
ON (α, β, a, b)-CONVEX FUNCTIONS

ATTILA HÁZY

Abstract. In this paper we investigate the (α, β, a, b)-convex functions which is a common
generalization of the usual convexity, the s-convexity in first and second sense, the h-convexity,
the Godunova-Levin functions and the P -functions. This notion of convexity was introduced
by Maksa and Páles in [16] in the following way: an (α, β, a, b)-convex function is defined as a
function f : D → R (where D is an open, (α, β)-convex, nonempty subset of a real or complex
topological vector space) which satisfies the inequality

f(α(t)x+ β(t)y) ≤ a(t)f(x) + b(t)f(y) (x; y ∈ D; t ∈ [0, 1]).

The main goal of the paper is to prove some regularity and Bernstein-Doetsch type results for
(α, β, a, b)-convex functions.

1. Introduction

Maksa and Páles in [16] dealt with the following problem:
Let X be a real or complex topological vector space, D ⊂ X be a nonempty open set, T be a

nonempty set, and α, β, a, b : T → R be given functions. The problem is to find all the solutions
f : D → R of the functional equation

f(α(t)x+ β(t)y) = a(t)f(x) + b(t)f(y) (x; y ∈ D; t ∈ T ) (1)

provided that D is (α; β)-convex, that is, α(t)x + β(t)y ∈ D whenever x; y ∈ D and t ∈ T . To
avoid the trivialities and the unimportant cases, we suppose that there exists an element t0 ∈ T
such that

α(t0)β(t0)a(t0)b(t0) 6= 0.

The solutions of (1) as (α; β; a; b)-affine functions and the solutions f of the corresponding
inequality

f(α(t)x+ β(t)y) ≤ a(t)f(x) + b(t)f(y) (x; y ∈ D; t ∈ T ) (2)

will be called (α; β; a; b)-convex functions.
In our paper we investigate the (α; β; a; b)-convex functions. This notion of convexity is a

common generalization of the usual convexity, the s-convexity in first and second sense, the
h-convexity, the Godunova-Levin functions and the P -functions.

In the special cases when T = {1/2}, T = {t0} or T = Q ∩ [0, 1], the corresponding con-
vex functions are said to be Jensen-(α; β; a; b)-convex, t0 − (α; β; a; b)-convex and rationally-
(α; β; a; b)-convex.
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Let h : [0, 1] → R be a given function. In the case, when α(t) = t, β(t) = 1 − t, a(t) =
h(t), b(t) = h(1− t) we get the so called h-convex functions, which was introduced by Varošanec
[29] and was generalized by Házy [11]. We say that f : D → R is an h-convex function if, for all
x, y ∈ D and t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y). (3)

The Godunova-Levin functions was investigated by Godunova-Levin [7]. We say that f :
I → R (where I is a real interval) is a Godunova-Levin function, if f is nonnegative and for all
x, y ∈ I and t ∈ (0, 1) we have

f (tx+ (1− t)y) ≤ f(x)

t
+
f(y)

1− t
.

Some properties of this type of functions are given in Dragomir, Pečaric̀ and Persson [6] Mitri-
novic̀ and Pečaric̀ [17], Mitrinovic̀, Pečaric̀ and Fink [18]. Among others, it is proved that
nonnegative monotone and nonnegative convex functions belong to this class of functions. The
Godunova-Levin functions are (α; β; a; b)-convex functions, with α(t) = t, β(t) = 1 − t, a(t) =
1/t, b(t) = 1/(1− t).

The concept of s-convexity in the first sense was introduced by Orlicz [21]. A real valued
function f : D → R is called Orlicz s-convex or s-convex in the first sense, if

f (tsx+ (1− t)sy) ≤ tf(x) + (1− t)f(y)

for every x, y ∈ D , t ∈]0, 1], where s ∈ [1,∞[ is fixed number. The Orlicz s-convex functions
are (α; β; a; b)-convex functions, with α(t) = ts, β(t) = (1− t)s, a(t) = t, b(t) = 1− t.

The concept of s-convexity in the second sense was introduced by Breckner [4]. A real valued
function f : D → R is called Breckner s-convex or s-convex in the second sense, if

f (tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y)

for every x, y ∈ D and t ∈ [0, 1], where s ∈]0, 1] is a fixed number. The Breckner s-convex
functions are (α; β; a; b)-convex functions, with α(t) = t, β(t) = 1− t, a(t) = ts, b(t) = (1− t)s.

The case s = 1 means the usual convexity of f .
In Breckner [4] and Breckner and Orban [5] Berstein-Doetsch type results were proved on

rationally s-convex functions, moreover, for the s-Hölder property of s-convex functions. Pycia
[26] gives a new proof of the latter statement, when f is defined on a nonempty, convex subset of
a finite dimensional vector space. In the paper Hudzik and Maligranda [14] the authors collect
some properties of s-convex functions defined on the nonnegative reals. In the paper Burai,
Házy and Juhász [2] there are some Berstein-Doetsch type result on (H, s)-convex functions.

The P -functions was investigated in Dragomir, Pečaric̀ and Persson [6]. A real valued function
f : D → R (where D is a convex, open, nonempty subset of a real (complex) linear space X) is
called P -function, if for every x, y ∈ D and t ∈ [0, 1] we have

f (tx+ (1− t)y) ≤ f(x) + f(y).

Some results about the P -functions there are in Pearce and Rubinov [25], Tseng, Yang and
Dragomir [28]. The P -functions are (α; β; a; b) -convex functions, with α(t) = t, β(t) = 1 −
t, a(t) = 1, b(t) = 1.
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In Bernstein and Doetsch [1] proved that if a function f : D → R (where D is a convex, open,
nonempty subset of a real (complex) linear space X) is locally bounded from above at a point
of D, then the Jensen-convexity of the function yields its local boundedness and continuity as
well, which implies the convexity of the function f (see Kuczma [15] for further references). This
result has been generalized by several authors. The first such type results are due to Nikodem
and Ng [20] for the approximately Jensen-convex functions (the so-called ε-Jensen-convexity),
which was extended by Páles (Páles [22] and [23]) to approximately t-convex functions. Further
generalizations can be found in papers Mrowiec [19], Házy [9] and [10], Házy and Páles [12] and
[13]. In the paper Gilányi, Nikodem and Páles [8] there are some Bernstein-Doetsch type results
for quasiconvex functions.

2. Main results

In this section we assume that (X, ‖ · ‖) is a real (complex) normed space. We recall that a
function f : D → R is called locally bounded from above on D if, for each point of p ∈ D, there
exist % > 0 and a neighborhood U(p, %) := {x ∈ X : ‖x− p‖ < %} such that f is bounded from
above on U(p, %). We assume that a, b : [0, 1]→ R are nonnegative.

Proposition 1. Let t0 ∈ [0, 1] be fixed such that α(t0) + β(t0) = 1 and f : D → R be an
(α; β; a; b)-convex function. Then

(i) if a(t0) + b(t0) > 1 then f is nonnegative.
(ii) if a(t0) + b(t0) < 1 then f is nonpositive.

Proof. Let x be an arbitrary element of D. Using (α; β; a; b)-convexity of f

f(x) = f(α(t0)x+ β(t0)x) ≤ a(t0)f(x) + b(t0)f(x) = (a(t0) + b(t0))f(x),

which implies

0 ≤ (a(t0) + b(t0)− 1)f(x).

If a(t0) + b(t0) − 1 > 0, then we have f(x) ≥ 0 and if a(t0) + b(t0) − 1 < 0, then we have
f(x) ≤ 0. �

Theorem 1. Let ]0, 1[⊂ T , α, β, a, b : T → R be given nonnegative functions and let t0 ∈]0, 1[ be
fixed such that α(t0)β(t0)a(t0)b(t0) 6= 0 and α(t0) + β(t0) = 1. Furthermore let D ⊂ X be open,
nonempty, (α; β)-convex set, let f : D → R be a t0− (α; β; a; b)-convex function, which is locally
bounded from above at a p point of D. Then then f is locally bounded at every point of D.

Proof. Since α(t0)β(t0) 6= 0 therefore we get α(t0), β(t0) > 0. We prove that f is locally bounded
from above on D.

First we prove that f is locally bounded from above on D. Define the sequence of sets Dn by

D0 := {p}, Dn+1 := α(t0)Dn + β(t0)D.

Using induction on n, we prove that f is locally upper bounded at each point of Dn. By
assumption, f is locally bounded from above at p ∈ D0. Assume that f is locally upper
bounded at each point of Dn. For x ∈ Dn+1, there exist x0 ∈ Dn and y0 ∈ D such that
x = α(t0)x0 + b(t0)y0. By the inductive assumption, there exist r > 0 and a constant M0 ≥ 0
such that f(x′) ≤ M0 for ‖x0 − x′‖ < r. Then, by the t0 − (α; β; a; b)-convexity of f , for
x′ ∈ U0 := U(x0, r) we have

f(α(t0)x
′ + β(t0)y0) ≤ a(t0)f(x′) + b(t0)f(y0) ≤ a(t0)M0 + b(t0)f(y0) =: M.
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Therefore, for

y ∈ U := α(t0)U0 + β(t0)y0 = U(α(t0)x0 + β(t0)y0, t0r) = U(x, t0r),

we get that f(y) ≤M . Thus f is locally bounded from above on Dn+1.
On the other hand, we show that

D =
∞⋃
n=1

Dn.

From the definition of Dn, it follows by induction that Dn = (α(t0))
np + (1 − (α(t0))

n)D. For
fixed x ∈ D, define the sequence xn by

xn :=
x− (α(t0))

np

1− (α(t0))n
.

Then xn → x if n→∞. As D is open, xn ∈ D for some n. Therefore

x = α(t0)
np+ (1− (α(t0))

n)xn ∈ (α(t0))
np+ (1− (α(t0))

n)D = Dn.

Thus f is locally bounded from above on D.
Now, we prove that f is locally bounded from below. Let q ∈ D be arbitrary. Since f is

locally bounded from above at the point q, there exist % > 0 and M > 0 such that

sup
U(q,%)

f ≤M.

Let x ∈ U(q, β(t0)%) and y :=
q − α(t0)x

β(t0)
. Then y is in U(q, %). By t0 − (α; β; a; b)-convexity,

f(q) ≤ a(t0)f(x) + b(t0)f(y),

which implies

f(x) ≥ f(q)− b(t0)f(y)

a(t0)
≥ f(q)− b(t0)M

a(t0)
=: M ′.

Therefore f is locally bounded from below at any point of D. �

Corollary 1. Let f : D → R be a Jensen-convex or t0-convex function. If f is locally bounded
from above at a point of D, then f is locally bounded at every point of D.

Corollary 2. Let f : D → R be a Breckner (t0, s)-convex function. If f is locally bounded from
above at a point of D, then f is locally bounded at every point of D.

Corollary 3. Let f : D → R be a (t0, h)-convex function such that h(t0) and h(1− t0) are not
zero simultaneously. If f is locally bounded from above at a point of D, then f is locally bounded
at every point of D.

Remark 1. It is a well-known fact that if a Jensen-convex function f is locally bounded above
at a point of its domain (see [1], [15]), then it is continuous on its domain. This is not true
for (Jensen,h)-convex functions, which implies is not true for Jensen − (α; β; a; b). Indeed, in
the case h(λ) = λs (where 0 < s < 1 is a fixed number), in [2] we give an example which is
(Jensen,h)-convex, bounded and nowhere continuous.

Next theorem gives a sufficient condition when local boundedness implies continuity.
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Theorem 2. Let α, β, a, b be given nonnegative, continuous functions satisfying the limit condi-
tions

lim
t→0

a(t) = 0 and lim
t→0

b(t) = 1.

and α(t) + β(t) = 1.
Let the sequence {tn}n∈N be such that tn ∈]0, 1] and tn tends to 0 (when n→∞) and assume

that a(tn) and b(tn) are not simultaneously zero. Let T = {tn}n∈N.
If f : D → R is T − (α; β; a; b)-convex function and f is locally bounded from above at a point

of D. Then f is continuous on D.

Proof. Since a(t0) and b(t0) are not zero simultaneously, therefore, without loss generality, we
may assume that b(t0) > 0.

Since f is locally bounded from above at a point x0 ∈ D, there exists a neighborhood U at x0
and a constant K ≥ 0 such that f(x) ≤ K for every x ∈ U . Let ε be an arbitrary nonnegative
constant. Then there exists n0 ∈ N such that if n ≥ n0, then

a(tn)K + [b(tn)− 1] f(x0) < ε,

whence
a(tn)

b(tn)
K +

[
1− 1

b(tn)

]
f(x0) < ε.

Let V be a neighborhood of 0 such that x0 + V ⊆ U , and let U ′ = x0 + α(tn)V . We prove that

|f(x)− f(x0)| < ε (x ∈ U ′).

For x ∈ U ′ there exist y, z ∈ x0 + V such that

x = α(tn)y + β(tn)x0,

x0 = α(tn)z + β(tn)x.

Indeed,

y − x0 =
1

α(tn)
(x− x0) ∈

1

β(tn)
α(tn)V = V,

and

z − x0 =
1− α(tn)

α(tn)
(x0 − x) ∈ 1− α(tn)

α(tn)
α(tn)V = (1− α(tn))V ⊆ V.

According to T − (α; β; a; b)-convexity of f ,

f(x) ≤ a(tn)f(y) + b(tn)f(x0) ≤ a(tn)K + b(tn)f(x0),

f(x0) ≤ a(tn)f(z) + b(tn)f(x) ≤ a(tn)K + b(tn)f(x).

We get
f(x)− f(x0) ≤ a(tn)K + [b(tn)− 1] f(x0) < ε (4)

and

f(x) ≥ f(x0)− a(tn)K

b(tn)
,

which implies

f(x)− f(x0) ≥
[

1

b(tn)
− 1

]
f(x0)−

a(tn)

b(tn)
K > −ε. (5)

The inequalities (4) and (5) show that |f(x) − f(x0)| < ε, that is f is continuous at x0, which
was to be proved. �
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Remark 2. The previous limit conditions are not necessary, since in the case of Jensen-convexity
are not fulfilled. However, the result of Bernstein and Doetsch is valid for Jensen-convex func-
tions. In contrary, the nonnegative monotone functions - which are not necessary continuous
- belongs to a special class of the (α; β; a; b)-convex functions, to the class of Godunova-Levin
functions. Therefore, in this setting, the limit conditions in question cannot be ignored.

3. Convexity property of rationally-(α; β; a; b)-convex

The following result offers a generalization of the theorem of Bernstein-Doetsch [1], Breckner
[4], Burai-Házy-Juhász [2] and Házy [11] for rationally-(α; β; a; b)-convex functions

Theorem 3. Let α, β, a, b be given nonnegative, continuous functions satisfying the limit condi-
tions

lim
t→0

a(t) = 0 and lim
t→0

b(t) = 1.

and α(t) + β(t) = 1.
Assume that a(t0) and b(t0) are not zero simultaneously for all t0 ∈ Q∩ [0, 1]. If f : D → R is

rationally−(α, β, a, b)-convex and locally bounded from above at a point of D, then f is continuous
and (α, β, a, b)-convex.

Proof. We prove that the function f is t0 − (α; β; a; b)-convex for all t0 ∈ [0, 1]. Let t0 ∈ [0, 1]
arbitrary. Then there exists a sequence {tn}n∈N such that tn ∈ Q and tn → t0 (when n tends to
∞). Applying rationally−(α, β, a, b)-convexity of f , we get

f (α(tn)x+ β(tn)y) ≤ a(tn)f(x) + b(tn)f(y). (6)

The local upper boundedness of f implies the continuity of f (according to Theorem 2). There-
fore, taking the limit n→∞ in (6), we get

f (α(t0)x+ β(t0)y) ≤ a(t0)f(x) + b(t0)f(y),

which proves the (α, β, a, b)-convexity of f . �

Corollary 4. Let D ⊂ X be a nonempty, convex, open set and let h : [0, 1] → R be a given
nonnegative, continuous function satisfying the limit conditions

lim
t→0

h(t) = 0 and lim
t→1

h(t) = 1.

and assume that h(t0) and h(1− t0) are not simultaneously zero for all t0 ∈ Q ∩ [0, 1].
If f : D → R is rationally-h-convex and f is locally bounded from above at a point D, then f

is continuous on D and h-convex.

Corollary 5. Let D ⊂ X be a nonempty, convex, open set. If f : D → R is rationally-Breckner
s-convex and locally bounded from above at a point D, then f is continuous on D and Breckner
s-convex.

Theorem 4. Let T = [0, 1], α, β, a, b : T → R be given nonnegative functions such that α, β
continuous on T and a(t) + b(t) = 1. Let f : R+ → R an (α, β, a, b)-convex function. Then

(i) if (α + β)(T ) = [r, 1] (where r < 1), then f is nondecreasing.
(ii) if (α + β)(T ) = [1, r] (where r > 1), then f is nonincreasing.

(iii) if (α + β)(T ) = [r1, r2] (where r1 < 1 < r2), then f is constant.
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Proof. We have, for x > 0 and t ∈ [0, 1]

f (α(t)x+ β(t)x) ≤ a(t)f(x) + b(t)f(x) = f(x).

Let γ = α + β. Then γ is continuous on [0, 1].
In the case (i) we get γ(T ) = [r, 1], where r > 1. Let u ∈ [r, 1] be arbitrary. Then there exists

a t ∈ [0, 1] such that γ(t) = u. This yields that

f(ux) ≤ f(x) (x ∈ R+, u ∈ [r, 1]). (7)

If now u ∈ [r2, 1] then u1/2 ∈ [r, 1]. Therefore, by the fact that (7) holds for all x ∈ R+, we get

f(ux) = f(u1/2(u1/2x)) ≤ f(u1/2x) ≤ f(x)

for all x ∈ R+. By induction we then obtain that

f(ux) ≤ f(x) (x ∈ R+, u ∈]0, 1]). (8)

Therefore, taking 0 < u < v and applying (8), we get

f(u) = f((u/v)v) ≤ f(v),

which means that f is nondecreasing on R+.
The proof of the cases (ii) and (iii) are similar. �

The above results do not hold, in general, in the case of convex functions, because a convex
function f : R+ → R, need not be non-decreasing. But in the case of Orlicz s-convex function
this is true.

Corollary 6. Let 0 < s < 1. Let f : R+ → R an Orlicz s-convex function. Then f is
nondecreasing.

Remark 3. In the paper of Hudzik and Maligranda [14] is gave an example which shows that the
Orlicz s-convex function is nondecreasing on R+, but not necessarily on [0,∞). For the readers
convenience we recall the example: let a, b, c ∈ R and let

f(x) =

{
a if x = 0
bxs + c if x 6= 0.

Then if b > 0 and c < a then f is non-decreasing on (0,∞) but not on [0,∞).

4. Optimization

It is a very well known fact that every local minimizer of a convex function is a global one.
The same is true for (α, β, a, b)-convex functions under some assumptions.

Theorem 5. Let X be a real or complex topological vector space, D ⊂ X be a nonempty open
(α; β)-convex set, where α, β, a, b : [0, 1] → R be given nonnegative, continuous functions satis-
fying the limit conditions

lim
t→0

α(t) = 0 and lim
t→0

β(t) = 1.

and assume that a(t) + b(t) = 1.
Then every local minimizer x0 ∈ D of an (α, β, a, b)-convex function f : D → R is a global

one.
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Proof. Let x0 ∈ D be a local minimizer of f . Then there exists a positive real number r, such
that

f(x0) ≤ f(y), y ∈ U(x0, r) .

Assume that x0 is not a global minimizer. Then there exists z ∈ D, such that f(x0) > f(z).
Using this and the (α, β, a, b)-convexity of f , we have

f(α(t)z + β(t)x0) ≤ a(t)f(x0) + b(t)f(z) = f(x0) + b(t) (f(z)− f(x0)) < f(x0) .

On the other hand, using the limit conditions, α(t)z+β(t)x0 ∈ U(x0, r), if t is sufficiently small,
which contradicts to the fact that x0 is a local minimizer.

If f is a strictly (α, β, a, b)-convex function, and x 6= y are global minimizers, then

f(α(t)x+ β(t)y) < a(t)f(x) + b(t)f(y) = f(x),

which is a contradiction. �

Corollary 7. Every local minimizer of an Orlicz-convex function f : D → R is a global one. If
the function f is strictly Orlicz-convex, then there is at most one global minimum.

Corollary 8. Every local minimizer of a convex function f : D → R is a global one. If the
function f is strictly convex, then there is at most one global minimum.
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[11] A. Házy, Bernstein-Doetsch type results for h-convex functions, accepted for publication, Math. Ineq. Appl.

(2011).
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