regenerative
delay (the rotation period of the workpiece) with � being the
spindle speed in [rpm]. Note, that if h < 0, then the contact
between the cutting tool and the workpiece ceases, thus the
cutting force is zero. This results that the turning process is
a non-smooth dynamical system. It is assumed throughout
this work, that the tool never leaves the workpiece, that is
h(t) ≥ 0 for all t . The governing equations are non-linear
DDEs of the form

mẍ(t)+cx ẋ(t)+kx x(t) = Kxw
(
v f τ +y (t − τ) − y(t)

)q
,

(6)

mÿ(t)+cy ẏ(t)+ky y(t) = Kyw
(
v f τ +y (t − τ)−y(t)

)q

−Q(t). (7)

Clearly, the stability of the second equation determines the
stability of the system, since the first equation is a simple sta-
ble oscillator with a forcing term. Therefore, we analyze only
Eq. (7). The desired position of the tool is the trivial equi-
librium ye = Kyw

(
v f τ

)q
/ky of the uncontrolled system.

Linearisation about this trivial equilibrium gives

η̈(t)+2ζωnη̇(t) + (ω2
n + H)η(t) = Hη (t − τ)− 1

m
Q(t),

(8)

where ωn and ζ are the natural angular frequency and relative
damping of the tool in direction y, H = Kywq

(
v f τ

)q−1
/m

is the specific cutting force coefficient and η(t) = y(t) − ye

is the perturbation about the trivial equilibrium of the tool in
direction y. Note that in this model, we concentrate only on
the regenerative effect, but other phenomena, such as friction
or thermal effects, may also contribute to the dynamics of the
system [28].

A digital PD controller is assumed, which involves a
zero-order hold and a processing delay. Measurement of the
position and the velocity is made at each sampling instant
t j = j�t, j ∈ Z. We assume that the processing time,
which is the necessary time for the calculation of the control
force, is less than the length �t of the sampling period. The
control force is calculated using the most recent available
measurements and is kept constant over the subsequent sam-
pling period. It is assumed, that the position and the velocity
is measured without any noise or error. Thus the control force
can be given as

Q(t) = kp
(
y(t j−1) − ye

) + kd ẏ(t j−1), t ∈ [t j , t j+1),

(9)

where kp and kd are the proportional and derivative control
gains, respectively. Substitution to Eq. (8) gives

η̈(t) + 2ζωnη̇(t) + (ω2
n + H)η(t)

= Hη (t − τ) − 1

m

(
kpη(t j−1) + kdη̇(t j−1)

)
,

t ∈ [
t j , t j+1

)
. (10)

Equation (8) can be further generalized by the introduction
of dimensionless time T = ωnt , resulting

η′′(T ) + 2ζη′(T ) + (1 + Hd)η(T )

= Hdη(T − τd) − Kpη(Tj−1) − Kdη
′(Tj−1),

T ∈ [
Tj , Tj+1

)
, (11)

where Hd = H/ω2
n is the dimensionless specific cutting force

coefficient, τd = ωnτ = 2π/�d is the dimensionless time
delay with �d = 2π�/(60ωn) denoting the dimensionless
spindle speed, Kp = kp/(mω2

n), Kd = kp/(mωn) are the
dimensionless proportional and derivative control gains and
Tj = jωn�t are the dimensionless sampling instants. Since
Hd is proportional to the depth of cut, we will refer this
parameter as dimensionless depth of cut.

Equation (11) defines a hybrid system in the sense that
involves two different types of delays. The term η(T − τd)

defines a continuous-time point delay of the state (state
delay), while the terms η(Tj−1) and η′(Tj−1) with piecewise-
constant arguments present a discrete-time delay in the feed-
back (feedback delay). The latter terms can be represented
as terms with periodic time delay in the form η(T − ρ(T ))

and η′(T −ρ(T )), where the time delay is a piecewise-linear
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Fig. 3 Representation of the sampling effect as time-varying delay

Fig. 4 Dimensionless SLD of the uncontrolled turning process for ζ =
0.05

function given as ρ(T ) = T + �T − Tj , T ∈ [
Tj , Tj+1

)

(see Fig. 3). According to this interpretation, sampling in the
feedback loop presents a parametric excitation in the time
delay and the period of the parametric excitation is equal to
the sampling period �T . Consequently, the governing equa-
tion is a periodic DDE, and the stability analysis can be per-
formed according to the Floquet theory of DDEs. In the recent
decades, several numerical and semi-analytical techniques
have been developed for the stability analysis of periodic
DDEs, such as the semi-discretization method [29,30], the
multi-frequency solution [31], the pseudospectral collocation
method [32], the continuous time approximation [33,34],
the spectral element method [35], the method of characteris-
tic matrices [36], the construction of characteristic function
using Fredholm theory [37], the subspace iteration technique
or the extended multi-frequency solution [7], to mention just
a few. Here, we will use the semi-discretization method with
small enough discretization step to capture the interplay of
the sampling effect and the regenerative delay.

The stability properties of the uncontrolled case, described
by Eq. (11) with Q(T ) = 0, can be determined analytically
by the D-subdivision method [38]. The well-known SLD is
shown in Fig. 4.

3 Stabilizability analysis

Before analyzing the hybrid system given by Eq. (11), the
limits of the stabilizability of unstable systems by digital
feedback control is demonstrated using an unstable second-
order system without state delay, namely the inverted pendu-
lum.

Fig. 5 Inverted pendulum

3.1 Stabilizability of the inverted pendulum

Stabilizability analysis of the inverted pendulum is presented
according to [25]. Consider a second-order unstable system
subjected to a digital PD controller in the form

η̈(t) − aη(t) = −kpη(t j−1) − kdη̇(t j−1), t ∈ [t j , t j+1),

(12)

where a > 0 is a system parameter and kp and kd are the
proportional and the derivative control gains. If a = 6g/ l
then this system describes the well-known inverted pendulum
subjected to the control force

Q(t) = −ml

6

(
kpη(t j−1) + kdη̇(t j−1)

)
, t ∈ [t j , t j+1),

(13)

where l, m and g denote the length and the mass of the pen-
dulum and the gravitational acceleration, respectively (see
Fig. 5).

We are looking for the critical system parameter acrit ,
which limits stabilizability in the sense that if the system para-
meter is larger than the critical value then the system cannot
be stabilized by the proposed PD controller at a fixed sam-
pling period �t . Introducing dimensionless time T = √

a t
Eq. (12) can be rewritten as

η′′(T ) − η(T ) = −Kpη(Tj−1) − Kdη
′(Tj−1),

T ∈ [Tj , Tj+1), (14)

where the dimensionless proportional and derivative control
parameters are Kp = kp/a and Kd = kd/

√
a, respectively.

Using that the right-hand side of Eq. (14) is piecewise con-
stant and by the matching the initial condition at time instant
Tj , the solution can be written as

η(T ) = (
η(Tj ) + A(Tj )

)
cosh(T − Tj )

+η′(Tj ) sinh(T − Tj ) − A(Tj ), T ∈ [
Tj , Tj+1

)
,

(15)

where A(Tj ) = −Kpη(Tj−1) − Kdη
′(Tj−1). Consequently,

the controlled system can be described by the discrete map

Y(Tj+1) = �Y(Tj ), (16)
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where Y(Tj ) = (
η(Tj ) η′(Tj ) A(Tj )

)T and

� =
⎛

⎝
cosh(�T ) sinh(�T ) cosh(�T ) − 1
sinh(�T ) cosh(�T ) sinh(�T )

−Kp −Kd 0

⎞

⎠,

(17)

which is actually the monodromy matrix of the system. The
condition of the stability of the trivial solution is

|μi | < 1, i = 1, 2, 3, (18)

where μi , i = 1, 2, 3 are the roots of the characteristic poly-
nomial

p(μ) = det (μI − �) . (19)

Using the Mobius transformation μ = (z + 1)/(z − 1), con-
dition (18) can be transformed into

Re(zi ) < 0, i = 1, 2, 3, (20)

where zi , i = 1, 2, 3 are the roots of the polynomial

q(z) = (z − 1)3 p

(
z + 1

z − 1

)
= b0 + b1z + b2z2 + b3z3.

(21)

According to the Routh–Hurwitz criteria, this system is stable
if b1/b3 > 0 and b1b2 − b0b3 > 0. Using that �T > 0 the
stable domain on the plane of control parameters is given by
the conditions

Kp > 1 (22)

and

−K 2
p tanh2

(
�T

2

)
− K 2

d + 2Kp Kd tanh

(
�T

2

)

−Kp tanh

(
�T

2

)
2 cosh(�T ) + 1

sinh(�T )

+Kd
2 cosh(�T ) − 1

sinh(�T )
> 0. (23)

These conditions define a region in the plane (Kp, Kd), which
is bounded by a vertical line Kp = 1 and a parabola defined
by Eq. (23). The condition for the existence of a stable domain
is that the parabola intersects the line Kp = 1. As it can be
seen in Fig. (6), the stable domain shrinks with increasing
system parameter a and it vanishes as a exceeds a critical
value

acrit =
(

1

�t
arcosh

(
3

2

))2

. (24)

If �t = 1 then acrit = 0.9263. Thus, in case of a = 1
there is no stable domain as it is shown in Fig. (6). The
corresponding dimensionless parameters, where the stable
domain disappears, are Kp,crit = 1 and Kd,crit = 3/

√
5.

Fig. 6 Stability diagram for Eq. (14) for �t = 1 and for different
system parameters a. Stable domains are indicated by grey shading

Consequently, the actual critical control gains are kp,crit =
acrit and kd,crit = 3

√
acrit/5.

As it can be seen, stabilization is not possible if a > acrit .
Clearly, the frequency of the control loop is an important
factor in the stabilization process, which is shown by the
relation of acrit and �t . In the next section, a similar analysis
is performed for the turning process subjected to a digital PD
controller described by Eq. (11).

3.2 Stabilizability of the turning process

Stability analysis of the hybrid system, given by Eq. (11),
can be performed by the semi-discretization method [30].
The semi-discretization scheme is based on the discrete time
scale Ti = ih, where h is the discretization step determined as
τd = rh and �T = ph with r and p being integer approxi-
mation parameters. Here, we recall that Eq. (11) is actually
a periodic system with principal period being equal to the
sampling period �T . Consequently, the integer p is called
the period resolution, since it is related to the resolution of the
principal period. The integer r is related to the discretization
of the state over the delay interval [T − τd, T ], therefore it
is called the delay resolution.

In the current analysis, the third-order two-point semi-
discretization method is used according to [24,26]. In
each discretization interval, the continuous-time delayed
term η(T − τd) is approximated by the linear combina-
tion of terms with piecewise-constant argument, namely, by
η(Ti−r ), η′(Ti−r ), η(Ti−r+1) and η′(Ti−r+1). This way, the
delayed system is approximated by a series of ODEs, and a
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monodromy map can be constructed over the sampling period
�T . The size of the approximate monodromy matrix is deter-
mined by the delay resolution r , while the period resolution p
determines the number of matrix multiplications within one
sampling period. Consequently, computational costs increase
with increasing r and p. The steps of the semi-discretization
method for hybrid systems such as Eq. (11) are given in
[24,26].

Figure 7 shows a series of stability diagrams in the plane
(Kp, Kd) for different dimensionless spindle speeds �d and
dimensionless depth of cut Hd. These diagrams are actually
projections of the 4 dimensional stability chart in the parame-
ter space (Kp, Kd,�d, Hd). The case Hd = 0 corresponds
to the equation

η′′(T ) + 2ζη′(T ) + η(T ) = −Kpη(Tj−1) − Kdη
′(Tj−1),

T ∈ [Tj , Tj+1), (25)

which is similar to Eq. (14), only the coefficients of the terms
η(T ) and η′(T ) are different. Consequently, the correspond-
ing stability diagrams are similar to the one shown in Fig. 6,
but here the vertical stability boundary is at KP = −1. Actu-
ally, the stability boundary at KP = −1 plays an impor-
tant role for the cases Hd > 0, since the stability domain
disappears next to this line. Comparison to the SLD of the
uncontrolled turning process in Fig. 4 shows that the depth
of cut can significantly be increased without chatter by prop-
erly tuned control gains. For instance, if �d = 1.5 then the
system can be stabilized for Hd = 1.5, but for Hd = 2 it
is unstable for any Kp and Kd. This implies that the critical
dimensionless depth of cut Hd,crit limiting the stabilizabil-
ity is between 1.5 and 2. In the next section, the exact value
of Hd,crit is determined, and the stabilizability diagram is
constructed.

4 Stabilizability diagram

Stabilizability diagram presents the critical dimensionless
depth of cut Hd,crit versus the dimensionless spindle speed
�d. If Hd < Hd,crit then the machining process can be
stabilized by a properly tuned digital PD controller, but if
Hd > Hd,crit the system cannot be stabilized. This diagram
can directly be compared to the traditional SLD shown in
Fig. 4.

The stabilizability diagram is determined according to the
following steps.

1. The dimensionless sampling period �T is fixed. Note that
in the previous papers [24,26], the stability diagrams were
determined for the special cases where the regenerative
delay is integer multiple of sampling period. Here, the
sampling period is independent of the regenerative delay.

2. The investigated region of the dimensionless spindle
speed [�d,min,�d,max] is divided up into (n − 1) non-
equidistant intervals by discrete values �d,i , i = 1, 2,

. . . , n such that the ratio of the corresponding dimen-
sionless regenerative delay τd,i = 2π/�d,i and the
dimensionless sampling period �T is a rational num-
ber, i.e, τd,i/�T = ri/pi , where ri , pi ∈ Z

+ give the
delay and the period resolutions, respectively. The res-
olution of the axis �d was such that �d,i+1 − �d,i <
2
n (�d,max − �d,min) and ri ≥ 30 for all i = 1, 2, . . . , n.
According to previous studies [24], this resolution pro-
vides a good approximation in the investigated parameter
region (along the first 5 lobes).

3. The spindle speed is fixed step-by-step to the discrete
values �d = �d,i , i = 1, 2, . . . , n. For each fixed �d =
�d,i , the semi-discretization step is determined as hi =
τd,i/ri .

4. The investigated region of the dimensionless depth of cut
[Hd,min, Hd,max] is divided up into (m − 1) equidistant
initial intervals by discrete values Hd, j = j�Hd, j =
1, 2, . . . , m with �Hd = (Hd,max − Hd,min)/m. The sta-
bility diagrams in the plane (Kp, Kd) are determined for
all Hd = Hd, j , j = 1, 2, . . . , m. If the case Hd = Hd, j

can be stabilized but there is no stable domain for Hd =
Hd, j+1, then the interval [Hd, j , Hd, j+1] is further investi-
gated by interval halving method, i.e., stability diagrams
are determined for Hd = Hd, j + 1

2�Hd, then either for
Hd = Hd, j + 1

4�Hd or for Hd = Hd, j + 3
4�Hd, etc.

The procedure is stopped if Hd is given by an accuracy
of �Hd/27 and its value is recorded as Hd,crit .

5. The critical value Hd,crit is determined for all discrete
spindle speeds �d,i , i = 1, 2, . . . , n and the stabilizabil-
ity diagram is plotted.

Figure 8 presents the stabilizability diagram for the dimen-
sionless sampling period �T = 0.5 and damping ratio ζ =
0.05. The boundaries of the investigated parameter domain
are [�d,min,�d,max] = [0.2, 2.5] and [Hd,min, Hd,max] =
[0, 3.5] with n = 100, m = 4. The actual sampling period
is �t = �T/ωn = 0.5/ωn, i.e,. the digital control sam-
ples the state at a frequency f = 1/�t = 2ωn, which is
the double of the natural frequency of the system. The tra-
ditional stability lobe diagram (i.e., the uncontrolled case)
is also shown by dashed line. It can be seen the depth of
cut can significantly be increased. At the resonant spindle
speed �d = 1/k, k = 1, 2, . . . the critical dimensionless
depth of cut is about the double of the traditional SLD, while
in between the resonant spindle speeds, the depth of cut is
increased by a factor of 8–10. Note that this gain is achieved
in spite of the fact that sampling frequency of the controller
is relatively low compared to natural frequency of the uncon-
trolled system ( f = 2ωn).
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Fig. 7 Stability diagrams for
different �d and Hd values.
Stable domains are indicated by
gray shading. Empty plots
indicate that the system cannot
be stabilized

Fig. 8 Stabilizability diagram
for a turning process with
ζ = 0.05 subjected to a digital
PD control with sampling
frequency f = 2ωn (�T = 0.5)

(a), the associated critical
proportional gain (b) and the
associated critical derivative
gain (c)

(a)

(b)

(c)

123



Stabilizability diagram for turning processes 53

Figure 8 also presents the critical dimensionless propor-
tional and derivative control gains that are associated with the
disappearance of the stability domain in the plane Kp, Kd.
Note that Kp,crit = −1, which means that the stability domain
disappears at the stability limit Kp = −1 as it can also be
observed in Fig. 7.

5 Conclusion

Stabilizability of turning processes subjected to digital PD
controller was analyzed with special attention to the discrete
nature of the controller such as sampling effect and digital
delay. It was shown that for a reasonable sampling period the
depth of cut can be increased by a factor 2–10 even in the
case when the sampling frequency of the controller is just the
double of the natural frequency of the system. The stabilizing
control gains were also given.

Note that here we presented an ideal stabilizability analy-
sis in the sense that we assumed that the state output is avail-
able for the feedback without any noise and uncertainties,
and the parameters of the machining system are also per-
fectly known at all time instances. In practice, measured
output is affected by noise and the system parameters are
changing during the operation due changing machining con-
ditions (e.g., tool wear, changes in the local temperature on
the active face of the tool, etc.). Intuitively, if the uncer-
tainties in the system parameters and the output were also
taken into account then the gain in the maximal depth of cut
would decrease. Actually, consideration of these uncertain-
ties requires a robust stabilizability analysis with respect to
perturbation in the system parameters and the output.

In spite of these modelling restrictions, the current analysis
still presents a general view on the stabilizability of machin-
ing operation. It was shown that the interplay between the
regenerative delay and the digital effects of the controller
may strongly affect the stabilizability of the system.
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