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ON (a, B,a,b)-CONVEX FUNCTIONS

ATTILA HAZY

ABSTRACT. In this paper we investigate the («, S, a,b)-convex functions which is a common
generalization of the usual convexity, the s-convexity in first and second sense, the h-convexity,
the Godunova-Levin functions and the P-functions. This notion of convexity was introduced
by Maksa and Péles in [16] in the following way: an («, 8, a,b)-convex function is defined as a
function f : D — R (where D is an open, (o, )-convex, nonempty subset of a real or complex
topological vector space) which satisfies the inequality
fla®)z+B({)y) < a(t)f(x) +0(t)f(y)  (zy € D;tel0,1]).

The main goal of the paper is to prove some regularity and Bernstein-Doetsch type results for
(e, B, a, b)-convex functions.

1. INTRODUCTION

Maksa and Péles in [16] dealt with the following problem:

Let X be a real or complex topological vector space, D C X be a nonempty open set, T be a
nonempty set, and «, 8, a,b: T — R be given functions. The problem is to find all the solutions
f D — R of the functional equation

fla(t)z + BQR)y) = a(t) f(x) +b(t)f(y)  (x;yeD;teT) (1)
provided that D is («; §)-convex, that is, a(t)x + 5(t)y € D whenever z;y € D and t € T. To

avoid the trivialities and the unimportant cases, we suppose that there exists an element tq € T'
such that
(X(to)ﬁ(to)&(to)b(to) # 0.
The solutions of (1) as («;f3;a;b)-affine functions and the solutions f of the corresponding
inequality
fla®)z+p(t)y) <a(t)f(z) +b(t)f(y)  (z;yeDiteT) (2)

will be called («; f; a; b)-convex functions.

In our paper we investigate the («; f;a;b)-convex functions. This notion of convexity is a
common generalization of the usual convexity, the s-convexity in first and second sense, the
h-convexity, the Godunova-Levin functions and the P-functions.

In the special cases when T' = {1/2}, T = {to} or T'= QN [0, 1], the corresponding con-
vex functions are said to be Jensen-(a; f;a;b)-convez, ty — (a; B;a;b)-conver and rationally-
(c; B; a; b)-conver.
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Let h : [0,1] — R be a given function. In the case, when «a(t) = ¢,8(t) = 1 — t,a(t) =
h(t),b(t) = h(1 —t) we get the so called h-convex functions, which was introduced by Varosanec
[29] and was generalized by Hazy [11]. We say that f : D — R is an h-convex function if, for all
z,y € D and t € |0, 1], we have

fltx+ (1 =t)y) < h(t)f(z) +h(1 =) f(y). (3)

The Godunova-Levin functions was investigated by Godunova-Levin [7]. We say that f :

I — R (where I is a real interval) is a Godunova-Levin function, if f is nonnegative and for all
z,y € [ and t € (0,1) we have

flz+(1=1)y) <

1—t

Some properties of this type of functions are given in Dragomir, Pecari¢ and Persson [6] Mitri-
novic and Pecari¢ [17], Mitrinovi¢, Pecaric and Fink [18]. Among others, it is proved that
nonnegative monotone and nonnegative convex functions belong to this class of functions. The
Godunova-Levin functions are («a; 5; a; b)-convex functions, with «a(t) = ¢,8(t) = 1 —t,a(t) =

1/, b(t) = 1/(1 — t).

The concept of s-convexity in the first sense was introduced by Orlicz [21]. A real valued
function f: D — R is called Orlicz s-convex or s-convez in the first sense, if

[+ (1 =1)y) <tf(x)+(L—-1)f(y)

for every z,y € D, t €]0, 1], where s € [1,00][ is fixed number. The Orlicz s-convex functions
are (a; f; a; b)-convex functions, with a(t) = t*, 5(t) = (1 — t)%,a(t) =t,b(t) =1 —t.

The concept of s-convexity in the second sense was introduced by Breckner [4]. A real valued
function f : D — R is called Breckner s-convex or s-convex in the second sense, if

flz+ 1=ty <t°flx)+ (1 —1t)°f(y)

for every x,y € D and t € [0,1], where s €]0,1] is a fixed number. The Breckner s-convex
functions are («; 3; a; b)-convex functions, with «(t) = ¢, 5(t) = 1 —t,a(t) = t°,b(t) = (1 — t)*.

The case s = 1 means the usual convexity of f.

In Breckner [4] and Breckner and Orban [5] Berstein-Doetsch type results were proved on
rationally s-convex functions, moreover, for the s-Holder property of s-convex functions. Pycia
[26] gives a new proof of the latter statement, when f is defined on a nonempty, convex subset of
a finite dimensional vector space. In the paper Hudzik and Maligranda [14] the authors collect
some properties of s-convex functions defined on the nonnegative reals. In the paper Burai,
Hézy and Juhdsz [2] there are some Berstein-Doetsch type result on (H, s)-convex functions.

fl@)  fW)
t

The P-functions was investigated in Dragomir, Pecari¢ and Persson [6]. A real valued function
f: D — R (where D is a convex, open, nonempty subset of a real (complex) linear space X) is
called P-function, if for every z,y € D and t € [0, 1] we have

ftz+ (1 =1)y) < f(z)+ fy).
Some results about the P-functions there are in Pearce and Rubinov [25], Tseng, Yang and
Dragomir [28]. The P-functions are (a;f;a;b) -convex functions, with a(t) = t,5(t) = 1 —
t,a(t) =1,b(t) = 1.
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In Bernstein and Doetsch [1] proved that if a function f: D — R (where D is a convex, open,
nonempty subset of a real (complex) linear space X) is locally bounded from above at a point
of D, then the Jensen-convexity of the function yields its local boundedness and continuity as
well, which implies the convexity of the function f (see Kuczma [15] for further references). This
result has been generalized by several authors. The first such type results are due to Nikodem
and Ng [20] for the approximately Jensen-convex functions (the so-called e-Jensen-convexity),
which was extended by Pales (Péles [22] and [23]) to approximately ¢-convex functions. Further
generalizations can be found in papers Mrowiec [19], Hazy [9] and [10], Hazy and Péles [12] and
[13]. In the paper Gilanyi, Nikodem and Pales [8] there are some Bernstein-Doetsch type results
for quasiconvex functions.

2. MAIN RESULTS

In this section we assume that (X, || - ||) is a real (complex) normed space. We recall that a
function f : D — R is called locally bounded from above on D if, for each point of p € D, there
exist o > 0 and a neighborhood U(p, ¢) := {x € X : ||z —p|| < o} such that f is bounded from
above on U(p, p). We assume that a,b: [0, 1] — R are nonnegative.

Proposition 1. Let to € [0,1] be fized such that a(ty) + B(tg) = 1 and f : D — R be an
(e; B; a; b)-convex function. Then

(i) if a(ty) + b(ty) > 1 then f is nonnegative.

(1) if a(to) + b(to) < 1 then f is nonpositive.

Proof. Let z be an arbitrary element of D. Using («; (; a; b)-convexity of f
f(x) = flalto)z + B(to)x) < alto) f(x) + bte) f(x) = (alto) + blto)) f(2),

which implies

0 < (a(to) + b(to) — 1) f ().
If a(ty) + b(ty) — 1 > 0, then we have f(z) > 0 and if a(ty) + b(to) — 1 < 0, then we have
flx) <0. d

Theorem 1. Let |0,1[C T, a, B,a,b: T — R be given nonnegative functions and let to €]0, 1] be
fized such that a(to)B(to)a(to)b(te) # 0 and a(ty) + B(to) = 1. Furthermore let D C X be open,
nonempty, («; 3)-convez set, let f: D — R be a to— («; f; a; b)-convex function, which is locally
bounded from above at a p point of D. Then then f is locally bounded at every point of D.

Proof. Since a(to)B(ty) # 0 therefore we get a(ty), 5(to) > 0. We prove that f is locally bounded
from above on D.
First we prove that f is locally bounded from above on D. Define the sequence of sets D,, by

DO = {p}, Dn+1 = Oé(to)Dn -+ ﬁ(to)D

Using induction on n, we prove that f is locally upper bounded at each point of D,. By
assumption, f is locally bounded from above at p € Dy. Assume that f is locally upper
bounded at each point of D,. For x € D,., there exist o € D, and yg € D such that
x = a(to)zo + b(to)yo. By the inductive assumption, there exist r > 0 and a constant My > 0
such that f(z') < M, for ||xg — 2’| < r. Then, by the ty — (a; f;a;b)-convexity of f, for
x' € Uy := U(xg,r) we have

fla(to)z" + B(to)yo) < alto) f(z') + b(to) f(yo) < alto)Mo + b(to) f(yo) =: M.
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Therefore, for

Yy c U := Oé(t())Uo —+ B(to)yo = U(Oz(to)l’o —+ ﬁ(to)yo, to’l”) = U(I,to’f’),

we get that f(y) < M. Thus f is locally bounded from above on D, ;.
On the other hand, we show that
D=|JD..
n=1

From the definition of D,, it follows by induction that D, = (a(to))"p + (1 — (a(to))™)D. For
fixed x € D, define the sequence x,, by

o= (alte)"p
1= (alt)"
Then z, — x if n — co. As D is open, z,, € D for some n. Therefore
z = a(to)"p+ (1 — (a(to))")za € (afto))"p + (1 = ((t0))")D = D

Thus f is locally bounded from above on D.
Now, we prove that f is locally bounded from below. Let ¢ € D be arbitrary. Since f is
locally bounded from above at the point ¢, there exist o > 0 and M > 0 such that

sup f < M.
Ulg,0)

— ot
%, Then y is in U(q, 0). By to — («; 5; a; b)-convexity,
0

fq) < alto) f(z) +b(to) f(y),

Let x € U(q, 5(to)0) and y :=

which implies

— b(t — b(to) M
() > fla) = b(to) f(y)  f(q) — blto)
a(to) a(to)
Therefore f is locally bounded from below at any point of D. O

=: M.

>

Corollary 1. Let f : D — R be a Jensen-convex or ty-convex function. If f is locally bounded
from above at a point of D, then f is locally bounded at every point of D.

Corollary 2. Let f: D — R be a Breckner (to, s)-convez function. If f is locally bounded from
above at a point of D, then f is locally bounded at every point of D.

Corollary 3. Let f: D — R be a (ty, h)-convex function such that h(ty) and h(1 — ty) are not
zero simultaneously. If f is locally bounded from above at a point of D, then f is locally bounded
at every point of D.

Remark 1. It is a well-known fact that if a Jensen-convez function f is locally bounded above
at a point of its domain (see [1], [15]), then it is continuous on its domain. This is not true
for (Jensen,h )-convex functions, which implies is not true for Jensen — («; B;a;b). Indeed, in
the case h(A) = A° (where 0 < s < 1 is a fixzed number), in [2] we give an example which is
(Jensen,h )-convez, bounded and nowhere continuous.

Next theorem gives a sufficient condition when local boundedness implies continuity.
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Theorem 2. Let a, 3, a,b be given nonnegative, continuous functions satisfying the limit condi-
tions
lima(t) =0 and limb(t) = 1.

t—0 t—0
and o(t) + B(t) =
Let the sequence {t,}, .y be such that t, €]0,1] and t, tends to 0 (when n — oo) and assume
that a(t,) and b(t,) are not simultancously zero. Let T = {t,}, .-
If f : D — RisT — («; 5; a; b)-convex function and f is locally bounded from above at a point
of D. Then f is continuous on D.

Proof. Since a(ty) and b(ty) are not zero simultaneously, therefore, without loss generality, we
may assume that b(ty) > 0.

Since f is locally bounded from above at a point xy € D, there exists a neighborhood U at xg
and a constant K > 0 such that f(x) < K for every x € U. Let ¢ be an arbitrary nonnegative
constant. Then there exists ng € N such that if n > ng, then

a(t,)K + [b(t,) — 1] f(xg) < €,
whence (t)
a(t, 1
—K 1——— .
e |1 g fe0 <
Let V be a neighborhood of 0 such that o +V C U, and let U’ = z¢ + a(t,)V. We prove that
|f(x) = f(zo)l <e  (zel).
For x € U’ there exist y, z € xy + V such that
r = aty)y+ B(tn)xo,
rg = a(ty)z+ B(t,)z.
Indeed,

nd 1 ot,) 1 oft,)
ol o) €

According to T' — («; B; a; b)-convexity of f,

Z— Ty =

f(@) < a(te)f(y) +0(tn) f(zo) < altn) K + b(tn) f(20),
flzo) < altn)f(2) +b(ta) f(x) < altn) K + b(t,) f(2).
We get
f(z) = f(zo) < a(tn) K + [b(tn) — 1] f(z0) < ¢ (4)
and
fla) > f(xo)bzt:)(tn)K7

which implies

@)= flaw) 2 [ = 1] flaw) = 55

The inequalities (4) and (5) show that |f(z) — f(x¢)| < ¢, that is f is continuous at zg, which
was to be proved. O

K > —¢. (5)



6 A. HAZY

Remark 2. The previous limit conditions are not necessary, since in the case of Jensen-convezxity
are not fulfilled. However, the result of Bernstein and Doetsch is valid for Jensen-convez func-
tions. In contrary, the nonnegative monotone functions - which are not necessary continuous
- belongs to a special class of the («; [5;a;b)-convex functions, to the class of Godunova-Levin
functions. Therefore, in this setting, the limit conditions in question cannot be ignored.

3. CONVEXITY PROPERTY OF RATIONALLY-(q; [3; a; b)-CONVEX

The following result offers a generalization of the theorem of Bernstein-Doetsch [1], Breckner
[4], Burai-Hézy-Juhdsz [2] and Hézy [11] for rationally-(c; §; a; b)-convex functions

Theorem 3. Let a, 3, a,b be given nonnegative, continuous functions satisfying the limit condi-
tions

lima(t) =0 and limb(t) = 1.

t—0 t—0

and a(t) + B(t) =

Assume that a(tog) and b(ty) are not zero simultaneously for all to € QN [0,1]. If f: D — R is
rationally—(«, 5, a, b)-convex and locally bounded from above at a point of D, then f is continuous
and (o, B, a,b)-convex.

Proof. We prove that the function f is to — («; 8; a;b)-convex for all ty € [0,1]. Let ¢, € [0, 1]
arbitrary. Then there exists a sequence {t, },en such that ¢, € Q and ¢,, — ¢, (when n tends to
00). Applying rationally—(«, 3, a, b)-convexity of f, we get

flaltn)r 4+ B(tn)y) < alty) f(x) + b(ta) f(y)- (6)

The local upper boundedness of f implies the continuity of f (according to Theorem 2). There-
fore, taking the limit n — oo in (6), we get

f(alto)z + B(to)y) < alto) f(x) + blto) f(y),
which proves the (a, 3, a, b)-convexity of f. OJ

Corollary 4. Let D C X be a nonempty, convez, open set and let h : [0,1] — R be a given
nonnegative, continuous function satisfying the limit conditions

11_{% h(t) =0 and Eﬂl h(t) =

and assume that h(ty) and h(1 — to) are not simultaneously zero for all to € QN [0, 1].
If f: D — R is rationally-h-convex and f is locally bounded from above at a point D, then f
1s continuous on D and h-convez.

Corollary 5. Let D C X be a nonempty, convex, open set. If f: D — R s rationally-Breckner
s-convex and locally bounded from above at a point D, then f is continuous on D and Breckner
S-convex.

Theorem 4. Let T = [0,1], a, B,a,b : T — R be given nonnegative functions such that o,
continuous on T and a(t) + b(t) = 1. Let f: Ry — R an (o, 8, a,b)-convex function. Then

(2) if (a4 B)(T) = [r,1] (where r < 1), then f is nondecreasing.
(1) if (a + B)(T) = [1,7] (where r > 1), then [ is nonincreasing.
(1ii) if (o + B)(T') = [r1,72] (where ry <1 <1ry), then f is constant.
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Proof. We have, for x > 0 and ¢ € [0, 1]

fla(®)z + B(t)x) < a(t)f(x) +b(t) f(x) = f(x).

Let v = o + 3. Then # is continuous on [0, 1].
In the case (i) we get v(T') = [r, 1], where r > 1. Let u € [r, 1] be arbitrary. Then there exists
at € [0,1] such that v(¢) = u. This yields that

fluz) < f(z)  (z € Ry ue 1)) (7)
If now u € [r?,1] then u!'/2 € [r, 1]. Therefore, by the fact that (7) holds for all z € R, we get

fluz) = f(u"?(w'P2)) < f(u'?2) < f(2)
for all x € R,. By induction we then obtain that
fluz) < f(z) (v € Ry, u €0, 1)), 8)
Therefore, taking 0 < v < v and applying (8), we get
fluw) = f((w/v)v) < f(o),

which means that f is nondecreasing on R, .
The proof of the cases (i7) and (iii) are similar. O

The above results do not hold, in general, in the case of convex functions, because a convex
function f : Ry — R, need not be non-decreasing. But in the case of Orlicz s-convex function
this is true.

Corollary 6. Let 0 < s < 1. Let f : Ry, — R an Orlicz s-convezx function. Then f is
nondecreasing.

Remark 3. In the paper of Hudzik and Maligranda [14] is gave an example which shows that the
Orlicz s-convex function is nondecreasing on R, but not necessarily on [0,00). For the readers
convenience we recall the example: let a,b,c € R and let

_Joa ife =0
f(w)_{bxs—Fc if © # 0.
Then if b > 0 and ¢ < a then f is non-decreasing on (0,00) but not on [0, c0).

4. OPTIMIZATION

It is a very well known fact that every local minimizer of a convex function is a global one.
The same is true for («, 8, a,b)-convex functions under some assumptions.

Theorem 5. Let X be a real or complex topological vector space, D C X be a nonempty open
(c; B)-convex set, where a, 3,a,b: [0,1] — R be given nonnegative, continuous functions satis-
fying the limit conditions

%g%a(t) =0 and ll_r}éﬁ(t) =1
and assume that a(t) + b(t) = 1.

Then every local minimizer xy € D of an («, 5, a,b)-convex function f : D — R is a global
one.
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Proof. Let o € D be a local minimizer of f. Then there exists a positive real number r, such
that

f(zo) < fly), y € U(zo, 7).

Assume that x is not a global minimizer. Then there exists z € D, such that f(zo) > f(2).
Using this and the (a, 3, a, b)-convexity of f, we have

fla(t)z + B(t)xo) < a(t) f(zo) + b(t)f(2) = flzo) + b(t) (f(2) = f(z0)) < f(0) -
On the other hand, using the limit conditions, a(t)z+ B(t)xo € U(xg,r), if ¢ is sufficiently small,
which contradicts to the fact that x( is a local minimizer.
If f is a strictly (o, 5, a, b)-convex function, and = # y are global minimizers, then

fla(t)z + B(t)y) < alt)f(z) +b(t)f(y) = f(x),

which is a contradiction. O

Corollary 7. FEvery local minimizer of an Orlicz-convex function f: D — R is a global one. If
the function f is strictly Orlicz-convex, then there is at most one global minimum.

Corollary 8. FEvery local minimizer of a convex function f : D — R is a global one. If the
function f is strictly convex, then there is at most one global minimum.

REFERENCES

[1] F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Annalen 76 (1915), 514-526.

[2] P. Burai, A. Hazy and T. Juhdsz, Bernstein-Doetsch type results for s-convex functions Publ. Math. Debrecen
75 (2009), vol 1-2., 23-31

[3] P. Burai, A. Hézy and T. Juhdsz, On approzimately s-convex functions submitted

[4] W. W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter konvexer Funktionen in topologischen
linearen Rdumen, Publ. Inst. Math. (Beograd) 23 (1978), 13-20.

[6] W. W. Breckner and G. Orbéan, Continuity properties of rationally s-convex mappings with values in ordered
topological liner space, ”Babes-Bolyai” University, Kolozsvar, 1978.

[6] S. S. Dragomir, J. Pecari¢ and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21
(1995), 335-241.

[7] E. K. Godunova and V. L. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye
1 nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva, 1985, pp.
138142.

[8] A. Gilanyi, K. Nikodem and Zs. Péles BernsteinDoetsch type results for quasiconvex functions Math. Ineq.
and Appl. 7 (2004), no. 2, 169-175.

[9] A. Hazy, On approzimately t-convexity, Math. Ineq. and Appl. 8 (2005), no. 3, 389-402.

[10] A. Hazy, On the stability of t-convex functions, Aequationes Math. 74 (2007) 210-218.

[11] A. Hézy, Bernstein-Doetsch type results for h-convex functions, accepted for publication, Math. Ineq. Appl.
(2011).

[12] A. Hézy and Zs. Péles, Approzimately midconvez functions, Bulletin London Math. Soc. 36 (2004) 339-350.

[13] A. Hazy and Zs. Péles, On approzimately t-convezr functions, Publ. Math. Debrecen 66 (2005), no. 3-4,
489-501, Dedicated to the 75th birthday of Professor Heinz Konig

[14] H. Hudzik and L. Maligranda, Some remarks on s;-convex functions, Aequationes Math. 48 (1994) 100-111.

[15] M. Kuczma, An Introduction to the Theory of Functional FEquations and Inequalities, Paristwowe
Wydawnictwo Naukowe — Uniwersytet él@ski, Warszawa—Krakéw-Katowice, 1985.

[16] Gy. Maksa and Zs. Péles: The equality case in some recent convezity inequalities, Opuscula Math. 31/2
(2011), 269-277.

[17] D. S. Mitrinovic and J. Pecaric, Note on a class of functions of Godunova and Levin, C. R. Math. Rep.
Acad. Sci. Can. 12 (1990),33-36.

[18] D. S. Mitrinovic, J. Pecaric and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic,
Dordrecht, 1993.



ON (e, 8, a,b)-CONVEX FUNCTIONS 9

[19] J. Mrowiec, Remark on approzimately Jensen-convez functions, C. R. Math. Acad. Sci. Soc. R. Canada 23
(2001), 16-21.

[20] C. T. Ng and K. Nikodem, On approzimately convez functions, Proc. Amer. Math. Soc. 118 (1993), no. 1,
103-108.

[21] W. Orlicz, A note on modular spaces I., Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (1961),157—
162.

[22] Zs. Péles, Bernstein—Doetsch-type results for general functional inequalities, Rocznik Nauk.-Dydakt. Prace
Mat. 17 (2000), 197-206, Dedicated to Professor Zenon Moszner on his 70th birthday.

[23] Zs. Péles, On approzimately convex functions, Proc. Amer. Math. Soc. 131 (2003), 243-252 (electronic).

[24] S. Piccard, Sur des ensembles parfaits, Mém. Univ. Neuchatel, vol. 16., Secrétariat de 1’ Université, Neuchéatel,
1942.

[25] C.E.M. Pearce and A.M. Rubinov, P -functions, quasi-convex functions and Hadamard-type inequalities, J.
Math. Anal. Appl. 240 (1999), 92-104.

[26] M. Pycia, A direct proof of the s-Holder continuity of Breckner s-conver functions, Aequationes Math., 61
(2001), 128-130.

[27] H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 93-104.

[28] K.L. Tseng, G.S. Yang and S.S. Dragomir, On quasi-convex functions and Hadamards inequality, RGMIA
Res. Rep. Coll. 6 (3) (2003), Article 1.

[29] S. Varosanec, On h-convezity, J. Math. Anal. Appl. 326 (2007), 303-311.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF MIskoLc, H-3515 MISKOLC-EGYETEMVAROS, HUNGARY
E-mail address: matha@uni-miskolc.hu



