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It is known that stability properties of delay-differential equations
are not preserved by Taylor series expansion of the delayed term.
Still, this technique is often used to approximate delayed systems
by ordinary differential equations in different engineering and bi-
ological applications. In this brief, it is demonstrated through
some simple second-order scalar systems that low-order Taylor
series expansion of the delayed term approximates the asymptotic
behavior of the original delayed system only for certain parameter
regions, while for high-order expansions, the approximate system
is unstable independently of the system parameters.
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1 Introduction

Time-delay systems often arise in different engineering applica-
tions. A feedback mechanism typically involves time delays; cars
following traffic models [1], delayed networks [2,3], crane pay-
load stabilization [4], or flutter instability [5] can be mentioned as
practical examples. Time delays are also often used to model me-
chanical contact problems such as wheel shimmy [6] or regenera-
tive machine tool chatter [7]. Analysis of qualitative properties of
delay-differential equations (DDEs) is therefore a highly impor-
tant task in engineering [8,9].

DDEs of the form

_xðtÞ ¼ f ðt; xðtÞ; xðt� sÞÞ; x 2 Rm (1)

are often approximated by ordinary differential equations (ODEs)
through Taylor series expansion of the delayed term in powers of s.
Although such an approximation might provide satisfactory results
for certain parameter combinations (typically for small delays), it
cannot be justified by rigorous mathematical theorems. The Taylor
series expansion of the delayed term about s ¼ 0 reads

xðt� sÞ ¼ xðtÞ � s _xðtÞ þ 1

2
s2€xðtÞ �…þ ð�1Þn 1

n!
snxðnÞðtÞ

þ Rðt; s; nÞ (2)

where the remainder term is

Rðt; s; nÞ ¼ ð�1Þnþ1 1

ðnþ 1Þ! s
nþ1xðnþ1Þðt� hsÞ (3)

with h 2 ½0; 1�. An nth-order approximation is obtained by
neglecting the remainder term Rðt; s; nÞ. Such an approximation,
however, has no mathematical foundations at all. The remainder
term is typically not small, and the asymptotic behavior of the
original DDE is usually completely different from that of the ap-

proximate ODE [10–12]. Furthermore, this approximation
involves higher-order derivatives, which may not even exist for
the original delayed system.

If Eqs. (2) and (3) are substituted directly into Eq. (1) without
neglecting the remainder term, then one gets a differential equa-
tion of advanced type since the highest derivative (i.e., x(nþ1))
appears with a delayed argument. These equations are known to
have infinitely many characteristic exponents on the right half of
the complex plane. In this sense, equations of advanced type are
always strongly unstable [10]. This feature also reflects the inability
of the Taylor series expansion to approximate time-delayed terms.

Still, there are several articles in the literature that apply Taylor
series approximations for the delayed terms. In some special
cases, this approximation can actually be justified. If the delay s is
sufficiently small compared to the characteristic time of the sys-
tem then replacing the term xðt� sÞ by x(t) (zeroth-order expan-
sion) or by xðtÞ � s _xðtÞ (first-order expansion) provides a good
approximation [13,14]. The first-order approximation is also often
used for stochastic time-delay systems to eliminate the delay from
the equation [15]. If the coefficient of the delayed term is small
[16], then the Taylor series approximation can also be valid for
large delays as well. In human balancing models with reflex delay,
the delayed terms are often approximated by either first-order
[17,18] or second-order [19,20] Taylor series expansion. In these
cases, however, the delay is not necessarily small compared to the
characteristic time of the system, and the approximation may lead
to qualitatively different behavior.

The goal of this technical brief is to demonstrate that Taylor se-
ries expansion of the delayed term may lead to a qualitatively dif-
ferent system. Two case studies are presented. First, a series of
stability diagrams are presented for a second-order system with
delayed proportional feedback in order to show the differences
between the asymptotic behavior of the approximations of differ-
ent order for different delays. Second, the critical delay, which
limits the stabilizability of an unstable second-order system by
delayed proportional-derivative (PD) control, is analyzed for
approximations of different order.

2 The Delayed Oscillator

Consider the equation

€xðtÞ þ axðtÞ ¼ pxðt� sÞ (4)

where a is the system parameter, p is the proportional gain, and s
is the delay. This system is often referred to as a delayed oscillator
and its stability properties are often represented by stability charts
plotted in the plane ðs; pÞ [4,5,21]. Note that, without restriction
of generality, one can assume that a¼ 1. Taylor series expansion
of the delayed term up to the nth-order gives the ODE

€xðtÞ þ axðtÞ ¼ pxðtÞ � ps _xðtÞ þ 1

2
ps2€xðtÞ � 1

6
ps3xð3ÞðtÞ

6 …þ ð�1Þn 1

n!
snxðnÞðtÞ (5)

As it can be seen, in the case of higher than second-order Taylor
series expansion, the approximation introduces new leading deriv-
atives. These new terms show up with alternating sign, conse-
quently, expansion of high-order will result in an unstable ODE,
which can easily be seen by means of the Routh–Hurwitz criteria.
Stability analysis of the original DDE (4) and its approximate
ODE (5) can be performed using standard tools, e.g., by D-
subdivision method, and the number of unstable characteristic
exponents can also be determined [21]. The corresponding stabil-
ity charts indicating the asymptotic behavior of the different
expansions can be seen in Fig. 1. As it is shown, the zeroth-order
expansion (i.e., when the time delay is totally neglected) approxi-
mates the asymptotic behavior of the original DDE only at certain
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parameters regions, e.g., if s < p=
ffiffiffiffiffi
2a
p

and p> 0. The first-, the
second-, and the third-order expansions provide a better approxi-
mation for small delays. The first-order expansion provides an
exact asymptotic behavior for any proportional gain p if
s < p=

ffiffiffiffiffi
2a
p

). Similarly, the asymptotic behavior of the second-
and third-order expansions matches that of the original one if
s <

ffiffiffiffiffiffiffiffi
2=a

p
. For large delay values, however, the asymptotic

behavior is completely different. Fourth- and higher-order expan-
sions yield an unstable system independently of the delay and the
gain parameters. The divergence in the stability properties for
Taylor series approximation can also be seen by the number of
unstable characteristic exponents. The higher the order of the
approximation, the larger the number of unstable characteristic
exponents for different parameter regions.

3 Stabilizability by Delayed PD Control

Consider now the equation

€xðtÞ � axðtÞ ¼ �pxðt� sÞ � d _xðt� sÞ (6)

where a> 0 is the system parameter, p is the proportional gain, d
is the derivative gain, and s is the feedback delay. This equation
describes a delayed PD control of an unstable second-order plant.
It is known that there is a critical delay scrit ¼

ffiffiffiffiffiffiffiffi
2=a

p
, which limits

stabilizability: if the feedback delay is larger than scrit, then the
system is unstable for any combinations of p and d [8,21]. Note
that similarly to the delayed oscillator, one can assume that a¼ 1
without restriction of generality. Taylor series expansion of the
delayed terms up to the nth-order gives the ODE

€xðtÞ�axðtÞ¼�p xðtÞ� s _xðtÞþ1

2
s2€xðtÞ�…þð�1Þn 1

n!
snxðnÞðtÞ

� �

�d

�
_xðtÞ� s€xðtÞþ1

2
s2xð3ÞðtÞ

�…þð�1Þn 1

n!
snxðnþ1ÞðtÞ

�
(7)

Conditions for stability and stabilizability and the number of
unstable characteristic exponents can be determined by the analy-
sis of the corresponding characteristic functions. The stability dia-
grams for the original DDE (6) and its approximate ODE (7) are
shown in Fig. 2 for a¼ 1 and s ¼ 0:5. The number of unstable
characteristic roots is also presented. For the first- and the second-
order expansions, the stability diagrams show some similarities to
that of the original DDE, however, for higher than the third-order
approximations, no stable parameter regions are obtained.
Actually, the higher the order of the approximation, the larger the
minimum number of the unstable characteristic exponents.

The critical time delay can be determined for each case by
some straightforward calculations. If the time delay is increased,
then the stability boundaries are moving and at the critical delay
s ¼ scrit, the stable domain typically shrinks to a single point. The
critical time delays for the different approximations are shown in
Fig. 2. In the case of the zeroth-order expansion, the critical delay
is infinity since in this case the delay is simply neglected. In the
first-order expansion, which is often used for the problem of
delayed PD control [17,18], the critical delay is smaller by a factor
of 1=

ffiffiffi
2
p

than the one corresponding to the original DDE. The
second-order expansion actually gives the exact critical delay

Fig. 1 Stability diagram and the number of unstable characteristic exponents for the delayed oscillator (4) with a 5 1 and its Tay-
lor series approximations of different order. Stable domains are indicated by gray shading.
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scrit ¼
ffiffiffiffiffiffiffiffi
2=a

p
. The critical delay for the third- and higher-order

expansion is zero since in this case the approximate system is
unstable for any pair (p, d). This analysis demonstrates that, simi-
larly to stability properties, stabilizability conditions are not pre-
served either by higher-order Taylor series approximations.

4 Conclusions

Although Taylor series expansion of the delayed term is often
used in different applications, it is not a justified technique to ap-
proximate delayed systems [10,12]. In this technical brief, this
fact was demonstrated using two case studies: the delayed oscilla-
tor and the delayed PD control of an unstable second-order sys-
tem. Although first- and second-order Taylor series expansions of
the delayed term may approximate the asymptotic behavior of
DDEs for certain parameter regions, the accuracy of the approxima-
tion is radically reduced by higher-order expansions. If the order of
the Taylor series expansion exceeds the order of the leading deriva-
tive by 2, then the approximate system becomes unstable independ-
ently of the system parameters. Taylor series approximation of the
delayed term is therefore not always an appropriate tool to analyze
asymptotic behavior of time-delay systems and should be applied
to particular problems with special attention.
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