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Abstract: Two intrinsic component of machine tool chatter modeling is regenerative time delay
and parametric forcing. The corresponding governing equations are therefore given in the form of
delay-differential equations with time-periodic coefficients. In this paper, a brief review is given
on the mechanism of these two effects, and recent numerical techniques from the literature are
categorized and discussed.
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1. INTRODUCTION

One of the most important fields of engineering where
large time delays appear in the model equations is ma-
chine tool vibration, where the delay time could be several
times larger than the characteristic time periods in the
system, while the damping effects in the machine tool
system are very small. After the pioneering work of Tobias
(1965) and Tlusty et al. (1962), the so-called regenerative
effect became the most commonly accepted explanation
for machine tool chatter. This effect is related to the
cutting-force variation due to the wavy workpiece surface
cut one revolution ago. The phenomenon can be described
by involving time delay in the model equations. Stability
properties of the machining process are depicted by so-
called stability lobe diagrams, which plot the maximum
stable axial depths of cut versus the spindle speed. These
diagrams provide a guide to the machinist to select optimal
technological parameters in order to achieve maximum
material removal rate without chatter. Although there
exist many sophisticated methods to optimize manufac-
turing processes, machine tool chatter is still an existing
problem in manufacturing centers (Altintas and Weck,
2004; Schmitz and Smith, 2009; Quintana and Ciurana,
2011; Altintas, 2012).

In case of turning operations, regenerative chatter can
be described by time-invariant delay-differential equations
(DDEs). Stability of these systems can be analyzed by
the classical D-subdivision method (Stepan, 1989). In
the case of milling, surface regeneration is coupled with
parametric excitation of the cutting teeth, resulting in
a DDE with time-periodic coefficients. Stability analysis
of these systems requires the application of the Floquet
theory of DDEs. In the recent years, several numerical
techniques have been developed in order to determine
stability lobe diagrams for milling operations, such as the
semi-discretization method (Insperger and Stepan, 2002a,
2011), the temporal finite element method (Bayly et al.,
2003); the multi-frequency solution (Altintas and Budak,
1995; Budak and Altintas, 1998; Bachrathy and Stepan,
2013; Otto et al., 2014), just to mention a few.

This paper aims to give a brief overview on the main issues
of machine tool chatter. First the regenerative delay is
explained in details for an orthogonal turning operation.
Then parametric forcing is described for a one-degree-
of-freedom model of milling operations. Finally, a series
of numerical techniques, which were developed for the
stability prediction of machining operations in the last 15-
20 years, are categorized and discussed

2. REGENERATIVE DELAY

Time delay in machine tool chatter shows up as result
of the so-called surface regeneration. In this section, the
phenomenon is explained briefly. Figure 1 shows the chip
removal process in an orthogonal turning operation for an
ideally rigid tool and for a compliant tool. In the latter
case, the tool experiences bending vibrations in directions
x and y and leaves a wavy surface behind. The system can
be modeled as a two-degrees-of-freedom oscillator excited
by the cutting force, as shown in Fig. 2. If there is no
dynamic coupling between x and y directions, then the
governing equation can be given as

mẍ(t) + cxẋ(t) + kxx(t) = Fx(t) , (1)

mÿ(t) + cy ẏ(t) + kyy(t) = Fy(t) , (2)

where m, cx, cy, kx, and ky are the modal mass and the
damping and stiffness parameters in the x and y directions,
respectively. The cutting force is given in the form

Fx(t) = Kxw hq(t) , (3)

Fy(t) = Ky w hq(t) , (4)

where Kx and Ky are the cutting-force coefficients in the
tangential (x) and the normal (y) directions, w is the depth
of cut (also known as the width of cut or the chip width in
the case of orthogonal cutting), h(t) is the instantaneous
chip thickness, and q is the cutting-force exponent. Note
that other formulas for the cutting force are also used in
the literature; see, e.g., Kienzle (1957); Shi and Tobias
(1984); Dombovari et al. (2008).

If the tool was rigid, then the chip thickness would be
constant h(t) ≡ h0, which is equal to the feed per
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Fig. 1. Chip removal in orthogonal turning processes in the case of an ideally rigid tool and real compliant tool.

Fig. 2. Surface regeneration in an orthogonal turning process: the instantaneous chip thickness h(t) is varying due to
the vibrations of the tool.

revolution (in case of orthogonal cutting). However, in
reality, the tool experiences vibrations, which are recorded
on the workpiece, and after one revolution, the tool cuts
this wavy surface. The chip thickness h(t) is determined by
the feed motion, by the current and by an earlier position
of the tool. If the displacement x(t) is negligible compared
to the radius R of the workpiece, then the time delay τ
between the present and the previous cuts is

τ =
60

Ω
, (5)

where Ω is the spindle speed given in [rpm].

The chip thickness can be given as the linear combination
of the feed and the present and the delayed positions of
the tool in the form

h(t) = h0 + y(t− τ)− y(t) . (6)

Thus, the governing equations can be written as

mẍ(t) + cxẋ(t) + kxx(t) = Kxw (h0 + y(t− τ) − y(t))
q
,

(7)

mÿ(t) + cy ẏ(t) + kyy(t) = Kyw (h0 + y(t− τ) − y(t))
q
.

(8)

Let xst and yst denote the constant solution that satisfies
(7)–(8). The general solution can be written as x(t) = xst+
ξ(t) and y(t) = yst + η(t) with ξ(t) and η(t) being pertur-
bations around xst and yst, respectively. Substitution into

(7)–(8), expansion into power series with respect to ξ(t)
and η(t), and elimination of higher-order terms give the
variational system in the form

mξ̈(t) + cxξ̇(t) + kxξ(t) = Kxwqh
q−1
0 (η(t− τ)− η(t)) ,

(9)

mη̈(t) + cy η̇(t) + kyη(t) = Kywqh
q−1
0 (η(t− τ) − η(t)) .

(10)

Note that (9) is an ODE with state variable ξ forced by
η, while (10) is a linear time-invariant DDE with state
variable η. Since the homogeneous part of (9) is a simple
damped oscillator, the stability of the system is determined
by (10) only.

By parameter transformation, (10) can be written in the
form

η̈(t) + 2ζωnη̇(t) + ω2
nη(t) = H (η(t− τ) − η(t)) , (11)

where ωn =
√

ky/m is the natural angular frequency,
ζ = cy/(2mωn) is the damping ratio of the tool in the

y direction, and H = Kywqh
q−1
0 /m is the specific cutting-

force coefficient. Note that H is linearly proportional to
the depth of cut w, which is an important technological
parameter for the machinist. Equation (11) is the simplest
mathematical model that describes regenerative machine
tool chatter.
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Fig. 3. (a) HsuBhatt stability chart for τ = 2π. (b)
Stability diagram for (10).

Another form of (11) is the so-called delayed oscillator

η̈(t) + a1η̇(t) + a0η(t) = b0η(t− τ), (12)

where the new parameters are a1 = 2ζωn, a0 = ω2
n + H

and b0 = H . The stability chart of the delayed oscillator
was first published in 1966 by Hsu and Bhatt (1966).
Since then, this equation has become a basic example for
delayed Newtonian problems; see, for instance, (Stepan,
1989; Butcher et al., 2004; Insperger and Stepan, 2011).
The stability diagram of (12) is shown in Fig. 3a. For
the undamped case (a1 = 0), stable regions are bounded
by straight lines crossing the a0 = 0 line at 1/4, 1, 9/4
etc. Apart from the lines b0 = 0 and b0 = a0, the
stability boundaries represent a complex conjugate pair
of characteristic exponents crossing the imaginary axis,
which corresponds to a Hopf bifurcation for the underlying
nonlinear system.

The stability diagram for (11) in the plane of dimensionless
spindle speed Ω/(60fn) and dimensionless specific cutting-
force coefficient H/ω2

n is shown in Fig. 3b. Here, fn =
ωn/2π is the natural frequency of the tool in [Hz]. This
diagram can be obtained by a parameter transformation
of the Hsu-Bhatt diagram. From practical point of view,
only the region associated with the positive depth of cut
(H > 0) makes sense.

3. PARAMETRIC EXCITATION

In case of milling operations, surface regeneration is cou-
pled with parametric excitation caused by the rotating
cutting tool. The mechanical model of a thin-wall milling
operation is shown in Fig. 4. The workpiece is assumed to
be flexible in direction x (perpendicular to the feed) with
modal mass m, damping coefficient c, and spring stiffness
k, while the tool is assumed to be rigid. In this model,
the tool has N equally distributed cutting teeth with zero
helix angle. The equation of motion reads

mẍ(t) + cẋ(t) + kx(t) = −Fx(t) , (13)

where Fx(t) is the x component of the cutting force vector
acting from the tool on the workpiece. Let the teeth of the
tool be indexed by j = 1, 2, . . . , N .

The tangential and radial components of the cutting force
acting on tooth j reads

Fig. 4. Mechanical model of thin-wall milling operation.

Fj, t(t) = gj(t)Ktaph
q
j(t) , (14)

Fj, r(t) = gj(t)Kraph
q
j(t) , (15)

where Kt and Kr are the tangential and radial cutting-
force parameters, respectively, ap is the axial depth of cut,
hj(t) is the instantaneous chip thickness cut by tooth j,
and q is the cutting-force exponent. Function gj(t) is a
screen function; it is equal to 1 if tooth j is in the cut, and
0 if it is not. If ϕen and ϕex denote the angular locations
where the cutting teeth enter and exit the cut, then the
screen function reads

gj(t) =

{

1 if ϕen < (ϕj(t) mod 2π) < ϕex ,

0 otherwise,
(16)

where

ϕj(t) =
2πΩ

60
t+ j

2π

N
(17)

is the angular position of tooth j and mod is the mod-
ulo function. The instantaneous chip thickness hj(t) is
determined by the actual feed per tooth and the angular
position of the cutting teeth. A circular approximation of
the tooth path gives

hj(t) = (fz + x(t) − x(t− τ)) sinϕj(t), (18)

where τ = 60/(NΩ) is the tooth-passing period (the
regenerative delay) and fz is the feed per tooth. The
x component of the cutting force acting on tooth j is
obtained as the projection of Fj,t and Fj,r in the x
direction, i.e.,

Fj, x(t) = Fj, t(t) cosϕj(t) + Fj, r(t) sinϕj(t) . (19)

The x component of the resultant cutting force acting on
the tool reads

Fx(t) = Q(t) (fz + x(t)− x(t− τ))q , (20)

where

Q(t) =

N
∑

j=1

apgj(t) sin
q ϕj(t) (Kt cosϕj(t) +Kr sinϕj(t)) .

(21)
Thus, the equation of motion is the following nonlinear
DDE:

mẍ(t) + cẋ(t) + kx(t) = −Q(t) (fz + x(t)− x(t− τ))
q
.

(22)

The general solution of (22) can be written as

x(t) = xp(t) + ξ(t) , (23)

where xp(t) = xp(t + τ) is a periodic function (the
particular solution of (22)) and ξ(t) is the perturbation
around xp(t). Substitution of (23) into (22), expansion into
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Fig. 5. (a) Stability chart for the delayed Mathieu equation
(25) with ε = 1. (b) Stability diagram for a one-
degree-of-freedom milling process.

power series with respect to ξ(t) and elimination of higher-
order terms give the variational system

mξ̈(t) + cξ̇(t) + kξ(t) = −qf q−1
z Q(t) (ξ(t)− ξ(t− τ)) .

(24)
This is now a linear DDE with time-periodic coefficients.

A paradigm for delayed periodic systems is the delayed
Mathieu equation

ẍ(t) + a1ẋ(t) + (δ + ε cos t)x(t) = b0x(t− 2π), (25)

which is a generalization of the delayed oscillator (12) by
introducing a time-periodic stiffness a0 = δ + ε cos t. The
stability diagram for the delayed Mathieu equation was
presented by Insperger and Stepan (2002b) and Insperger
and Stepan (2003) for the undamped (a1 = 0) and the
damped (a1 6= 0) cases, respectively. A sample stability
diagram is shown in Fig. 5a. If a1 = 0 then the stability
boundaries are straight lines of slopes −1, 0 and 1, where
the characteristic multiplier are z = 1, z = e±iω (ω ∈ R)
and z = −1 representing cyclic fold, secondary Hopf
and flip (period doubling) bifurcations of the underlying
nonlinear problem, respectively. If a1 6= 0 then nonlinear
stability boundaries associated with secondary Hopf bifur-
cation also show up.

A sample stability chart for the milling problem described
by (24) is shown in Fig. 5b. This diagram can be considered
as a special transformation of the stability diagram of
the delayed Mathieu equation. In case of milling, stability
boundaries are typically associated with secondary Hopf
and flip bifurcations. The arising vibrations are often
called quasi-periodic chatter and period doubling chat-
ter, respectively. Note that in this one-degree-of-freedom
model of the milling operation, no cyclic fold bifurcation
is possible (Insperger and Stepan, 2011).

4. NUMERICAL METHODS

In this section, we list several numerical techniques used
for the stability prediction of machining processes. All
these methods are based on a finite dimensional approxi-
mation of the infinite dimensional system. Different tech-
niques are categorized with respect to

• the form of the equation under study, which is ei-
ther some form of a retarded functional differential
equation (RFDE) or an operator differential equation
(OpDE);

• the discretized operator, which is either the mon-
odromy operator or the infinitesimal generator; and

• the method of discretization.

Semi-discretization (Insperger and Stepan, 2002a, 2011)
Equation under study: RFDE, strong form
Discretized operator: monodromy operator
Method of discretization: direct discretization of the func-
tional

Full discretization (Ding et al., 2010)
Equation under study: RFDE, integral equation
Discretized operator: monodromy operator
Method of discretization: direct discretization of the func-
tional and the integral term

Complete discretization (Li et al., 2013)
Equation under study: RFDE, strong form
Discretized operator: monodromy operator
Method of discretization: direct discretization of both the
functional and the differential operator

Continuous-time approximation (Sun, 2009)
Equation under study: OpDE, strong form
Discretized operator: infinitesimal generator
Method of discretization: direct discretization of both the
functional and the differential operator

Pseudospectral collocation (Breda et al., 2005, 2015),
Chebyshev spectral continuous-time approxima-
tion (Butcher and Bobrenkov, 2011)
Equation under study: OpDE, weak form
Discretized operator: infinitesimal generator
Method of discretization: via trial solution using Lagrange
polynomial interpolation of the solution on Lobatto-
Chebyshev node set and collocation

Spectral least-square (Vyasarayani et al., 2014)
Equation under study: OpDE, weak form
Discretized operator: infinitesimal generator
Method of discretization: via trial solution using Legendre
base functions for expansion and least-square method for
the test functions

Spectral Legendre tau (Vyasarayani et al., 2014)
Equation under study: OpDE, weak form
Discretized operator: infinitesimal generator
Method of discretization: via trial solution using Legendre
base functions for expansion and Bubnov-Galerkin-type
test functions

Method proposed by Wahi and Chatterjee (2005)
Equation under study: OpDE, weak form
Discretized operator: infinitesimal generator
Method of discretization: via trial solution using trigono-
metric base functions for expansion and Bubnov-Galerkin-
type test functions

Temporal finite element analysis (Bayly et al., 2003;
Mann and Patel, 2010)
Equation under study: RFDE, weak form
Discretized operator: monodromy operator
Method of discretization: via trial solution using Her-
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mite interpolation on a Lobatto-equidistant node set and
Petrov-Galerkin-type test functions

Spectral element method (Khasawneh and Mann,
2011, 2013)
Equation under study: RFDE, weak form
Discretized operator: monodromy operator
Method of discretization: via trial solution using Lagrange
polynomial interpolation on Lobatto-Legendre node set
and Petrov-Galerkin-type test functions.

Pseudospectral collocation (Breda et al., 2014, 2015)
Equation under study: RFDE, weak form
Discretized operator: monodromy operator
Method of discretization: via trial solution using Lagrange
polynomial interpolation on Lobatto-Chebyshev node set
and collocation

Multi-interval Chebyshev collocation (Khasawneh
et al., 2011; Totis, 2009; Totis et al., 2014)
Equation under study: RFDE, weak form
Discretized operator: monodromy operator
Method of discretization: via trial solution using Cheby-
shev base functions for expansion and collocation

Method proposed by Butcher et al. (2004)
Equation under study: RFDE, integral equation
Discretized operator: monodromy operator
Method of discretization: via trial solution using Cheby-
shev base functions for expansion

Spectral method (Ding et al., 2011)
Equation under study: RFDE, integral equation
Discretized operator: monodromy operator
Method of discretization: via trial solution using Lagrange
polynomial interpolation on Lobatto-Chebyshev node set

Multi-frequency solution (Altintas and Budak, 1995;
Merdol and Altintas, 2004; Bachrathy and Stepan, 2013)
Equation under study: RFDE, strong form
Discretized operator: monodromy operator
Method of discretization: via trial solution using Floquet
exponential form for the expansion

Method using characteristic matrices (Szalai et al.,
2006; Sieber and Szalai, 2011)
Equation under study: RFDE, strong form
Discretized operator: monodromy operator
Method of discretization: via trial solution using Floquet
exponential form for the expansion

5. CONCLUSION

In this brief review, simple models were presented to show
how time-delay and periodic coefficients appear in the
governing equations of machine tool chatter. The models
presented here were simplified one-degree-of-freedommod-
els, however, real-life machining operations are described
by more sophisticated models. For instance, there exist
more complex models for the chip thickness calculation,
such as the trochoidal tooth path model, which results in
time-dependent delays (Faassen et al., 2007) and models
including the vibrations of the tool–workpiece system that
results in state-dependent delays in the model equations
(Insperger et al., 2007; Bachrathy et al., 2011). In addition,
general tool geometry can also be modeled such as ball end
milling (Ozturk and Budak, 2010) or tools with varying

pitch and with varying helix angles, which result in multi-
ple and distributed delays (Sellmeier and Denkena, 2011;
Stepan et al., 2014). An intriguing combination of point
delay and time varying delay shows up in case of digital
control of machining processes (Lehotzky and Insperger,
2012). There are several fundamental concepts to suppress
machine tool chatter. Spindle speed selection (van Dijk
et al., 2010), continuous spindle speed variation (Otto
and Radons, 2013) and active chatter control techniques
(Pakdemirli and Ulsoy, 1997; van Dijk et al., 2012) can be
mentioned as examples.
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