ON (α, β, a, b)-CONVEX FUNCTIONS

ATTILA HÁZY

Abstract. In this paper we investigate the (α, β, a, b)-convex functions which is a common generalization of the usual convexity, the s-convexity in first and second sense, the h-convexity, the Godunova-Levin functions and the P-functions. This notion of convexity was introduced by Maksa and Páles in [16] in the following way: an (α, β, a, b)-convex function is defined as a function $f: D \rightarrow \mathbb{R}$ (where D is an open, (α, β)-convex, nonempty subset of a real or complex topological vector space) which satisfies the inequality

$$
f(\alpha(t) x+\beta(t) y) \leq a(t) f(x)+b(t) f(y) \quad(x ; y \in D ; t \in[0,1])
$$

The main goal of the paper is to prove some regularity and Bernstein-Doetsch type results for (α, β, a, b)-convex functions.

1. Introduction

Maksa and Páles in [16] dealt with the following problem:
Let X be a real or complex topological vector space, $D \subset X$ be a nonempty open set, T be a nonempty set, and $\alpha, \beta, a, b: T \rightarrow \mathbb{R}$ be given functions. The problem is to find all the solutions $f: D \rightarrow \mathbb{R}$ of the functional equation

$$
\begin{equation*}
f(\alpha(t) x+\beta(t) y)=a(t) f(x)+b(t) f(y) \quad(x ; y \in D ; t \in T) \tag{1}
\end{equation*}
$$

provided that D is $(\alpha ; \beta)$-convex, that is, $\alpha(t) x+\beta(t) y \in D$ whenever $x ; y \in D$ and $t \in T$. To avoid the trivialities and the unimportant cases, we suppose that there exists an element $t_{0} \in T$ such that

$$
\alpha\left(t_{0}\right) \beta\left(t_{0}\right) a\left(t_{0}\right) b\left(t_{0}\right) \neq 0
$$

The solutions of (1) as ($\alpha ; \beta ; a ; b$)-affine functions and the solutions f of the corresponding inequality

$$
\begin{equation*}
f(\alpha(t) x+\beta(t) y) \leq a(t) f(x)+b(t) f(y) \quad(x ; y \in D ; t \in T) \tag{2}
\end{equation*}
$$

will be called ($\alpha ; \beta ; a ; b)$-convex functions.
In our paper we investigate the $(\alpha ; \beta ; a ; b)$-convex functions. This notion of convexity is a common generalization of the usual convexity, the s-convexity in first and second sense, the h-convexity, the Godunova-Levin functions and the P-functions.

In the special cases when $T=\{1 / 2\}, T=\left\{t_{0}\right\}$ or $T=\mathbb{Q} \cap[0,1]$, the corresponding convex functions are said to be Jensen- $(\alpha ; \beta ; a ; b)$-convex, $t_{0}-(\alpha ; \beta ; a ; b)$-convex and rationally$(\alpha ; \beta ; a ; b)$-convex.

Date: October 8, 2015.
2010 Mathematics Subject Classification. Primary 39B22, 39B12, 26A51, 26B25.
Key words and phrases. Convexity, h-convexity, s-convexity, Bernstein-Doetsch theorem, regularity properties of generalized convex functions.

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant K-111651. The second named author research has been supported by the János Bolyai research scholarship of the Hungarian Academy of Sciences.

Let $h:[0,1] \rightarrow \mathbb{R}$ be a given function. In the case, when $\alpha(t)=t, \beta(t)=1-t, a(t)=$ $h(t), b(t)=h(1-t)$ we get the so called h-convex functions, which was introduced by Varošanec [29] and was generalized by Házy [11]. We say that $f: D \rightarrow \mathbb{R}$ is an h-convex function if, for all $x, y \in D$ and $t \in[0,1]$, we have

$$
\begin{equation*}
f(t x+(1-t) y) \leq h(t) f(x)+h(1-t) f(y) . \tag{3}
\end{equation*}
$$

The Godunova-Levin functions was investigated by Godunova-Levin [7]. We say that f : $I \rightarrow \mathbb{R}$ (where I is a real interval) is a Godunova-Levin function, if f is nonnegative and for all $x, y \in I$ and $t \in(0,1)$ we have

$$
f(t x+(1-t) y) \leq \frac{f(x)}{t}+\frac{f(y)}{1-t}
$$

Some properties of this type of functions are given in Dragomir, Pečaric̀ and Persson [6] Mitrinovic̀ and Pečaric̀ [17], Mitrinovic̀, Pečaric̀ and Fink [18]. Among others, it is proved that nonnegative monotone and nonnegative convex functions belong to this class of functions. The Godunova-Levin functions are ($\alpha ; \beta ; a ; b$)-convex functions, with $\alpha(t)=t, \beta(t)=1-t, a(t)=$ $1 / t, b(t)=1 /(1-t)$.

The concept of s-convexity in the first sense was introduced by Orlicz [21]. A real valued function $f: D \rightarrow \mathbb{R}$ is called Orlicz s-convex or s-convex in the first sense, if

$$
f\left(t^{s} x+(1-t)^{s} y\right) \leq t f(x)+(1-t) f(y)
$$

for every $x, y \in D, t \in] 0,1]$, where $s \in[1, \infty[$ is fixed number. The Orlicz s-convex functions are $(\alpha ; \beta ; a ; b)$-convex functions, with $\alpha(t)=t^{s}, \beta(t)=(1-t)^{s}, a(t)=t, b(t)=1-t$.

The concept of s-convexity in the second sense was introduced by Breckner [4]. A real valued function $f: D \rightarrow \mathbb{R}$ is called Breckner s-convex or s-convex in the second sense, if

$$
f(t x+(1-t) y) \leq t^{s} f(x)+(1-t)^{s} f(y)
$$

for every $x, y \in D$ and $t \in[0,1]$, where $s \in] 0,1]$ is a fixed number. The Breckner s-convex functions are $(\alpha ; \beta ; a ; b)$-convex functions, with $\alpha(t)=t, \beta(t)=1-t, a(t)=t^{s}, b(t)=(1-t)^{s}$.

The case $s=1$ means the usual convexity of f.
In Breckner [4] and Breckner and Orban [5] Berstein-Doetsch type results were proved on rationally s-convex functions, moreover, for the s-Hölder property of s-convex functions. Pycia [26] gives a new proof of the latter statement, when f is defined on a nonempty, convex subset of a finite dimensional vector space. In the paper Hudzik and Maligranda [14] the authors collect some properties of s-convex functions defined on the nonnegative reals. In the paper Burai, Házy and Juhász [2] there are some Berstein-Doetsch type result on (H, s)-convex functions.

The P-functions was investigated in Dragomir, Pečaric̀ and Persson [6]. A real valued function $f: D \rightarrow \mathbb{R}$ (where D is a convex, open, nonempty subset of a real (complex) linear space X) is called P-function, if for every $x, y \in D$ and $t \in[0,1]$ we have

$$
f(t x+(1-t) y) \leq f(x)+f(y) .
$$

Some results about the P-functions there are in Pearce and Rubinov [25], Tseng, Yang and Dragomir [28]. The P-functions are $(\alpha ; \beta ; a ; b)$-convex functions, with $\alpha(t)=t, \beta(t)=1-$ $t, a(t)=1, b(t)=1$.

In Bernstein and Doetsch [1] proved that if a function $f: D \rightarrow \mathbb{R}$ (where D is a convex, open, nonempty subset of a real (complex) linear space X) is locally bounded from above at a point of D, then the Jensen-convexity of the function yields its local boundedness and continuity as well, which implies the convexity of the function f (see Kuczma [15] for further references). This result has been generalized by several authors. The first such type results are due to Nikodem and $\operatorname{Ng}[20]$ for the approximately Jensen-convex functions (the so-called ε-Jensen-convexity), which was extended by Páles (Páles [22] and [23]) to approximately t-convex functions. Further generalizations can be found in papers Mrowiec [19], Házy [9] and [10], Házy and Páles [12] and [13]. In the paper Gilányi, Nikodem and Páles [8] there are some Bernstein-Doetsch type results for quasiconvex functions.

2. Main Results

In this section we assume that $(X,\|\cdot\|)$ is a real (complex) normed space. We recall that a function $f: D \rightarrow \mathbb{R}$ is called locally bounded from above on D if, for each point of $p \in D$, there exist $\varrho>0$ and a neighborhood $U(p, \varrho):=\{x \in X:\|x-p\|<\varrho\}$ such that f is bounded from above on $U(p, \varrho)$. We assume that $a, b:[0,1] \rightarrow \mathbb{R}$ are nonnegative.

Proposition 1. Let $t_{0} \in[0,1]$ be fixed such that $\alpha\left(t_{0}\right)+\beta\left(t_{0}\right)=1$ and $f: D \rightarrow \mathbb{R}$ be an $(\alpha ; \beta ; a ; b)$-convex function. Then
(i) if $a\left(t_{0}\right)+b\left(t_{0}\right)>1$ then f is nonnegative.
(ii) if $a\left(t_{0}\right)+b\left(t_{0}\right)<1$ then f is nonpositive.

Proof. Let x be an arbitrary element of D. Using $(\alpha ; \beta ; a ; b)$-convexity of f

$$
f(x)=f\left(\alpha\left(t_{0}\right) x+\beta\left(t_{0}\right) x\right) \leq a\left(t_{0}\right) f(x)+b\left(t_{0}\right) f(x)=\left(a\left(t_{0}\right)+b\left(t_{0}\right)\right) f(x),
$$

which implies

$$
0 \leq\left(a\left(t_{0}\right)+b\left(t_{0}\right)-1\right) f(x) .
$$

If $a\left(t_{0}\right)+b\left(t_{0}\right)-1>0$, then we have $f(x) \geq 0$ and if $a\left(t_{0}\right)+b\left(t_{0}\right)-1<0$, then we have $f(x) \leq 0$.

Theorem 1. Let $] 0,1\left[\subset T, \alpha, \beta, a, b: T \rightarrow \mathbb{R}\right.$ be given nonnegative functions and let $\left.t_{0} \in\right] 0,1[$ be fixed such that $\alpha\left(t_{0}\right) \beta\left(t_{0}\right) a\left(t_{0}\right) b\left(t_{0}\right) \neq 0$ and $\alpha\left(t_{0}\right)+\beta\left(t_{0}\right)=1$. Furthermore let $D \subset X$ be open, nonempty, $(\alpha ; \beta)$-convex set, let $f: D \rightarrow \mathbb{R}$ be a $t_{0}-(\alpha ; \beta ; a ; b)$-convex function, which is locally bounded from above at a p point of D. Then then f is locally bounded at every point of D.

Proof. Since $\alpha\left(t_{0}\right) \beta\left(t_{0}\right) \neq 0$ therefore we get $\alpha\left(t_{0}\right), \beta\left(t_{0}\right)>0$. We prove that f is locally bounded from above on D.

First we prove that f is locally bounded from above on D. Define the sequence of sets D_{n} by

$$
D_{0}:=\{p\}, \quad D_{n+1}:=\alpha\left(t_{0}\right) D_{n}+\beta\left(t_{0}\right) D
$$

Using induction on n, we prove that f is locally upper bounded at each point of D_{n}. By assumption, f is locally bounded from above at $p \in D_{0}$. Assume that f is locally upper bounded at each point of D_{n}. For $x \in D_{n+1}$, there exist $x_{0} \in D_{n}$ and $y_{0} \in D$ such that $x=\alpha\left(t_{0}\right) x_{0}+b\left(t_{0}\right) y_{0}$. By the inductive assumption, there exist $r>0$ and a constant $M_{0} \geq 0$ such that $f\left(x^{\prime}\right) \leq M_{0}$ for $\left\|x_{0}-x^{\prime}\right\|<r$. Then, by the $t_{0}-(\alpha ; \beta ; a ; b)$-convexity of f, for $x^{\prime} \in U_{0}:=U\left(x_{0}, r\right)$ we have

$$
f\left(\alpha\left(t_{0}\right) x^{\prime}+\beta\left(t_{0}\right) y_{0}\right) \leq a\left(t_{0}\right) f\left(x^{\prime}\right)+b\left(t_{0}\right) f\left(y_{0}\right) \leq a\left(t_{0}\right) M_{0}+b\left(t_{0}\right) f\left(y_{0}\right)=: M
$$

Therefore, for

$$
y \in U:=\alpha\left(t_{0}\right) U_{0}+\beta\left(t_{0}\right) y_{0}=U\left(\alpha\left(t_{0}\right) x_{0}+\beta\left(t_{0}\right) y_{0}, t_{0} r\right)=U\left(x, t_{0} r\right),
$$

we get that $f(y) \leq M$. Thus f is locally bounded from above on D_{n+1}.
On the other hand, we show that

$$
D=\bigcup_{n=1}^{\infty} D_{n}
$$

From the definition of D_{n}, it follows by induction that $D_{n}=\left(\alpha\left(t_{0}\right)\right)^{n} p+\left(1-\left(\alpha\left(t_{0}\right)\right)^{n}\right) D$. For fixed $x \in D$, define the sequence x_{n} by

$$
x_{n}:=\frac{x-\left(\alpha\left(t_{0}\right)\right)^{n} p}{1-\left(\alpha\left(t_{0}\right)\right)^{n}} .
$$

Then $x_{n} \rightarrow x$ if $n \rightarrow \infty$. As D is open, $x_{n} \in D$ for some n. Therefore

$$
x=\alpha\left(t_{0}\right)^{n} p+\left(1-\left(\alpha\left(t_{0}\right)\right)^{n}\right) x_{n} \in\left(\alpha\left(t_{0}\right)\right)^{n} p+\left(1-\left(\alpha\left(t_{0}\right)\right)^{n}\right) D=D_{n} .
$$

Thus f is locally bounded from above on D.
Now, we prove that f is locally bounded from below. Let $q \in D$ be arbitrary. Since f is locally bounded from above at the point q, there exist $\varrho>0$ and $M>0$ such that

$$
\sup _{U(q, \varrho)} f \leq M
$$

Let $x \in U\left(q, \beta\left(t_{0}\right) \varrho\right)$ and $y:=\frac{q-\alpha\left(t_{0}\right) x}{\beta\left(t_{0}\right)}$. Then y is in $U(q, \varrho)$. By $t_{0}-(\alpha ; \beta ; a ; b)$-convexity,

$$
f(q) \leq a\left(t_{0}\right) f(x)+b\left(t_{0}\right) f(y)
$$

which implies

$$
f(x) \geq \frac{f(q)-b\left(t_{0}\right) f(y)}{a\left(t_{0}\right)} \geq \frac{f(q)-b\left(t_{0}\right) M}{a\left(t_{0}\right)}=: M^{\prime}
$$

Therefore f is locally bounded from below at any point of D.
Corollary 1. Let $f: D \rightarrow \mathbb{R}$ be a Jensen-convex or t_{0}-convex function. If f is locally bounded from above at a point of D, then f is locally bounded at every point of D.

Corollary 2. Let $f: D \rightarrow \mathbb{R}$ be a Breckner $\left(t_{0}, s\right)$-convex function. If f is locally bounded from above at a point of D, then f is locally bounded at every point of D.

Corollary 3. Let $f: D \rightarrow \mathbb{R}$ be a $\left(t_{0}, h\right)$-convex function such that $h\left(t_{0}\right)$ and $h\left(1-t_{0}\right)$ are not zero simultaneously. If f is locally bounded from above at a point of D, then f is locally bounded at every point of D.

Remark 1. It is a well-known fact that if a Jensen-convex function f is locally bounded above at a point of its domain (see [1], [15]), then it is continuous on its domain. This is not true for (Jensen,h)-convex functions, which implies is not true for Jensen - $(\alpha ; \beta ; a ; b)$. Indeed, in the case $h(\lambda)=\lambda^{s}$ (where $0<s<1$ is a fixed number), in [2] we give an example which is (Jensen, h)-convex, bounded and nowhere continuous.

Next theorem gives a sufficient condition when local boundedness implies continuity.

Theorem 2. Let α, β, a, b be given nonnegative, continuous functions satisfying the limit conditions

$$
\lim _{t \rightarrow 0} a(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0} b(t)=1
$$

and $\alpha(t)+\beta(t)=1$.
Let the sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be such that $\left.\left.t_{n} \in\right] 0,1\right]$ and t_{n} tends to 0 (when $n \rightarrow \infty$) and assume that $a\left(t_{n}\right)$ and $b\left(t_{n}\right)$ are not simultaneously zero. Let $T=\left\{t_{n}\right\}_{n \in \mathbb{N}}$.

If $f: D \rightarrow \mathbb{R}$ is $T-(\alpha ; \beta ; a ; b)$-convex function and f is locally bounded from above at a point of D. Then f is continuous on D.
Proof. Since $a\left(t_{0}\right)$ and $b\left(t_{0}\right)$ are not zero simultaneously, therefore, without loss generality, we may assume that $b\left(t_{0}\right)>0$.

Since f is locally bounded from above at a point $x_{0} \in D$, there exists a neighborhood U at x_{0} and a constant $K \geq 0$ such that $f(x) \leq K$ for every $x \in U$. Let ε be an arbitrary nonnegative constant. Then there exists $n_{0} \in \mathbb{N}$ such that if $n \geq n_{0}$, then

$$
a\left(t_{n}\right) K+\left[b\left(t_{n}\right)-1\right] f\left(x_{0}\right)<\varepsilon
$$

whence

$$
\frac{a\left(t_{n}\right)}{b\left(t_{n}\right)} K+\left[1-\frac{1}{b\left(t_{n}\right)}\right] f\left(x_{0}\right)<\varepsilon
$$

Let V be a neighborhood of 0 such that $x_{0}+V \subseteq U$, and let $U^{\prime}=x_{0}+\alpha\left(t_{n}\right) V$. We prove that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \quad\left(x \in U^{\prime}\right)
$$

For $x \in U^{\prime}$ there exist $y, z \in x_{0}+V$ such that

$$
\begin{aligned}
x & =\alpha\left(t_{n}\right) y+\beta\left(t_{n}\right) x_{0} \\
x_{0} & =\alpha\left(t_{n}\right) z+\beta\left(t_{n}\right) x
\end{aligned}
$$

Indeed,

$$
y-x_{0}=\frac{1}{\alpha\left(t_{n}\right)}\left(x-x_{0}\right) \in \frac{1}{\beta\left(t_{n}\right)} \alpha\left(t_{n}\right) V=V
$$

and

$$
z-x_{0}=\frac{1-\alpha\left(t_{n}\right)}{\alpha\left(t_{n}\right)}\left(x_{0}-x\right) \in \frac{1-\alpha\left(t_{n}\right)}{\alpha\left(t_{n}\right)} \alpha\left(t_{n}\right) V=\left(1-\alpha\left(t_{n}\right)\right) V \subseteq V
$$

According to $T-(\alpha ; \beta ; a ; b)$-convexity of f,

$$
\begin{aligned}
f(x) & \leq a\left(t_{n}\right) f(y)+b\left(t_{n}\right) f\left(x_{0}\right) \leq a\left(t_{n}\right) K+b\left(t_{n}\right) f\left(x_{0}\right), \\
f\left(x_{0}\right) & \leq a\left(t_{n}\right) f(z)+b\left(t_{n}\right) f(x) \leq a\left(t_{n}\right) K+b\left(t_{n}\right) f(x) .
\end{aligned}
$$

We get

$$
\begin{equation*}
f(x)-f\left(x_{0}\right) \leq a\left(t_{n}\right) K+\left[b\left(t_{n}\right)-1\right] f\left(x_{0}\right)<\varepsilon \tag{4}
\end{equation*}
$$

and

$$
f(x) \geq \frac{f\left(x_{0}\right)-a\left(t_{n}\right) K}{b\left(t_{n}\right)}
$$

which implies

$$
\begin{equation*}
f(x)-f\left(x_{0}\right) \geq\left[\frac{1}{b\left(t_{n}\right)}-1\right] f\left(x_{0}\right)-\frac{a\left(t_{n}\right)}{b\left(t_{n}\right)} K>-\varepsilon \tag{5}
\end{equation*}
$$

The inequalities (4) and (5) show that $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$, that is f is continuous at x_{0}, which was to be proved.

Remark 2. The previous limit conditions are not necessary, since in the case of Jensen-convexity are not fulfilled. However, the result of Bernstein and Doetsch is valid for Jensen-convex functions. In contrary, the nonnegative monotone functions - which are not necessary continuous - belongs to a special class of the $(\alpha ; \beta ; a ; b)$-convex functions, to the class of Godunova-Levin functions. Therefore, in this setting, the limit conditions in question cannot be ignored.

3. Convexity property of rationally- $(\alpha ; \beta ; a ; b)$-CONVEX

The following result offers a generalization of the theorem of Bernstein-Doetsch [1], Breckner [4], Burai-Házy-Juhász [2] and Házy [11] for rationally- $(\alpha ; \beta ; a ; b)$-convex functions

Theorem 3. Let α, β, a, b be given nonnegative, continuous functions satisfying the limit conditions

$$
\lim _{t \rightarrow 0} a(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0} b(t)=1
$$

and $\alpha(t)+\beta(t)=1$.
Assume that a $\left(t_{0}\right)$ and $b\left(t_{0}\right)$ are not zero simultaneously for all $t_{0} \in \mathbb{Q} \cap[0,1]$. If $f: D \rightarrow \mathbb{R}$ is rationally- (α, β, a, b)-convex and locally bounded from above at a point of D, then f is continuous and ($\alpha, \beta, a, b)$-convex.

Proof. We prove that the function f is $t_{0}-(\alpha ; \beta ; a ; b)$-convex for all $t_{0} \in[0,1]$. Let $t_{0} \in[0,1]$ arbitrary. Then there exists a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ such that $t_{n} \in \mathbb{Q}$ and $t_{n} \rightarrow t_{0}$ (when n tends to $\infty)$. Applying rationally- (α, β, a, b)-convexity of f, we get

$$
\begin{equation*}
f\left(\alpha\left(t_{n}\right) x+\beta\left(t_{n}\right) y\right) \leq a\left(t_{n}\right) f(x)+b\left(t_{n}\right) f(y) . \tag{6}
\end{equation*}
$$

The local upper boundedness of f implies the continuity of f (according to Theorem 2). Therefore, taking the limit $n \rightarrow \infty$ in (6), we get

$$
f\left(\alpha\left(t_{0}\right) x+\beta\left(t_{0}\right) y\right) \leq a\left(t_{0}\right) f(x)+b\left(t_{0}\right) f(y)
$$

which proves the (α, β, a, b)-convexity of f.
Corollary 4. Let $D \subset X$ be a nonempty, convex, open set and let $h:[0,1] \rightarrow \mathbb{R}$ be a given nonnegative, continuous function satisfying the limit conditions

$$
\lim _{t \rightarrow 0} h(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 1} h(t)=1
$$

and assume that $h\left(t_{0}\right)$ and $h\left(1-t_{0}\right)$ are not simultaneously zero for all $t_{0} \in \mathbb{Q} \cap[0,1]$.
If $f: D \rightarrow \mathbb{R}$ is rationally-h-convex and f is locally bounded from above at a point D, then f is continuous on D and h-convex.

Corollary 5. Let $D \subset X$ be a nonempty, convex, open set. If $f: D \rightarrow \mathbb{R}$ is rationally-Breckner s-convex and locally bounded from above at a point D, then f is continuous on D and Breckner s-convex.

Theorem 4. Let $T=[0,1], \alpha, \beta, a, b: T \rightarrow \mathbb{R}$ be given nonnegative functions such that α, β continuous on T and $a(t)+b(t)=1$. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ an (α, β, a, b)-convex function. Then
(i) if $(\alpha+\beta)(T)=[r, 1]$ (where $r<1)$, then f is nondecreasing.
(ii) if $(\alpha+\beta)(T)=[1, r]$ (where $r>1)$, then f is nonincreasing.
(iii) if $(\alpha+\beta)(T)=\left[r_{1}, r_{2}\right]$ (where $\left.r_{1}<1<r_{2}\right)$, then f is constant.

Proof. We have, for $x>0$ and $t \in[0,1]$

$$
f(\alpha(t) x+\beta(t) x) \leq a(t) f(x)+b(t) f(x)=f(x) .
$$

Let $\gamma=\alpha+\beta$. Then γ is continuous on $[0,1]$.
In the case (i) we get $\gamma(T)=[r, 1]$, where $r>1$. Let $u \in[r, 1]$ be arbitrary. Then there exists a $t \in[0,1]$ such that $\gamma(t)=u$. This yields that

$$
\begin{equation*}
f(u x) \leq f(x) \quad\left(x \in \mathbb{R}_{+}, u \in[r, 1]\right) \tag{7}
\end{equation*}
$$

If now $u \in\left[r^{2}, 1\right]$ then $u^{1 / 2} \in[r, 1]$. Therefore, by the fact that (7) holds for all $x \in \mathbb{R}_{+}$, we get

$$
f(u x)=f\left(u^{1 / 2}\left(u^{1 / 2} x\right)\right) \leq f\left(u^{1 / 2} x\right) \leq f(x)
$$

for all $x \in \mathbb{R}_{+}$. By induction we then obtain that

$$
\begin{equation*}
\left.\left.f(u x) \leq f(x) \quad\left(x \in \mathbb{R}_{+}, u \in\right] 0,1\right]\right) \tag{8}
\end{equation*}
$$

Therefore, taking $0<u<v$ and applying (8), we get

$$
f(u)=f((u / v) v) \leq f(v),
$$

which means that f is nondecreasing on \mathbb{R}_{+}.
The proof of the cases (ii) and (iii) are similar.
The above results do not hold, in general, in the case of convex functions, because a convex function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$, need not be non-decreasing. But in the case of Orlicz s-convex function this is true.

Corollary 6. Let $0<s<1$. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ an Orlicz s-convex function. Then f is nondecreasing.

Remark 3. In the paper of Hudzik and Maligranda [14] is gave an example which shows that the Orlicz s-convex function is nondecreasing on \mathbb{R}_{+}, but not necessarily on $[0, \infty)$. For the readers convenience we recall the example: let $a, b, c \in \mathbb{R}$ and let

$$
f(x)= \begin{cases}a & \text { if } x=0 \\ b x^{s}+c & \text { if } x \neq 0 .\end{cases}
$$

Then if $b>0$ and $c<a$ then f is non-decreasing on $(0, \infty)$ but not on $[0, \infty)$.

4. Optimization

It is a very well known fact that every local minimizer of a convex function is a global one. The same is true for (α, β, a, b)-convex functions under some assumptions.

Theorem 5. Let X be a real or complex topological vector space, $D \subset X$ be a nonempty open $(\alpha ; \beta)$-convex set, where $\alpha, \beta, a, b:[0,1] \rightarrow \mathbb{R}$ be given nonnegative, continuous functions satisfying the limit conditions

$$
\lim _{t \rightarrow 0} \alpha(t)=0 \quad \text { and } \quad \lim _{t \rightarrow 0} \beta(t)=1
$$

and assume that $a(t)+b(t)=1$.
Then every local minimizer $x_{0} \in D$ of an (α, β, a, b)-convex function $f: D \rightarrow \mathbb{R}$ is a global one.

Proof. Let $x_{0} \in D$ be a local minimizer of f. Then there exists a positive real number r, such that

$$
f\left(x_{0}\right) \leq f(y), \quad y \in U\left(x_{0}, r\right) .
$$

Assume that x_{0} is not a global minimizer. Then there exists $z \in D$, such that $f\left(x_{0}\right)>f(z)$. Using this and the (α, β, a, b)-convexity of f, we have

$$
f\left(\alpha(t) z+\beta(t) x_{0}\right) \leq a(t) f\left(x_{0}\right)+b(t) f(z)=f\left(x_{0}\right)+b(t)\left(f(z)-f\left(x_{0}\right)\right)<f\left(x_{0}\right) .
$$

On the other hand, using the limit conditions, $\alpha(t) z+\beta(t) x_{0} \in U\left(x_{0}, r\right)$, if t is sufficiently small, which contradicts to the fact that x_{0} is a local minimizer.

If f is a strictly (α, β, a, b)-convex function, and $x \neq y$ are global minimizers, then

$$
f(\alpha(t) x+\beta(t) y)<a(t) f(x)+b(t) f(y)=f(x),
$$

which is a contradiction.
Corollary 7. Every local minimizer of an Orlicz-convex function $f: D \rightarrow \mathbb{R}$ is a global one. If the function f is strictly Orlicz-convex, then there is at most one global minimum.

Corollary 8. Every local minimizer of a convex function $f: D \rightarrow \mathbb{R}$ is a global one. If the function f is strictly convex, then there is at most one global minimum.

References

[1] F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Annalen 76 (1915), 514-526.
[2] P. Burai, A. Házy and T. Juhász, Bernstein-Doetsch type results for s-convex functions Publ. Math. Debrecen 75 (2009), vol 1-2., 23-31
[3] P. Burai, A. Házy and T. Juhász, On approximately s-convex functions submitted
[4] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) 23 (1978), 13-20.
[5] W. W. Breckner and G. Orbán, Continuity properties of rationally s-convex mappings with values in ordered topological liner space, "Babes-Bolyai" University, Kolozsvár, 1978.
[6] S. S. Dragomir, J. Pečaric̀ and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335-241.
[7] E. K. Godunova and V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva, 1985, pp. 138142.
[8] A. Gilányi, K. Nikodem and Zs. Páles BernsteinDoetsch type results for quasiconvex functions Math. Ineq. and Appl. 7 (2004), no. 2, 169-175.
[9] A. Házy, On approximately t-convexity, Math. Ineq. and Appl. 8 (2005), no. 3, 389-402.
[10] A. Házy, On the stability of t-convex functions, Aequationes Math. 74 (2007) 210-218.
[11] A. Házy, Bernstein-Doetsch type results for h-convex functions, accepted for publication, Math. Ineq. Appl. (2011).
[12] A. Házy and Zs. Páles, Approximately midconvex functions, Bulletin London Math. Soc. 36 (2004) 339-350.
[13] A. Házy and Zs. Páles, On approximately t-convex functions, Publ. Math. Debrecen 66 (2005), no. 3-4, 489-501, Dedicated to the 75th birthday of Professor Heinz König
[14] H. Hudzik and L. Maligranda, Some remarks on s_{i}-convex functions, Aequationes Math. 48 (1994) 100-111.
[15] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe - Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
[16] Gy. Maksa and Zs. Páles: The equality case in some recent convexity inequalities, Opuscula Math. 31/2 (2011), 269-277.
[17] D. S. Mitrinovic and J. Pecaric, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can. 12 (1990),33-36.
[18] D. S. Mitrinovic, J. Pecaric and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993.
[19] J. Mrowiec, Remark on approximately Jensen-convex functions, C. R. Math. Acad. Sci. Soc. R. Canada 23 (2001), 16-21.
[20] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 103-108.
[21] W. Orlicz, A note on modular spaces I., Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (1961),157162.
[22] Zs. Páles, Bernstein-Doetsch-type results for general functional inequalities, Rocznik Nauk.-Dydakt. Prace Mat. 17 (2000), 197-206, Dedicated to Professor Zenon Moszner on his 70th birthday.
[23] Zs. Páles, On approximately convex functions, Proc. Amer. Math. Soc. 131 (2003), 243-252 (electronic).
[24] S. Piccard, Sur des ensembles parfaits, Mém. Univ. Neuchâtel, vol. 16., Secrétariat de l' Université, Neuchâtel, 1942.
[25] C.E.M. Pearce and A.M. Rubinov, P-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal. Appl. 240 (1999), 92-104.
[26] M. Pycia, A direct proof of the s-Hölder continuity of Breckner s-convex functions, Aequationes Math., 61 (2001), 128-130.
[27] H. Steinhaus, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 93-104.
[28] K.L. Tseng, G.S. Yang and S.S. Dragomir, On quasi-convex functions and Hadamards inequality, RGMIA Res. Rep. Coll. 6 (3) (2003), Article 1.
[29] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
Institute of Mathematics, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary E-mail address: matha@uni-miskolc.hu

