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a b s t r a c t

The consequence of decreased nicotinamide adenine dinucleotide (NADþ) levels as a result of oxidative

challenge is altered activity of sirtuins, which, in turn, brings about a wide range of modifications in

mammalian cellular metabolism. Sirtuins, especially SIRT1, deacetylate important transcription factors

such as p53, forkhead homeobox type O proteins, nuclear factor kB, or peroxisome proliferator-

activated receptor g coactivator 1a (which controls the transcription of pro- and antioxidant enzymes,

by which the cellular redox state is affected). The role of SIRT1 in DNA repair is enigmatic, because it

activates Ku70 to cope with double-strand breaks, but deacetylation of apurinic/apyrimidinic endonu-

clease 1 and probably of 8-oxoguanine-DNA glycosylase 1 decreases the activity of these DNA repair

enzymes. The protein-stabilizing effects of the NADþ-dependent lysine deacetylases are readily related

to housekeeping and redox regulation. The role of sirtuins in caloric restriction (CR)-related longevity in

yeast is currently under debate. However, in mammals, it seems certain that sirtuins are involved in

many cellular processes that mediate longevity and disease prevention via the effects of CR through the

vascular, neuronal, and muscular systems. Regular physical exercise-mediated health promotion also

involves sirtuin-regulated pathways including the antioxidant-, macromolecular damage repair-,

energy-, mitochondrial function-, and neuronal plasticity-associated pathways. This review critically

evaluates these findings and points out the age-associated role of sirtuins.

& 2013 Elsevier Inc. All rights reserved.
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Introduction

Sirtuins (silent information regulator 2 (Sir2)1 proteins)

belong to an ancient family of evolutionarily conserved NADþ-

dependent enzymes with deacetylase and/or mono-ADP-

ribosyltransferase activity and are implicated in diverse cellular

processes. The sirtuin family is ubiquitously distributed in mam-

mals, with seven homologs (SIRTs 1–7), and their expression/

activity shows organ and organelle specificity. Powerful protein

deacetylase activity of SIRT1, SIRT2, SIRT3, and SIRT5 has been

reported toward histones, whereas SIRT4, SIRT6, and SIRT7 have

no such detectable enzymatic activity on histone peptide sub-

strate [1,2]. SIRTs 3–5 are predominantly localized to the mito-

chondria. Mammalian sirtuins are closely involved in metabolism

[2–4], which is linked to the mitochondrial generation of reactive

oxygen species (ROS) [5,6]. SIRT1 is downstream in ROS signaling

because of a dependence on the availability of NAD, but it can be

important upstream in cellular regulators, including forkhead

homeobox type O factor 3 (FOXO3) [7], muscle-specific RING

finger protein 1 [8], and the v-Akt murine thymoma viral

oncogene homolog 1 (Akt1) [9].

The crystal structure of human SIRT1 (a homolog of yeast Sir2)

reveals a large groove intersected by a pocket lined with hydro-

phobic residues, conserved with class-specific protein-binding

sites of each Sir2 class [10]. Activity of most of the sirtuins is

controlled by posttranslational modifications, as well as the

availability of NADþ . It has been shown that they are phosphory-

lated at N- and C-terminals, which play a role in substrate binding

[11]. Moreover, in addition to phosphorylation, it appears that S-

nitrosylation of SIRT1 impairs the catalytic activity of enzymes via

a nitrosylated glyceraldehyde-3-phosphate dehydrogenase-

mediated process [12]. Additionally, thioredoxin (Trx) regulates

cellular redox balance through reversible oxidization of its redox-

active cysteine residues (-Cys-Gly-Pro-Cys-), which can mediate

protein S-denitrosylation [13–15] and hence the activity of

sirtuins. The deacetylase domain of sirtuins consists of approxi-

mately 250 amino acids, differentiated by divergent N- and C-

terminal extensions [16]. In the budding yeast Saccharomyces

cerevisiae, the Sir proteins are involved in a wide array of cellular

processes, including the nonhomologous end-joining repair of

DNA [17], the stabilization of the replication forks in the riboso-

mal (r) DNA to prevent DNA breaks, recombination, and the

generation of extrachromosomal rDNA circles [18], which leads

to aging of this organism [19].

One of the first studies that linked sirtuins to aging was

based on the observation that proteins encoded by SIR genes

are responsible for silencing the rDNA of S. cerevisiae [20]. The

same group of investigators also demonstrated that Sir2 is

redox sensitive because of its NADþ dependence. Moreover,

they showed that sirtuins have deacetylase activity from

eubacteria to humans [21]. Guarente and his group then

demonstrated that redistribution of the Sir2 complex from a

telomere to the nucleolus is associated with aging in yeast

[19,22], and overexpression of this gene extends their life span

[23]. Sinclair and co-workers showed that life extension in

yeast could be done via the salvage pathway of NADþ [24],

and life-span extension during caloric restriction (CR) is

associated with activation of Sir2 genes in yeast and the

mammalian homolog SIRT1 of human cells [25,26]. Now,

mounting data suggest an active role for sirtuins in aging

and age-associated diseases. However, as with most phenom-

ena in science, the convincing effects of sirtuins in mammalian

aging are not without debate [27].

This paper reviews the redox sensitivity of sirtuins and the

role of these lysine deacetylases, especially SIRT1, in the aging

process. The authors also crucially review the data of knockout

and overexpression models, as well as the effects of CR

and physical exercise. The effects of resveratrol, which is a

potent stimulator of SIRT1, have been reviewed elsewhere

[28–31].
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Role of sirtuins in cellular redox balance

Redox balance and sirtuins: up- and downstream regulators

The activity of sirtuins can be readily modified by the availability

of NADþ , expressed as a function of NAD:NADH ratio, which is a

marker of cellular redox balance. Metabolic challenges, such as

hypoxemia–ischemia and reoxygenation, result in deceased NAD

and nicotinamide phosphoribosyltransferase (NAMPT) levels and

decreased activity of sirtuins [32–35]. It was recently shown that

treatment with glycated low-density lipoprotein resulted in increased

ROS production in vascular endothelial cells and in lowered mito-

chondrial membrane potential, the NAD:NADH ratio [36]. It has been

shown that glutamate-induced excitotoxicity in neurons and ische-

mia in mouse brains result in marked decreases in NADþ levels,

which is a precausative step before cell death [32]. ROS can readily

induce DNA damage, and in response to DNA strand breaks poly

(ADP-ribose) polymerase 1 (PARP1) consumes significant amounts of

NADþ to produce poly(ADP-ribose) polymers on target proteins in a

process called poly-ADP-ribosylation [37]. Significant DNA damage-

associated PARP activation can lead to NADþ depletion resulting in

energy crisis [38].

Hence, administration of nicotinamide, which is a NADþ

precursor and a noncompetitive inhibitor of SIRT1, has rescued

cells from apoptosis and necrosis [32]. On the other hand

resveratrol supplementation did not increase cell survival.

In contrast, in ischemic–reperfused cardiomyocytes resveratrol

supplementation mediated cell survival via mitogen-activated

protein kinase pathways [39].

The concentration of NADþ seems to be crucial, because when

PARP1 was knocked out the phenotype of mice resembled the

SIRT1 of overexpressed phenotypes, and similar phenomena have

occurred when PARP1 was inhibited by pharmacological agents

[40]. These data strongly point to a competition between PARP1

and SIRT1 for the common cofactor NADþ (Fig. 1). On the other

hand, when the NADþ level was depleted first by oxidants, such

as hydrogen peroxide or cigarette smoke, then the PARP1 inhibi-

tion was not effective in gaining back SIRT1 activity. Nonetheless,

the NADþ content was restored [35]. One of the causative factors

could be that oxidants resulted in carbonylation of amino acid

residues of SIRT1, which, in turn, could curb the activity of the

enzyme [35,41]. This could happen with aging also. Koltai and

colleagues [42] observed that with aging there is an increase

in the level of SIRT1, which is associated with decreased activity

of the enzyme and appears to be due to increased carbonylation.

In this study, carbonylation of SIRT1 was not studied specifically;

however, the overall carbonylation of the cytosolic proteins has

been found to significantly increase in older animals. In a recent

study in which pelvic human skin samples were used, DNA

damage was positively correlated with aging and negatively

correlated with NADþ levels [43]. Therefore, it seems that

oxidants could affect sirtuins via depletion of NADþ and oxida-

tive modification of amino acid residues, leading to decreased

activity or level of the enzyme [40,44]. On the other hand, it has

also been shown that the overexpression of SIRT1 has beneficial

effects in resistance to oxidative stress [39,44,45].

The effects of sirtuin-regulated transcription factors on redox balance

Sirtuin-mediated deacetylation of key transcription factors results

in altered gene expression of key antioxidant enzymes or those

producing ROS. Here we focus on redox regulation by sirtuins via

p53, FOXOs, nuclear factor kB (NF-kB), and peroxisome proliferator-

activated receptor g coactivator 1a (PGC-1a) as examples.

SIRT1 is involved in stress responses, cellular metabolism, and

aging through deacetylation of a variety of substrates including

p53. p53 is acetylated by CBP/p300 acetyltransferases at lysine

residues, including Lys 370, 372, 382, and 386 at the carboxy-

terminal region [46,47]. Activated p53 then enhance ROS produc-

tion through mitochondrial dysfunction and/or increased expres-

sion of genes that are involved in redox modulation, such as the

p53-upregulated modulator of apoptosis (PUMA), NADPH activa-

tor A (NOXA), and p53-induced gene 3 (PIG3) [48,49]. In addition,

it seems that NADPH oxidase 1-generated ROS inhibit the acet-

ylation of p53 at Lys 382 via SIRT1. Deacetylation at Lys 382 is

important in the control of gene expression from PUMA, NOXA,

and PIG3, i.e., the proapoptotic function of p53 [50]. Interestingly,

p53 via p21 indirectly activates nuclear factor (erythroid-derived

2)-like 2 (Nrf2), a central transcription factor in the antioxidant

response. Nrf2 binds to the antioxidant-response element 2, a cis-

acting enhancer found in promoters, and, via increased antiox-

idant gene expression, counteracts oxidative challenge [51].

In mammals there are four FOXO transcription factors, and,

among them, FOXO1, FOXO3a, and FOXO4 are involved in redox

regulation [52,53]. FOXOs are negatively regulated by the phos-

phatidylinositol 3-kinase–Akt signaling pathway. When cells

were treated with hydrogen peroxide, the FOXO3 acetylation

was increased by CBP/p300 and, as a result, the resistance against

oxidative stress was enhanced [54]. Moreover, oxidants caused

translocation of FOXO3 into the nucleus, where it can be deace-

tylated by SIRT1, which would enhance the activation of GADD45.

This is important for stress resistance by the induction of DNA

repair, because GADD45 is required for efficient DNA base exci-

sion repair (BER) and nucleotide excision repair (NER) [54,55].

In addition, FOXO3 directly activates the transcription of Mn-

superoxide dismutase (SOD) and catalase [56] to attenuate the

toxicity of mitochondrial-derived superoxide anion and hydrogen

peroxide, thereby preventing damage to genomic and mitochon-

drial (mt) DNA, lipids, and proteins. In addition to FOXO3, FOXO1

can also alter redox states. For instance, Akt-mediated phosphor-

ylation of PGC-1a at serine 570 results in inactivation, and this

conformational change leads to reversible disruption of the

FOXO1 response element of the catalase promoter, therefore

curbing the expression of catalase [57]. In addition, it appears

that FOXO4 inhibits NF-kB and thereby the proinflammatory

chemokine/cytokine expression and ROS production associated

with the activation of inflammatory cells [58].

NF-kB-dependent signaling plays a role in the aging process,

with a wide range of effects in addition to inflammation [59]. NF-

kB is a family of inducible transcription factors that plays a

central role in controlling expression of networks responsible for

proinflammatory gene expression, cell proliferation, differentia-

tion, or apoptosis [60]. NF-kB release from cytoplasmic inhibition

is necessary, but not sufficient, for target gene induction, e.g., that

induced by ROS RelA/p65 phosphorylated at serine 276, which is

coincident with its release from IkBa in the canonical pathway.

Upon phosphorylation, RelA/p65 translocates into the nucleus

and mediates the promoter-specific recruitment of p300/CBP,

which acetylates it at lysine 510 to enhance transcription. It has

also been shown that SIRT1 deacetylates the RelA/p65 on lysine

310 and thus blocks the transcriptional activity of NF-kB [61],

resulting in active silencing of the chromatin (Fig. 2). SIRT1

has been shown to be capable of decreasing NF-kB-induced
inflammation by deacetylation and prevents the tumor necrosis

factor a (TNF-a)-mediated activation of matrix metalloproteinase

9, interleukin 1b (IL-1b), IL-6, and inducible nitric oxide synthase

[62].In addition, it has been suggested that SIRT1 binds to the

promoter regions of IL-1b and TNF-a in a cell model of sepsis and

plays a role in epigenetic regulation during endotoxin tolerance [63].

However, it is clear that suppression of NF-kB activity by SIRT1

modulates redox signaling, not just by regulating inflammation but

also through the expression of Mn-SOD [64,65].
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PGC-1-related proteins are expressed ubiquitously, but PGC-1a
and -1b are enriched in mitochondria-rich tissues such as cardiac

and skeletal muscles. PGC-1a is a master transcriptional coactiva-

tor that modulates the gene expression involved in energy meta-

bolism and energy expenditure. PGC-1a is a direct link between

external physiological stimuli and the regulation of mitochondrial

biogenesis. PGC-1a regulates the activity of a large number of

transcription factors, including peroxisome proliferator-activated

receptors c and a, estrogen receptor-related a, FOXO1, hepatocyte

nuclear factor 4a, and nuclear respiratory factor 1. Moreover, PGC-

1a also regulates gene transcription encoding mitochondrial elec-

tron transport chain proteins, uncoupling protein 2 (UCP2) and

UCP3, and key antioxidant enzymes, such as Cu,Zn-SOD, glu-

tathione peroxidase,Q2 and catalase [66,67]. Its transcriptional coac-

tivator function is primarily regulated by acetylation via p300/CBP

and deacetylation by SIRT1 [68]. Mitochondrial biogenesis itself

can be an important cog in redox homeostasis, because for the

same ATP production more mitochondria can work at a lower

respiratory capacity, and then fewer ROS are produced. Contrarily,

decreased mitochondrial capacity at metabolic stress, such as

exercise or ischemia, would result in enhanced ROS production.

These observations support PGC-1a’s active involvement in anti-

oxidant defense [69]. Inflammation is associated with increased

ROS production and oxidative damage, and the antioxidant role of

PGC-1a is further supported by the anti-inflammatory effects of

this coactivator [70].

Sirtuins in regulation of genome integrity

One of the first studies on sirtuins and DNA repair as well as

telomere silencing was done in yeast cells (S. cerevisiae). These

studies revealed that Ku protein interacts with sirtuins during

DNA double-strand break (DSB) repair of telomere regions

[71,72]. Studies have also shown that SIRT1 deacetylates Ku70

in mammalian cells, revealing antiapoptotic effects [26,73].

Another sirtuin family member, SIRT6, interacts with PARP1 to

enhance the efficiency of repair of DSBs [74]. SIRT6 is also

important for other DNA repair pathways, because in SIRT6-

ablated cells, overexpression of a single-strand break gap-filling

protein, DNA polymerase b, rescued cells, implying that SIRT6-

mediated deacetylation has a crucial role in BER processes [75].

Consequently, a lack of SIRT6 in knockout mice decreased the life

span [76]. Moreover, many human cancers show decreased levels

of SIRT1, and SIRT1 mutant mice exhibit an increased incidence of

cancer [77].

The apurinic/apyrimidinic endonuclease 1 (APE1) plays a

central role in the repair of oxidized and alkylated bases in

mammalian genomes via the BER pathway. APE1 also functions

as redox effector factor 1 for several transcription factors, includ-

ing activator protein-1 (AP-1), HIF1a, and p53 [78]. Importantly,

both repair and transcriptional function (coactivator and core-

pressor) of APE1 are modulated by acetylation in redox-

dependent and redox-independent mechanisms [79]. It has also

been shown that APE1 is a target of SIRT1-mediated deacetyla-

tion, and the administration of resveratrol increases the activity of

this important BER enzyme [80]. Along with APE1, human 8-

oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glyco-

sylase for excision of 7,8-dihydro-8-oxoguanine (8-oxoG) and

ring-opened fapyguanine. OGG1 has been shown to be acetylated

by p300/CBP at lysines 338 and 341, which results in a significant

increase in its activity [81]. We have recently demonstrated that

Ac-OGG1 is present in human skeletal muscle and rat tissues, and

the level of acetylation decreases with aging, whereas a parallel

pattern was found for SIRT1 activity [82,83]. Moreover, we have

shown that resveratrol administration decreases the acetylation

level of OGG1 and ablation of SIRT1 by siRNA-increased levels of

Ac-OGG1. This finding suggests that SIRT1 is counteracted by

OGG1 (Sarga, Q3Z. Radak, and I. Boldogh, unpublished observation).

It has been recently shown that the OGG1–8-oxoG complex

interacts with and catalyzes GDP–GTP exchange in the canonical

Ras family GTPases H-, K-, and N-Ras. These data imply that in the

presence of 8-oxoG base, OGG1 acts as a guanine nucleotide
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Fig. 2. Sirtuins are involved in a complex way in redox regulation. By the deacetylation of transcription factors, such as p53, FOXOs, NF-kB, and PGC-1a, they modulate the

transcription of pro- and antioxidant genes, mitochondrial biogenesis, activity of oxidative damage-repairing enzymes, and chromatin structure.
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exchange factor [84]. In turn, Ras–GTP via Raf1 (v-raf-1 murine

leukemia viral oncogene homolog 1) phosphorylates the mitogen-

activated kinases MEK1,2/ERK1, which may lead to ROS produc-

tion. In addition to BER, NER is also modulated by sirtuins,

because the xeroderma pigmentosum group A is deacetylated

and suppressed by SIRT1 [85,86]. Moreover, it was also shown

that human cancers have decreased levels of SIRT1, and SIRT1

mutant mice exhibited an increased incidence of cancer [77].

Sirtuins in protein stability and cellular stress response

Housekeeping of oxidative stress and damage is crucial in

redox balance as it affects the fate of the cells. A group of genes

involved in preserving cellular homeostasis during stress condi-

tions, called vitagenes, and sirtuins, among others, are involved in

a wide spectrum of cellular defense [14,87,88]. Indeed, one of the

ways by which sirtuins regulate the stress response is through

protein stability, which can readily affect the levels of oxidatively

modified/damaged proteins [89]. One of the ways by which SIRT1

protects cells from oxidative stress is its involvement in the

integrated stress response pathway via eukaryotic initiation

factor 2a (eIF2a). During stress, cells suppress the levels of

protein synthesis and mobilize most of the available sources to

cope with stress [90], and the reduction in eIF2–GTP levels leads

to a general reduction in global protein synthesis. It turns out that

SIRT1 interacts with mediators of eIF2a dephosphorylation,

suggesting a role for SIRT1 in the eIF2a-related early stress

response [90], which partly depends on the NAD:NADH ratio.

Cellular stress response is also mediated by heat shock

transcription factor 1 (HSF1), which when acetylated negatively

regulates DNA binding. On the other hand, SIRT1-mediated

deacetylation of HSF1 enhances its binding to the heat shock

protein 70 promoter by maintaining HSF1 in a deacetylated, DNA-

binding-competent state [91]. This finding established the role of

SIRT1 in the heat shock response and longevity, because HSF1 has

been linked to longer life spans [92], as well as in protein stability,

because heat shock proteins are important modulators of protein

degradation. Indeed, the effect of acetylation on protein stability

is another acting point in the cellular stress response by which

redox balance is supervised by sirtuins [82,93–96].

The role of acetylation and deacetylation of protein stability has

been reviewed by others [97,98]. One of the first proteins for which

acetylation was linked to stability was p53 [47,99]. Acetylation of

lysine residues prevents ubiquitination of the given residues, thus

hampering signaling for proteolytic degradation [98]. Indeed,

inhibition of SIRT1 by nicotinamide decreased the polyubiquitina-

tion of FOXO3 and hence the protein levels of this transcription

factor [96]. The activation of SIRT1 resulted in enhanced degrada-

tion of FOXO3 by the proteasome system. Aging results in a loss of

the activity of SIRT1, which is associated with increased levels of

lysine acetylation in rat brain and skeletal muscle [42,82,100]. The

level of acetylated lysine residues correlated well with that of

carbonylation, which may mean that acetylated lysine could not

have been ubiquitinated and degraded by proteasomes. If this

happens, the half-life of proteins increases, which is believed to

take place with aging, resulting in the enhanced accumulation of

damaged proteins and consequently decreased physiological func-

tion [101]. However, acetylation of nonhistone proteins also takes

place in a very selective manner [102].

Acetylation of histone residues by sirtuins alters the transcrip-

tion from genes that are involved in redox homeostasis (Fig. 3).

For instance, SIRTs 1–3 and 6 are involved in shaping chromatin

structure, and the well-known target of SIRT1 deacetylation is the

acetylated histone H3 lysine 9, which is a precausative step

toward the methylation of the same lysine residue by the histone

methyltransferase suppressor of variegation (Suv) 39h1 [103].

SIRT1 preserves pericentromeric heterochromatin via stabiliza-

tion of Suv39h1 by preventing the polyubiquitination of lysine 87
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Fig. 3. Sirtuins regulate the stability of proteins, which in turn would affect cell and organ function. Modulation of DNA repair could be associated with longevity,

metabolic abnormalities, cancer, and aging.
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of this methyltransferase by E3-ubiquitin ligase [104]. The stabi-

lization of Suv39h1 under stress conditions, such as oxidative

stress, results in enhanced protection of chromatin structure.

Sirtuins and mammalian aging

The involvement of sirtuins in the aging of yeast, such as the

silencing of rDNA, is quite different and less complex than that

occurring in mammalian systems. However, even in yeast, the life

extension effects of overexpression of Sir2 have been questioned

recently [27]. It appears that SIRT1 regulates mammalian FOXOs

more than does the bacterial homolog Sir2, and the inhibition of

FOXOs and p53 results in an antiapoptotic process, which is

closely related to the resistance to oxidative stress. Deacetylation

of p53 by SIRT1 attenuates the DNA-binding and transcriptional

activity, whereas deacetylation of FOXOs can result in suppres-

sion of transcription from proapoptotic genes and enhance

activity of those that are involved in oxidative stress resistance

[54]. Therefore, the effects of SIRT1 on these transcription factors

are to promote cell survival in mammals. Recently, it was

reported that mammalian sterile 20-like kinase (MST1) can

inhibit SIRT1 by phosphorylation in response to DNA damage,

which consequently leads to apoptosis through the acetylation of

p53. This observation further supports the key role of SIRT1 in

cellular resistance during oxidative stress [105]. The controlling

role of SIRT1 on p53 can alter redox balance, because the

proapoptotic role of p53 can induce genes involved in ROS

production, and this transcription factor can activate enzymes

in the antioxidant system [106,107]. It is suggested that low

levels of deacetylated p53 suppress cellular levels of ROS, whereas

high levels of acetylated p53 induce ROS production-related

genes (see review in [108]).

In terms of aging, it has been shown that overexpression of

SIRT1 in primary fibroblasts decreased acetylation of p53 and

antagonized PML/p53-induced premature aging of cells in culture

[109]. The question is whether this activity occurs at the level of

the organism in vivo as well. The finding that there is an increase

in the levels of p53, FOXO1, and SIRT1 in the nuclei of cells of old

animals [110] may be indicative of a complex setting in mam-

mals. In sporadic inclusion-body myositis, which is an aging-

associated muscle disease, it was found that deacetylation of p53

was decreased [111]. Aging results in decreased intracellular

levels of NADþ and NAD:NADH ratio in various organs of old

rats, and this finding was associated with decreased activity of

SIRT1 and increased acetylation of p53 [33]. Moreover, aging

processes resulted in a lower activity of complexes I–IV in the

mitochondria and enhanced oxidative DNA damage [33]. In

support, an increase in SIRT1 levels has been shown in skeletal

muscle of aged animals, and this was associated with decreased

activity of the enzyme along with lower levels of NAMPT and

increased levels of oxidative damage [42]. During the aging

process, the level of noncoding microRNA R-34a and microRNA

R-93 is increased in rat liver, and these microRNAs suppress the

activity of specificity protein 1 and Nrf2 transcription factors,

resulting in decreased SIRT1 and microsomal glutathione S-

transferase 1 expression [112]. This posttranslational repression

of SIRT1 and microsomal glutathione S-transferase 1 naturally

results in decreased oxidative defense during aging in the

rat liver.

There is a paucity of these studies on human healthy aging and

sirtuins. SIRT1 plays a role in telomere length, which is used as a

marker to appraise the aging process [113,114]. A single-

nucleotide polymorphism in the SIRT1 gene and another in the

30 flanking region of XRCC6 interfered with the length of the

telomere in human leukocytes and aging [115]. Moreover, it was

also reported that the frequency of the minor allele of SIRT1 was

enhanced in older subjects. Data from human and animal studies

revealed that SIRT1 could modulate and deacetylate endothelial

nitric oxide synthase (eNOS), which in turn resulted in altered NO

production. The acetylation level of aortic eNOS of 30-month-old

rats was many times higher than that of young rats [116]. Sirtinol

was used to inhibit SIRT1 in this study, and it abolished the age-

associated difference in endothelium-dependent dilatation, and

the results gained from the samples of endothelial cells, obtained

from the brachial artery of young and old subjects, confirmed that

in healthy aging SIRT1 could play a role in endothelial dysfunction

[116].

mRNA analysis revealed no age-associated changes in SIRT1

and SIRT3 expression in skeletal muscle in young vs old subjects

[117]. Similar results were obtained in the rat myocardium of

young and old rats [118]. It seems that, as a result of aging, SIRT1

and SIRT6 levels increase in rat skeletal muscle, whereas the

activity of OGG1 is decreased [42]. Interestingly, the SIRT1 levels

in the hippocampus of the same animals decreased as a result of

aging, whereas we found elevated levels of SIRT3 [82]. An

increased level of 8-oxoG in the hippocampus with elevated

levels of OGG1 was observed in aged subjects. However, when

we checked the acetylation level of OGG1, it was found that aging

significantly decreased the Ac-OGG1 content. Therefore, it was

suggested that the drop in OGG1 acetylation could account for the

increased 8-oxoG levels in cellular DNA of hippocampus [82].

We further studied the acetylation pattern of OGG1, and our

unpublished data suggested that SIRT1 interacts with and deace-

tylates OGG1 as in case of APE1.

Analysis of specimens from human brain regions of healthy

and Alzheimer disease (AD) subjects showed that SIRT1 expres-

sion at both the RNA and the protein level is significantly

decreased in the parietal cortex of AD patients, whereas cortical

expression was not affected [119]. Global cognition scores

obtained before death would suggest that the decrease in SIRT1

levels is related to the accumulation of amyloid-b and t in the

cerebral cortex of persons with AD [119]. On the other hand, it

was also reported that in age-related cataracts in healthy older

humans there was a lower level of SIRT1 expression, and the

levels of SIRT1, p53, FOXO3, and FOXO4 were comparable to data

from young subjects [120]. It is also clear that the antiapoptotic

role of SIRT1 can contribute to increased tumor growth [121],

which can be attenuated by SIRT1 inhibitors. The complexity of

SIRT1 in senescence involves stem cell differentiation, which

emphasizes the role of SIRT1 in controversial processes during

aging [122].

Sirtuin knockout and transgenic animal models

Despite drawbacks, knockout animal models offer one of the

most powerful means for studying gene function. There are power-

ful data showing that knockdown or overexpression of sirtuins

results in shorter or longer life spans, respectively, in model

organisms from yeast to mice [4,76], although the information in

the literature is not unequivocal.

It has been reported that in SIRT1 knockout mice, although the

oxidative damage was decreased in the brain, the life span was

shorter, and CR was not effective [123]. In addition, inhibition of

SIRT1 decreased insulin-like growth factor 1 (IGF-1) signaling and

increased resistance against oxidative challenge. According to

that report, SIRT1, under certain physiological conditions,

enhances IGF-1 signaling by deacetylating insulin receptor sub-

strate 2 (IRS2), resulting in Ras/ERK activation, increasing ROS

production and altering redox signaling [123]. Knocking out SIRT1

in mice with A53T a-synuclein mutation decreased, while over-

expression increased, the life span of transgenic mice [124].
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Moreover, in another disease model, which was developed to

mimic Huntington disease, it was found that ablation of SIRT1

caused exacerbation of brain pathology, whereas brain-specific

overexpression of SIRT1 attenuated the consequences of Hunting-

ton disease, partly by the upregulation of brain-derived neuro-

trophic factors leading to enhanced survival [125].

On the other hand, data from another research group indicated

that ablation of SIRT1 resulted in impaired memory, cognitive

function, and spatial learning, and the expression of genes impor-

tant for synaptic plasticity and metabolism was decreased [126]. In

contrast, SIRT1-overexpressing mice showed normal cognitive

functions and learning. It should be pointed out that overexpres-

sion of SIRT1 in striatum and hippocampus, under the control of

the a subunit of Ca2þ–calmodulin-dependent protein kinase II

promoter, decreased glucose transporter type 4 level in skeletal

muscle and increased body fat. This genetic manipulation altered

the performance in an open-field test, through the deacetylation of

IRS2, which induced phosphorylation of IRS2 and ERK1/2 in the

striatum of these mice [127]. SIRT1 knockout mice revealed that

SIRT1 is important to development, and the hyperacetylation of

p53 was observed in SIRT1-ablated models, which may indicate

that SIRT1 is crucial for p53-mediated apoptosis [128]. Indeed, it

has been shown that SIRT1 mutant and p53 mutant mice develop

tumors in multiple tissues, which also emphasizes the possible role

of SIRT1 in the regulation of p53 [77].

It has been reported that SIRT1 knockout mice have greater

mobility; when they were exposed to treadmill running and the

rotarod test, their performance was better than that of wild-type

mice [129]. It would be important to understand how the ablation

of SIRT1 in this model could result in better physical performance.

On the other hand, overexpression of SIRT1 in mice also resulted

in better performance on the rotarod test, and their phenotype

resembled those of mice that are exposed to CR [130]. Therefore,

overall, data from knockout models clearly showed how complex

the role of SIRT1 is in mammalian physiology and how carefully

the knockout data need to be evaluated in terms of SIRT1’s

function. A major problem of these studies is that the proteins

that are targets of SIRT1 are not apparent, in most cases, nor is

how deacetylation of those proteins is mechanistically related to

the outcomes observed.

Regulation of sirtuins by CR and exercise

CR is known to increase mean and maximum life spans, and

regular physical exercise can also enhance mean life span; more-

over, sirtuins are indicated as being involved in both cases.

For example, a number of studies have shown that sirtuins,

especially SIRT1, mediate CR-induced longevity. However, the role

of Sir2 in CR was questioned by Kaeberlein and co-workers

[131,132], but their model used yeast, which differs from mamma-

lian models. When 12-month-old rats were subjected to CR, as 60%

of the daily food allotment, the result was a downregulation of the

IGF-1 pathway and SIRT1-mediated regulation of p53, Ku70, and

FOXO3 [26]. This was one of the first demonstrations of the power-

ful effect of CR on SIRT1-associated signaling. In another rat study, in

which the dietary amino acids, except methionine, were restricted

to 40%, increased SIRT1 levels were found along with unchanged

levels of PGC-1a and of mtDNA damage, but with decreased levels

of mitochondrial protein oxidation [133].

Thioredoxin-interacting protein (TXNIP) has been suggested to

elevate sensitivity to oxidative stress through inhibition of Trx

[134], having an effect opposite to that of sirtuins on life span

[135,136]. Consistently, it has been shown that limited calorie

availability inhibited TXNIP and slightly induced SIRT1, whereas

resveratrol had biphasic effects [137], and its inhibitory role on

TXNIP was mediated through AMPK pathways.

Csiszar and co-workers [138] demonstrated that life-long CR

significantly decreased age-associated vascular dysfunction, oxi-

dative stress, and NF-kB activity. They also showed from a

relating cell culture that inhibition of SIRT1 by silencing RNA

eliminated the beneficial effects of CR on inflammation and

antioxidants, possibly indicating that SIRT1 is actively involved

in the CR-mediated signaling process. Aging results in decreased

protein levels of SIRT1 in the hippocampus [82], and this decrease

can be attenuated by CR [139], which may mean that CR could act

via SIRT1. Studies on cAMP responsive-element binding 1 (CREB1)

knockout mice revealed that CR (given as 60% of the ad libitum

normal diet) decreased SIRT1 levels in the hippocampus and

cortex, whereas in wild-type animals the SIRT1 was upregulated

by CR [140]. That report presented evidence that CR in the brain

was mediated by CREB1, which in turn induced SIRT1 expression,

and suggested that SIRT1-associated metabolic processes played a

role in neuronal plasticity. In addition, SIRT1 is also involved in

the effects of CR in skeletal muscle, because it has been shown

that the transcription factor signal transducer and activator of

transcription 3 is deacetylated and therefore inactivated by SIRT1

during CR, leading to a downregulation of insulin-stimulated

phosphoinositide 3-kinase, resulting in enhanced insulin sensi-

tivity [141]. Moreover, another study reported that SIRT1, via its

interaction with AP-1, promotes macrophage function during CR

[142]. Studies on CR have resulted in some controversial issues on

mitochondrial biogenesis, at least those using experimental

rodents [143,144]. Data from human skeletal muscle provide

evidence that CR can result in enhanced mitochondrial mass

and increased SIRT1 levels [145]. Therefore, it seems to be

supported by a number of papers that CR indeed acts through

SIRT1-controlled molecular processes in mammalian systems.

The effects of exercise, similar to those of CR, appear to be

systemic and complex [146], as it has been shown that both a

single bout of exercise and endurance training result in elevated

levels of SIRT1 protein in the skeletal muscle of rats [147].

Prolonged moderate exercise training resulted in increased SIRT1

levels in rat hearts. Moreover, the results demonstrated an

enhanced content and expression of FOXO3, along with elevated

expression of GADD45 [148]. In addition, this study concluded

that exercise normalizes the aging-associated alteration in heart

and adipose tissue. Similar conclusions were drawn with skeletal

muscle, whereby exercise counterbalanced the age-associated

decline in NAMPT content and decrease in SIRT1 activity [42].

Data indicate that exercise can attenuate the age-associated

decrease in mitochondrial protein synthesis in skeletal muscle

of rats, which included the loss of SIRT1 and PGC-1a levels as well

[149]. Similar data have been reported for mouse liver [150].

Studies using human skeletal muscle have also shown

exercise-related upregulation of NAMPT content [151], an impor-

tant adaptive response to exercise-induced metabolic challenge,

which can help to regulate redox balance through the NAD:NADH

ratio, thus modulating the activities of sirtuins, PARP, and lactate

dehydrogenase. Two weeks of high-intensity interval training in

humans resulted in significant increases in mitochondrial biogen-

esis, increased nuclear PGC-1a content, and increased GLUT4

content, all of which appear indicative of improved insulin

sensitivity of these subjects [152]. A single bout of exercise

increased the SIRT1 expression in young individuals, whereas it

failed to have similar effects on the aged, and, in general, young

subjects responded with greater levels of mRNA expression of

mitochondrial biogenesis-related genes [117].

Exercise appears to increase SIRT1 levels in the hippocampus

[153], but not in the cerebellum [100]. However, data from other

studies have shown that age-associated decreases in brain
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function can be alleviated by regular exercise [82,154]. Moreover,

recent data indicate that the age-induced increases in Ku70 levels

can be attenuated by the combined effects of IGF-1 and exercise

[155]. The protein content of SIRT1 decreased, whereas SIRT3

increased, with aging. Exercise-induced redox and metabolic

challenges and adaptive responses to regular activity lead us to

suggest that sirtuin-mediated metabolic pathways could be

important to mitochondrial biogenesis, fuel availability, antiox-

idant response, and DNA repair.

Conclusion

Sirtuins are master regulators of a wide range of metabolic

processes in mammalian cells, and aging affects sirtuin-associated

molecular pathways. Sirtuins could be on both sides of redox

regulation, because the oxidative stress-related loss of NAD

content would affect their activity. However, by their interactions

with a number of transcription factors that target pro-oxidant and

antioxidant genes, such as p53, NF-kB, PGC-1a, and FOXOs,

sirtuins are not just dependent but also regulatory factors of the

redox state. In addition, the role of sirtuins in oxidative damage

repair is another pathway that could significantly alter the redox

state. Accumulating data suggest that sirtuins, especially SIRT1,

are potential targets for natural and pharmaceutical interventions

into aging processes. Among natural interventions, it seems that

CR and regular physical exercise act through sirtuin-associated

processes, which has promise to improve health.
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