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1. Introduction

Throughout this paper R, R+, N and Z denote the sets of real, nonnegative real, natural and integer numbers
respectively.

Let X be a normed space and D ⊆ X be a nonempty conex subset of X. Denote by D∗ the set {‖x−y‖, x, y ∈
D}. Let α : D∗ → R+ be a nonnegative error function. We say that a function f : D → R is strongly α-Jensen
convex, if, for all x, y ∈ D,

(1) f
(x+ y

2

)
≤ f(x) + f(y)

2
− α(‖x− y‖).

Observe that if α ≡ 0, we can get the classical de�nition of convexity. When α(u) = cu2, we can get a kind
of notion of strong convexity introduced by Polyak in [24] and examined by Azócar, Giménez, Nikodem and
Sánchez (in [1]), Merentes and Nikodem, (in [16]) and Nikodem and Páles [22]. If α(u) = εup, then f is called
strongly (ε, p)-Jensen convex function. In Section 2, we are looking connection between strong α-convexity and
strong convexity type inequalities. Then, we are looking for the optimal error function. In Section 3, we will
establish the connections between strong α-convexity and strong α-Jensen convexity, moreover the connections
between strong convexity and Hermite�Hadamard type inequalities will be shown. In what follows we recall
some Bernstein-Doetsch type theorem for approximately convex functions. A function f : D → R is said to be
approximately α-Jensen convex, if, for all x, y ∈ D,

(2) f
(x+ y

2

)
≤ f(x) + f(y)

2
+ α(‖x− y‖).

The proofs of these theorem are similar to our main theorems' proofs.
Let introduce the Takagi type functions Tα : R×D+ → R+ and Sα : R×D+ → R+ by

(3) Tα(t, u) :=

∞∑
n=0

1

2n
α
(
dZ(2nt)u

) (
(t, u) ∈ R×D+

)
and

(4) Sα(t, u) :=

∞∑
n=0

α
( u

2n

)
dZ(2nt)

(
(t, u) ∈ R×D+

)
.

Note that the �rst series converges uniformly if α is bounded, on the other hand, for the uniform convergence
of the second series, it is su�cient if

∑∞
n=n0

α
(
2−n

)
<∞ for some n0 ∈ N.

The importance of the function Tα introduced above is enlightened by the following result which can be
considered as a generalization of the celebrated Bernstein-Doetsch theorem [2].

Theorem 1. (Makó-Páles [15], Tabor�Tabor [26])
Let f : D → R be locally upper bounded on D and let α : D+ → R+. Then f is α-Jensen convex on D if and only
if

(5) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Tα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

The other Takagi type function Sα was introduced by Jacek Tabor and Józef Tabor. Its role and importance
in the theory of approximate convexity is shown by the next theorem.
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Theorem 2. (Tabor-Tabor [26])
Let f : D → R be upper semicontinuous on D and let α : D+ → R+ be nondecreasing such that

∑∞
n=n0

α(2−n) <
∞ for some n0 ∈ N. Then f is α-Jensen convex on D if and only if

(6) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + Sα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

Let ε, q ≥ 0 be arbitrary constants. When α(u) := εuq, (u ∈ D+), the two corollaries below (see [8] and [26])
are immediately consequences of the previous theorems.

For q ≥ 0, de�ne the Takagi type functions Sq and Tq by

(7) Tq(t) :=

∞∑
n=0

(
dZ(2nt)

)q
2n

, Sq(t) :=

∞∑
n=0

dZ(2nt)

2nq
(t ∈ R).

They generalize the classical Takagi function

T (t) :=

∞∑
n=0

dist(2nt,Z)

2n
(t ∈ R)

in two ways, because T1 = S1 = 2T holds obviously. This function was introduced by Takagi in [29] and it is a
well-known example of a continuous but nowhere di�erentiable real function.

It is less trivial, but it can be proved that T2(t) = S2(t) = 4t(1 − t) for t ∈ [0, 1]. The following pictures
demonstrate the comparison between Tq and Sq for q = 0.5 and q = 1.5, respectively.
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Corollary 3. (Házy [4])
Let f : D → R be locally upper bounded on D and ε, q ≥ 0. Then f is (ε, q)-Jensen convex on D, if and only if

(8) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εTq(t)‖x− y‖q

for all x, y ∈ D and t ∈ [0, 1].

Corollary 4. (Tabor-Tabor [26])
Let f : D → R be upper semicontinuous on D and ε, q ≥ 0. Then f is (ε, q)-Jensen convex on D if and only if

(9) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εSq(t)‖x− y‖q

for all x, y ∈ D and t ∈ [0, 1].



In [3], Boros proved that if q = 1 and t ∈ [0, 1] is �xed, then S1(t) = T1(t) = 2T (t) is the smallest possible. In
[25] Tabor and Tabor showed that if 1 ≤ q ≤ 2 and t ∈ [0, 1] is �xed, then Sq(t) is the smallest possible value so
that (9) be valid for all (ε, q)-Jensen convex functions f on D.

For x, y ∈ D denote by [x, y] = {tx+ (1− t)y | t ∈ [0, 1]}. It is an important question whether the error terms
Tα(t, ‖x− y‖), Sα(t, ‖x− y‖) in (5) in (6) and Tq(t) in (8) are the smallest possible ones. In other words, for all
�xed x, y ∈ D, we want to obtain the exact upper bound of the convexity-di�erence of α-Jensen convex functions
de�ned by

(10) Cα(x, y, t) := sup
f∈JCα(D)

{f(tx+ (1− t)y)− tf(x)− (1− t)f(y)},

where
JCα(D) := {f : D → R |f is α-Jensen convex on D}.

The statement of Theorem 1, Theorem 2, Corollary 3, and Corollary 4 can be stated as

(11) Cα(x, y, t) ≤ τ(t, ‖x− y‖),

where τ : R×D+ → R+ is given by

τ := Tα, τ := Sα, τ(t, u) := εTq(t)u
q, and τ(t, u) := εSq(t)u

q,

respectively. To obtain also a lower bound for Cα(x, y, t), (and thus to prove the sharpness of the inequality
(11)), the following important observation was done by Páles in [23].

Theorem 5. (Páles [23])
Let α : D+ → R be continuous. Let τ : R×D+ → R be continuous in its �rst variable, with τ(0, u) = τ(1, u) = 0
for all u ∈ D+, which is Jensen convex in the following sense, for all u ∈ D+ and s, t ∈ [0, 1],

τ
( t+ s

2
, u
)
≤ τ(t, u) + τ(s, u)

2
+ α(|t− s|u).

Then,
Cα(x, y, t) ≥ τ(t, ‖x− y‖)

2. From strong α-Jensen convexity to strong convexity

Similarly as in Theorem 1 and Theorem 2, it can be proved two Bernstein�Doetsch type results for locally
upper bounded strongly Jensen convex functions. Thus, these theorems give us connections between strong
α-Jensen convexity and convexity type inequalities.

Theorem 6. Let f : D → R be locally upper bounded on D and let α : D+ → R+. Then f is strongly α-Jensen
convex on D if and only if

(12) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− Tα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

Theorem 7. Let f : D → R be upper semicontinuous on D and let α : D+ → R+ be
∑∞
n=n0

α(2−n) < ∞ for some
n0 ∈ N. Then f is α-Jensen convex on D if and only if

(13) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− Sα(t, ‖x− y‖)

for all x, y ∈ D and t ∈ [0, 1].

We can also look for the optimal Takagi type function. In other words, for all �xed x, y ∈ D, we want to
obtain the exact upper bound of the convexity-di�erence of strongly α-Jensen convex functions de�ned by

(14) SCα(x, y, t) := sup
f∈SJCα(D)

{f(tx+ (1− t)y)− tf(x)− (1− t)f(y)},

where

SJCα(D) := {f : D → R |f is locally upper bounded and strongly α-Jensen convex on D}.

By Theorem 5, it is enough to prove the Jensen-convexity of Sα(·, u) or Tα(·, u). We shall prove that the Takagi
type function Sα(·, u) will be the optimal choice. To show this suspicion let introduce the following Takagi type
function Sϕ : [0, 1]→ R de�ned by

(15) Sϕ(x) =
∞∑
n=0

ϕ
(

1
2n

)
dZ(2nx),



where P := {1, 12 ,
1
4 , . . . ,

1
2n , . . . , } and ϕ : P → R+ is a nonnegative function. The main results of this section

state that, under certain assumptions on the function ϕ : P → R, (−Sϕ) is well-de�ned and strongly Jensen
convex in the following sense: For all x, y ∈ [0, 1],

(16) − Sϕ
(x+ y

2

)
≤ −Sϕ(x)− Sϕ(y)

2
− ϕ ◦ dZ

(x− y
2

)
.

First we describe the situation when the de�nition of Sϕ is correct.

Lemma 8. Let ϕ : P → R+ be a nonnegative function. Then Sϕ is well-de�ned, i.e., the series on the right hand
side of (15) is convergent everywhere if and only if

(17)

∞∑
n=0

ϕ
(

1
2n

)
<∞.

In the sequel, the class of nonnegative functions ϕ : P → R+ satisfying the condition (17) will be denoted by
H:

H :=

{
ϕ : P → R+ |

∞∑
n=0

ϕ
(

1
2n

)
<∞

}
.

The next theorem, which was discovered by Jacek Tabor and Józef Tabor, has an important role in the proof
of the main theorem of this section.

Theorem 9. For every x, y ∈ R

S2

(x+ y

2

)
≤ S2(x) + S2(y)

2
+ d2Z

(x− y
2

)
.

The following simple observation is a direct consequence of the previous theorem.

Corollary 10. For every x, y ∈ [0, 1]

− S2

(x+ y

2

)
=
−S2(x)− S2(y)

2
− d2Z

(x− y
2

)
.

In the next result we give a representation of Sϕ(x) as an in�nite linear combination of the values S2(2nx),
n = 1, 2, . . . .

Theorem 11. Let ϕ ∈ H. Then, for every x ∈ R,

(18) Sϕ(x) = ϕ(1)S2(x) +

∞∑
n=1

(
ϕ
(

1
2n

)
− 1

4ϕ
(

1
2n−1

))
S2(2nx).

An immediate consequence of the previous two theorems is the next result which states the strong convexity
of (−Sϕ).

Theorem 12. Let ϕ ∈ H such that, for all u ∈ 1
2P , ϕ(2u) ≥ 4ϕ(u). Then, for all x, y ∈ R,

(19) − Sϕ
(x+ y

2

)
≤ −Sϕ(x)− Sϕ(y)

2
− Φ2

(x− y
2

)
,

where Φ2 : R→ R is de�ned by

(20) Φ2(u) :=

∞∑
n=0

ϕ
(

1
2n

)(
d2Z(2nu)− 1

4
d2Z(2n+1u)

)
.

In the next proposition we describe a decomposition property of the function Φ2.

Proposition 13. For ϕ ∈ H, for all u ∈]0, 12 ],

(21) Φ2(u) = Φ2

( 1

2[log2
1
u ]
− u
)

+ ϕ
( 1

2[log2
1
u ]−1

)(
1− 2 · 2[log2

1
u ]u
)
.

In the next proposition an important class of functions ϕ from H will be described.

Proposition 14. Let ϕ : [0, 1] → R+. Assume that ϕ(0) = 0 and the mapping x 7→ ϕ(x)
x is convex on ]0, 1]. Then

ϕ|P ∈ H, the function x 7→ ϕ(x)
x2 is nondecreasing on ]0, 1] and ϕ is continuous on [0, 1[.

The next theorem has an important role in the proof of our subsequent main results.



Theorem 15. Let ϕ : [0, 1]→ R+. Assume that ϕ(0) = 0 and the mapping x 7→ ϕ(x)
x is convex on ]0, 1], then, for all

u ∈ R,

(22) − Φ2(u) ≤ −ϕ ◦ dZ(u).

The main result of this section is stated in the following theorem.

Theorem 16. Let ϕ : [0, 1]→ R+. Assume that ϕ(0) = 0 and the mapping x 7→ ϕ(x)
x is convex on ]0, 1]. Then Sϕ is

approximately Jensen convex in the sense of (16).

We shall prove that the error terms −Sα(t, ‖x− y‖) in (6) under certain assumptions on the error function α
is the smallest possible one. In other words, the next theorem will provide exact upper bound for the convexity-
di�erence of strongly α-Jensen convex functions de�ned by (14).

Theorem 17. Let α : D+ → R be an error function such that α(0) = 0 and the map u 7→ ϕ(u)
u is convex on D+ \{0}.

Then, for all x, y ∈ D and t ∈ [0, 1],

(23) SCα(x, y, t) = −Sα(t, ‖x− y‖).

Taking an error function α which is a combination of power functions of exponents from [2,∞[, we obtain the
following result.

Theorem 18. Let ν be a nonnegative bounded Borel measure on [2,∞[. De�ne the error function αν : D+ → R+ by

αν(u) :=

∫
[2,∞[

uqdν(q) (u ∈ D+).

Then, for all x, y ∈ D and t ∈ [0, 1],

SCαν (x, y, t) = −
∫

[2,∞[

Sq(t)‖x− y‖qdν(q),

where Sq : R→ R is given by (7).

Corollary 19. Let q ∈ [2,∞[ and ε ≥ 0. De�ne the error function α : D+ → R+ by α(u) := εuq. Then, for all
x, y ∈ D and t ∈ [0, 1],

SCα(x, y, t) = −εSq(t)‖x− y‖q.

The next �gures demonstrate the strong convexity of −Sq, when q = 2 and q = 4.



3. On a strong convexity type inequality

Given a nonnegative even function α : D∗ → R+, we say that a map f : D → R is strongly α-convex, if for all
x, y ∈ D and t ∈ [0, 1],

(24) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− tα
(
(1− t)‖x− y‖

)
− (1− t)α

(
t‖y − x‖

)
holds. If (24) holds with T = {1/2}, i.e., for all x, y ∈ D,

f
(x+ y

2

)
≤ f(x) + f(y)

2
− α

(
x−y
2

)
,

we can get the strong α( ·2 )-Jensen convexity of the function f By the nonnegativity of α, we have that strongly
α-Jensen convex and strongly α-convex functions are always convex in the same sense, respectively.

In [12], we examined the strong α-Jensen convexity and we got the following result.

Theorem 20. (Makó-Nikodem-Páles, [12])
For any function f : D → R, the following conditions are equivalent:

(i) f is strongly α-convex.
(ii) f is directionally di�erentiable at every point of D, and for all x0 ∈ D, the map h 7→ f ′(x0, h) is sublinear

on X, furthermore for all x0, x ∈ D,
(25) f(x) ≥ f(x0) + f ′(x0, x− x0) + α(‖x− x0‖).
(iii) For all x0 ∈ D, there exits an element A ∈ X ′ such that

(26) f(x) ≥ f(x0) +A(x− x0) + α(‖x− x0‖) for all x ∈ D.

Thus, it can be important to look for connections between the strong α-Jensen convexity and strong α-
convexity.

Theorem 21. If f : D → R is locally upper bounded and strongly α-Jensen convex, then f is strongly 2α-convex on
D.

In the following theorems, we have established relations between Hermite�Hadamard type inequalities and
strong (Jensen) convexity.

Theorem 22. Let ρ : [0, 1] → R be integrable function and assume that α : D∗ → R+ be a given error function.

Denote λ :=
∫ 1

0
ρ. If f : D → R is continuous and satis�es the following upper Hermite�Hadamard type inequality∫ 1

0

f(tx+ (1− t)y)ρ(t)dt ≤ λf(x) + (1− λ)f(y)− α(‖x− y‖), (x, y ∈ D)

then f is strongly 1
λα-convex on D.

Theorem 23. Let ρ : [0, 1] → R be integrable function and assume that α : D∗ → R+ be a given error function.

Denote λ :=
∫ 1

0
ρ. If f : D → R is continuous and satis�es the following lower Hermite�Hadamard type inequality

f(λx+ (1− λ)y) ≤
∫ 1

0

f(tx+ (1− t)y)ρ(t)dt− α(‖x− y‖) (x, y ∈ D)

then f satis�es the following Jensen-type inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− α(‖x− y‖) (x, y ∈ D).
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