
ON APPROXIMATE HERMITE–HADAMARD TYPE INEQUALITIES

JUDIT MAKÓ AND ATTILA HÁZY

Abstract. The main results of this paper offer sufficient conditions in order that an approxi-
mate lower Hermite–Hadamard type inequality implies an approximate Jensen convexity prop-
erty. The key for the proof of the main result is a Korovkin type theorem.

1. Introduction

Throughout this paper R, R+, N and Z denote the sets of real, nonnegative real, natural and
integer numbers respectively. Let X be a real linear space and D ⊂ X be a convex set. Denote
by D∗ the set (D −D).

One can easily see that, for any constant ε ≥ 0, the ε-convexity of f (cf. [7]), i.e., the validity
of

f
(
tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε (x, y ∈ D, t ∈ [0, 1]),

implies the following lower and upper ε-Hermite–Hadamard inequalities

(1) f
(x+ y

2

)
≤
∫ 1

0

f
(
tx+ (1− t)y

)
dt+ ε (x, y ∈ D),

and

(2)
∫ 1

0

f
(
tx+ (1− t)y

)
dt ≤ f(x) + f(y)

2
+ ε (x, y ∈ D).

The above implication was discovered if ε = 0 by Hadamard [5] in 1893. (See also [16], [9] and
[19] for a historical account). For ε = 0, the converse is also known to be true (cf. [18], [19]),
i.e., if a function f : D → R which is continuous over the segments of D satisfies (1) or (2) with
ε = 0, then it is also convex. Concerning the reversed implication for the case ε > 0, Nikodem,
Riedel, and Sahoo in [20] have recently shown that the ε-Hermite–Hadamard inequalities (1)
and (2) do not imply the cε-convexity of f (with any c > 0). Thus, in order to obtain results
that establish implications between the approximate Hermite–Hadamard inequalities and the
approximate Jensen inequality, one has to consider these inequalities with nonconstant error
terms.

Let αJ : D∗ → R be an even error function. We say that a function f : D → R is αJ -Jensen
convex, if for all x, y ∈ D,

(3) f
(x+ y

2

)
≤ f(x) + f(y)

2
+ αJ(x− y) (x, y ∈ D).
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In order to describe the old and new results about the connection of an approximate Jensen
convexity inequality and the approximate Hermite–Hadamard inequality with variable error
terms, we need to introduce the following terminology.

For a function f : D → R, we say that f is hemi-P , if, for all x, y ∈ D, the mapping

(4) t 7→ f((1− t)x+ ty) (t ∈ [0, 1])

has property P . For example f is hemiintegrable, if for all x, y ∈ D the mapping defined by (4)
is integrable. Analogously, we say that a function h : D∗ → R is radially-P , if for all u ∈ D∗,
the mapping

t 7→ h(tu) (t ∈ [0, 1])

has property P on [0, 1].
In [12] the authors established the connections between an upper Hermite–Hadamard type

inequality and a Jensen type inequality, which were stated in the following theorem.

Theorem A. Let αH : D∗ → R be even and radially upper semicontinuous, ρ : [0, 1] → R+ be
integrable with

∫ 1

0
ρ = 1 and there exist c ≥ 0 and p > 0 such that

ρ(t) ≤ c(− ln |1− 2t|)p−1 (t ∈]0, 1
2
[∪]1

2
, 1[),

and λ ∈ [0, 1]. Then every f : D → R lower hemicontinuous function satisfying the approximate
upper Hermite–Hadamard inequality∫ 1

0

f
(
tx+ (1− t)y

)
ρ(t)dt ≤ λf(x) + (1− λ)f(y) + αH(x− y) (x, y ∈ D),

fulfills the approximate Jensen inequality (3), provided that αJ : D∗ → R is a radially lower
semicontinuous solution of the functional inequality

αJ(u) ≥
∫ 1

0

αJ(|1− 2t|u)ρ(t)dt+ αH(u) (u ∈ D∗)

and αJ(0) ≥ αH(0).

In [6], A. Házy and Zs. Páles established a connection between a lower Hermite–Hadamard
type inequality and a Jensen type inequality by proving the following result.

Theorem B. Let αH : D∗ → R+ be a nonnegative even function. Assume that f : D → R is an
upper hemicontinuous function satisfying the approximate lower Hermite–Hadamard inequality

(5) f

(
x+ y

2

)
≤
∫ 1

0

f
(
tx+ (1− t)y

)
dt+ αH(x− y) (x, y ∈ D),

Then f is αJ-Jensen convex, where αJ : 2D∗ → R+ is a nonnegative radially lower semicontin-
uous, radially increasing solution of the functional inequality

(6) αJ(u) ≥
∫ 1

0

αJ(2tu)dt+ αH(u) (u ∈ D∗).

In [13] using a Korokvkin type theorem the authors prove the following theorem.



ON APPROXIMATE HERMITE–HADAMARD TYPE INEQUALITY 3

Theorem C. Let µ be a Borel probability measure on [0, 1] with a non-singleton support. Let
ε : D2 → R such that ε(x, x) = 0 for all x ∈ D and ε∗ : D2 × [0, 1]→ R be a function such that,
for all x, y ∈ D, ε∗(x, y, 0) = ε∗(x, y, 1) = 0 and

ε∗(x, y, s) ≥


∫

[0,1]

ε∗
(
x, y, st

µ1

)
dµ(t) + ε

(
x, µ1−s

µ1
x+ s

µ1
y
)

s ∈ [0, µ1],∫
[0,1]

ε∗
(
x, y, t+s−st−µ1

1−µ1

)
dµ(t) + ε

(
1−s
1−µ1x+

s−µ1
1−µ1y, y

)
s ∈ [µ1, 1].

Then every f : D → R upper hemi-continuous solution of the following lower Hermite–Hadamard
type functional inequality

f(µ1x+ (1− µ1)y) ≤
∫

[0,1]

f(tx+ (1− t)y)dµ(t) + ε(x, y) (x, y ∈ D)

also fulfills

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ε∗(x, y, t) (x, y ∈ D, t ∈ [0, 1]).

In this paper we examine the implication from an upper Hermite–Hadamard type inequality
to a Jensen type inequality. Thus in this paper, we are searching connections between the
approximate upper Hermite–Hadamard inequality

(7)

∫
[0,1]

f(tx+ (1− t)y)dµ(t) ≤ λf(x) + (1− λ)f(y) + αH(x− y)

and the approximate Jensen inequality (3), where f : D → R, αH , αJ : D∗ → R are given even
functions, λ ∈ R and µ is a Borel probability measure on [0, 1]. First we prove a Korovkin-type
theorem (Theorem 1, Proposition 4), then in Theorem 5 below, we generalize Theorem A replac-
ing the Lebesgue–Stieltjes integral by an integral with respect to an arbitrary Borel probability
measure.

Throughout this paper, the notation δt stands for the Dirac measure concentrated at the point
t ∈ [0, 1].

2. Korovkin type theorems

In the sequel, denote by C([0, 1]) and B([0, 1]) the space of continuous and bounded Borel
measurable real valued functions defined on the interval [0, 1] equipped with the usual supremum
norm. Denote by pi : [0, 1]→ R the following polynomials:

pi(u) := ui, (i = 0, 1, 2)

Let µ be a Borel probability measure on [0, 1] and denote by µ1 the first momentum of µ,
namely

∫
[0,1]

tdµ(t). In this section, we will prove a Korovkin type theorem, which will play an
important role in the proof of the main result Theorem 5. To see the historical background of
these theorems, we recall the classical Korovkin theorem ([8], [1]), which play an important role
in the functional analysis.

Theorem D. Let Tn : B([0, 1])→ B([0, 1]) be a sequence of positive operators such that for all
u ∈ [a, b] and i ∈ {0, 1, 2}

lim
n→∞

(Tnpi)(u) = pi(u).
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Then, for all bounded upper semicontinuous function h : [0, 1]→ R

(8) lim sup
n→∞

Tnh(u) ≤ h(u) (u ∈ [a, b]).

A simple example of the sequence of this operator is the classical Bernstein-operators, namely

(9) (Bnh)(u) :=
n∑
k=0

(
n

k

)
h
(k
n

)
uk(1− u)n−k (u ∈ [0, 1]).

It is easy to see that

Bnp0 = p0, Bnp1 = p1 and Bnp2 =
1
n
p1 +

n−1
n
p2.

The following theorem is the main application of Theorem D, this is Weierstrass’s first ap-
proximation theorem, which says that for all continuous function on a compact interval can be
approximated by polynomials:

Theorem E. Using the above notations, for all h ∈ C([0, 1]), limn→∞Bnh = h.

In [13] Zs. Páles and the first author got the following Korovkin type theorem.

Theorem F. Let Tn : B([0, 1]) → B([0, 1]) be a sequence of positive operators such that for all
u ∈ [a, b] and i ∈ {0, 1}

lim
n→∞

(Tnpi)(u) = pi(u).

Suppose that there exists a strictly convex g ∈ C([0, 1]), such that

Tng → g(0)p0 + (g(1)− g(0))p1

Then, for all bounded upper semicontinuous function h : [0, 1]→ R

(10) lim sup
n→∞

(Tnh) ≤ h(0)p0 + (h(1)− h(0))p1.

In [13], an important example has also been given, namely let

(11) (Tµh)(u) :=


∫

[0,1]

h
(
tu
µ1

)
dµ(t) if 0 ≤ u ≤ µ1,∫

[0,1]

h
(
1− (1−t)(1−u)

1−µ1

)
dµ(t) if µ1 ≤ u ≤ 1.

and Tn := Tnµ .

It can be proved that the sequence of these operators has the property (10). Using these facts
Theorem C can be also proved. (See [13] for more details.)

The first main result of this paper the following Korovkin type result.

Theorem 1. Let Tn : B([0, 1]) → B([0, 1]) (n ∈ N) be a sequence of positive linear operators
such that

(12) lim
n→∞

(Tnp0) = p0.

Suppose that there exists a function g ∈ C([0, 1]) with g(1
2
) = 0 and g > 0 on [0, 1] \ {1

2
} such

that limn→∞(Tng) = 0p0. Then, for all bounded lower semicontinuous function h : [0, 1]→ R,

(13) lim inf
n→∞

Tnh ≥ h
(
1
2

)
p0.
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Remark 2. It can be easy to see (under the same conditions of the previous one), if h : [0, 1]→ R
is upper semicontinuous, then we get:

(14) lim sup
n→∞

Tnh ≤ h
(
1
2

)
p0.

It easily follows from the above theorem that, if f is continuous, then (13) holds with equality
and the “liminf” can be replaced by “lim”.

Proof. Let h ∈ B([0, 1]) be a lower semicontinuous function and ε > 0 be arbitrary.

φ(u) :=
−ε+ (h(u)− h(1

2
))

g(u)
, (u ∈ [0, 1] \ {1

2
}).

Since h is lower semicontinous continuous in 1
2
, there exists 0 < δ < 1

2
such that:

−ε < h(u)− h(1
2
) if |u− 1

2
| < δ.

Thus
φ > 0 on ]δ − 1

2
, 1
2
[∪]1

2
, δ + 1

2
[.

The function φ is lower semicontinuous and the set [0, δ − 1
2
] ∪ [δ + 1

2
, 1] is compact, therefore

there exists a K ∈ R, such that:

φ > K on [0, δ − 1
2
] ∪ [δ + 1

2
, 1].

Thus, there exists L such that φ > L on [0, 1] \ {1
2
}. Therefore,

−ε− Lg(u) < h(u)− h(1
2
) (u ∈ [0, 1]).

Using that Tn is a positive linear functional on B([0, 1]) we can get that

−εTnp0 − LTng < Tnh− h(12)Tnp0.
Taking the limit n→∞, we get

−ε ≤ lim inf
n→∞

(Tnh− h(12)Tnp0).

Since ε > 0 is arbitrary, this implies that
0 ≤ lim inf

n→∞
(Tnh− h(12)Tnp0).

which means that (13) holds. �

In what follows, we construct a large family of positive linear operators on B([a, b]) which
satisfies the assumptions of the previous results and will be instrumental in the investigation of
approximate convexity. Let µ be a Borel probability measure on [0, 1] and define a sequence of
linear operators Tµn : B([a, b])→ B([a, b]) by the following formula:

(15) Tµnh :=

∫
[0,1]

. . .

∫
[0,1]

h
(
1
2
+ 1

2
(2t1 − 1) · . . . · (2tn − 1)

)
dµ(t1) . . . dµ(tn)p0.

Proposition 3. Assume that µ is a Borel probability measure on [0, 1] and define Tµn by (15).
Then, for all n ∈ N, Tµn : B([a, b])→ B([a, b]) is a bounded positive linear operator with

(16) ‖Tµn‖ ≤ 1.

In addition, for all h ∈ B([0, 1])

(17) Tµnp0 = p0.
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Proof. If h ∈ B([a, b]) then, for all fixed u ∈ [0, 1] and n ∈ N,

|(Tµnh)(u)| ≤
∫

[0,1]

. . .

∫
[0,1]

∣∣h(1
2
+ 1

2
(2t1 − 1) · . . . · (2tn − 1)

)∣∣dµ(t1) . . . dµ(tn)p0(u)
≤ ‖h‖

∫
[0,1]

. . .

∫
[0,1]

p0(u)dµ(t1) . . . dµ(tn)p0(u) = ‖h‖p0,

which proves the boundedness of Tµn and (16). The linearity and positivity of Tµn is obvious. �

Proposition 4. Assume that µ is a Borel probability measure on [0, 1], such that µ /∈ {αδ0 +
(1 − α)δ1 | α ∈ [0, 1]} and for all n ∈ N define Tµn by (15). Then, for all lower semicontinuous
h ∈ B([0, 1]),

(18) h
(
1
2

)
≤ lim inf

n→∞
(Tµnh)(u) (u ∈ [0, 1]).

Proof. By Proposition 3 we can get that Tµn : B([0, 1]) → B([0, 1]) is a positive linear operator
which satisfies (12). Let g : [0, 1]→ R be defined by

g(t) :=
(
t− 1

2

)2
t ∈ [0, 1].

Then, g(1
2
) = 0 and g is positive on [0, 1] \ {1

2
}. On the other hand,

Tµnh =
1

4

∫
[0,1]

. . .

∫
[0,1]

(
(2t1 − 1) · . . . · (2tn − 1)

)2
dµ(t1) . . . dµ(tn)p0 =

1

4

( ∫
[0,1]

(2t− 1)2dµ(t)

)n
p0.

Since h ≤ 1, it is easy to see that ∫
[0,1]

(2t− 1)2dµ(t) ≤ 1.

To prove that this inequality is strict, assume that
∫
[0,1]

(2t − 1)2dµ(t) = 1. Then (2t − 1)2 =

1 µ-almost every where t ∈ [0, 1], which means that t = 0 or t = 1 µ-almost every where
t ∈ [0, 1]. This implies that µ({0, 1}) = 1, which is a contradiction by assumptions. Thus,∫
[0,1]

(2t − 1)2dµ(t) < 1 and we can get that limn→∞ Tµnh = 0. Therefore, by Theorem 1 we get
(18). �

3. Hermite–Hadamard type inequalities

The next theorem gives a connection between an approximate upper Hermite–Hadamard type
inequality and a Jensen type inequality.

Theorem 5. Assume that µ is a Borel probability measure on [0, 1], such that µ /∈ {αδ0 + (1−
α)δ1 | α ∈ [0, 1]}. Let λ ∈ R and αH : D∗ → R be an even error function and assume and
f : D → R is a hemi-bounded, lower hemicontinuous and, for all x, y ∈ D, satisfies the following
Hermite–Hadamard type inequality (7). Then f is approximate Jensen-convex in the sense of
(3), where αJ : D∗ → R is a radially-bounded and radially upper semicontinuous solution the
following functional inequality:

(19) αH(u) +

∫
[0,1]

αJ(|1− 2t|u)dµ(t) ≤ αJ(u) (u ∈ D∗),

providing that αJ(0) ≥ αH(0).
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The proof of Theorem 5 is similar as the proof of the main theorem of [12] and it is based on
a sequence of the following lemmata.

Lemma 6. Let αH : D∗ → R be even, µ is a Borel probability measure on [0, 1], such that
µ /∈ {αδ0 + (1 − α)δ1 | α ∈ [0, 1]} and λ ∈ R. Then every f : D → R lower hemicontinuous
function satisfying the approximate Hermite–Hadamard inequality (32), fulfills

(20)

∫
[0,1]

f
(
tx+ (1− t)y

)
+ f
(
(1− t)x+ ty

)
2

dµ(t) ≤ f(x) + f(y)

2
+ αH(x− y) (x, y ∈ D).

Proof. Changing the role of x and y in (32), then adding the inequality so obtained to the original
inequality (32), by the evenness of αH , we get that (20) �

In what follows, we examine the Hermite–Hadamard inequality (20). For a sequense (tn),
n ∈ N define the following sequense by induction,

(21) T1 := t1 and Tn+1 := (1− tn+1)Tn + tn+1(1− Tn).

Lemma 7. Let Tn be definied by (21), then

(22) Tn = 1
2
− 1

2
(2t1 − 1) · · · · · (2tn − 1).

Proof. We prove by induction on n. If n = 1, T1 = t1 and 1
2
+ 1

2
(2t1−1) = t1, so the statement is

obvious. Assume that (22) is true for n = k and prove for n = k+ 1. By (21) and the inductive
assumption we can get that

Tk+1 = (1− tk+1)Tk + tk+1(1− Tk)

= (1− tk+1)
(

1
2
+ 1

2
(2t1 − 1) · . . . · (2tk − 1)

)
+ tk+1

(
1
2
+ 1

2
(1− 2t1) · . . . · (1− 2tk)

)
= 1

2
+ 1

2
(1− 2t1) · . . . · (1− 2tk) · (1− 2tk+1),

which proves this lemma. �

Lemma 8. Let αH : D∗ → R be a radially upper semicontinuous function. If f : D → R
fulfills the approximate Hermite–Hadamard inequality (20) then, for all n ∈ N, the function f
also satisfies the Hermite–Hadamard inequality

(23)

1

2

∫
[0,1]

. . .

∫
[0,1]

(
f
(
Tnx+ (1− Tn)y

)
+ f
(
(1− Tn)x+ Tny

))
dµ(t1) . . . dµ(tn)

≤ f(x) + f(y)

2
+ αn(x− y)

for all x, y ∈ D, whenever n ∈ N, where the sequences Tn and αn : D∗ → R are defined by (21)
and

(24) α1 = αH , αn+1(u) =

∫
[0,1]

αn(|1− 2t|u)dµ(t) + αH(u) (u ∈ D∗),

respectively.

Proof. We prove by induction on n. If n = 1, by the definition of α1, (23) holds. Let x, y ∈ D and
assume that (23) holds for some n ∈ N. Write x by (1−tn+1)x+tn+1y and y by tn+1x+(1−tn+1)y
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in (23). Using the definition of Tn+1 and αn+1 ((21),(24)) and using also that αH is even, then
we obtain:
1

2

∫
[0,1]

. . .

∫
[0,1]

(
f
(
Tn+1x+ (1− Tn+1)y

)
+ f
(
(1− Tn+1)x+ Tn+1y

))
dµ(t1) . . . dµ(tn)

≤ f((1− tn+1)x+ tn+1y) + f(tn+1x+ (1− tn+1)y)

2
+ αn(|1− 2tn+1|(x− y)).

Integrating with respect to tn+1, and applying the inductive assumption, (20) and finally (24),
we obtain that

1

2

∫
[0,1]

. . .

∫
[0,1]

∫
[0,1]

(
f
(
Tn+1x+ (1− Tn+1)y

)
+ f
(
(1− Tn+1)x+ Tn+1y

)
dµ(t1) . . . dµ(tn)dµ(tn+1)

≤ 1

2

∫
[0,1]

(
f((1− tn+1)x+ tn+1y) + f(tn+1x+ (1− tn+1)y)

)
dµ(tn+1)

+

∫
[0,1]

αn(|1− 2tn+1|(x− y))dµ(tn+1)

≤ f(x) + f(y)

2
+ αH(x− y) +

∫
[0,1]

αn(|1− 2tn+1|(x− y))dµ(tn+1)

≤ f(x) + f(y)

2
+ αn+1(x− y),

which proves the statement. �

Lemma 9. Let αH : D∗ → R be even, µ is a Borel probability measure on [0, 1], such that
µ /∈ {αδ0 + (1 − α)δ1 | α ∈ [0, 1]}. If f : D → R is hemibounded and lower hemicontinuous
function, then

(25)

lim inf
n→∞

1

2

∫
[0,1]

. . .

∫
[0,1]

(
f
(
Tnx+ (1− Tn)y

)
+ f
(
(1− Tn)x+ Tny

))
dµ(t1) . . . dµ(tn)

≥ f
(x+ y

2

)
.

Proof. Let x, y ∈ D be fixed and define h : [0, 1]→ R by

h(t) :=
1

2

(
f
(
(1− t)x+ ty

)
+ f
(
tx+ (1− t)y

))
.

Since f is hemibounded and lower hemicontinuous, h is lower semicontinuous and h ∈ B([0, 1]).
Using also Lemma 7 we have that the operator Tµn defined by (15) can be expressed as,

Tµnh =

∫
[0,1]

. . .

∫
[0,1]

h(Tn)dµ(t1) . . . dµ(tn).

By Proposition 4, (18) holds, which means that (25) that also holds. �

Lemma 10. Let αH : D∗ → R be a radially upper semicontinuous function. Then, for all
n ∈ N, the function αn : D∗ → R defined by (24) is nondecreasing [nonincreasing], whenever αH
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is nonnegative [nonpositive]. Furthermore, if αJ : D∗ → R is a radially bounded and radially
upper semicontinuous solution of the functional inequality (19) then

(26) lim sup
n→∞

αn(u) ≤ αJ(u)− αJ(0) + αH(0) (u ∈ D∗).

Proof. Assume first that αH is nonnegative. We will prove by induction on n ∈ N, that the
sequence (αn) is nondecreasing, i.e.,

(27) αn+1 ≥ αn (n ∈ N).

For n = 1, by the nonnegativity of α1 = αH , we have that, for all u ∈ D∗,

α2(u) =

∫
[0,1]

α1(|1− 2t|u)dµ(t) + αH(u) ≥ α1(u).

Assume that (27) holds for some n ∈ N and consider the case n + 1. Using the definition of
αn+1, the inductive assumption and the nonnegativity of αn, we get, for all u ∈ D∗, that

αn+2(u) =

∫
[0,1]

αn+1(|1− 2t|u)dµ(t) + αH(u) ≥
∫

[0,1]

αn(|1− 2t|u)dµ(t) + αH(u) = αn+1(u).

Analogously, if αH is nonpositive, we can obtain that the sequence (αn) is nonincreasing.
To prove (26), let αJ : D∗ → R be a radially upper semicontinuous solution of (19). Then, for

the sequence of functions gn := αn − αJ , we obtain

gn+1(u) ≤
∫

[0,1]

gn(|1− 2t|u)dµ(t) (u ∈ D∗, n ∈ N),

Iterating this inequality, similarly as in Lemma 9 and Lemma 8, it can be proved that

(28) gn+1(u) ≤
∫

[0,1]

. . .

∫
[0,1]

g1(|1− 2Tn|u)dµ(t1) · · · dµ(tn) (u ∈ D∗, n ∈ N),

where Tn is defined by (21). Taking the limsup as n→∞ in (28), by Proposition 4, we get that,
for all u ∈ D∗,

lim sup
n→∞

gn+1(u) ≤ lim sup
n→∞

∫
[0,1]

. . .

∫
[0,1]

g1(|1− 2Tn|u)dµ(t1) · · · dµ(tn) ≤ g1(0) = αH(0)− αJ(0),

which immediately yields (26). �

Proof of Theorem 5. Assume that the conditions of Theorem 5 hold. Using Lemma 8, we obtain
(23). Then taking the lim inf in (23) and using the fact that lim inf αn ≤ lim supαn, then
applying Lemma 9 and Lemma 10 we obtain that the function f is αJ -Jensen convex, i.e. (3)
holds. �

A simple consequence of Theorem 5 is the following corollary which is a generalized form of
Theorem A ([12]).

Corollary 11. Let αH : D∗ → R be even and radially bounded and radially upper semicontinu-
ous, ρ : [0, 1]→ R+ be integrable with

∫ 1

0
ρ = 1 and λ ∈ R. Then every f : D → R hemi-bounded
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and lower hemicontinuous function satisfying the approximate upper Hermite–Hadamard inequal-
ity ∫ 1

0

f
(
tx+ (1− t)y

)
ρ(t)dt ≤ λf(x) + (1− λ)f(y) + αH(x− y) (x, y ∈ D),

fulfills the approximate Jensen inequality (3) provided that αJ : D∗ → R is a radially lower
semicontinuous solution of the functional inequality

αJ(u) ≥
∫ 1

0

αJ(|1− 2t|u)ρ(t)dt+ αH(u) (u ∈ D∗)

and αJ(0) ≥ αH(0).

In what follows let X be a normed space, ν be a signed Borel measure on ]0,∞[ and define
the error function by the following way:

(29) αH(u) :=

∫
]0,∞[

‖u‖qdν(q)

These error functions determine a large class of the error functions.

Corollary 12. Assume that ν is a signed Borel measure on ]0,∞[, such that

(30)

∫
]0,∞[

‖u‖qdν(q) <∞ (u ∈ D∗)

and

(31)

∫
]0,∞[

(
1−

∫
[0,1]

|1− 2t|qdµ(t)
)−1

d|ν|(q) <∞.

Let µ be a Borel probability measure on [0, 1], such that µ /∈ {αδ0 + (1 − α)δ1 | α ∈ [0, 1]}.
Let λ ∈ R and assume and f : D → R is hemi-bounded and lower hemicontinuous and, for all
x, y ∈ D, satisfies the following Hermite–Hadamard type inequality:

(32)

∫
[0,1]

f(tx+ (1− t)y)dµ(t) ≤ λf(x) + (1− λ)f(y) +
∫

]0,∞[

‖x− y‖qdν(q).

Then f is approximate Jensen-convex in the following sense:

f
(x+ y

2

)
≤ f(x) + f(y)

2
+

∫
]0,∞[

(
1−

∫
[0,1]

|1− 2t|qdµ(t)
)−1
‖x− y‖qdν(q) (x, y ∈ D).

Proof. By Theorem 5, it suffices to show that the function

αJ(u) :=

∫
]0,∞[

(∫ 1

0

(
1− |1− 2t|q

)
dµ(t)

)−1
‖u‖qdν(q) (u ∈ D∗)

is well-defined and satisfies (19) with equality where αH : D∗ → R is defined by

αH(u) :=

∫
]0,∞[

‖u‖qdν(q) (u ∈ D∗).
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To see that, for all u ∈ D∗, α(u) is finite, we distinguish two cases. If ‖u‖ ≤ 1, then ‖u‖q ≤ 1
for all q > 0, and hence, by assumption (31),

|αJ(u)| ≤
∫

]0,∞[

(
1−

∫
[0,1]

|1− 2t|qdµ(t)
)−1

d|ν|(q) <∞.

Now let ‖u‖ > 1. Then, the functions q 7→ ‖u‖q and q 7→ 1 −
∫

[0,1]

|1 − 2t|qdµ(t) are increasing

functions, hence

|αJ(u)| ≤ ‖u‖
∫

]0,∞[

(
1−

∫
[0,1]

|1− 2t|qdµ(t)
)−1

d|ν|(q) +
( ∫

[0,1]

(
1− |1− 2t|

)
dµ(t)

)−1 ∫
]1,∞[

‖u‖qd|ν|(q),

which is again finite by conditions (30) and (31). To prove that αJ satisfies (19), using that µ is
a probability measure, we compute∫

[0,1]

αH(|1− 2s|u)dµ(s) + αJ(u)

=

∫
[0,1]

∫
]0,∞[

( ∫
[0,1]

(
1− |1− 2t|q

)
dµ(t)

)−1
‖|1− 2s|u‖qdν(q)dµ(s) +

∫
]0,∞[

‖u‖qdν(q)

=

∫
]0,∞[

( ∫
[0,1]

|1− 2s|qdµ(s)∫
[0,1]

(
1− |1− 2t|q

)
dµ(t)

+ 1

)
‖u‖qdν(q) = αJ(u),

which proves that (19) holds with equality. �
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