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Abstract: This paper presents a numerical method for the stability analysis of retarded
functional differential equations with time-periodic coefficients. The method approximates the
solution segments, corresponding to the end points of the principal period, by their piece-
wise Lagrange interpolants. Then a mapping between these solution segments is obtained by
the minimization of the least-square integral of the residual error. Finally, stability properties
are determined using the matrix approximation of the monodromy operator, obtained by this
mapping, according to the Floquet theorem. The formulation of the method is presented for an
equation of general type while results are shown for the delayed oscillator.
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1. INTRODUCTION

In the recent decades the significance of time-delay has
been discovered in an increasing number of applications
in engineering and biosciences. Machine tool vibrations
(??), wheel dynamics of vehicles (?), traffic dynamics (?),
control (?), human balancing (?), population dynamics (?)
and epidemiology (?) can be mentioned as examples. In
the majority of the above applications it is desired to keep
the system in the proximity of a particular state or mo-
tion by a proper tuning of system parameters. Therefore,
stability properties of time-delay systems has been given
an increasing attention and, as a result, many analytical
and numerical methods can be found on their linear sta-
bility analysis. A commonly used analytical method is the
D-subdivision method (?), while examples for numerical
methods are the semi-discretization method (?), spectral
element method (?), pseudospectral collocation method
(?) or methods based on the truncation of Hill’s infinite
matrix (e.g. ??).

Although time dependency of the system parameters are
often neglected, therefore the particular phenomenon is de-
scribed by time-invariant (autonomous) differential equa-
tions, this simplification cannot be justified in all cases.
For instance, milling operations, turning operations with
spindle speed variation or digitally controlled machines are
inevitably time-varying systems. The governing equations
for these systems are usually modelled as differential equa-
tions with time-periodic parameters, and their stability
can be determined using the Floquet theory.

This paper deals with the formulation of a method for the
numerical stability analysis of linear retarded functional
differential equations (RFDE) with time-periodic coeffi-
cients. First, the main steps of the method are presented
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for a RFDE of general type. Then it is applied to a par-
ticular example: the delayed oscillator. For this example
stability charts are constructed and the convergence of
stability boundaries are demonstrated. Finally, based on
these results, some conclusions are drawn.

2. METHOD

In this section the formulation of the method is presented
for a RFDE involving point delays and distributed delay
with periodic coefficients of principal period T , having the
form

ẏ(t)=A(t)y(t)+

σ
∑

l=1

Bl(t)y(t−τl)+

∫

−b

−a

γ(t, θ)y(t+θ)dθ, (1)

where y : R → R
n; A,Bl : R → R

n×n; 0 < τl, l =
1, 2, . . . , σ; 0 ≤ b < a; γ : R2 → R

n×n; and A(t) = A(t +
T ); Bl(t) = Bl(t + T ), l = 1, 2, . . . , σ; γ(t, θ) = γ(t +
T, θ), ∀θ for all t. The mapping between a solution segment
y−τ+t1,t1 and an initial function y−τ,0 is given by the
solution operator as y−τ+t1,t1 = U(t1)y

−τ,0, where τ >
max{a, τ1, τ2, . . . τσ}. Here and in the following, notation
ya,b refers to {y(t) : [a, b]}. According to the Floquet
theory the stability of (1) can be determined from the
eigenvalues of the monodromy operator U(T ). Namely,
(1) is stable if and only if all the eigenvalues of U(T )
have modulus less than one (see Chapter 8 in ? for
details). Although there exist some counterexamples (see
e.g. (?)), in general, the eigenvalues of the monodromy
operator cannot be determined in closed form, therefore
an approximation of U(T ) is necessary. In this section
a method is presented for the calculation of the matrix
approximation Ũ of U(T ), for which the above stability
condition can easily be checked.

After performing numerical integration using Gaussian
quadrature, (1) can be approximated by the RFDE
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ẏ(t) = A(t)y(t) +

m
∑

p=1

Bp(t)y(t− τp) (2)

which contains point delays only. Here

Bp(t) =
a−b
2 γ(t, θp−σ)wp−σ, (3)

τp = −θp−σ for p = σ + 1, σ + 2, . . . ,m and θq = a−b
2 ηq −

a+b
2 ∈ [−a,−b], where {ηq}

ρ

q=1 ∈ [−1, 1] are the set

of quadrature nodes with m = σ + ρ. For convenience
τ1 ≤ τ2 ≤ . . . ≤ τm is assumed. In the following the
approximate system (2) is studied.

Consider the solution segment y−τ,T where τ = KT and

K =

{

[τm/T ] if τm modT = 0

[τm/T ] + 1 otherwise
(4)

with [ · ] denoting the integer part. Define the linear
operator A as

Ay=

{

ẏ(t)−A(t)y(t)−
m
∑

p=1

Bp(t)y(t−τp) : t∈(0, T ]

}

(5)
which maps the solution segment y−τ,T to zero. Split
the solution segment y−τ,T onto (K + 1)E number of
equidistant subsegments (referred to as elements in the
sequel) as

yk = y(k−1)h,kh, (6)

k = −EK + 1,−EK + 2, . . . , E, where h = T/E is the
length of elements. The connection between these elements
are defined by conditions

yk(kh) = yk+1(kh) (7)

k = −EK + 1,−EK + 1, . . . , E − 1. The splitting of
solution segment y−τ,T transforms (2) into the system of
differential equations

ẏk(t)−A(t)yk(t)−

m
∑

p=1

Bp(t)y
∗

k,p(t), (8)

where t ∈ ((k−1)h, kh] and k = 1, 2, . . . , E, with boundary
conditions (7) and

y∗

k,p(t) =
{

yk−rp−1(t) if (t−τp) ∈ ((k−rp−2)h, (k−rp−1)h]

yk−rp(t) if (t−τp) ∈ ((k−rp−1)h, (k−rp)h]

(9)

where rp = [τp/h]. System (8) is equivalent to the system
of operator equations

Skyk −
m
∑

p=1

Qk,pyk−rp−1 −
m
∑

p=1

Rk,pyk−rp = 0, (10)

k = 1, 2, . . . , E, where the operators are defined as

Skyk=

{

ẏk(t)−A(t)yk(t) t ∈ ((k−1)h, kh]

0 otherwise
(11)

Qk+rp+1,pyk =
{

Bp(t+τp)yk(t−τp) (t−τp) ∈ (kh− αp, kh]

0 otherwise
(12)

Rk+rp,pyk =
{

Bp(t+τp)yk(t−τp) (t−τp) ∈ ((k−1)h, kh− αp]

0 otherwise
(13)

with αp = τp modh. By the introduction of new element-
wise coordinate ζ = 2(t−(k−1)h)/h−1 the above operators
have the form

Skyk =
{

2
h
y′

k(ζ)−A
(

h(ζ+1)
2 +(k−1)h

)

yk(ζ) ζ ∈ (−1, 1]

0 otherwise
(14)

Qk+rp+1,pyk =
{

Bp

(

h(ζ+1)
2 +(k+rp)h

)

yk (ζ+2−βp) ζ ∈ (−1,−1 + βp]

0 otherwise

(15)

Rk+rp,pyk =
{

Bp

(

h(ζ+1)
2 +(k+rp−1)h

)

yk (ζ−βp) ζ ∈ (−1 + βp, 1]

0 otherwise

(16)

where βp = 2αp/h. Due to this coordinate transformation
boundary conditions (7) are given by

yk(1) = yk+1(−1) (17)

k = −EK+1,−EK+2, . . . , E−1. Note that y−τ,T satisfies
the system of operator equations (10) with boundary
conditions (17) and satisfies

Ay = 0, (18)

also. Therefore, the uniqueness of the solutions of both
(10) and (18) would result the equivalence of these two
problems.

For a given initial function y−τ,0 operator equation (18)
can be reformulated as the variational problem

δI(y0,T ) = 0, (19)

where the minimum of functional

I(y0,T ) = ‖Ay‖L2 (20)

is sought with ‖ · ‖L2 being the L2 norm over domain
t ∈ [0, T ], defined by the usual scalar product

〈f, g〉 =

∫ T

0

f(t)g(t)dt. (21)

The solution of (18) gives the global minimum of (20),
therefore the uniqueness of the solutions of (18) and
(19) would result the equivalence of these two problems.
Assuming equivalence between (10) and (18), (19) can be
given as

δ





E
∑

k=1

∥

∥

∥

∥

∥

Skyk−

m
∑

p=1

Qk,pyk−rp−1−

m
∑

p=1

Rk,pyk−rp

∥

∥

∥

∥

∥

L2



=0,

(22)
where the scalar product is now defined on ζ ∈ (−1, 1].

This numerical method, discretizes the monodromy opera-
tor via the approximation of the solution segment y−τ,T by
its piece-wise (element-wise) Lagrange interpolant. There-
fore, the approximation of the elements read as

ỹk(ζ) =
N
∑

j=1

φj(ζ)yk,j , (23)

k = −EK + 1,−EK + 2, . . . , E, where yk,j = yk(ζj)
and φj(ζ) are the Lagrange base polynomials. The node
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set {ζj}
N

j=1 of interpolation is chosen to be of Lobatto-

type, therefore there are nodes on the endpoints of interval
ζ ∈ [−1, 1], which gives

yk,N = yk+1,1, (24)

k = −EK + 1,−EK + 2, . . . , E − 1 for (17). The ap-
proximation (23) of the elements discretizes the variational
problem (22) as

E
∑

k=1

〈

Γk(ye,j),
∂Γk(ye,j)

∂ys,i

〉

= 0 (25)

s = 1, 2, . . . , E; i = 2, 3, . . . , N ; e = 1, 2, . . . , E; j =
2, 3, . . . , N . Here the residual error functions of the ele-
ments can be calculated as

Γk(ye,j) =
N
∑

j=1

S̃k
jyk,j

−

N
∑

j=1

M
∑

z=1

mz
∑

p=mz−1+1

(

Q̃
k,p
j yk−dz−1,j + R̃

k,p
j yk−dz,j

)

, (26)

where m0 = 0, mM = m and {mz}
M−1
z=1 are defined

according to

{dz = rp : mz−1 < p ≤ mz}
m

p=1 , (27)

and

dz < dz+1; z = 1, 2, . . . ,M − 1, (28)

while

S̃k
j = Skφj , Q̃

k,p
j = Qk,pφj , R̃

k,p
j = Rk,pφj . (29)

Note that formula (25) takes into consideration (24) for
k = 0, 1, . . . , E − 1, but the summation with respect to j
does not. After carrying out the differentiation in (25) one
obtains

Πs,i = 0; s = 1, 2, . . . , E; i = 2, 3, . . . , N − 1
Πs,N +Πs+1,1 = 0; s = 1, 2, . . . , E − 1; i = N

(30)

where

Πs,i=
〈

Γs, S̃s
i

〉

+

MR
s

∑

v=1

〈

Γs+dv ,−

mv
∑

mv−1+1

R̃
s+dv,p
i

〉

+

MQ
s

∑

v=1

〈

Γs+dv+1,−

mv
∑

mv−1+1

Q̃
s+dv+1,p
i

〉

, (31)

where MR
s and MQ

s are defined according to

s+dv

{

≤E if v≤MR
s

>E if v>MR
s

, s+dv+1

{

≤E if v≤MQ
s

>E if v>MQ
s

. (32)

Note that (30) and (24) together define the mapping

HY0,T = GY−τ,0 (33)

between point sets {yk,j}
E,N

k=1,j=1 and {yk,j}
0,N
k=−KE+1,j=1.

Here H is a square matrix, while Y0,T ∈ R
n(E(N−1)+1)×1,

Y−τ,0 ∈ R
n(KE(N−1)+1)×1 and their elements are given by

YAh,Bh =
{

YAh,Bh
u

}(B−A)(N−1)+1

u=1
(34)

and

YAh,Bh
u = yk,j (35)

with

Ũ=

H−1G
(nE(N−1)+n)×(nKE(N−1)+n)

Θ
n(K−1)E(N−1)

×

nE(N−1)

I
n(K−1)E(N−1)

×

n(K−1)E(N−1)

0
0
.

.

.

0

Fig. 1. Structure of the matrix approximation Ũ of mon-
odromy operator U(T ) in case T < τm

k=

{

1 +A if u = 1
[

u−2
N−1

]

+1+A otherwise
(36)

j=

{

1 if u = 1

u−(k−1−A)(N−1) otherwise.
(37)

Since the elements of Y−τ+T,T and Y−τ,0 precisely de-
fine the piecewise Lagrange interpolant of y−τ+T,T and
y−τ,0, respectively, therefore the approximation of the
monodromy operator is given by the mapping

Y−τ+T,T = ŨY−τ,0. (38)

For the case T < τm, the structure of Ũ is shown in
Figure 1, where I and Θ are identity and null matrices, re-
spectively, depicted with their corresponding dimensions.
For the case T ≥ τm, the matrix approximation of the
monodromy operator is simply

Ũ = H−1G. (39)

For the computation of Ũ it is useful to apply Lobatto-
type Chebyshev or Lobatto-type Legendre points as the
node set of interpolation, since they provide fast conver-
gence of the interpolant. It is also beneficial to carry out
integration numerically, by using Lobatto-type Gaussian
quadrature. This increases the speed of the method while
keeps the error of numerical integration low. Note also that
the Lobatto-type Gaussian quadrature integrates on the
Lobatto-type Legendre nodes therefore, by choosing this
point set as nodes of interpolation the computational effort
can further be decreased.

3. CASE STUDY

In this section some results are shown for the stability of
the delayed oscillator, which is governed by

ẏ(t) = A0y(t) +B0y(t− τ), (40)

where

y(t) =

[

x(t)
ẋ(t)

]

, B0 =

[

0 0
b0 0

]

, A0 =

[

0 1
−a0 0

]

. (41)

Since this equation is autonomous, the principal period can
be defined as an arbitrary positive number. Choosing the
principal period as T = τ and utilizing the discretization
detailed in the previous section, one can obtain

S̃j(ζ) =
2
h
Iφ′

j(ζ)−A0φj(ζ), (42)

R̃j(ζ) = B0φj(ζ), (43)
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Fig. 2. Convergence of the stability boundaries under fixed
N = 3 interpolation order and increasing E element
number
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Fig. 3. Convergence of the stability boundaries under fixed
E = 1 element number and increasingN interpolation
order

and

Γk(ζ)=

N
∑

j=1

(

S̃j(ζ)yk,j−R̃j(ζ)yk−r,j

)

, k=1, 2, . . . , E (44)

where r = τ/h. Using

Πs,i =
〈

Γs, S̃i

〉

(45)

system (30) of algebraic equations can be determined, from

which Ũ can be calculated.

The herein presented results are computed using the
Lobatto-type Legendre node set for interpolation and the
Lobatto-type Gaussian quadrature for integration. The
approximate stability boundary is determined as follows.
Eigenvalues of matrix Ũ are computed for a series of
system parameters on an equidistant grid of a particular
domain in the plane (a0, b0) of system parameters. The
eigenvalues, having the highest absolute value are stored
for each girdpoint. Thereafter, on the absolute values of the
stored eigenvalues a 3-dimensional surface is fitted over the
parameter plane using the ”contour” function of Matlab.
The approximate border of stability is then obtained as
the level curve of this 3-dimensional surface at one.

Figures 2 and 3 show the convergence of stability bound-
aries under the increase of interpolation degree N and
element number E, respectively. Stability charts are de-
termined using 500× 500 gridpoints.

4. CONCLUSIONS

In this paper a new method was presented for the stability
analysis of time-periodic RFDEs. After the derivation of
the method for RFDEs of general type it was applied to a
particular system. The method shows convergence for the
stability boundaries of the delayed oscillator both under
the increase of element number and interpolation order.
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Åström, K. and Murray, R. (2008). Feedback Systems.
Princeton University Press, New Jersey.

Bachrathy, D. and Stepan, G. (2013). Improved predic-
tion of stability lobes with extended multi frequency
solution. CIRP Annals Manufacturing Technology, 62,
411–414.

Breda, D., Maset, S., and Vermiglio, R. (2014). Pseu-
dospectral methods for stability analysis of delayed dy-
namical systems. International Journal of Dynamics
and Control, 2, 143–153.

Hale, J. and Lunel, S. (1993). Introduction to functional
differential equations. Springer-Verlag, New York.

Insperger, T. and Stepan, G. (2011). Semi-discretization
for time-delay systems. Springer, New York.

Khasawneh, F. and Mann, B. (2011). A spectral element
approach for the stability of delay systems. International
Journal for Numerical Methods in Engineering, 87, 566–
592.

Kuang, Y. (1993). Delay differential equations with appli-
cations in population dynamics. Academic Press, New
York.

Milton, J., Cabrera, J., Ohira, T., Tajima, S., Tonosaki, Y.,
Eurich, C., and Campbell, S. (2009). The time-delayed
inverted pendulum: Implications for human balance
control. Chaos, 19, 026110.

Orosz, G., Wilson, R., and Stepan, G. (2010). Traffic jams:
dynamics and control. Philosophical Transactions of the
Royal Society A, 368, 4455–4479.
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Röst, G. and Wu, J. (2008). SEIR epidemiological model
with varying infectivity and infinite delay. Mathematical
Biosciences and Engineering, 5(2), 389–402.

Stepan, G. (1989). Retarded dynamical systems. Longman,
Horlow.

Stepan, G., Munoa, J., Insperger, T., Surico, M.,
Bachrathy, D., and Dombovari, Z. (2014). Cylindrical
milling tools: Comparative real case study for process
stability. CIRP Annals Manufacturing Technology, 63,
385–388.

Takacs, D. and Stepan, G. (2013). Contact patch memory
of tyres leading to lateral vibrations of four-wheeled
vehicles. Philosophical Transactions of the Royal Society
A, 371, 20120427.

TDS 2015
June 28-30, 2015. Ann Arbor, MI, USA

385


