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Abstract 

Wood decay mechanisms in Agaricomycotina have been traditionally separated in two 

categories termed white and brown rot. Recently the accuracy of such a dichotomy has 

been questioned. Here, we present the genome sequences of the white rot fungus 

Cylindrobasidium torrendii and the brown rot fungus Fistulina hepatica both members of 

Agaricales, combining comparative genomics and wood decay experiments. 

Cylindrobasidium torrendii is closely related to the white-rot root pathogen Armillaria 

mellea, while F. hepatica is related to Schizophyllum commune, which has been reported 

to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate 

between white-rot and brown-rot fungi, but at the same time they show characteristics of 

decay that resembles soft rot. Both species cause weak wood decay and degrade all wood 

components but leave the middle lamella intact. Their gene content related to lignin 

degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array 

of genes related to carbohydrate degradation, similar to white-rot fungi. These 

characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic 

ability. Fistulina hepatica shows characteristics of brown rot both in terms of wood decay 

genes found in its genome and the decay that it causes. However, genes related to 

cellulose degradation are still present, which is a plesiomorphic characteristic shared with 

its white-rot ancestors. Four wood degradation-related genes, homologs of which are 

frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. 

hepatica. These results suggest that transition towards a brown rot lifestyle could be an 

ongoing process in F. hepatica. Our results reinforce the idea that wood decay 

mechanisms are more diverse than initially thought and that the dichotomous separation 

of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be 

revisited.  

 

Highlights 



  

 3 

 We sequenced the genomes of Cylindrobasidium torrendii and Fistulina hepatica. 

 We examined the evolution of wood decay mechanisms in Agaricales. 

 We performed wood decay experiments for both species and Schizophyllum 

commune. 

 Neither species has typical white or brown rot characteristics. 

 Atypical wood decayers are more frequent than previously thought. 

 

1. Introduction 

The plant cell wall (PCW) is a significant carbon pool in terrestrial ecosystems 

(Albersheim et al., 2011). Saprotrophic Agaricomycotina exploit this pool as a carbon 

and energy source, acting as wood or litter decomposers. Wood decomposers follow 

different strategies of decomposition termed white and brown rot. White-rot fungi cause 

the degradation of all wood components including the recalcitrant lignin and crystalline 

cellulose mainly through enzymatic processes (Kersten & Cullen, 2007; Baldrian & 

Valaskova, 2008). In contrast, brown-rot fungi cause complete degradation of 

polysaccharides, but only partial degradation of lignin (Blanchette, 1995; Worrall et al, 

1997; Niemenmaa et al., 2007; Yelle et al., 2008). 

Enzymes implicated in lignin degradation by white-rot fungi include Class II 

peroxidases (POD), dye-decolorizing peroxidases (DyP) and laccases sensu stricto 

(Cullen & Kersten, 2004; Martinez et al., 2005; Bourbonnais et al., 1995; Eggert et al., 

1996; Eggert et al., 1997; Gronqvist et al., 2005; Liers et al., 2010). Enzymes involved in 

the degradation of crystalline cellulose by white-rot fungi include mainly 

cellobiohydrolases (glycoside hydrolases GH6 & GH7) and lytic polysaccharide 

monooxygenases (LPMO) (Harris et al., 2010). In addition to those enzymes, white-rot 

fungi employ diverse sets of other carbohydrate active enzymes (CAZY) involved in the 

degradation of the PCW (Kirk & Cullen, 1998). In brown-rot fungi, polysaccharide 

degradation takes place through non-enzymatic processes, at least during the initial stages 

of degradation. Hydroxyl radicals generated through the Fenton reaction have been 

suggested to be the major agent in non-enzymatic degradation of polysaccharides by 

brown-rot species (Kirk & Highley, 1973; Illman, 1991). 
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Recent genome investigations (Martinez et al., 2004; Martinez et al., 2009; Eastwood 

et al., 2011; Floudas et al., 2012) revealed that white-rot species are enriched in genes 

related to the degradation of lignin (POD, DyP, laccases s.s.), crystalline cellulose (GH6, 

GH7, LPMO) and other carbohydrates (GH43, GH74). Furthermore, white-rot species are 

rich in copies of the cellulose-binding module 1 (CBM1), which facilitates attachment of 

enzymes to crystalline cellulose (Boraston et al., 2004). In contrast, brown-rot fungi 

appear to have few or no gene copies in these families and CBM1. It has been suggested 

that the role of hydroxyl radicals in carbohydrate degradation renders extensive 

enzymatic lignin and carbohydrate degradation redundant (Worrall et al., 1997). Thus, 

gene losses accompanied the transitions from a white-rot to a brown-rot lifestyle. Less is 

known regarding such processes in litter decomposers, but it has been suggested that the 

latter group causes mostly white rot (Osono, 2007). 

The separation of lignicolous Agaricomycotina into white-rot and brown-rot 

categories could be an oversimplification. Species that do not seem to follow typical 

brown-rot or white-rot strategies have been noted, for example in the Boletales. Even 

though the order includes saprotrophic brown-rot species, species of Coniophora and 

Serpula appear to be able to degrade cellulose in a similar manner to white-rot species 

(Redhead & Ginns 1985; Nilsson, 1974; Nilsson and Ginns, 1979). In addition, 

Schizophyllum commune (Agaricales) (Ohm et al., 2010), Jaapia argillacea (Jaapiales) 

and Botryobasidium botryosum (Cantharellales) (Riley et al., 2014) have reduced 

numbers of POD, DyP and laccases s.s., similar to brown-rot species, but they are 

enriched in genes related to the degradation of the PCW carbohydrates, including 

enzymes involved in the degradation of crystalline cellulose, similar to white-rot species. 

Schizophyllum commune and B. botryosum have been associated with white rot, but the 

former species appears to cause only weak wood degradation (Ginns & Lefebvre, 1993; 

Schmidt & Liese, 1980). 

Most studies on wood decay mechanisms have focused on model species such as 

Rhodonia placenta (Postia placenta, Polyporales), Phanerochaete chrysosporium 

(Polyporales) and Gloeophyllum trabeum (Gloeophyllales). Less attention has been given 

to members of Agaricales, except for the genus Pleurotus, which has been mainly studied 
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for its ligninolytic potential (Cerniglia, 1997; Pointing, 2001; Ruiz-Duenas et al., 2007; 

Faraco et al., 2007). 

The Agaricales is a diverse order with more than 13,000 described species (Kirk et 

al., 2008) that manifest diverse lifestyles, including biotrophs and saprotrophs (Matheny 

et al., 2006). Saprotrophic Agaricales comprise litter decomposing, coprophilous, 

humicolous, and lignicolous species. The latter group is mostly associated with white rot 

(Kaarik, 1965; Worrall et al., 1997). Brown rot is a rare nutritional strategy in Agaricales, 

associated with the small genera Fistulina, Ossicaulis, and Hypsizygus (Redhead & 

Ginns, 1985). Ossicaulis and Hypsizygus are members of Lyophylleae and they seem to 

be closely related (Moncalvo et al., 2002), but Fistulina is an isolated brown-rot genus 

closely related to Schizophyllum, and the little-known Auriculariopsis and Porodisculus 

(Ginns, 1997; Binder et al., 2004). Until recently, sequenced genomes of Agaricales 

species related to PCW degradation included only the cacao pathogen Moniliophthora 

perniciosa (Mondego et al., 2008), the litter decomposer Coprinopsis cinerea (Stajich et 

al., 2010) and the lignicolous S. commune (Ohm et al., 2010). This picture has been 

changing with an increasing number of sequenced Agaricales genomes (Morin et al., 

2012; Wawrzyn et al., 2012; Bao et al., 2013; Aylward et al., 2013; Collins et al., 2013; 

Hess et al., 2014). 

Here, we report the newly sequenced draft genomes of the “beefsteak fungus” 

Fistulina hepatica and Cylindrobasidium torrendii. Both species are members of the 

Agaricales, but the former species causes brown rot on hardwood (Schwarze et al., 

2000a), while the latter species is associated with white rot most frequently on hardwood 

(Ginns & Lefebvre, 1993). We compare the wood degradation strategies of each species 

with those of other wood-degrading fungi and we explore the evolution of plant cell-wall 

degradation strategies in Agaricales based on gene tree/species tree reconciliation 

analyses. 

 

2. Materials and Methods 

2.1 Strain info and nucleic acid extraction  

We sequenced the single spore isolates of F. hepatica (ATCC 64428, isolated from a 

sporophore growing on a Castanea dentata rootstock, North Carolina) and C. torrendii 
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(HHB-15055, ss-10, isolated from an Acer rubrum log, WI, USA, deposited at the Forest 

Products Laboratory culture collection). 

RNA was isolated from F. hepatica by the incubation of liquid nitrogen-ground 

mycelia from YM agar plates in a CTAB-SDS extraction buffer at 65°C, with sequential 

LiCl and Na acetate precipitations, DNAase treatment, and a phenol-chloroform 

extraction. DNA from F. hepatica was isolated from similarly pulverized tissue 

pretreated with methanol+1% -mercaptoethanol and lyophilized. The tissue was slurried 

in TES buffer, incubated with proteinase K, and then heated with a high salt - 0.9% 

CTAB buffer at 65 °C. The mixture was extracted with phenol / chloroform / isoamyl 

alcohol, and centrifuged to remove the organic soluble components and debris. Nucleic 

acids were precipitated with ammonium acetate and then, following an RNase A 

treatment, DNA was pelleted with isopropanol. High-quality genomic DNA was isolated 

by passage through Qiagen genomic DNA columns. 

Culturing of C. torrendii was done in 0.25 l liquid media of malt extract (20 g/l) and 

yeast extract (0.5 g/l) at 30 C in darkness. Harvested mycelium was filtered, washed and 

immediately stored at -80 C until the time of DNA or RNA extraction. Genomic DNA 

extraction from liquid cultures of C. torrendii was done using Qiagen 500/G tips and 

following the lysis protocol for tissue in the Qiagen Blood & Cell Culture DNA Kit. 

RNA extractions were done using the Qiagen RNeasy Midi Kit. The protocol for animal 

tissue (Qiagen) was followed for isolation of total RNA including on-column DNase 

digestion. 

2.2 Genome and transcriptome sequencing 

General aspects of library construction and sequencing can be found at the JGI 

website http://www.jgi.doe.gov/. The genome of F. hepatica was sequenced using two 

constructed libraries. A 4 kb library was made from LFPE (ligation-free paired end) mate 

pair fragments generated using the 5500 SOLiD Mate-Paired Library Construction Kit 

(SOLiD®). 15µg of genomic DNA was sheared using the Covaris g-TUBE
TM 

(Covaris),
 

and gel size was selected for 4kb.  The sheared DNA was end-repaired, and ligated with 

biotinylated internal linkers. The DNA was circularized using intra-molecular 

hybridization of the internal linkers.  The circularized DNA was then treated with 

Plasmid-Safe (Epicentre) to remove non-circularized products, and nick-translated and 

http://www.jgi.doe.gov/


  

 7 

treated with T7 exonuclease and S1 nuclease to yield fragments containing internal 

linkers with genomic tags on each end. The mate pair fragments were A-tailed and 

purified using Streptavidin bead selection (Invitrogen).  The purified fragments were 

ligated with Illumina adaptors and amplified using 10 cycles of PCR with Illumina 

primers (Illumina) to generate the final library. qPCR was used to determine the 

concentration of the libraries and were sequenced on the Illumina Hiseq. 

A 270 bp library was prepared by shearing 1 g of DNA using the Covaris E210 

(Covaris), and size-selected using SPRI beads (Beckman Coulter). The fragments were 

treated with end-repair, A- tailing, and ligation of Illumina-compatible adapters (IDT, 

Inc.) using the KAPA-Illumina library creation kit (KAPA biosystems). qPCR was used 

to determine the concentration of the libraries to be sequenced on the Illumina Hiseq. 

The 4 kb and 270 bp libraries of F. hepatica genomic DNA were then sequenced 

using the Illumina HiSeq platform.  An additional sequencing run using PacBio v2 

chemistry, 3 kb, 42 SMRT cells provided an additional 1610382 post-filtered reads for H. 

hepatica. 

The genome of C. torrendii was sequenced from a 270 bp fragments library 

following the same methodology used for the construction of the 270 bp library for F. 

hepatica.  

The transcriptome libraries of both organisms were prepared by purifying 2 g (5 g 

for C. torrendii) of total RNA using Dynabeads® mRNA Purification Kit (Invitrogen) 

and chemically fragmented to 200-250 bp (Ambion). mRNA was reverse transcribed with 

SuperScript II using random hexamers. Second Strand cDNA was synthesized using 

dNTP/dUTP mix (Thermo Scientific), E. coli DNA Ligase, E. coli DNA polymerase I, 

and E coli RnaseH (Invitrogen). The fragmented cDNA was treated with end-pair, A-

tailing, adapter ligation using the TruSeq Sample Preparation Kit (Illumina). Second 

strand cDNA was removed by AmpErase UNG (Applied Biosystems) to generate 

strandedness. qPCR was used to determine the concentration of the unamplified libraries.  

Libraries were sequenced on the Illumina Hiseq. 

2.3 Genome assembly and annotation 

The F. hepatica genome was assembled with AllPathsLG release version R42328 

(Gnerre et al., 2011).  PBJelly (English et al., 2012), was then used to fill and reduce gaps 
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by aligning PacBio data to draft assemblies.  This resulted in a 137.9 X coverage 

assembly with 588 scaffolds.   

 The C. torrendii genome was initially assembled with Velvet (Zerbino, 2010). The 

resulting assembly was used to create a long mate pair library with insert 3 kb +/- 300 bp, 

which was then assembled with the original Illumina reads with AllPathsLG release 

version R42328. This resulted in a 134.3 X coverage assembly with 1149 scaffolds. 

Additional statistics on both genome assemblies are given in Table S1.  

Transcriptome reads for both organisms were assembled into contigs with Rnnotator 

(Martin et al., 2010) and mapped to genome contigs using BLAT (Kent, 2002). Table S2 

summarizes the transcriptome data, and mapping to the genome, for each organism. 

Both genomes were annotated using the JGI annotation pipeline (Grigoriev et al., 

2006), which combines several gene prediction and functional annotation methods with 

transcriptome data and integrates the result in Mycocosm (Grigoriev et al., 2014), a web-

based resource for fungal comparative genomics. Before gene prediction, assembly 

scaffolds were masked using RepeatMasker (http://www.repeatmasker.org), RepBase 

library (Jurka et al., 2005), and frequent (>150times) repeats were recognized by 

RepeatScout (Price et el., 2005).  The following combination of gene predictors was run 

on the masked assembly: ab initio Fgenesh (Salamov & Solovyev, 2000) and GeneMark 

(Ter-Hovhannisyan et al, 2008), homology-based Fgenesh+ (Salamov & Solovyev, 2000) 

and Genewise (Birney & Durbin, 2000) seeded by BLASTx (Altschul et al., 1990) 

alignments against NCBI NR database (http://www.ncbi.nlm.nih.gov), and, in the case of 

C. torrendii, transcriptome-based assemblies.  Transcriptome data for F. hepatica, were 

not used for gene prediction.  In addition to protein coding genes for both genomes, 

tRNAs were predicted using tRNAscan-SE (Lowe & Eddy, 1997). All predicted proteins 

were functionally annotated using SignalP (Nielsen et al., 1997) for signal sequences; 

TMHMM (Melen et al., 2003) for transmembrane domains; InterProScan (Quevillon et 

al., 2005) for integrated collection of functional and structure protein domains; and 

protein alignments to the NCBI nr, SwissProt (http://www.expasy.org/sprot/), KEGG 

(Kanehisa et al., 2006), and KOG (Koonin et al., 2004) databases. Interpro and SwissProt 

hits were used to map gene ontology (GO) terms (Ashburner et al., 2000). For each 

genomic locus, the best representative gene model was selected based on a combination 
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of protein homology and (in the case of C. torrendii) EST support, which resulted in the 

final sets of genes analyzed in this work. Table S3 summarizes, for both organisms, the 

predicted gene sets and support metrics. 

2.4 Clustering 

For comparative purposes we clustered the predicted protein sequences from F. 

hepatica and C. torrendii with the predicted proteins from eleven additional genomes of 

saprotrophic Agaricales and one species of Amylocorticiales (Plicaturopsis crispa, 

Binder et al., 2010), which served as an outgroup. The clustering was done using the 

MCL clustering algorithm (Enright et al., 2002) and an inflation parameter of 2.0. 

Genome sampling included the genomes of Agaricus bisporus var. bisporus (H97) v 2.0 

(Agabi), Amanita thiersii Skay4041 v 1.0 (Amath), Armillaria mellea (Armme), C. 

cinerea (Copci), Galerina marginata v 1.0 (Galma), Gymnopus luxurians v 1.0 (Gymlu), 

Hypholoma sublateritium v 1.0 (Hypsu), Omphalotus olearius (Ompol), Pleurotus 

ostreatus PC15 v 2.0 (Pleos), P. crispa v 1.0 (Plicr), S. commune v 2.0 (Schco), and 

Volvariella volvacea (Volvo) (Ohm et al., 2010; Stajich et al., 2010; Morin et al., 2012; 

Wawrzyn et al., 2012; Bao et al., 2013; Collins et al., 2013; Riley et al. 2014; Hess et al., 

2014; Kohler et al., unpublished data). The 390,268 protein sequences from these 

organisms were grouped into 32,532 clusters. The results can be browsed at 

http://genome.jgi.doe.gov/clustering/pages/cluster/clusters.jsf?runId=2610. 

2.5 Data assembly of single copy genes and wood-degrading enzymes  

We selected twenty-six single-copy genes from a subset of a larger dataset of 71 

genes that we have previously used (Floudas et al., 2012) for organismal phylogenetics. 

We assembled each of the 26 gene datasets by identifying its cluster in the cluster run 

mentioned in section 2.3 (Table S4). Four of the identified clusters included distantly 

related paralogs that we separated based on phylogenetic analyses. We also removed the 

paralogs from potential recent gene duplications in four genes. Two genes were not 

present in the gene catalog and we retrieved them by performing blastp searches on all 

predicted models. We replaced fragmented models by complete ones, when this was 

possible (Table S4). 

We also assembled datasets for 33 gene families thought to be involved in various 

ways in PCW degradation across the 14 genomes, using the same cluster run (Table 1). 

http://genome.jgi.doe.gov/clustering/pages/cluster/clusters.jsf?runId=2610
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The oxidative enzymes dataset consists of six gene families (Table 1), four of which are 

related to degradation of lignin or lignin-like compounds by white-rot fungi (Cullen & 

Kersten, 2004; Martinez et al., 2005; Bourbonnais et al., 1995; Eggert et al., 1996; Eggert 

et al., 1997; Gronqvist et al., 2005; Liers et al., 2010; Hofrichter & Ullrich, 2006, 

Gutierrez et al., 2011). The other two families include copper radical oxidases (CRO) and 

cellobiose dehydrogenases (CDH), which are involved in production of hydrogen 

peroxide and hydroxyl radicals respectively (Cullen & Kersten, 2004; Henriksson et al., 

2000). Hydrogen peroxide or hydroxyl radical production is accomplished through 

various pathways in Agaricomycetes (Cullen & Kersten, 2004; Daniel et al., 1994; 

Guillen et al., 1994; Volc et al, 1996; Daniel et al., 2007, Arantes et al., 2012). However, 

we included here only datasets for CRO and CDH, which appear to be differentially 

maintained between white-rot and brown-rot fungi (Floudas et al., 2012). The other 

twenty-seven gene families are separated into bulk carbohydrate active enzymes (CAZY) 

and accessory CAZY (De Vries et al., 2010) and show diverse catalytic activity on 

carbohydrates (Table 1).  

Each dataset was assembled using the JGI cluster run mentioned above, and the use 

of InterPro and PFAM domains (Table S5). We also identified the CBM1-containing 

gene copies by searching for the corresponding PFAM domain PF00734 (Table 2). We 

used proteins annotated by CAZYbase (Lombard et al., 2014, Kohler et al., unpublished 

data) to identify gene families without a specific PFAM or InterPro domain, and to verify 

the recovered gene numbers for all annotated genomes. For a subset of 15 gene families 

and the CBM1, we obtained data from 18 additional Agaricomycotina genomes from 

previous studies (Floudas et al., 2012; Riley et al., 2014). We replaced low quality 

models by improved ones found on the genome browser of each genome or otherwise we 

excluded them from the datasets (Table S6). We subclassified MCO and CRO based on 

characterized sequences and preliminary phylogenetic analyses (Table S7). We also 

subclassified POD into manganese peroxidases (MnP), versatile peroxidases (VP), lignin 

peroxidases (LiP), generic peroxidases (GP) and also the atypical MnP and VP (Table 

S7), based on the completeness of the manganese binding site and the presence of the 

long range electron transfer tryptophan, as we have previously done (Floudas et al., 

2012). Finally, we separated the MnP into the short and long/extra long types based on 
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preliminary phylogenetic analyses (data not shown) with other previously characterized 

sequences (Floudas et al., 2012). 

2.6 Alignments and phylogenetics 

We aligned all the datasets using the online version of PRANK 

(http://www.ebi.ac.uk/goldman-srv/webprank/) with the default settings (Löytynoja & 

Goldman, 2010). We removed poorly aligned areas of the alignments for each of the 26 

datasets for the organismal phylogeny using Gblocks v. 0.91b 

(http://molevol.cmima.csic.es/castresana/Gblocks_server.html) with less stringent 

settings (Castresana, 2000). We manually examined and removed poorly aligned areas of 

the alignments of wood-degrading enzymes datasets using MacClade v.4.08 (Maddison 

and Maddison 2002). Maximum likelihood (ML) analyses were performed for each 

alignment using RAxML v. 7.6.6 (Stamatakis et al., 2008) under the GTR model with 

CAT distributed rate heterogeneity and the WAG substitution matrix with 500 rapid 

bootstrap replicates (200 replicates for ML analyses of wood degradation enzymes 

datasets). Bayesian analyses were performed using MrBayes 3.2.2 (Ronquist et al., 2012) 

for seven million generations, with four chains and sampling every 1000 generations. The 

burn-in proportion was set to 0.25, which was found to be adequate after examining the 

likelihood scores using Tracer v1.5 (http://tree.bio.ed.ac.uk/software/tracer/). All 

phylogenetic analyses were performed at Cipres (Miller et al., 2010; 

http://www.phylo.org/index.php/portal/). 

2.7 Species tree / Gene tree reconciliation 

We estimated the number of gene copies for each gene family related to wood 

degradation at the ancestral nodes of the organismal phylogeny using Notung (Durand et 

al., 2006). Midpoint rooting was used to root gene trees prior to reconciliation. 

Reconciliation analyses were performed using the default cost of duplications and losses 

and the edge weight threshold was set to 90.  

2.8 Wood decay experiments 

Studies used to determine wood decay mechanisms by Cylindrobasidium torrendii, 

Fistulina hepatica or Schizophyllum commune were set up using 10 x 10 x 1 mm wood 

wafers of aspen (Populus sp.). Fifteen wafers were used for each isolate and each time 

point. Following determination of oven dry weight, wafers were hydrated to 80-100% 

http://www.ebi.ac.uk/goldman-srv/webprank/
http://tree.bio.ed.ac.uk/software/tracer/
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and sterilized in an autoclave for 60 minutes at 120°C. Wafers were then placed on 

mycelium growing on 2% malt yeast extract agar (15 g malt extract, 2 g yeast extract, 15 

g agar, 1000 ml water). After 45 and 90 days, 12 wafers were removed and dried to 

determine mass loss and 3 wafers were frozen at -20° C for microscopy. 

Micromorphological characteristics were described using scanning electron microscopy 

methods as previously described (Blanchette et al. 2010). Samples were examined and 

photographed using a Hitachi S3500 N (Hitachi, Tokyo, Japan) scanning electron 

microscope. 

 

3. Results 

3.1 Gene copies of wood-degrading enzymes in Agaricales and P. crispa 

We collected in total 1997 protein models from 14 genomes, which can be separated 

into 429 oxidative enzymes, 731 bulk CAZYs, and 837 accessory CAZYs (Table 2). 

Fistulina hepatica has 74 copies across only 22 gene families, which is the smallest 

number of copies seen in the Agaricales, while C. torrendii has 144 copies across 29 gene 

families, which is close to the average number of copies across the 14 genomes. Fistulina 

hepatica and C. torrendii are the only species of the 14 genomes dataset that lack a 

CBM1. 

The POD, MCO and CRO were subclassified recognizing 6 categories of genes for 

POD and 5 categories for both MCO and CRO (Table S7). PODs represent mostly 

different types of manganese peroxidases (MnP), while 7 genes were fragments and 

could not be assigned to any type. MCO are dominated by laccases s.s. (LAC s.s.), while 

other types of MCOs such as laccase-like genes (LAC-like), L-ascorbate oxidases, and 

melanin synthesis related genes (MS) are found only in marasmioid species. Glyoxal 

oxidase (GLX) is the only category of CRO that has scattered representation in our 

dataset. We reconciled laccases s.s and GLX within the MCO and CRO respectively. The 

reason for that choice was based on the role of these subsets of enzymes during wood 

degradation (Kersten & Kirk, 1987; Kües & Rühl, 2011). Laccase-like enzymes appear to 

play a similar role to laccases s.s. for some species (Rodriguez-Rincon et al., 2010) but 

they were excluded from reconciliation because of their scarce presence in the dataset. 
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3.2 Organismal phylogeny and reconciliation results using Notung 

We performed gene tree / species tree reconciliation analyses using the species tree 

we generated based on the dataset of 26 single copy genes (Table S4). The final 

concatenated alignment included 21167 amino acid characters after exclusion of the 

poorly aligned regions. The resulting phylogenetic trees from ML and Bayesian analyses 

have identical, fully resolved topology (Fig. 1). Our results largely agree with a previous 

study in Agaricales based on five genes (Matheny et al., 2006). Fistulina hepatica is 

closely related to S. commune, as has been shown before (Matheny et al., 2006; Binder et 

al., 2004), while C. torrendii appears to be related to the white-rot A. mellea. Both F. 

hepatica and C. torrendii belong in the Marasmioid clade, which includes here six 

species. 

The common ancestor of Agaricales is estimated to have had 21 copies of oxidative 

enzymes (Fig. 2a). Seven of these copies represent PODs (Fig. S1). The ancestor is also 

suggested to have had a rich repertoire of CAZY (61 bulk and 73 accessory enzymes, 

Fig. 2b and 2c). Among the largest CAZY families suggested to have been present are the 

LPMO, GH28, and GH43 (Fig. S2a and S3a), while 3 and 2 copies of GH6 and GH7 

were present respectively (Fig. S2a). In comparison to the ancestor of Agaricales, both F. 

hepatica and C. torrendii have reductions for oxidative enzymes (Fig. 2). These 

reductions are mainly related to POD and DyP (Fig. S1). Fistulina hepatica has 

additional reductions for bulk and accessory CAZY (Figs. 2b, 2c) especially related to 

LPMOs and GH43 genes (Figs. S2, S3a, S5, S6), while C. torrendii has maintained 

CAZY copy numbers similar to the Agaricales ancestor (Fig. 2b and 2c). 

 

3.3 Comparison of Agaricales with brown-rot and white-rot species from other 

orders. 

To place the PCW degradation machineries of the 13 Agaricales genomes in a 

broader context we compared them with 18 genomes from 11 orders across 

Agaricomycotina. Eight of the genomes belong to white-rot species, while eight genomes 

represent brown-rot species from 4 independently evolved brown-rot lineages. We 

focused on the CBM1 and a subset of 15 families of the 33 gene-families dataset (Fig. 3). 

White-rot species possess 46 to 118 gene copies in eleven to fifteen gene families. At the 
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same time, brown-rot species possess only 10 to 50 copies in four to twelve gene families 

(Fig. 3). The litter decomposers A. bisporus and A. thiersii are intermediate between 

white-rot and brown-rot species, while V. volvacea and C. cinerea have gene repertoires 

similar to typical white-rot species. 

 

3.4 Pseudogenization of genes related to wood degradation in F. hepatica. 

Four decay-related pseudogenes were detected in F. hepatica. Three are represented 

in the gene catalog by protein models Fishe 57906 (DyP), Fishe 73885 (GH74 

xyloglucanase), and Fishe 71082 (GH5-7 endomannanase). The fourth pseudogene was 

identified during a manual search of all the predicted models for cellobiohydrolase GH6 

genes using the identifier PF01341. One to two predicted protein models represent each 

one of the four loci (except for the GH6 locus, which is represented by 5 predicted 

protein models). All predicted models are either fused with an adjacent gene, which is a 

gene prediction artifact due to the incomplete reading frame of the gene, or represent 

fragments (Fig S4a-b). Additionally, the automated functional annotation for DyP and 

GH5-7 failed to recognize the expected domains IPR006314 and IPR001547, 

respectively. Phylogenetic analyses of all the predicted models from the four putative 

pseudogenes with homologs from other genomes that the F. hepatica genes are on long 

branches, suggesting accumulation of many amino acid changes on the predicted proteins 

(Figs. 4, S7a-S7c). 

To assess whether the inferred pseudogenes could be artifacts resulting from poor 

assembly quality, we inspected alignments of the Illumina read data to the assembled 

consensus produced by AllPathsLG R42328 and called variant bases using SAMtools 

1.19. Although the scaffolds harboring the pseudogenes contained varying numbers of 

SNPs (scaffold_92 336 SNPs; scaffold_142 159 SNPs; scaffold_272 99 SNPs; scaffold_437 8 

SNPs), none of these SNPs lay within the boundaries of any of the four proposed 

pseudogenes, suggesting that the genome assembly is of high quality in the relevant 

regions. 

Additionally, we examined genes upstream and downstream of each of the four loci. 

We generated phylogenetic trees from the flanking genes and their homologs in the 13 

other genomes. Seven of the 8 genes adjacent to the four potential pseudogenes on the 
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genome of F. hepatica do not result in long branches (Figs. 4, S7a-S7c), suggesting good 

quality sequencing at these areas of the genome. Model Fishe1 43738 (upstream of 

xyloglucanase Fishe1 73885) is the only gene placed on a longer branch and it is coupled 

with model Schco2 1215620, which is also on a long branch (Fig. S7a). The fragmented 

predicted models of the four loci, combined with the good quality of the assembly of the 

genome in these areas and the good quality of the predicted models for adjacent genes 

suggest that the four loci represent pseudogenes. However, additional experimental data 

are needed to verify that the four loci represent pseudogenes. 

 

3.5 Wood decay by F. hepatica, C. torrendii and S. commune 

Wood colonized in the laboratory by Cylindrobasidium torrendii, Fistulina hepatica 

or Schizophyllum commune was examined using scanning electron microscopy. After 45 

days of colonization, all three fungi did not cause appreciable decay alteration of the 

wood cell walls, but after 90 days evidence of cell wall attack was observed. The wood 

substrate had relatively small amounts of biomass lost corresponding to 17.8% 2.3% and 

7.2% for C. torrendii, F. hepatica and S. commune, respectively, after 90 days. 

Transverse sections of wood decayed by C. torrendii after 90 days, showed a pattern 

of cell wall attack that was typical for white rot fungi that cause a simultaneous 

degradation of all cell wall components (Figs. 5A, 5B). In localized areas of the wood, 

fibers and vessels had eroded secondary cell walls. As the fungus removed the secondary 

wall, the middle lamella became weak, cells separated and voids in the wood cells were 

formed. This attack, however, was limited and occurred in some cells, while adjacent 

cells remained unaltered. Degradation by S. commune after 90 days, presented for 

comparison with C. torrendii, also appeared to be a white rot type of cell wall 

degradation (Figs. 5E, 5F). The secondary walls were eroded and thinned leaving the 

middle lamella intact in most cells. Some breakage of the residual middle lamella was 

evident in a few cells causing voids to be seen in the wood but in most cell walls the 

middle lamella remained in areas that were degraded (Fig. 5F). 

Decay by F. hepatica was evident in wood cells near the surface of the wood wafers 

after 90 days. Decay observed had an appearance of a typical brown rot with cell walls 

that displayed a diffuse attack resulting in slightly swollen secondary walls and a loss of 
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cell wall integrity (Figs. 5C, 5D). The weakened fiber cell walls lost rigidity and assumed 

convoluted shapes.  

 

4. Discussion 

 

4.1 The common ancestor of Agaricales had similar types of wood decay genes with 

those seen in extant white-rot Agaricales species 

The ancestor of Agaricales is estimated to have had genes from all 6 oxidative gene 

families examined here, including 7 POD and 3 DyP (Fig. S1), which is similar to white-

rot species of Agaricales, even though the overall number of oxidative enzymes is lower 

than that of some extant white-rot Agaricales such as G. marginata or G. luxurians (Fig. 

2). Additionally, the reconstructed 19 LPMOs, GH6 and GH7 cellobiohydrolases (Fig. 

S2a) and CDH (Fig. S1) suggests the presence of a rich system for utilization of 

crystalline cellulose and cellobiose. Taken together these results suggest that gene 

networks related to white-rot wood decay are plesiomorphic in Agaricales, as in the 

Agaricomycotina as a whole (Floudas et al., 2012). 

 

4.2 Plant cell-wall decomposition similarities between litter decomposers and white-

rot species 

Litter decomposers in Agaricales (A. bisporus, A. thiersii, C. cinerea and V. 

volvacea) have maintained the plesiomorphic enzymatic degradation of cellulose and 

other large carbohydrates. This is shown by the presence of complete enzymatic systems 

for cellulose degradation (GH6, GH7, LPMO) and the diverse set of CAZYs involved in 

hemicellulose degradation (Table 1) similar to the Agaricales ancestor (Fig. 2b and 2c) 

and to white-rot species from other orders (Fig. 3). 

The picture of lignin degradation is more complex among litter decomposers in 

Agaricales. Volvariella volvacea has a complete system of lignin-degrading enzymes 

including POD, DyP and laccases s.s. However, A. thiersii, A. bisporus and C. cinerea 

lack or have reduced numbers of POD or DyP, suggesting weaker ability for lignin 

degradation. The numbers of copies of shared oxidative gene families among litter 

decomposers show variation. Volvariella volvacea has 5 or 6 ligninolytic PODs (Table 
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S7), but has only 3 HTPs, while A. bisporus has 24 HTPs, but only two PODs. Laccases 

s.s. are represented by abundant copies in all litter decomposers, suggesting an important 

role in their lifestyle (Theuerl & Buscot, 2010). 

Lignin concentration increases from the upper towards the lower layers of the soil, 

but in addition its structure changes as result of decomposition (Osono, 2007; Osono et 

al., 2008). The differences in types and copy numbers of lignin degrading enzymes 

present in litter decomposers could be connected to the diverse microenvironments found 

in the soil that provide different forms and amounts of recalcitrant carbon.  

The shared gene content for the enzymatic degradation of lignin, cellulose and other 

carbohydrates between litter decomposers and white-rot Agaricales suggests that 

transitions between the two nutritional strategies are possible across Agaricales. 

Volvariella volvacea is the litter decomposer in the dataset closest to white-rot species 

regarding its wood-degrading apparatus. In agreement with this observation, it has been 

suggested that the transition from a litter decomposing towards a lignicolous white-rot 

lifestyle has happened twice in the genus (Justo et al., 2010). Additionally, G. luxurians 

appears to be one of the richest in PCW-degrading enzymes of the white-rot species in 

this dataset and is nested within a clade that contains both white-rot species and litter 

decomposers (Mata et al., 2004; Arnolds, 1995). 

 

4.4 Cylindrobasidium torrendii and S. commune do not fit in the white-rot / brown-

rot dichotomy 

The wood-degrading apparatus of C. torrendii shows similarities to that of S. 

commune. Both species carry a complete set of enzymes for the enzymatic degradation of 

crystalline cellulose (GH6, GH7, LPMO), including large number of LPMO copies 

(Table 2, Fig. 3) and they have rich repertoires of other CAZY enzymes (Table 2, Fig. 3, 

Ohm et al., 2010). These characteristics may be plesiomorphic and indicate similarities of 

S. commune and C. torrendii with white-rot fungi and the common ancestor of Agaricales 

(Fig. 2). In spite of the rich CAZY content seen for both species, CBM1 copies are absent 

(C. torrendii) or very few are present (S. commune). In addition, both species have 

reduced ligninolytic gene content (Table 2). The reduced ligninolytic gene content for the 

two species shows similarities to brown-rot fungi (Fig.3) and appears to be an 
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apomorphic characteristic that has independently evolved in the two lineages from 

ancestors with more diverse repertoire of ligninolytic enzymes (Figs. 2, S1). The gene 

content of both species related to wood degradation places them in an intermediate 

position between white rot and brown rot species. 

Microscopy, especially scanning electron microscopy, can provide a precise 

characterization for the type of decay present (Eriksson et al., 1990). The decay caused 

by C. torrendii and S. commune, appeared to be a simultaneous white rot causing 

degradation of all cell wall components. The secondary wall was attacked and the erosion 

of the wall progressed from the lumen toward the middle lamella. In some cells, the 

secondary wall had been completely degraded, but the middle lamella remained. The 

middle lamella between cells was detached or degraded in some areas. This may be due 

to a very localized attack that destroyed this region of the middle lamella or from the 

weakened condition of the thinned cell wall that remained. This caused small voids in the 

wood as cells separated. There appeared to be limited effect on the middle lamellae as 

compared to results from other studies of degradation patterns produced by different 

species of white rot fungi. The overall pattern of decay appeared more similar to a Type 

II form of soft rot where in advanced stages of degradation entire secondary walls are 

completely degraded but the middle lamella is not (Eriksson et al. 1990). As has been 

found with other white rot fungi, the type and amount of lignin within cell walls can 

influence how white rot fungi can attack certain types of cells (Blanchette et al. 1988). 

The ability of C. torrendii to decay wood has not been studied previously. More 

information is available for Cylindrobasidium laeve (syn. Corticium laeve), a closely 

related species to C. torrendii. Both C. laeve and S. commune have been grouped with 

brown-rot fungi in oxidative enzymes tests (Kaarik, 1965). However, both species of 

Cylindrobasidium and S. commune have been associated with white rot (Ginns & 

Lefebvre, 1993). Schizophyllum commune does not seem to cause extensive wood 

degradation (Schmidt & Liese, 1980), and it has been shown to have a preference for 

degrading ray parenchyma cells with other cells such as fibers and fiber tracheids being 

more resistant to attack (Padhiar and Albert 2011). Additionally, wood decay by 

Cylindrobasidium laeve (syn. Corticium laeve), was shown to resemble soft rot showing 

similarities to wood degradation caused by Fusarium (Henningsson, 1967). The idea of 
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soft rot caused by basidiomycetes has been suggested more recently as well (Schwarze et 

al., 2000b). 

The decay mechanisms of C. torrendii and S. commune resemble those of J. 

argillacea (Jaapiales) and B. botryosum (Cantharellales), which are described by Riley et 

al. (2014). All four species cause weak and localized wood decay that resembles white 

rot. At the same time they share the reduced ligninolytic gene content, typical of brown 

rot species, but have enriched CAZY gene content related to carbohydrate degradation, 

which is usually characteristic of white rot fungi.  

The phylogenetic placement of the four species and the reconciliation results for 

Agaricales suggest that this mode of decay has evolved multiple times across 

Agaricomycotina from white-rot ancestors through losses of their lignin decay related 

genes. In agreement with their intermediate wood decay characteristics, S. commune and 

J. argillacea are placed in areas where transitions from white-rot to brown-rot could have 

taken place such as the lineage leading towards F. hepatica and the lineage leading 

towards the Gloeophyllales respectively (Fig. 1; Riley et al., 2014). 

The reasons behind these intermediate characteristics and how they are related to the 

species biology are largely unknown. A possible explanation could be that some of these 

species act along with other wood degraders or they take advantage of the presence of 

efficient wood decayers at the same substrate. Fruitbodies of S. commune frequently 

appear with fruitbodies of other basidiomycetes on wood (Essig 1922, personal 

observations) and the species can act as destructive mycoparasite on other fungi (over 50 

species) of different phyla (Tzean and Estey 1978). Alternatively, some of these species 

may act as plant parasites that rely selectively on living tissues of the plant stem such as 

the sap or the bark of living trees (Takemoto et al., 2010). Our results suggest that wood 

degradation strategies in Agaricomycotina as traditionally viewed should be revisited, as 

the potential exists that such strategies could be more diverse than previously thought and 

highlight the need for more functional studies of wood degradation strategies (Ohm et al., 

2014). 
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4.5 Fistulina hepatica and brown-rot Boletales still possesses complete or partial 

systems for the enzymatic degradation of crystalline cellulose 

Our results confirm the placement of F. hepatica as an isolated brown-rot lineage in 

the Marasmioid clade (Fig. 1) related to S. commune (Binder et al., 2004; Binder et al., 

2010). The wood-degrading apparatus of F. hepatica is reduced compared to those of 

other PCW decomposing Agaricales (Table 2). Fistulina hepatica has the smallest sets of 

oxidative enzymes and bulk CAZYs and among the smallest sets of accessory CAZYs. 

The types of enzymes missing largely agree with what has been shown for other brown-

rot fungi (Fig. 3, Floudas et al., 2012; Martinez et al., 2009). The major similarities 

include the reduced enzymatic content related to lignin (POD, DyP, GLX) and bulk 

carbohydrates degradation such as crystalline cellulose (GH6, LPMO, CBM1). 

Despite the overall similarity of the gene content related to wood degradation among 

brown-rot fungi, differences exist. Sequenced species in Polyporales, Gloeophyllales and 

Dacrymycetales lack GH6 and GH7 cellobiohydrolases and they have few copies of 

LPMOs. This suggests that they largely lack the ability to enzymatically degrade 

crystalline cellulose, even though GH5 processive endoglucanases could degrade 

crystalline cellulose in some of those species (Cohen et al., 2005; Yoon et al., 2008). 

Therefore, these species represent typical brown rotters. However, F. hepatica and 

saprotrophic members of the Boletales harbor complete (H. pinastri and C. puteana) or 

partial (F. hepatica and S. lacrymans) sets of cellobiohydrolases, CDH, intermediate 

numbers of LPMO genes (except for S. lacrymans), and in the case of H. pinastri 

increased CBM1 copies. These results suggest that F. hepatica and members of the 

Boletales still possess genes related to the degradation of cellulose, similar to the white-

rot fungi from which brown-rot fungi have been suggested to have evolved (Floudas et 

al., 2012). 

The ability of members of Boletales to degrade cellulose has been shown before 

(Nilsson, 1974; Nilsson and Ginns, 1979; Schmidhalter & Canevascini, 1993), while 

some Boletales have been shown to produce weaker iron-reducing potential on wood in 

comparison with brown-rot species from other lineages, similarly to white-rot species 

(Goodell et al., 2006). Less is known about the wood decay strategy of F. hepatica. In 
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agreement with its reduced ligninolytic gene content, F. hepatica caused brown rot in the 

wood decay experiments. However, wood decay was limited with 2.3% loss observed 

after 90 days. The limited weight loss indicates that any degradation observed would be 

restricted to localized areas of the wood. Small number of decayed cells were observed. 

Previous investigations with F. hepatica indicate that this fungus can readily colonize 

wood and impart a brownish stain but biomass loss is minimal (Schwarze et al. 2000a). In 

a study of wood artificially inoculated in the laboratory, only 1.2% weight loss was 

observed after 6 months and 4.1% loss after 18 months (Schwarze et al. 2000a). This 

reduced capacity for decaying wood as compared to other brown rot fungi is the likely 

reason that no appreciable loss of strength is associated with decay by Fistulina in wood 

affected in natural environments (Schwarze et al. 2000a). The limited amount of decay 

and its localization within wood caused by F. hepatica suggests that this type of brown 

rot is different from that produced by other brown rot fungi with only small zones of cells 

being attacked while adjacent cells remain unaltered. Additionally, it raises the question 

whether F. hepatica makes any use of the cellulose degradation related genes and under 

what conditions. 

4.6 Gene losses and pseudogenization of GH5-7, GH6, GH74, and DyP genes in F. 

hepatica could be associated with transition to brown rot 

The smaller content of wood-degrading enzymes seen for F. hepatica is suggested to 

be the result of gene losses. These losses are associated with transition from a potential 

white-rot towards a brown-rot lifestyle, as has been suggested for other brown-rot 

lineages (Martinez et al., 2009; Floudas et al., 2012). In addition, our results suggest that 

this transition could have taken place in two stages. The first stage consists of a shared 

reduction of oxidative enzymes in the common ancestor of S. commune and F. hepatica. 

The last common ancestor of the Marasmioid clade is suggested to have had 23 copies of 

enzymes from the six gene families similar to extant white-rot species (Fig. 2). In 

contrast, the common ancestor of S. commune and F. hepatica is suggested to have lost 

16 members of those gene families, including all PODs and DyPs (Fig. S1). This ancestor 

appears to be more similar to S. commune in its overall wood-degrading enzymes 

diversity (Fig. 2). The second stage might have taken place in the lineage leading to F. 

hepatica and included mainly losses of CAZYs. During this second step 16 and 28 gene 
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losses might have taken place for the bulk and accessory CAZYs (Figs. 2b-c), which 

represent 38% and 40% of the CAZYs present at the ancestral species respectively. The 

most extensive gene losses were inferred for GH61, GH43, and CE1 (Figs. S2a, S3a, S5, 

S6), similar to other brown-rot lineages (Floudas et al., 2012). 

Our results support the presence of four wood decay-related genes with signs of 

pseudogenization in the genome of F. hepatica, but it is known if these genes are still 

functional. Low quality predicted genes or potential pseudogenes are not rare especially 

for the draft version of sequenced genomes (Table S6). However, the original genes 

appear to have been members of the DyP, GH6, GH74 and GH5-7 families. The first 3 

gene families are frequently absent or are represented in low copies in brown-rot species 

(Fig. 3). At the same time F. hepatica seems to belong in the second category of brown-

rot fungi having GH7 cellobiohydrolases and an intermediate number of LPMO copies. 

Taken together, these results suggest that the partial maintenance of enzymatic 

cellulolysis, along with the potential pseudogenization events in wood-degrading gene 

families, could be part of an ongoing transition of F. hepatica towards the brown-rot 

lifestyle. 

 

5. Conclusions 

The wood decay gene networks of F. hepatica and C. torrendii deviate from typical 

brown-rot and white-rot species respectively. Fistulina hepatica has undergone extensive 

gene losses related to the enzymatic degradation of lignocellulose, but we found few 

remaining genes related to the degradation crystalline cellulose. Furthermore, we found 

four potential pseudogenes of genes that are frequently lost in brown-rot fungi, 

suggesting that transition towards a brown-rot lifestyle could be an ongoing process for 

F. hepatica. The genome of C. torrendii is enriched in CAZYs similar to white-rot 

species, but lacks most of the genes related to the degradation of lignin similar to brown-

rot species. Therefore, it takes an intermediate placement between white-rot and brown-

rot fungi, sharing this characteristic with S. commune, J. argillacea and B. botryosum, 

which have been suggested to belong in a grey zone of rot types (Riley et al., 2014). Our 

results suggest that such transitions could have taken place multiple times across 

Agaricomycotina. Wood decay experiments largely support our results. Fistulina 



  

 23 

hepatica causes brown rot, while C. torrendii causes a simultaneous white-rot. However, 

both species do not show complete brown-rot and white-rot characteristics, since they are 

weak wood decayers and decay wood only locally, while decay by C. torrendii has soft-

rot characteristics as well. The reasons behind the limited wood decay are not completely 

understood and need to be further studied, but they could be related to alternative 

strategies these species follow to gain nutrients in addition to the weak wood decay they 

cause. 
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Figure 1. Species phylogeny of 13 Agaricales species and P. crispa (Amylocorticiales) as 

outgroup. Both ML and Bayesian analyses of 21167 amino acid characters from 26 single 

copy genes resulted in identical topologies and received maximum bootstrap and 

posterior probability support at all nodes. The ML tree is shown here. WR, white rot; BR, 

brown rot; LD, litter decomposer; (WR), reported as white rot, but wood decay strategy is 

uncertain. 
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Figure 2. Species tree/gene tree reconciliation results. Summed reconciliation results of 

oxidative enzymes related to lignin degradation (a), bulk carbohydrate CAZY (b), and 

accessory CAZY (c). Numbers at the tips represent the summed number of copies for the 

corresponding category of gene families in the genome of each species. Numbers at 

internal nodes represent the predicted summed number of copies for the corresponding 

category of gene families for each ancestral species. The size of the circles is proportional 

to these numbers (shaded in dark green for the common ancestor of Agaricales). 

Nutritional strategies are coded as in Figure 1. 

 

Figure 3. Copy numbers for fifteen gene families and CBM1 across 32 Agaricomycotina 

genomes. The columns on the right side of the table represent the summed number of 

genes for the fifteen gene families. Species on the table have been grouped in three 

categories; brown-rot (brown), litter decomposers (grey), white-rot (yellow) or uncertain 

type of rot (orange). Within each category, the species have been arranged based on the 

total number of gene copies they have. White-rot and uncertain type of rot have been 

grouped together for this purpose. Light blue indicates copy number below or equal to the 

average number of copies for the gene family, while dark blue indicates copy number 

above the average number of copies for the gene family. * One potential pseudogene is 

found for each of these gene families on the genome of F. hepatica. Data from: 

**Floudas et al., 2012, *** Kohler et al., unpublished data. 

 

Figure 4. Phylogenetic relationships of the five predicted models of the potential GH6 

pseudogene from F. hepatica with homologs from the 14 genomes showing the resulting 

long branch (in red color) and comparison with similar analyses of the adjacent genes. 

Numbers on the branches represent branch length. The scaffold graph shows the 

orientation of each potential pseudogene with its adjacent genes. Red dots for GH6 

models of F. hepatica indicate models interrupted by stop codons. The protein models 

that represent the product of the adjacent genes are shown in blue on their corresponding 

phylogeny. 
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Figure 5. Scanning electron micrographs of transverse sections of aspen (Populus) wood 

decay by Cylindrobasidium torrendii (A and B), Fistulina hepatica (C and D) and 

Schizophyllum commune (E and F). A and B. Localized degradation of all cell wall 

components with erosion of the wall taking place from the cell lumen towards the middle 

lamella. Small voids occurred in the wood cells where all cell wall layers were degraded. 

C and D. A diffuse attack on wood cells resulted in cells with altered walls. No cell wall 

erosion took place but walls were slightly swollen and cells were partially collapsed and 

appeared convoluted. E and F. Thinning and eroded secondary wall layers were evident 

in wood cells. In some cells, the secondary wall was completely degraded but the middle 

lamella between cells remained. The thinned cell wall broke and detached in some areas 

resulting in small voids. Bar = 100 µm in A, 20 µm in B and 50 µm in C, D, E, F. 

 

Figure S1. Estimated number of copies for the six oxidative gene families at the ancestral 

nodes of the 14 genomes phylogeny based on genetree/species tree reconciliation with the 

edge weight threshold set to 90. The estimated number of copies per family for the 

common ancestor of Agaricales is shown in red. Uncertainty on the estimated number of 

copies present at an ancestral node is indicated with question mark next to the number. F. 

hepatica, C. torrendii and S. commune are the only species in the dataset that lack both 

POD and DyP. 

 

Figure S2 a & b. Estimated number of copies for bulk CAZY at the ancestral nodes of the 

14 genomes phylogeny as for Fig. S1. F. hepatica has the largest number of families with 

zero copies and it is the only species that has completely lost GH6. 

 

Figure S3a-S3c. Estimated number of copies for accessory CAZY at the ancestral nodes 

of the 14 genomes phylogeny as for Fig. S1. F. hepatica has the largest number of 

families without any members, while is the only species that has lost all members of the 

GH6 family. F. hepatica has a higher number of losses for carbohydrate esterase gene 

families and very reduced GH43 content. 
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Figures S4a & S4b. Alignments of GH6, DyP-clade A (a) and GH74, GH5-7 (b) after 

manual removal of poorly aligned regions, showing the fragmentation of all the F. 

hepatica models from each loci. Colored columns represent constant amino acid 

positions. All the predicted models of F. hepatica for these loci represent fragments of 

the complete protein, having gaps even in areas of very conserved amino acids. Numbers 

on the grey bar above each alignment indicate the length of the alignment. 

 

Figures S5 & S6. ML phylogenetic analysis of GH43 and LMPO (former GH61) 

respectively. Sequences of species in the Marasmioid clade have been coded with green, 

yellow and brown (see inset species tree). Stars indicate areas where S. commune, but not 

F. hepatica, has maintained genes copies, suggesting gene losses for the later species. 

Bootstrap values shown  70. 

 

Figure S7a-S7c. Phylogenetic relationships of the predicted models of the potential F. 

hepatica pseudogenized loci in GH74 (a), DyP (b), and GH5-7 (c) with homologs from 

the 14 genomes showing the resulting long branches (highlighted in red) and comparison 

with similar analyses of the adjacent genes. The placement of the LPMO model 

Fishe1_24835 can be seen in Figure S6. Numbers on the branches represent branch 

length. The scaffold graphs show the orientation of each potential pseudogene with its 

adjacent genes. Filled black circles next to a protein ID indicate the placement of the 

protein product the adjacent gene on the phylogeny.  
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Table 1. Gene families sampled in the study and their proposed functions in wood degradation. 
Gene family Abbreviation Activity related to PCW degradation literature 

Class II peroxidases POD lignin degradation 
Cullen & Kersten, 2004; 

Martinez et al., 2005 

Dye decolorizing 

peroxidases 
DyP lignin degradation Liers et al., 2010 

Heme-thiolate 

peroxidases 
HTP potential lignin degradation Hofrichter & Ullrich, 2006 

Multicopper oxidases MCO lignin degradation Kües & Rühl, 2011 

Copper radical oxidases CRO hydrogen peroxide generation Cullen & Kersten, 2004  

Cellobiose 

dehydrogenases 
CDH 

hydroxyl radical generation and iron 

reduction 
Henriksson et al., 2000 

Bulk carbohydrate 

CAZY 

GH5-5 endoglucanase De Vries et al., 2010 

GH5-7 endomannanase De Vries et al., 2010 

GH6 cellobiohydrolase De Vries et al., 2010 

GH7 cellobiohydrolase De Vries et al., 2010 

LPMO (GH61) monoxygenase activity on cellulose Harris et al., 2010 

GH10 endoxylanase De Vries et al., 2010 

GH11 endoxylanase De Vries et al., 2010 

GH12 endoglucanase De Vries et al., 2010 

GH28  pectinase activity Marcovic & Janecek, 2001 

GH45 endoglucanase De Vries et al., 2010 

GH74 xyloglucanase De Vries et al., 2010 

Accessory CAZY 

GH1 β-mannosidase/β-glucosidase De Vries et al., 2010 

GH2 β-mannosidase De Vries et al., 2010 

GH3 β-glucosidase/β-xylosidase De Vries et al., 2010 

GH27 α-galactosidase De Vries et al., 2010 

GH29 α-fucosidase De Vries et al., 2010 

GH35 β-galactosidase De Vries et al., 2010 

GH43 α-ara inofuranosidase/β-xylosidase De Vries et al., 2010 

GH51 α-arabinofuranosidase De Vries et al., 2010 

GH95 α-fucosidase De Vries et al., 2010 

GH115 α-glucuronidase De Vries et al., 2010 

CE1 
acetyl-xylan-esterase, ferruloyl esterase, 

cinnamoyl esterase 

Crepin et al., 2003; Kroon 

et al., 2000 

CE5 cutinase Rubio et al., 2008 

CE8 pectin methylesterase Marcovic & Janecek, 2004 

CE12 acetylesterase Molgaard et al.,2000 

CE15 4-O-methyl-glucuronoyl methylesterase Li et al., 2007 

CE16 
acetyl-xylan-esterase, ferruloyl esterase, 

cinnamoyl esterase 
Li et al., 2008 
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Table 2. Gene copy numbers across 33 gene families related to wood degradation, and 

CBM1 copies found across 13 Agaricales genomes and P. crispa. Absence of gene copies 

for a gene family is highlighted in grey. For an explanation of the species acronyms, see 

the materials and methods. *Only complete CDH (containing both the GMC and 

cytochrome domains) genes are reported. 

  Fishe Schco Cylto Gymlu Ompol Armme Galma Hypsu Pleos Plicr Copci Agabi Amath Volvo 
total 

copies 

average 

number of 

copies 

POD 0 0 0 5 5 10 23 14 9 7 1 2 0 7 83 6 

DyP 0 0 0 12 1 4 5 2 4 0 4 0 1 3 36 3 

HTP 3 3 5 19 8 6 24 13 4 3 8 24 4 3 127 9 

Lac 3 2 3 16 6 23 8 12 11 5 17 12 15 11 144 10 

GLX 0 0 0 5 2 0 4 3 4 0 0 3 2 0 23 2 

CDH 1 1 2 1 1 2 1 1 1 1 1 1 1 1 16 1 

total 

oxidative 

enzymes 

per 

species 

7 6 10 58 23 45 65 45 33 16 31 42 23 25 429 31 

GH6 0 1 3 1 1 2 3 1 3 2 5 1 1 5 29 2 

GH7 4 2 5 7 4 4 8 4 16 1 6 1 1 11 74 5 

LPMO 10 22 26 13 7 19 19 14 29 9 35 11 16 28 258 18 

GH10 2 5 3 5 4 6 8 7 3 2 5 2 4 18 74 5 

GH11 0 1 1 4 0 2 8 2 2 0 6 2 0 0 28 2 

GH12 2 1 4 3 1 3 4 1 2 2 1 2 3 2 31 2 

GH5_5 1 2 3 4 4 1 7 6 4 2 1 3 3 1 42 3 

GH5_7 0 1 1 5 2 3 7 2 4 2 3 1 1 1 33 2 

GH28 6 3 9 19 7 21 19 7 6 10 3 5 5 3 123 9 

GH74 0 1 2 1 1 2 2 1 3 1 1 1 1 1 18 1 

GH45 1 1 2 2 2 3 2 1 2 1 0 1 2 1 21 2 

total 

bulk 

CAZY 

per 

species 

26 40 59 64 33 66 87 46 74 32 66 30 37 71 731 52 

GH1 1 3 1 3 3 8 5 3 3 3 2 1 3 3 42 3 

GH2 1 4 3 4 4 2 3 3 3 5 2 2 2 2 40 3 

GH3 14 12 7 17 10 13 11 9 11 10 7 7 10 9 147 11 

GH27 4 1 9 6 3 6 8 6 7 2 0 4 4 2 62 4 

GH29 1 2 0 1 1 3 1 0 0 1 0 1 1 0 12 1 

GH35 3 4 2 5 5 8 10 4 5 2 0 1 4 4 57 4 

GH43 2 19 19 11 3 7 6 3 8 3 4 3 6 14 108 8 

GH51 1 2 2 5 2 3 5 2 3 2 1 1 1 3 33 2 

GH95 1 2 2 1 1 1 2 1 1 2 0 1 1 1 17 1 

GH115 4 2 1 1 1 1 1 1 1 1 1 2 3 3 23 2 

CE1 0 11 6 5 3 1 2 3 2 4 3 1 1 4 46 3 

CE5 0 2 2 3 0 0 6 2 0 0 6 6 2 1 30 2 

CE8 2 2 3 6 3 8 3 4 2 3 0 2 2 3 43 3 

CE12 0 2 5 3 1 1 4 3 2 0 1 2 3 1 28 2 

CE15 0 2 1 2 1 4 1 2 1 1 8 1 1 1 26 2 

CE16 7 11 12 13 4 11 10 7 10 11 5 11 4 7 123 9 

total 

accessory 

CAZY 

per 

species 

41 81 75 86 45 77 78 53 59 50 40 46 48 58 837 60 

toal 

copies 

per 

species 

74 127 144 208 101 188 230 144 166 98 137 118 108 154 1997 143 

CBM1 0 5 0 32 15 10 51 28 31 15 44 13 10 51 305 22 
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Highlights 

 We sequenced the genomes of Cylindrobasidium torrendii and Fistulina hepatica. 

 We examined the evolution of wood decay mechanisms in Agaricales. 

 We performed wood decay experiments for both species and Schizophyllum 

commune. 

 Both species do not have typical white or brown rot characteristics. 

 Atypical wood decayers are more frequent than initially thought. 

 


