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ABSTRACT
We investigate the nature of tidal effects in compact triple-star systems. The hierarchical
structure of a triple system produces tidal forcing at high frequencies unobtainable in binary
systems, allowing for the tidal excitation of high-frequency p-modes in the stellar components.
The tidal forcing exists even for circular, aligned and synchronized systems. We calculate the
magnitude and frequencies of three-body tidal forcing on the central primary star for circular
and coplanar orbits, and we estimate the amplitude of the tidally excited oscillation modes. We
also calculate the secular orbital changes induced by the tidally excited modes and show that
they can cause significant orbital decay. During certain phases of stellar evolution, the tidal
dissipation may be greatly enhanced by resonance locking. We then compare our theory to
observations of HD 181068, which is a hierarchical triply eclipsing star system in the Kepler
field of view. The observed oscillation frequencies in HD 181068 can be naturally explained
by three-body tidal effects. We then compare the observed oscillation amplitudes and phases
in HD 181068 to our predictions, finding mostly good agreement. Finally, we discuss the past
and future evolution of compact triple systems like HD 181068.

Key words: binaries: close – binaries: eclipsing – stars: individual: HD 181068 – stars: oscil-
lations.

1 IN T RO D U C T I O N

Tidal interactions are known to profoundly impact the orbital evolution of close binary star systems, exoplanetary systems and moon systems.
In binary systems, tides drive the components of the systems towards a synchronized state in which the orbit is circular, and the components
have spins that are synchronized and aligned with the orbit. In a compact triple system, no equilibrium state exists, and the endpoint of the
orbital evolution is not immediately obvious. Furthermore, the dynamics of tidal interactions coupled with multi-body orbital effects can be
quite complex and can lead to the formation of astrophysically interesting systems (e.g. the Jupiter moon system, short-period exoplanetary
systems and compact binary star systems).

Although there have been many studies of three-body orbital dynamics including tidal dissipation (e.g. Mazeh & Shaham 1979; Ford,
Kozinsky & Rasio 2000; Eggleton & Kisleva-Eggleton 2001; Fabrycky & Tremaine 2007; Correia et al. 2011), these studies have primarily
treated tides in a parametrized fashion. Some of these studies take resonant orbital effects into account, but their parametrization of tidal
interactions ignores resonant tidal effects which may significantly impact the orbital evolution. Furthermore, these studies only consider tidal
interactions between two components of the system (i.e. they incorporate tidal interactions between objects 1 and 2, but ignore interactions
with object 3). This approximation is justified in most systems because the third body is relatively distant. However, in sufficiently compact
triple systems, a more thorough study of three-body tidal effects is necessary.
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2426 J. Fuller et al.

Observing tidal effects is very difficult because of the long time-scales associated with tidal evolution, and tidal orbital decay has only
been observed in a few rare circumstances (such as the orbital decay of a pulsar-main sequence (MS) binary; see Lai 1996, 1997; Kumar &
Quataert 1998). Until recently, the direct observation of tidally induced oscillations was difficult because of the extreme precision required
(∼ one part in a thousand) over base lines of several days. Fortunately, the continuous observation and high accuracy of the Kepler satellite
are allowing for the direct observation of tidal effects (e.g. Welsh et al. 2011; Thompson et al. 2012) and detailed analyses of tidally excited
stellar oscillations (Burkart et al. 2012; Fuller & Lai 2012). Recently, observations of luminosity variations in the compact triple system
HD 181068 (also known as KIC 5952403 or the Trinity system; see Derekas et al. 2011) have provided evidence for three-body tidal effects.
To our knowledge, no detailed study of dynamical tides exists for compact triple systems.

We present the first detailed investigation of the tidal excitation of stellar oscillation modes in stars in compact triple systems. Hierarchical
three-body systems can experience tidal forcing at frequencies unattainable for two-body systems, allowing for the tidal excitation of high-
frequency p-modes in the convective envelopes of the stellar components. We investigate the observational signatures of three-body tides,
calculate the amplitudes to which stellar oscillation modes are tidally excited and study the orbital evolution induced by three-body tides.

We also compare our theory to the observations of luminosity fluctuations in HD 181068, accurately characterized by Derekas et al.
(2011) and Borkovits et al. (2012). HD 181068 is a triply eclipsing hierarchical star system, with a red giant primary orbited by two dwarf
stars. The dwarf stars orbit each other every 0.906 d, and their centre of mass orbits the primary every 45.47 d. In addition to eclipses, the light
curve shows oscillations at combinations of the orbital frequencies. We demonstrate that these oscillations are tidally excited oscillations in
the red giant primary excited by the orbital motion of the dwarf stars.

Our paper is organized as follows. In Section 2, we derive the strength and frequencies of tidal forcing unique to three-body systems. In
Section 3, we calculate the amplitudes to which modes are tidally excited and estimate the resulting stellar luminosity variations. In Section
4, we calculate the orbital evolution induced by the tidally excited modes. In Section 5, we describe observations of tidally excited modes
in HD 181068, and in Section 6 we compare these observations to our theory. In Section 7, we calculate the possible past and future orbital
evolution of systems like HD 181068. Finally, in Section 8, we discuss our results.

2 T H R E E - B O DY T I DA L FO R C I N G

Let us consider a triple-star system composed of a central primary star (Star 1), orbited by a pair of companion stars (Stars 2 and 3) at
frequency �1. Stars 2 and 3 orbit one another at a much higher frequency �23 � �1. Fig. 1 shows a diagram of the orbital configuration. We
adopt a coordinate system centred on Star 1 with z-axis in the direction of its spin angular momentum vector. We consider the case in which
all three stars have circular coplanar orbits that are aligned with the stellar spins. We choose a direction of reference such that the observer is
located at the azimuthal angle φ = 0.

Figure 1. This diagram (not to scale) depicts the geometry of a triple-star system at arbitrary orbital phase. a1 is the semimajor axis between the centre of Star
1 and the centre of mass of Stars 2 and 3. a23 is the semimajor axis between Stars 2 and 3. D2 is the distance between Stars 1 and 2. φ1 is the orbital phase
(relative to a direction of reference) of the centre of mass of Stars 2 and 3, while φ2 is the orbital phase of Star 2 about Star 1. φ23 is the orbital phase of Stars
2 and 3 about each other relative to the same direction of reference.
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Tides in triple systems 2427

We wish to calculate the form of the time-varying gravitational potential of the short-period binary (Stars 2 and 3) as seen by Star 1. The
tidal potential due to Stars 2 and 3 can be decomposed into spherical harmonics as

Ul,m = 4π

2l + 1

[
−GM2

Dl+1
2

rlY ∗
lm(θ2, φ2) + −GM3

Dl+1
3

rlY ∗
lm(θ3, φ3)

]
Yl,m(θ, φ). (1)

Here, M2, D2, θ2 and φ2 are the mass, distance, polar angle and azimuthal angle of Star 2 (M3, D3, θ3 and φ3 are the same quantities for Star
3), while G is the gravitational constant. The dominant terms have l = |m| = 2 and l = 2, m = 0, so we will consider only these terms in our
analysis. Since we restrict our analysis to coplanar orbits aligned with the primary spin, θ2 = θ3 = π/2.

We wish to express the potential in terms of the angular orbital frequencies �1 and �23. Some trigonometry reveals that the distance
from Star 1 to Star 2 is

D2
2 = a2

1 +
(

M3

M2 + M3
a23

)2

+ 2
M3

M2 + M3
a1a23 cos(φ23 − φ1), (2)

where φ1 is the phase of the orbit of Stars 2 and 3 about Star 1, φ23 is the phase of the orbit of Star 2 around Star 3, a1 is the semimajor axis
between Star 1 and the centre of mass of Stars 2 and 3, and a23 is the semimajor axis between Stars 2 and 3. Also, the law of sines reveals

sin(φ2 − φ1) = M3

M2 + M3

a23

D2
sin(φ23 − φ1). (3)

In a hierarchical triple system, a23 � a1, so we expand distances and angles in powers of the small parameter

ε ≡ a23/a1. (4)

We find

D−3
2 � a−3

1

[
1 − 3ε

M3

M2 + M3
cos(φ23 − φ1) + 3

4
ε2

(
M3

M2 + M3

)2

(3 + 5 cos[2(φ23 − φ1)])

]
(5)

and

e−imφ2 � e−imφ1

[
1 − imε

M3

M2 + M3
sin(φ23 − φ1) + ε2

(
M3

M2 + M3

)2(
im

2
sin[2(φ23 − φ1)] − m2

4
+ m2

4
cos[2(φ23 − φ1)]

)]
. (6)

The values of D−3
3 and e−imφ3 are the same as equations (5) and (6), but with subscripts 2 and 3 reversed, and with φ23 → φ23 + π.

Inserting equations (5) and (6) and their counterparts for Star 3 into equation (1), we find that the zeroth-order contribution (the term
proportional to ε0) for l = 2 to the tidal potential is

U
(0)
2m = −G(M2 + M3)Wl,mr2

a3
1

e−imφ1Y2,m(θ, φ), (7)

where W2,0 = −√
π/5 and W2,±2 = √

3π/10. To zeroth order, the tidal potential due to Stars 2 and 3 is simply that of a single star of mass
M2 + M3 at a semimajor axis a1.

Upon summing the contributions from both stars, the first-order terms (proportional to ε) in equation (1) vanish. However, the second-
order terms produce an additional component of the tidal potential. Dropping terms with no φ1 or φ23 dependence because they have no time
dependence, we find that the second-order component of the tidal potential is

U
(2)
2,m = −A2,mr2Y2,m(θ, φ)

[
Fme2i(φ23−φ1)−imφ1 + F−me−2i(φ23−φ1)−imφ1

]
, (8)

where

A2,m = ε2 Gμ23W2,m

a3
1

, (9)

μ23 = M2M3/(M2 + M3), and

Fm = 15 + 8m + m2

8
. (10)

Then the m = 0 component yields

U
(2)
2,0 = −15

4
A2,0r

2P2,0(cos θ ) cos[2(φ23 − φ1)]. (11)

We further illuminate the nature of the tidal forcing by adding the U
(2)
2,2 and U

(2)
2,−2 components to find

U
(2)
2,2 + U

(2)
2,−2 = −A2,2r

2P2,2(cos θ )

[
35

4
cos (2φ + 2φ23 − 4φ1) + 3

4
cos (2φ − 2φ23)

]
. (12)
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The first term in the brackets produces retrograde forcing, i.e. it will excite modes with negative angular momentum that rotate in the opposite
direction to the orbital motion of Stars 2 and 3 about one another. The second term in the brackets produces prograde forcing, exciting modes
with positive angular momentum.

We define φ1 = �1t and φ23 = φ2, 0 + �23t, where φ2, 0 is the phase φ23 of the short-period orbit to t = 0, when the centre of mass of
Stars 2 and 3 is closest to the line of sight. The second-order m = 0 component of the tidal potential produces forcing at a frequency of σ 0 =
2(�23 − �1). The m = ±2 components produce forcing at two frequencies, σ−2 = 2�23 and σ 2 = 2(�23 − 2�1). These frequencies arise
because they are the conjunction frequency in a frame corotating with the long-period orbit, but are Doppler shifted by m�1 when viewed
in the inertial frame. Due to the hierarchical structure of the system, these frequencies can be larger than the dynamical frequency of Star 1,
causing tidal forcing at high frequencies seldom occurring in binary systems.

Equation (8) describes the tidal potential in the inertial frame, but we also wish to calculate the forcing frequencies in the rotating
reference frame of Star 1. To do so, we make the transformation φ = φr + �st , where φr is the azimuthal angle in the rotating frame and �s

is the angular spin frequency of Star 1. Then in the rotating frame,

U
(2)
2,m,r = −A2,mr2Y2,m(θ, φr)

[
F2e2i(φ23−φ1)−imφ1+im�st + F−2e−2i(φ23−φ1)−imφ1+im�st

]
. (13)

Thus,

U
(2)
2,0,r = −A2,0r

2P2,0(cos θ )F0 cos[2(φ23 − φ1)] (14)

and

U
(2)
2,2,r + U

(2)
2,−2,r = −A2,2r

2P2,2(cos θ )
[
F2 cos

(
2φr + 2φ23 − 4φ1 + 2�st

)
+ F−2 cos (2φr − 2φ23 + 2�st)

]
. (15)

Equations (13)–(15) are general for circular coplanar orbits aligned with the stellar spin. If Star 1 is synchronized with the orbit of Stars
2 and 3 such that �s, 1 = �1,1

U
(2)
2,2,r + U

(2)
2,−2,r � −A2,2r

2P2,2(cos θ )[F2 cos (2φr + 2φ23 − 2φ1) + F−2 cos (2φr − 2φ23 + 2φ1)]. (16)

Thus, when the spin of Star 1 is aligned with the orbit of Stars 2 and 3, the absolute values of the forcing frequencies of all three modes (the
axisymmetric m = 0 mode, and the prograde and retrograde m = ±2 azimuthal modes) in the corotating frame are identical, namely |ν| =
2(�23 − �1).

3 M O D E E X C I TAT I O N A N D O B S E RVAT I O N

3.1 Mode amplitudes

With the tidal potential known, we may calculate the amplitude of the tidally forced modes. In this section we consider only tidal forcing by
the l = 2 second-order component of the tidal potential. We use the subscript α to refer to a mode of angular degree l and m, with a frequency
in the rotating frame of ωα . In this frame, the mode amplitude cα satisfies (Schenk et al. 2002)

ċα + (iωα + γα)cα = i

2εα

〈ξα(r),−∇U〉

= iAαQα

2εα

eim(�s−�1)t
[
Fme2i(�23−�1)t+2iφ2,0 + F−me−2i(�23−�1)t−2iφ2,0

]
. (17)

Here, ωα = εα − mCα�s sgn(εα) is the mode frequency in the rotating frame, εα is the unperturbed frequency for a non-rotating star, Cα is
the rotational kernel (see Fuller & Lai 2012) and γ α is the mode damping rate. In this formalism, both m and εα can have positive or negative
values. The dimensionless coefficient Qα is the overlap integral of the mode with the tidal potential, defined as

Qα = 1

M1R
l
1

〈ξα|∇(rlYlm)〉

= 1

M1R
l
1

∫
d3x ρξ ∗

α · ∇(rlYlm), (18)

where ξα is the mode eigenvector normalized via the condition

〈ξα|ξα〉 = M1R
l
1, (19)

and R1 is the radius of Star 1.
The non-homogeneous solution of equation (17) is

cα = AαQα

2εα

[
Fmeiνmt+2iφ2,0

ωα + νm − iγα

+ F−me−iν−mt−2iφ2,0

ωα − ν−m − iγα

]
, (20)

1 In compact triple systems in which three-body tides operate, it is very likely that �s,1 � �1 because the tidal synchronization time due to the zeroth-order
tidal potential of equation (7) will be much shorter than tidal time-scales due to the three-body tides of equation (8).
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where

νm = 2(�23 − �1) + m(�s − �1). (21)

The total tidal response of the star is ξ (r, t) = ∑
α cα(t)ξα(r). We assume that the star is slowly rotating (�s � ωα) such that ξα(r) and Qα

are independent of m or �s, and ωα � εα . Summing over both signs of ωα yields

ξ (r, t) =
∑

α,ω>0

AαQαξα(r)

[
Fmeiνmt+2iφ2,0

ω2
α − ν2

m + 2iνmγα + γ 2
α

+ F−me−iν−mt−2iφ2,0

ω2
α − ν2−m − 2iν−mγα + γ 2

α

]
. (22)

Summing over both signs of m then yields

ξ (r, t, m = 0) =
∑

α,ω>0,m=0

2AαQαP2,m(cos θ )ξα(r)FmDα,m cos(νmt + mφr + 2φ2,0 + ψα,m), (23)

ξ (r, t, m = ±2) =
∑

α,ω>0,m=2

2AαQαP2,m(cos θ )ξα(r)
[
FmDα,m cos(νmt + mφr + 2φ2,0 + ψα,m)

+ F−mDα,−m cos(ν−mt − mφr + 2φ2,0 + ψα,−m)
]
, (24)

with

Dα,m =
[(

ω2
α − ν2

m

)2
+ 4ν2

mγ 2
α + γ 4

α

]−1/2

(25)

and

ψα,m = π

2
+ tan−1

(
ω2

α − ν2
m + γ 2

α

2νmγα

)
. (26)

The m = 0 modes produce a radial displacement

ξr (r, t, m = 0) =
∑

α,ω>0,m=0

2AαQαFmDα,mξr,α(r)P2,0(cos θ ) cos(νmt + 2φ2,0 + ψα,m). (27)

The m = ±2 modes produce a radial displacement

ξr (r, t, m = ±2) �
∑

α,ω>0,m=2

2AαQαFmDα,mξr,α(r)P2,2(cos θ ) cos(νmt + 2φr + 2φ2,0 + ψα,m)

+ 2AαQαF−mDα−,mξr,α(r)P2,2(cos θ ) cos(ν−mt − 2φr + 2φ2,0 + ψα,−m). (28)

The first term is the radial displacement due to the retrograde mode, and the second is due to the prograde mode.

3.2 Luminosity variations

The luminosity variation produced by a mode, �Lα/L, is not trivial to calculate, because the temperature fluctuation produced by the mode
is sensitive to non-adiabatic effects and subtleties in the outer boundary condition. We refer the reader to other studies (e.g. Buta & Smith
1979; Robinson, Kepler & Nather 1982) which have attempted to quantify the visibility of a mode given its amplitude and eigenfunction. If
the mode is adiabatic, its luminosity fluctuation is

�Lα

L
= 2AαQαFmDα,mξr,α(R)VαYl,m(θo, φo) cos(σmt + 2φ2,0 + ψα,m) (29)

with

σm = 2(�23 − �1) − m�1, (30)

and here m = 2 corresponds to the retrograde mode and m = −2 corresponds to the prograde mode. The angular coordinates θo and φo

indicate the direction of the observer relative to the symmetry axis of the mode, here assumed to be the spin axis of Star 1. We define Vα to
be the visibility function of the mode, which is dependent on geometrical, opacity and non-adiabatic effects. In high-inclination systems like
HD 181068, θo � 90◦, and we have chosen our coordinate system such that φo = 0. In this case, Yl,m(θo, φo) � −√

5/(16π) for m = 0 modes
and Yl,m(θo, φo) � √

15/(32π) for m = ±2 modes.
The value of Vα is uncertain. If non-adiabatic effects are significant, Vα will be complex and the luminosity variation will be phase-shifted

from equation (29). Here we consider adiabatic modes, but we remember that an observation of a phase shift is indicative of non-adiabatic
effects. In the adiabatic limit, Buta & Smith (1979) find

Vα = αl + βl + 4∇adγlHα, (31)
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where αl, β l and γ l are coefficients of order unity that depend on the spherical harmonic l of the mode and the stellar limb-darkening function
[we use the values given in Buta & Smith (1979), and ∇ad is the adiabatic temperature gradient at the surface. The first term in equation (31)
is due to surface area distortions, the second is due to surface normal distortions and the third term is due to temperature effects. The function
Hα describes the magnitude of the pressure perturbation compared to the radial surface displacement, i.e. �Tα/T = Hα�Pα/P. According to
Dziembowski (1971), the value of Hα for adiabatic oscillations is

Hα =
[

l(l + 1)

ω̄2
α

− 4 − ω̄2
α

]
, (32)

where

ω̄α = ωα

ωdyn
(33)

and ωdyn =
√

GM1/R
3
1 is the dynamical frequency of Star 1. In this description, Hα is large for high-order g-modes (low values of ω̄α) or

high-order p-modes (high values of ω̄α).
Gouttebroze & Toutain (1994) have attempted to estimate the value of Vα for p-modes in a solar model. They calculated non-adiabatic

mode eigenfunctions, and then calculated luminosity variations by adding up the perturbed flux from a grid of emitting surface elements.
They found that Vα is of order unity for low-order p-modes, but has substantially larger values for the high-order p-modes that typically
produce solar-like oscillations. In the analysis of Section 6, we calculate Vα from equation (31), considering a lower limit of Hα ≈ 1 and an
upper limit of equation (32).

4 E F F E C T O F M O D E S O N O R B I TA L E VO L U T I O N

4.1 Hamiltonian formalism

The tidally excited modes draw energy and angular momentum from the orbital motions and deposit them in Star 1. The effect of the modes
on the orbits can be calculated from the Hamiltonian of the gravitational interaction between the modes and the stars. This Hamiltonian is

H =
∫

d3rU (r, t)
∑

α

c∗
α(t)δρ∗

α(r), (34)

where δρ is the Eulerian density perturbation associated with each mode. Performing the integration over the volume of Star 1 and considering
only l = 2 terms yield

H = −M1R
2
1

∑
α,ω>0

AαQα

[
Fme2i(φ23−φ1)−imφ1+im�st + F−me−2i(φ23−φ1)−imφ1+im�st

]
c∗
α(t). (35)

Inserting equation (20) into equation (35), we find

H = −M1R
2
1

∑
α,ω>0

(AαQα)2 ωα

εα

[
Fme2i(φ23−φ1)−imφ1 + F−me−2i(φ23−φ1)−imφ1

]

×
[

Fme−iσf 1t

ω2
α − ν2

m − 2iνmγα + γ 2
α

+ F−me−iσf 2t

ω2
α − ν2−m + 2iν−mγα + γ 2

α

]
, (36)

with σ f1 = 2(�23 − �1) − m�1 and σ f2 = −2(�23 − �1) − m�1.
The orbital evolution equations are L̇1 = −dH/dφ1, L̇23 = −dH/dφ23, where L1 = μ1a

2
1�1 and L23 = μ23a

2
23�23 are the angular

momenta of the outer and inner orbits, respectively, and μ1 = M1(M2 + M3)/(M1 + M2 + M3). In the limit �s � ωα we find

L̇1 = M1R
2
1

∑
α,ω>0

(AαQα)2i

[
−(2 + m)F 2

m

ω2
α − ν2

m − 2iγανm + γ 2
α

+ (2 − m)F 2
−m

ω2
α − ν2−m + 2iγαν−m + γ 2

α

]
(37)

and

L̇23 = M1R
2
1

∑
α,ω>0

(AαQα)2i

[
2F 2

m

ω2
α − ν2

m − 2iγανm + γ 2
α

+ −2F 2
−m

ω2
α − ν2−m + 2iγαν−m + γ 2

α

]
. (38)

We have discarded rapidly oscillating terms because they produce no secular variations. The torque due to the m = 0 modes is

L̇1(m = 0) = 8M1R
2
1

∑
α,ω>0,m=0

(AαQα)2F 2
m�α,m, (39)

where

�α,m = νmγα

(ω2
α − ν2

m)2 + 4(νmγα)2 + γ 4
α

, (40)
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and L̇23(m = 0) = −L̇1(m = 0). The torque due to m = ±2 modes is

L̇1(m = ±2) = 4M1R
2
1

∑
α,ω>0,m=2

(AαQα)2
[
(2 + m)F 2

m�α,m + (2 − m)F 2
−m�α,−m

]
(41)

and

L̇23(m = ±2) = 8M1R
2
1

∑
α,ω>0,m=2

(AαQα)2
[
F 2

m�α,m + F 2
−m�α,−m

]
. (42)

Equations (39)–(42) may be written in terms of a dimensionless damping rate �̄α,m = �α,mω2
dyn, such that we obtain the more familiar

scaling for tidal dissipation:

L̇1(m = 0) = 8
GM2

1

R1
ε2

(
μ23

M1

)2(
R1

a1

)6 ∑
α,ω>0

(WαQαF0)2�̄α,0, for m = 0 modes, (43)

L̇1(m = ±2) = 16
GM2

1

R1
ε2

(
μ23

M1

)2(
R1

a1

)6 ∑
α,ω>0

(WαQαF2)2�̄α,2, for m = ±2 modes, (44)

L̇23(m = 0) = −8
GM2

1

R1
ε2

(
μ23

M1

)2(
R1

a1

)6 ∑
α,ω>0

(WαQαF0)2�̄α,0, for m = 0 modes, (45)

L̇23(m = ±2) = −8
GM2

1

R1
ε2

(
μ23

M1

)2(
R1

a1

)6 ∑
α,ω>0

(WαQα)2
[
F 2

2 �̄α,2 + F 2
−2�̄α,−2

]
, for m = ±2 modes. (46)

Conservation of angular momentum requires that the torque on Star 1 is L̇∗ = −L̇1 − L̇23, or

L̇∗ = −8
GM2

1

R1
ε2

(
μ23

M1

)2(
R1

a1

)6 ∑
α,ω>0

(WαQα)2
[
F 2

2 �̄α,2 − F 2
−2�̄α,−2

]
. (47)

We can see that m = 0 modes draw angular momentum from the inner orbit and transfer it to the outer orbit. The m = 2 (retrograde) modes
take angular momentum from the inner orbit and the spin of Star 1, depositing it in the outer orbit. The m = −2 (prograde) modes draw
angular momentum from the inner orbit and transfer it to the spin of Star 1. Thus, in all cases, three-body tides cause the inner orbit to decay
and the outer orbit to expand, although the outer orbit expands by a much smaller factor because of its larger moment of inertia. Star 1 can
be either spun up or spun down, depending on which mode (prograde or retrograde) contains more energy. Under most circumstances, Star 1
will usually be spun down because F2 > F−2. In the limit of zero eccentricity, the orbital energies change as Ė1 = �1L̇1 and Ė23 = �23L̇23.
Consequently, ė1 = ė23 = 0, and the orbits remain circular. Finally, we note that three-body tides increase the stability of hierarchical triples
because they cause the period ratio P1/P23 to increase.

5 O B S E RVAT I O N S O F H D 1 8 1 0 6 8

We now apply our theory to the compact triple-star system HD 181068, also known as the Trinity system, whose properties are listed in
Table 1 (see Derekas et al. 2011; Borkovits et al. 2012). Stars 2 and 3 orbit about Star 1 at an angular frequency of �1 = 0.138 d−1, while
Stars 2 and 3 orbit about each other at �23 = 6.94 d−1. All three stars are nearly exactly coplanar, with orbital inclinations of i � 90◦. The red
giant primary has a radius and surface temperature typical of red clump stars, with R1 = 12.46 ± 0.15 R� and Teff = 5100 ± 100 K, but has
a fairly large mass of M1 = 3.0 ± 0.1 M�.

In the discovery paper of HD 181068 (Derekas et al. 2011), 218 d of Kepler data were analysed. One of the most surprising results was
that the main component of the system, which is a red giant star, did not show solar-like oscillations. Instead, other pulsations were detected
with frequencies close to double the orbital frequency of the short-period binary. Derekas et al. (2011) suggested that these pulsations might
be tidally forced oscillations and that there might be a mechanism which suppresses the solar-like oscillations.

Table 1. Properties of the HD 181068 system as measured
by Borkovits et al. (2012).

M (M�) R (R�) Teff (K)

Star 1 3.0 ± 0.1 12.46 ± 0.15 5100 ± 100
Star 2 0.915 ± 0.034 0.865 ± 0.010 5100 ± 100
Star 3 0.870 ± 0.043 0.800 ± 0.020 4675 ± 100
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Table 2. The significant peaks of the period analysis for HD 181068. A
number of peaks located <0.1 d−1 were left out of the analysis.

No. Frequency Orbital relation Amplitude Phase S/N
(d−1) (mmag)

f1 2.1203 2(�23 − 2�1)/(2π) 0.44 0.0403 58
f2 2.1643 2(�23 − �1)/(2π) 0.25 0.2889 35
f3 1.1065 �23/(2π) 0.08 0.2843 3.4
f4 2.2084 2�23/(2π) 0.048 0.8719 6.8

Figure 2. Fourier spectrum of 11 quarters of long-cadence data.

Figure 3. Red curve: sample of light curve of HD 181068 between long-duration eclipses. The x-axis is the phase of the long-period orbit, measured from the
primary minimum at BJD 55545.466. Green curve: the simulated light curve of the oscillations. Note the beating pattern due to two close frequency oscillations.

5.1 Fourier analysis

As of writing, 11 quarters of data from Kepler have been made available to us, representing almost 3 yr of essentially uninterrupted
observations. The first six quarters of data were obtained in long-cadence mode (one point every 29.4 min), while Q7 to Q11 were taken in
short-cadence mode (one point every 58.9 s). Here we present a period analysis of the combined long-cadence and short-cadence data, the
latter covering 450 d.

As a first step, we subtracted the eclipses and rotational variations by using the light-curve fit of Borkovits et al. (2012), which resulted
in a nearly continuous data set containing the pulsations. For the period analysis, we used Period04 by Lenz & Breger (2005). In the Fourier
spectra, a number of the peaks were located <0.1 d−1 indicating long-term variability, remnants of the light-curve fit, or instrumental effects
that are negligible in the present analysis. Peaks with significance are listed in Table 2 and the Fourier spectrum is shown in Fig. 2.

The most intriguing result of the period analysis is that f1 and f2 are linear combinations of the two orbital frequencies, suggesting a
tidal origin. Their angular frequencies are separated by 2�1, creating a beat pattern in which they are in phase near the primary eclipses and
occultations (see Fig. 3). The peak frequencies f3 and f4 correspond to one and two times the orbital frequency of Stars 2 and 3, and may be
caused by the imperfect subtraction of the eclipses or spots on the components. However, they could have a tidal component as well.

5.2 Lack of solar-like oscillations

Red giant stars are well known to show solar-like oscillations (De Ridder et al. 2009; Chaplin et al. 2011a) which are excited by near-surface
convection (see, e.g., Houdek et al. 1999; Samadi et al. 2007). Nearly all red giants observed by Kepler show detectable oscillations (Huber
et al. 2010; Kallinger et al. 2010; Hekker et al. 2011), which can be used to probe the internal properties of the star (e.g. Bedding et al. 2011;
Beck et al. 2012; Mosser et al. 2012). The frequency of maximum power (νmax) of solar-like oscillations can be estimated using the scaling
relation (Brown et al. 1991)

νmax = M/M�(Teff/Teff,�)3.5

L/L�
νmax,�, (48)
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Tides in triple systems 2433

Figure 4. Top panel: power spectrum of the Q1–Q11 long-cadence data of HD 181068 after removing eclipses and low-frequency variability. The red
line shows the power spectrum smoothed with a Gaussian filter with a full-width at half-maximum of 5 μHz. Middle panel: same as the top panel but for
KIC 4662939. Bottom panel: power spectrum of the Q7–Q11 short-cadence data of HD 181068 after removing eclipses and low-frequency variability.

with νmax,� = 3090 μHz. Using the fundamental properties given by Borkovits et al. (2012), we calculate νmax = 64 ± 7 μHz (5.5 ± 0.6 c/d)
for the red giant component. To search for solar-like oscillations in HD 181068, we first remove all primary and secondary eclipses from the
data using the ephemeris given by Borkovits et al. (2012). To further remove long periodic variability we then apply a Savitzky–Golay filter
(Savitzky & Golay 1964) with a width of 5 d. Finally, we pre-whiten the most significant low-frequency variations due to tidal oscillations,
as discussed in the previous section.

The upper panel of Fig. 4 shows a power spectrum of the residual Q1–Q11 long-cadence light curve. For comparison, the middle panel
shows the power spectrum of KIC 4662939, a helium-core burning red giant with similar fundamental properties as the red giant component
in HD 181068 (Bedding et al. 2011). Despite an increase of the data set length by a factor of 3 compared to Derekas et al. (2011), the lack of
solar-like oscillations in HD 181068 A is clearly confirmed. On the other hand, we observe that both stars exhibit a similar decrease of power
from low to high frequencies, which is the typical signature of granulation (see Mathur et al. 2011). This confirms that both stars indeed have
similar fundamental properties, but that solar-like oscillations are suppressed in HD 181068 A.

We speculate that the lack of solar-like oscillations of the main component is related to the close multiplicity of the components of
HD 181068. Derekas et al. (2011) measured a rotational velocity of Star 1 of vsin i = 14 ± 1 km s−1, corresponding to �s, 1 = 0.14 ± 0.01 d−1.
This spin frequency is consistent with Star 1 being synchronized with the long-period orbit, indicating that it has been tidally synchronized.
It is also an abnormally large spin frequency for red giants (de Medeiros, Da Rocha & Mayor 1996), and the rapid rotation may generate
a strong magnetic dynamo. Indeed, the light curve of HD 181068 exhibits flaring events (some events occur during occultations of Stars 2
and 3, indicating that the flares originate from Star 1; see Borkovits et al. 2012) that indicate high levels of magnetic activity. Chaplin et al.
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(2011b) have shown that solar-like oscillations are suppressed in abnormally active stars, presumably due to their rapid rotation or due to the
effects of strong magnetic fields. We therefore speculate that the tidal synchronization of the primary in HD 181068 creates rapid rotation
and high magnetic activity that suppress the excitation of solar-like oscillations.

The available short-cadence data also allow us to search for solar-like oscillations in the dwarf components. Using equation (48), we
expect the dwarf components to oscillate at frequencies between 3500 and 5000 μHz. The bottom panel of Fig. 4 shows the power spectrum
of the short-cadence data after performing the same corrections as described above. We do not detect any significant power excess in the
data. Given the much lower luminosities of the dwarf companions and the amplitude dilution by the brighter giant component, it is likely that
the amplitudes are too small to be detected with the data at hand. Solar-like oscillations in the dwarfs may be also suppressed by the same
mechanisms described above.

6 C OMPARISON W ITH O BSERVATIONS

6.1 Stellar model

We generate an M = 3.0 M�, R = 12.4 R�, Teff = 5100 K, z = 0.015 helium burning red giant stellar model using the MESA stellar evolution
code (Paxton et al. 2011). Fig. 5 shows a propagation diagram for the stellar model. The high Brunt–Vaisala and Lamb frequencies in the
radiative interior of the star allow high-order g-modes to propagate in the stellar interior, while the small Brunt–Vaisala and Lamb frequencies
in the convective envelope of the star allow for p-mode propagation.

Using the model described above, we calculate the adiabatic stellar oscillation modes using the usual boundary conditions (see e.g.
Unno et al. 1989), but normalized according to equation (19). Fig. 6 shows the values of ξ r, α(R) and Qα as a function of ωα for our stellar
model. Low-frequency modes g-modes (lower than ωα ≈ 1) are trapped in the core. Higher frequency modes still have g-mode character
in the core, but have p-mode character in the convective envelope of the star. Modes whose inertia lies primarily in the convective envelope
are the envelope-dominated mixed modes, while the inertia of the neighbouring mixed modes is split between the core and envelope. Figs 5
and 6 demonstrate that the envelope modes have large values of ξ r, α(R) and Qα compared to neighbouring mixed modes. Consequently, the
envelope modes are easily excited to large amplitudes (because of the larger values of Qα) and produce large luminosity fluctuations [because

Figure 5. Top: the Brunt–Vaisala frequency N (solid line) and Lamb frequency L2 (dashed line) as function of radius r. The red horizontal (overlapping) lines
mark the eigenfrequencies ω̄α of the modes shown in the bottom panel. Bottom: mode eigenfunctions ξ r, α for an envelope mode with ω̄α = 6.66 (long dashed
line), a neighbouring mixed mode with ω̄α = 6.71 (dotted line) and a core mode with ω̄α = 7.17. All quantities are calculated for our M = 3.0 M�, R =
12.4 R� helium burning red giant model and are plotted in units of G = M = R = 1. The modes are normalized via equation (19).
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Figure 6. Radial displacement at the stellar surface ξ r, α(R) (top) and overlap integral Qα (bottom) for stellar oscillation modes as a function of mode
eigenfrequency ωα . The modes are calculated from our M = 3.0 M�, R = 12.4 R� red giant model. The modes at the tips of the spikes are envelope-
dominated mixed modes, while the surrounding modes are mixed modes whose inertia is split between the core and envelope. The vertical lines mark the
values of 2�1 and 2�23 in the HD 181068 system.

of the larger values of ξ r, α(R)]. The envelope modes thus dominate the visible and energetic response of the star to high-frequency tidal
forcing.

6.2 Comparison with observed luminosity fluctuations

Here, we compare our theory to observations of HD 181068. Unfortunately, it is difficult to predict the amplitude of a tidally excited mode,
even if the system parameters are relatively well constrained. Part of the reason is that the value of the frequency detuning Dα, m (see
equation 25) can vary by orders of magnitude over small changes in ωα . Since the values of ωα depend on the precise mass, radius and internal
structure of the star, accurately calculating Dα, m for each mode is very difficult.

Instead, we choose to calculate the amplitude of the luminosity fluctuations as a function of the stellar radius R1, which is constrained to
be R1 = 12.46 ± 0.15 R�. We compute the dimensionless values of ω̄α for the stellar model described in Section 6.1, and then scale them to
dimensional frequencies ωα using equation (33). The range of radii R1 is meant to encompass uncertainties in ω̄α , M1, R1, �s,1, non-adiabatic
effects, etc., that affect the precise values of ωα in HD 181068.

Fig. 7 displays the theoretical and observed luminosity variations produced at the tidal forcing frequencies 2(�23 − 2�1), 2(�23 −
�1) and 2�23. Recall that the observed variation at 2�23 may be contaminated by imperfect eclipse subtraction and/or spotting effects. The
luminosity variations are calculated using equation (29), using �23 and �1 observed in HD 181068, and using M2 = M3 = 0.9 M� and θo =
87.◦5 [as measured by Borkovits et al. (2012). The top panel uses Hα = 1, while the bottom panel uses Hα = [l(l + 1)/ω̄2 − 4 − ω̄2

α]. The
luminosity variations have peaks and dips at values of R1 for which the frequency of a mode is nearly resonant with the forcing frequency. For
Hα = 1, the theoretical luminosity variations are well below the observed variations, except very near a resonance with an envelope p-mode
(i.e. at R1 � 12.8 R�). Unless HD 181068 is in a resonance locking state (see Section 7), it is unlikely to observe it so close to resonance.

In contrast, the theoretical luminosity variations are closer to the observed variations for Hα = [l(l + 1)/ω̄2 − 4 − ω̄2
α]. The best

agreement is obtained for R1 � 12.6 R�, and matches the luminosity variation for each theoretical and observed frequency to within a factor
of 2. We conclude that the luminosity variations in HD 181068 are likely dominated by temperature effects, characterized by large values of Hα .
The ordering of the amplitudes of the oscillations is naturally explained by our theory, i.e. �L/L(m = 2) > �L/L(m = 0) > �L/L(m = −2),
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Figure 7. Luminosity variations �L/L as a function of stellar radius, using Hα = 1 (top panel) and Hα = ωα (bottom panel), for our stellar model. The actual
stellar model has R1 = 12.4 R�, but to make this plot we consider identical models scaled to different radii. The black lines denote the luminosity variations of
the mode at frequencies 2(�23 − 2�1) (dashed line), 2(�23 − �1) (solid line) and 2�23 (dotted line). The horizontal red lines show the observed luminosity
variations in HD 181068 at the same frequencies.

because F2 > F0 > F−2. However, the measured amplitude ratios are slightly different from what we expect from exact resonances, and the
cause of the discrepancy is unclear.

For non-adiabatic modes, our theory also predicts the phases of the observed oscillations. In particular, equation (29) shows that for
non-resonant adiabatic modes (i.e. Vα is real and ψα � 0 or ψα � π), the phase difference between two oscillation frequencies is �φ � mφ1.
This implies that the prominent frequencies f1 and f2 (which have m = 2 and 0, respectively) should be in phase at φ1 � 0 and φ1 � π, i.e.
they should be in phase during the eclipses and occultations of Star 1. Indeed, the measured oscillations are in phase at these times, as can
be seen from the simulated light curve in Fig. 3. This suggests that the observed luminosity fluctuations are being produced by non-resonant
modes, consistent with our findings above.

7 O R B I TA L E VO L U T I O N O F H D 1 8 1 0 6 8

We now wish to calculate the orbital evolution induced by the tidally excited modes in realistic systems such as HD 181068. The quantity
in the orbital evolution equations (43)–(46) with the most uncertainty is the damping rate γ α . An accurate calculation of γ α requires a fully
non-adiabatic calculation of mode eigenfrequencies and must also include the turbulent damping of modes in the convection zone, which
is not well understood. We choose to estimate γ α using a quasi-adiabatic WKB damping rate (see Burkart et al. 2011). We check that the
damping rate calculated in this manner is of the same order of magnitude as the damping rate inferred from observations of mode lifetimes
of solar-like oscillations in red giants (see Belkacem 2012) for modes with ωα ≈ νmax.

To understand the effects of tidally excited modes on the orbital evolution of a realistic triple system, we calculate the orbital evolution
of a system resembling HD 181068 using equations (43)–(46). We consider coplanar, circular orbits, as observed in HD 181068. The orbital
frequencies change as

�̇1 = − 3L̇1

μ1a
2
1

(49)

and

�̇23 = − 3L̇23

μ23a
2
23

, (50)
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and the orbital semimajor axes change as ȧ/a = −2�̇/(3�). We define the tidal dissipation time-scale as

ttide = a23

ȧ23
= μ23a

2
23�23

2L̇23
. (51)

The orbital evolution time-scales due to tidally excited modes can be comparable to the stellar evolution time-scales of the stars in the
system. Hence, it is important to evolve the properties of the stars in the system simultaneously with the orbital elements. In our evolutions,
we compute the radius of Star 1 as a function of time using the MESA stellar evolution code (Paxton et al. 2011). The changing value of R1

affects not only the values of L̇ in equations (43)–(46), but it also affects the eigenfrequencies ωα because the stellar oscillation frequencies
scale as ωα ∝

√
GM1/R

3
1 . Accounting for the changing eigenfrequencies is important because it can lead to resonance locking (Witte &

Savonije 1999; Fuller & Lai 2012), allowing for tidal evolution on stellar evolutionary time-scales rather than the longer non-resonant tidal
evolution time-scales.

In our calculations, we do not calculate new eigenfrequencies ω̄α and associated eigenfunctions at each time step. We find that in the red
giant phase of stellar evolution, the variations in Qα as a function of time are relatively small, and that the variations in ωα are dominated by
variations in ωdyn due to the changing value of R1. We use the values of ω̄α and Qα shown in Fig. 6, and calculate ωα from equation (33).

In addition to the tidally excited modes discussed in this paper, our evolutionary calculations should account for ‘two-body’ tidal effects,
i.e. the tidal effects due to the zeroth-order component of the tidal potential in equation (7). These tidal forces have no dependence on the
small parameter ε, and hence they act on much shorter time-scales. Furthermore, tidal forces between Stars 2 and 3 will act on even shorter
time-scales due to their close separation. Therefore, two-body tidal forces cause Stars 2 and 3 to have a circular orbit around each other,
rotating synchronously with that orbit. They also cause the centre of mass of Stars 2 and 3 to have a circular orbit around Star 1, with Star 1
rotating synchronously with that orbit. Thus, in our evolution, we enforce �s,1 = �1 and �s,2 = �s,3 = �23 at all times. We account for the
angular momentum redistribution associated with these processes, although the stellar spins contain only a small fraction of the total angular
momentum of the system.

Because the moment of inertia of Star 1 is much less than that of the orbit of Stars 2 and 3 about Star 1, a small amount of orbital angular
momentum deposited in Star 1 by three-body tidal effects can drastically change its spin frequency. This angular momentum will then be
transferred back to the orbit of Stars 2 and 3 about Star 1 by two-body tidal effects until synchronism is restored. Therefore, after each time
step in our evolution, we calculate �L1, �L23 and �L� from equations (43)–(47). We then adjust the values of �s,1 and �1 such that �s,1 =
�1 and the total angular momentum is conserved. Since L�, 1 � L1 for realistic parameters for a hierarchical triple system, the coupled tidal
evolutions ensure that L̇1 � −L̇23.

We also include orbital evolution due to induced eccentricity, magnetic braking and gravitational radiation, as described in Appendix A.
However, we find that the time-scales associated with these processes are generally longer than the lifetime of a system such as HD 181068,
so we do not discuss these effects in detail below.

7.1 Results of orbital evolution

Fig. 8 shows an example of our evolutionary calculations. We plot the stellar radius, R1, orbital frequencies �1 and �23, and orbital decay
time-scales (ttide, tecc, tmag and tGW) as a function of time. We begin our orbital calculations as Star 1 is moving off the MS. The properties of
the oscillation modes (calculated for helium burning red giant model described in Section 6.1) are not appropriate for the initial model MS
model, but become realistic as Star 1 moves up the red giant branch. We begin our calculation with orbital frequencies of �23,i = 0.2�23,o

and �1,i = 1.15�1,o, where �23,o and �1,o are the observed orbital frequencies in HD 181068.
Let us start by examining the top panel of Fig. 8. The spike in radius at t = 1 × 107 yr corresponds to the largest radius obtained during

the red giant phase, while the long flat period in the range 2 × 107 < t < 108 yr is the core helium burning phase. Fig. 8 indicates that Star
1 in HD 181068 could be ascending the red giant branch, but is most likely a horizontal branch star. The measured temperature of Star 1 is
also consistent with these possibilities.

The middle panel of Fig. 8 shows that the orbits evolve substantially due to tidal dissipation. The outer orbital frequency, �1, becomes
slightly smaller as angular momentum is transferred from the inner to the outer orbit. The inner orbital frequency �23 changes substantially,
increasing by a factor of roughly 5. The tidal dissipation begins as Star 1 moves up the red giant branch, increasing the value of R1 and hence
L̇23. Tidal dissipation also becomes much stronger during this stage because the frequencies of envelope p-modes (which couple strongly with
the tidal potential) become comparable to the tidal forcing frequencies. The tidal dissipation remains strong as Star 1 shrinks and descends the
red giant branch because the system enters into a resonance locking configuration (see Section 7.2). Once Star 1 settles on to the horizontal
branch, the resonance locking ends and tidal dissipation is drastically reduced.

The bottom panel of Fig. 8 displays the relevant time-scales of the evolution, including the stellar evolution time-scale defined as

tR = R1

|Ṙ1|
. (52)

When Star 1 is on the MS, all the orbital time-scales are longer than a Hubble time and can be ignored. As Star 1 moves up the red giant
branch, the tidal dissipation time-scale ttide decreases by several orders of magnitude, as discussed above. When Star 1 is descending the red
giant branch (at t ≈ 1.5 × 107 yr), we see that ttide � tR. This is a natural consequence of resonance locking, discussed below. In contrast,
the value of ttide is generally much larger during the core helium burning phase, due to the decreased values of R1 and a23. While in the core
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Figure 8. Top: radius R1 as a function of time since leaving the MS for an M1 = 3.0 M� stellar model. The horizontal blue strip denotes the measured
radius of HD 181068, within the measurement uncertainty. Middle: angular orbital frequencies �23 (solid black line) and 10�1 (solid red line) as a function of
time, including tidal dissipation. The horizontal lines represent the values of �23 (dashed black) and 10�1 (dashed red) for the HD 181068 system. Bottom:
tidal dissipation time-scale ttide (solid black line), induced eccentricity orbital decay time-scale tecc (triple dot–dashed green line), gravitational wave decay
time-scale tGW (dotted blue line), magnetic braking orbital decay time-scale tmag (dot–dashed red line), and stellar evolution time-scale tR (dashed purple line)
as a function of time.

helium burning phase, the value of ttide has sharp dips due to resonance crossings with mixed modes, there are also deeper, broader dips due to
resonance crossings with envelope p-modes, such as the resonance crossing that occurs at t � 9 × 107yr . However, these resonance crossing
events are fairly brief and produce only small amounts of tidal dissipation.

The initial orbital frequencies were chosen such that the final values of �23 and �1 would be roughly equal to the observed orbital
frequencies in HD 181068. This does not entail that our chosen values of �23,i and �1,i were the actual orbital frequencies of HD 181068
while Star 1 was on the MS. In reality, the initial orbital configuration of HD 181068 may have contained inclined or eccentric orbits for which
the tidal dissipation rates may be substantially different. Nonetheless, the fact that a small value of �23,i is required to match observations of
HD 181068 indicates that the system may have experienced substantial orbital decay due to three-body tidal dissipation.

In the future, HD 181068 will likely enter a common envelope phase as Star 1 evolves up the asymptotic giant branch and envelops
Stars 2 and 3. Additionally, it is possible that HD 181068 reached its compact configuration through a mass transfer phase while Star 1 was
on the red giant branch. Our MESA-generated stellar models indicate that our 3 M� stellar model would not have overflown its Roche lobe
(assuming a1 was equal to its current value) while Star 1 was on the red giant branch. However, MESA evolutions indicate that a 4 M�
star probably would have overflowed its Roche lobe while on the red giant branch, and it is possible that this occurred in HD 181068. The
outcome of mass transfer in triple systems is highly uncertain, so we do not investigate it in detail in this paper.

7.2 Resonance locking

The orbital evolution discussed above contains periods of resonance locking in which a tidally excited mode is held near resonance for long
periods of time, causing large amounts of tidal dissipation. Resonance locking involving tidally driven stellar oscillation modes was first
investigated by Witte & Savonije (1999) and recently proposed by Fuller & Lai (2012) to explain the observed tidally driven oscillations
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in KOI-54. Resonance locking can occur when the frequency ωα of a mode changes due to a stellar evolutionary process. As the mode
approaches resonance with a tidal forcing frequency, enhanced tidal dissipation occurs. The dissipation feeds back on the process, changing
the value of the forcing frequency νf by spinning up the star or causing orbital decay. Under the right circumstances, the system maintains
the nearly resonant configuration such that ω̇α � ν̇f , i.e. the orbital evolution time-scale is roughly equal to the stellar evolution time-scale.

The resonance locking shown in Section 7 is qualitatively different from the locking investigated by Witte & Savonije (1999) and Fuller
& Lai (2012), although the general principles described above are still true. In the case of a system like HD 181068, when Star 1 is descending
the red giant branch, the frequencies of the stellar oscillation modes are increasing because the dynamical frequency of the star is increasing.
When the value of ωα of an envelope mode is nearly resonant with a forcing frequency νf , enhanced tidal dissipation occurs, causing the orbit
of Stars 2 and 3 about one another to decay. Hence, the values of �23 and νf correspondingly increase, causing resonance locking.

When the system is resonantly locked, ω̇α � ν̇f . Assuming that the star’s oscillation frequencies change primarily due to the change in
stellar radius, we have

ω̇α

ωα

� −3

2

Ṙ1

R1
. (53)

Furthermore, the tidal forcing frequency changes primarily due to the increasing value of �23, so that

ν̇f

νf
� −3

2

ȧ23

a23
. (54)

Therefore, during resonance locking,

Ṙ1

R1
� ȧ23

a23
, (55)

and thus ttide � tR. This explains the near-equality of ttide and tR during the descent of Star 1 from the red giant branch in Fig. 8. It also suggests
that compact triples may endure a period of rapid tidal dissipation, caused by resonance locking, as the primary descends from the red giant
branch towards the horizontal branch. Such tidal dissipation may lie in the near future for other observed compact hierarchical triples, such
as KOI-126 (see Carter et al. 2011) and KOI-928 (see Steffen et al. 2011).

8 D ISCUSSION

We have demonstrated that a new tidal dissipation mechanism exists for stars in compact hierarchical triple systems, even after the system
has reached the quasi-equilibrium state of aligned and circular orbits with aligned and synchronous stellar spins. The three-body tidal forces
produce forcing at frequencies of σ = 2(�23 − 2�1), σ = 2(�23 − �1) and σ = 2�23 (although more forcing frequencies will exist for
non-coplanar and non-circular orbits). If the primary star is a red giant with a large radius and thick convective envelope, the three-body tidal
potential can couple strongly with the envelope p-modes of the star, exciting modes to large amplitudes.

We compare our results to Kepler observations of HD 181068. The presence of oscillations in the light curve of HD 181068 at frequencies
σ = 2(�23 − 2�1), σ = 2(�23 − �1) and σ = 2�23 indicates that the primary exhibits stellar oscillation modes excited by the three-body
tidal forcing described in this paper. The large amplitudes of the oscillations in HD 181068 are either due to large temperature variations
produced by small-amplitude, non-resonant modes or due to geometric distortions produced by large-amplitude, nearly resonant modes. In
the latter case, the tidal dissipation rate is rapid, and the modes may be locked in resonance (see Section 7.2). However, the amplitudes and
phases of the modes are best explained by the non-resonant scenario. Furthermore, since the lifetime of the resonance locking phase is brief
compared to the lifetime of the star on the horizontal branch, we find the non-resonant scenario to be much more likely.

The three-body tidal effects can also produce substantial orbital evolution among the stellar components, the main effect of which is the
decay of the inner orbit of the compact binary. Our orbital evolution calculations for a system resembling HD 181068 reveal that, at most
times, three-body tidal dissipation acts on long time-scales and can be ignored. However, when the primary star is high on the red giant branch,
three-body tidal dissipation may cause substantial orbital decay. Furthermore, stellar oscillation modes can become locked in resonance as
the primary descends the red giant branch, resulting in greatly enhanced tidal dissipation. During resonance locking, tidal dissipation occurs
on the same time-scale as the stellar evolution, such that the orbital semimajor axis of Stars 2 and 3 decays as ȧ23/a23 � Ṙ1/R1.

Because we have assumed adiabaticity when calculating stellar oscillation modes, there remains some uncertainty in the precise mode
visibilities and damping rates. Fully non-adiabatic mode calculations can constrain the values of Hα and γ α in future studies. Furthermore, our
calculations have been limited to the linear regime. As mentioned in Section 2, the three-body tidal forcing frequencies are nearly identical
in the rotating frame of Star 1 if it is synchronized with the outer binary. This may allow for greatly enhanced non-linear mode coupling,
affecting the mode amplitudes, damping rates and visibilities.

Future observations can detect and characterize tidally excited modes in compact triples. In non-eclipsing systems, the three-body
nature of compact triples may not initially be detected from photometric and spectroscopic observations, especially if one star is much more
luminous than its companions. The Kepler public red giant sample, consisting of more than 15 000 stars (Hekker et al. 2011), provides a
unique resource that may contain several hidden clones of the Trinity system, which could be used to test our theory in a broader parameter
space. The signature of three-body tidal forcing is a triplet of evenly spaced modes with frequencies σ = 2(�23 − 2�1), σ = 2(�23 − �1)
and σ = 2�23, although the highest oscillation frequency may have a very small amplitude. The triplet could be mistaken for a rotationally
split triplet of solar-like oscillations, but the tidally excited modes can be distinguished by their indefinitely long lifetimes (and thus narrow
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Fourier peaks). In low-inclination systems, the σ = 2(�23 − �1) oscillation will produce the largest luminosity fluctuations, while the σ =
2(�23 − 2�1) oscillation will be dominant in high-inclination systems like HD 181068. Finally, measurements of radial velocity fluctuations
caused by these oscillation modes can be used to constrain the values of the mode amplitude cα and visibility function Hα .

Lastly, we comment on the effects of three-body tides in exoplanet systems, specifically to the case in which a close-in exoplanet contains
a moon. In this situation, three-body tides could potentially cause the orbit of the moon to decay until it is very near to its planet. However,
the huge mass of the star compared to the planet implies that the Hill sphere of the planet is small, necessitating small values of ε for a moon
in a stable orbit. Furthermore, one can see from equation (51) that the tidal dissipation time-scale has ttide ∝ μ−1

23 . The small mass μ23 of
planets compared to stars results in a correspondingly long tidal dissipation time-scale due to three-body tides. Therefore, three-body tides
can be ignored for exoplanet moon systems.
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A P P E N D I X A : N O N - T I DA L O R B I TA L E VO L U T I O N

We wish to compare the effects of three-body tides to other physical mechanisms that may produce orbital evolution in triple-star systems.
One such mechanism is tidal orbital decay due to the induced eccentricity of the inner binary (Stars 2 and 3) due to the perturbing gravitational
influence of Star 1. This effect has been studied in detail by, e.g., Ford et al. (2000). In this mechanism, the eccentricity of the orbit of Stars 2
and 3 about one another oscillates around a small, non-zero value due to the presence of Star 1. Tidal interactions between Stars 2 and 3 act
to recircularize the orbit, dissipating energy and causing the orbit of Stars 2 and 3 about one another to decay. The orbital decay time-scale
due to dissipation in Star 2 is (Lithwick & Wu 2012)

tecc = a23

ȧ23
= 1

18π

Q

k2

�23R
3
2

GM2

1

q(1 + q)

(
a23

R2

)8
1

〈e2〉 , (A1)

where Q is the tidal quality factor, k2 is the constant of apsidal motion, q = M2/M3, and 〈e2〉 is the mean square eccentricity of the orbit
of Stars 2 and 3 about one another. We have divided by an extra factor of 2 to account for tidal dissipation in both stars. According to
Georgakarakos (2002), the mean square eccentricity for a nearly equal mass binary (M2 � M3) is

〈e2〉 � 43

4

(
M1

M1+M2+M3

)2(
�1

�23

)4

. (A2)

However, for unequal mass inner binaries (M2 �= M3) or systems near an orbital resonance, the mean square eccentricity may be significantly
larger. In our calculations, we use k2 = 0.02 (appropriate for low-mass dwarf stars) and Q = 105.

Another effect that can cause orbital decay in a compact triple system is magnetic braking. Magnetic braking is likely to act on short
time-scales in systems like HD 181068 because Stars 2 and 3 are rapidly rotating, low-mass stars with convective envelopes that likely have
strong magnetic dynamos. We estimate the torque due to magnetic braking according to the prescription of Krishnamurthi et al. (1997),
yielding a magnetic braking time-scale of

tmag = a23

ȧ23
= μ23a

2
23

4KMB�2
s,c

(
M2

M�

)1/2(
R2

R�

)−1/2

, (A3)

where �s,c is a critical rotation rate of �c ∼ 10�s,�, and KMB is a calibrated constant of KMB ≈ 2.6 × 1047 g s cm2. Once again, we have
divided by an extra factor of 2 to account for magnetic braking produced by Stars 2 and 3, assuming they are nearly identical. Star 1 may
produce additional magnetic braking, but because a1 � a23 in hierarchical triples, the time-scale of tidal orbital decay associated with this
process is long and can be ignored.

Finally, the orbit of Stars 2 and 3 may decay due to the emission of gravitational waves. The orbital decay time-scale due to gravitational
waves is

tGW = a23

ȧ23
= 5c5

64G3

a4
23

M2M3(M2 + M3)
. (A4)
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