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C-Glucopyranosyl-1,2,4-
triazoles are novel skeletons to 
inhibit glycogen phosphorylase 
in the nanomolar range. 

Best inhibitors of rabbit muscle  R = 4-aminophenyl Ki   0.67 µM 
glycogen phosphorylase b R = 2-naphthyl Ki   0.41 µM 
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Abstract 

O-Perbenzoylated 5-(β-D-glucopyranosyl)tetrazole was reacted with N-benzyl carboximidoyl 

chlorides to give the corresponding 4-benzyl-3-(β-D-glucopyranosyl)-5-substituted-1,2,4-

triazoles. Removal of the O-benzoyl and N-benzyl protecting groups by base catalysed 

transesterification and catalytic hydrogenation, respectively, furnished a series of 3-(β-D-

glucopyranosyl)-5-substituted-1,2,4-triazoles with aliphatic, mono- and bicyclic aromatic, and 

heterocyclic substituents in the 5-position. Enzyme kinetic studies revealed these compounds 

to inhibit rabbit muscle glycogen phosphorylase b: best inhibitors were the 5-(4-

aminophenyl)- (Ki 0.67 µM) and the 5-(2-naphthyl)-substituted (Ki 0.41 µM) derivatives. This 

study uncovered the C-glucopyranosyl-1,2,4-triazoles as a novel skeleton for nanomolar 

inhibition of glycogen phosphorylase. 
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1. Introduction 

 

Type 2 diabetes mellitus (T2DM) is a severe disease with large economic consequences, 

which is significantly under-diagnosed and incompletely treated in the general population [1, 

2]. Control of blood glucose levels is a key objective in treating diabetic patients, who are 

most often prescribed modification of diet and exercise, one or more oral hypoglycaemic 

agents, as well as insulin. In spite of the availability of different classes of hypoglycaemic 

drugs, current treatments are often unable to achieve an intensive degree of blood glucose 

control to reduce effectively the incidence and severity of diabetic complications [3].  

Hepatic glucose output is elevated in type 2 diabetic patients and current evidence 

indicates that glycogenolysis (release of monomeric glucose from the glycogen polymer 

storage form) is an important contributor to the abnormally high production of glucose by the 

liver. Glycogen phosphorylase (GP) is the enzyme responsible for glycogen breakdown to 

produce glucose and related metabolites for energy supply [4]. Due to its key role in the 

modulation of glycogen metabolism, pharmacological inhibition of GP has been regarded as 

an effective therapeutic approach to treating diseases caused by abnormalities in glycogen 

metabolism, first of all T2DM [5-7], but also myocardial [8, 9] and cerebral [10, 11] 

ischemias and tumors [12-15]. Therefore, the study of glycogen phosphorylase inhibitors [16] 

(GPIs) is a continuing challenge for synthetic and medicinal chemistry [17, 18], 

computational chemistry [19], protein crystallography [5, 20], and physiology [21]. The 

biochemical and pharmacological background of this research has been thoroughly 

summarized in several reviews of the past decade, therefore, the reader is kindly referred to 

those papers [4, 22, 23]. 

Several structural classes of GP inhibitors have been reported [5, 17, 18, 24] whose 

binding sites identified in GP include the catalytic site, the purine inhibitory site, the allosteric 
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site, the glycogen storage site, the new allosteric inhibitor site and the lately discovered 

benzimidazole-binding site. The most widely studied group of molecules is that of glucose 

derivatives [7, 25-35] which bind primarily to the active site of GP [36]. The best glucose 

analogue GPIs are glucopyranosylidene-spiro-heterocycles (Ki 0.16-0.63 µM) and N-acyl-N’-

β-D-glucopyranosyl ureas (Ki 0.35-0.7 µM) exhibiting submicromolar inhibition [26] of rabbit 

muscle GPb, the prototype of GPs [20]. Glucopyranosylidene-spiro-thiohydantoin (Ki 29.8 

µM against rat liver GP) was shown to exert considerable in vivo blood sugar diminishing 

activity [37], and an N-acyl-N’-β-D-glucopyranosyl urea derivative improved glucose 

tolerance and had remarkable effects in rearranging hepatic metabolism in diabetic mice [38]. 

N-Acyl-β-D-glucopyranosylamines (compounds I in Chart 1) were among the first 

synthetic glucose analogue inhibitors of GP [39] and several derivatives modified in the acyl 

groups were investigated [40-44]. In this series N-(2-naphthoyl)-β-D-glucopyranosylamine 

(IC ) was the best inhibitor [41], which also served as a lead structure for bioisosteric 

replacements [45-48]. X-Ray crystallographic studies on several RMGPb-I  complexes 

showed the presence of a H-bond between the amide NH and the main chain C=O of His377 

(outline X in Chart 1), and the strong binding was attributed to a large extent to this 

interaction. 

Inserting a 1,2,3-triazole ring in place of the NHCO moiety as in II revealed that I and II 

were equipotent inhibitors [49] and the structural features of the binding determined by X-ray 

crystallography were also very similar [42]. Oxadiazoles III-V, prepared in each possible 

variant [50, 51], showed that the constitution of the heterocycle had a strong bearing on the 

inhibition: the most efficient inhibitor among these compounds was 5-(β-D-glucopyranosyl)-

3-(2-naphthyl)-1,2,4-oxadiazole (IVC ) which had a similar efficiency to that of IC. Other 

studies with C-glucopyranosyl heterocycles showed that benzothiazole VI was much less 

efficient than benzimidazoles VII and VIII  [33, 52]. An X-ray crystallographic study of the 
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RMGPb–VII  complex revealed the presence of a specific H-bond between NH of the 

heterocycle and the main chain C=O of His377 [53] (outline XI in Chart 1), and the stronger 

binding of VII was explained by this interaction which cannot exist in the case of VI.  

Based on these structure–activity relationships it was anticipated that C-glucopyranosyl 

1,2,4-triazoles of type IX, non-classical bioisosteres of compounds I-V, could be more 

efficient GPIs. Very recently we have demonstrated in a preliminary communication that IX 

(R = 2-naphthyl, Ki 0.41 µM) indeed fulfills these expectations [54]. In this paper we disclose 

a new synthesis and structure-activity relationships of IX with a wide range of substituents R.  

 
Chart 1. 
 

In the literature C-glycopyranosyl-1,2,4-triazoles are represented by some 1,3,5-

trisubstituted derivatives obtained from glycosyl cyanides with 1-aza-2-azoniaallene salts [56] 

or with hydrazonoyl chlorides in the presence of Yb(OTf)3 [57]. 3-Glycopyranosyl-5-

substituted-1,2,4-triazoles IX have been unknown until our very recent preliminary 

communication describing the synthesis of these compounds by acylation of N1-tosyl-C-

(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)formamidrazone followed by N- and/or O-

deprotection [54]. However, this synthetic sequence was rather long (5-6 steps from the 

corresponding glucosyl cyanide) and complicated by the removal of the N-tosyl moiety from 

the heterocycle. Therefore, a more straightforward synthesis of the target compounds has been 

sought for and accomplished by the ring transformation of 5-(2,3,4,6-tetra-O-benzoyl-β-D-

glucopyranosyl)tetrazole.  
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2. Results and Discussion 

 

2.1. Syntheses 

To select a suitable synthetic pathway towards compounds IX a retrosynthetic analysis 

for the construction of the 1,2,4-triazole ring was carried out taking into account 1,3-dipolar 

cycloadditions (Scheme 1). It was envisaged that synthetic methods [58] for 1,3,5-

trisubstituted-1,2,4-triazoles [59, 60] with a protecting group as the 1-substituent could be 

applied. Given the tautomeric nature of this heterocycle three N-protected isomers may exist 

whose disconnections A and B refer to cycloadditions between nitrilimines and nitriles. 

Following route A the known glucosyl cyanide and 2,5-disubstituted-tetrazoles or N-protected 

hydrazones or their halides would have been the necessary starting compounds, however, this 

possibility was ruled out due to the costly reagents and catalysts. For the analogous route B 

precursors of the intermediate C-glucosyl-nitrilimine would have been required which are 

unknown in the literature. Therefore, our attention turned to disconnection C, actually a 

variant of B, which needed the relatively easily available C-glucosyl-tetrazole and imidoyl-

halides. The analogous disconnection C’ (not shown in details) was also discarded because of 

the necessity to prepare a series of tetrazoles and lack of the glucose based precursor of the 

imidoyl-halide. 

 
Scheme 1. 
 

Syntheses of the target compounds were started by the preparation of O-protected C-

glucopyranosyl-tetrazole 1 (Table 1) from 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl 

cyanide [61] according to our recent procedure [27]. N-Benzyl arenecarboxamides 2, obtained 

from the corresponding acid chloride and benzylamine, were converted to imidoyl chlorides 

by SOCl2 which were then reacted without purification with tetrazole 1 in a one-pot fashion to 
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give 4-benzyl-1,2,4-triazole derivatives 3. The O-benzoyl protecting groups were removed by 

the Zemplén method to give 4. Subsequent catalytic hydrogenation gave fully deprotected C-

glucopyranosyl-1,2,4-triazoles 6d-g,i,m,p,q. Several O-perbenzoylated 3-glucopyranosyl-5-

substituted derivatives 5 were obtained in an alternative synthetic pathway published recently 

[62], and these compounds were also converted to the corresponding unprotected 6a-

d,h,j,l,n,q,r  by the Zemplén protocol. Amino compounds 6k and 6o were obtained from the 

corresponding nitro derivatives 6j and 6n, respectively, by catalytic hydrogenation.  

 
Table 1. 
 

 

2.2. Enzyme kinetic studies 

The new compounds were assayed against rabbit muscle glycogen phosphorylase b as 

described in earlier publications [40, 63], and the results are collected in Table 2.  

Compounds 6a-c with aliphatic substituents proved weak inhibitors and were much less 

efficient than the corresponding „parent” amides I (shown in Chart 1; for R = CH3: Ki 32 µM 

[39]; R = C(CH3)3: IC50 7.5 mM [41]; R = CH2OH: Ki 18 [42] or 20 [49] µM), however, the 

trend in the strength of inhibition remained the same (t-butyl derivatives were the less 

efficient followed by the methyl and hydroxymethyl compounds in both series).  

Appending a phenyl substituent to the heterocycle as in 6d resulted in a significantly 

better inhibitor. A comparison to the corresponding amide I (R = C6H5: Ki 81 [39] or 144 

[40]) indicated more than an order of magnitude stronger inhibition by the triazole, and this 

strengthening was higher than those observed with the aliphatic amide-triazole pairs. 

Introduction of substituents in the 4-position of the phenyl ring brought about large changes in 

the inhibition. The 4-tolyl derivative 6e was ~4 times better than 6d, and comparing it to the 

relevant amide I (R = 4-CH3-C6H4: IC50 4.5 mM [41]) revealed a very large increase of the 
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binding strength in favour of the triazole. The bulky 4-t-butyl substituent in 6f caused a 

significant weakening of the inhibition. The 4-trifluoromethyl derivative 6g proved also a 

weak inhibitor, and this was surprising especially in the light of the similar size of CH3 (6e) 

and CF3 (6g). The presence of a phenolic hydroxyl group in position 4 (6h) made again a 

good inhibitor, and the 4-methoxy compound 6i proved slightly better and comparable to 6e. 

Introduction of the 4-nitro substituent weakened the binding in comparison to 6d, however, 

the 4-amino derivative 6k was inhibiting in the submicromolar range. This may reveal the 

significance of a basic group in making contacts to the relevant parts of the enzyme. A 

carboxylic acid function in the 4-position (6l) was fully detrimental for the binding and this 

may be at least in part due to the size of this group (compare with the slightly acidic 6h).  

Multiple substitutions in the phenyl ring (6m-p) resulted in generally weaker inhibitors, 

although the importance of the basic substituents was corroborated by the diamino derivative 

6o showing the highest efficiency within this group of inhibitors.  

The 2-naphthyl compound 6q proved the best inhibitor of the whole series, and its 

nanomolar inhibition constant rendered this derivative among the most efficient glucose 

analogue inhibitors of GP. Comparing 6q to the corresponding amide I (R = 2-naphthyl: Ki 10 

[41] or 13 [42]) indicates a ~25-30-fold stronger binding for the triazole.  

The 2-pyridyl moiety of 6r was disadvantegous for the inhibition (a similar tendency was 

observed in the N-acyl-N’-β-D-glucopyranosyl urea series [24]).  

A comparison of the inhibitory potency of these triazole derivatives clearly shows them 

to be superior to the corresponding oxadiazoles (III-V  in Chart 1), as well. For the directly 

comparable pairs of 1,2,4-triazoles 6 and the best 1,2,4-oxadiazoles IV the increase of the 

efficiency is in the 9-29-fold range for the phenyl and 2-naphthyl substituted derivatives, 

respectively. 
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Further studies to understand the binding peculiarities of this series of GPIs by molecular 

dockings and X-ray crystallography are in progress and will be disclosed in due course. 

 
Table 2. 
 

 

3. Conclusion 

 

A new synthetic sequence has been elaborated for the preparation of 3-(β-D-

glucopyranosyl)-5-substituted-1,2,4-triazoles by converting 5-(2,3,4,6-tetra-O-benzoyl-β-D-

glucopyranosyl)tetrazole with N-benzyl carboximidoyl chlorides into O-perbenzoylated 4-

benzyl-3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles and subsequent O- and N-

deprotection. These triazole derivatives with aliphatic, phenyl, substituted phenyl, 2-naphthyl, 

and 2-pyridyl substituents in the 5-position were evaluated as inhibitors of rabbit muscle 

glycogen phosphorylase b. Compounds with aliphatic groups exhibited weak inhibition, while 

several phenyl derivatives were low micromolar inhibitors. Nanomolar inhibition was 

observed for the 5-(4-aminophenyl)- and the 5-(2-naphthyl)-substituted compounds of the 

series rendering these derivatives to be among the best glucose derived GPIs with similar 

efficiency as those of glucopyranosylidene-spiro-heterocycles and N-acyl-N’-β-D-

glucopyranosyl ureas.  
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4. Experimental 

 

4.1. General methods 

Melting points were measured on a Kofler hot-stage and are uncorrected. Optical rotations 

were determined with a Perkin–Elmer 241 polarimeter at rt. NMR spectra were recorded with 

Bruker 360 (360/90 MHz for 1H/ 13C) spectrometer. Chemical shifts are referenced to Me4Si 

(1H), or to the residual solvent signals (13C). Mass spectra were recorded on a Bruker Micro 

TOF-Q mass spectrometer. Microanalyses were performed on an Elementar Vario Micro 

Cube. TLC was performed on DC-Alurolle Kieselgel 60 F254 (Merck), and the plates were 

visualised under UV light and by gentle heating. For column chromatography Kieselgel 60 

(Merck, particle size 0.063–0.200 mm) was used. 5-(2’,3’,4’,6’-Tetra-O-benzoyl-β-D-

glucopyranosyl)tetrazole [27] (1) and 5-substituted-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-

glucopyranosyl)-1,2,4-triazoles [62] 5a,b,d,j,n,q,r,t,u were prepared according to published 

procedures.  

 

4.2. General procedure I for the synthesis of N-benzyl-arenecarboxamides (2) 

In a flame dried three necked bottle, equipped with a CaCl2 tube, benzylamine (1 mL, 9.16 

mmol) and TEA (1.53 mL, 11 mmol, 1.2 equiv.) was dissolved in the appropriate anhydrous 

solvent (5 mL, CH2Cl2, THF or toluene, depending on the solubility of acid chloride). To this 

stirred mixture a solution (in 5 mL anhydrous CH2Cl2, THF or toluene) of an acid chloride 

(9.16 mmol, 1 equiv.) was added dropwise at 0°C. The mixture was slowly allowed to reach 

rt, stirred for 2 hours, then diluted, and extracted with water. The organic phase was dried 

over MgSO4, the solvent was evaporated, and the crude product was crystallised from EtOH. 
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Yields of the synthesized derivatives: N-benzyl-benzamide [65] (2d, 64 %), N-benzyl-4-

methylbenzamide [66] (2e, 81 % ), N-benzyl-4-tert-butylbenzamide [67] (2f, 97 %), N-

benzyl-4-trifluoromethylbenzamide [68] (2g, 76 %), N-benzyl-4-methoxybenzamide [66] (2i, 

67 %), N-benzyl-4-nitrobenzamide [69] (2j, 77 % ), N-benzyl-3,5-dimethylbenzamide [67] 

(2m, 81 %), N-benzyl-3,4,5-trimethoxybenzamide [70] (2p, 98 %), N-benzyl-naphthalene-2-

carboxamide [71] (2q, 74 %), N-benzyl-(4-benzyloxycarbonyl)-benzamide (2s, 56%, mp: 

127-129 °C). Physical as well as NMR data of the title compounds are in agreement with 

those reported in the cited literature. 

 

4.3. General procedure II for the synthesis of 4-benzyl-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-

glucopyranosyl)-5-substituted-1,2,4-triazoles (3) 

An N-benzyl-arenecarboxamide (2, 4.63 mmol, 3 equiv.) was dissolved in thionyl chloride 

(20 mL), and refluxed for 2 hours. After distilling off the excess of thionyl chloride under 

diminished pressure, 20 mL of anhydrous toluene was evaporated from the residue. 5-

(2’,3’,4’,6’-Tetra-O-benzoyl-β-D-glucopyranosyl)tetrazole[27, 52] (1, 1.54 mmol, 1 equiv.) 

and anhydrous toluene or xylene (20 mL) were added, the mixture was heated to reflux 

temperature, and the reaction was monitored by TLC (1:1 EtOAc-hexane). After total 

consumption of the tetrazole the solvent was removed and the residue was purified by column 

chromatography. 

 

4.4. General procedure III for removal of O-acyl protecting groups by the Zemplén 

protocol 

An O-acylated compound was dissolved in dry MeOH (5 mL/100 mg, a few drops of CHCl3 

were added in case of incomplete dissolution) and a catalytic amount of a NaOMe solution (1 

M in MeOH) was added. The mixture was kept at rt and monitored by TLC (7:3 CHCl3-
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MeOH). When the starting material was consumed the mixture was neutralised with a cation 

exchange resin Amberlyst 15 (H+ form) (or with acetic acid), then the resin was filtered off 

and the solvent removed. The residue was purified by column chromatography. 

 

4.5. General procedure IV for the removal of benzyl protecting groups 

A benzylated compound (0.5 mmol) was dissolved in anhydrous MeOH (25 mL), 10% Pd(C) 

(20 mg) was added, and H2 gas was bubbled through the reaction mixture at 50°C. After 

disappearance of the starting material (monitored by TLC, 7:3 CHCl3-MeOH) the reaction 

mixture was filtered through a pad of celite, the solvent was evaporated, and the residue was 

purified by column chromatography. 

 

4.6. 4-Benzyl-5-phenyl-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)-1,2,4-triazole 

(3d) 

From tetrazole 1 (2.00 g, 3.08 mmol) and N-benzyl-benzamide (2d, 1.95 g, 9.25 mmol) in 

toluene according to General procedure II. Reaction time: 16 hours. Purified by column 

chromatography (1:1 EtOAc-hexane) to yield 1.73 g (69 %) colourless syrup. Rf: 0.15 (1:1 

EtOAc-hexane); [α]D = −25 (c 0.50, CHCl3); 
1H NMR (CDCl3) δ (ppm): 7.95-6.97 (30H, m 

aromatics), 5.99-5.96 (2 x 1H, m, H-2’ and/or H-3’ and/or H-4’), 5.67 (1H, pseudo t, J = 10.6, 

9.3 Hz, H-2’ or H-3’ or H-4’), 5.63 (1H, d, J = 15.9 Hz, PhCH2), 5.53 (1H, d, J = 15.9 Hz, 

PhCH2), 5.16 (1H, d, J = 9.3 Hz, H-1’), 4.49 (1H, dd, J = 12.2, 2.4 Hz, H-6’a), 4.33 (1H, dd, J 

= 12.2, 5.4 Hz, H-6’b), 4.19 (1H, ddd, J = 9.6, 5.4, 2.4 Hz, H-5’); 13C NMR (CDCl3) δ (ppm): 

165.9, 165.7, 165.1, 164.8 (CO), 156.7, 149.8 (triazole C-3, C-5), 135.4-126.2 (aromatics), 

76.8, 73.8, 73.2, 70.0, 69.1 (C-1’ – C-5’), 62.9 (C-6’), 48.1 (PhCH2). Anal: Calcd for 

C49H39N3O9 (813.85): C, 72.31; H, 4.83; N, 5.16. Found: C, 72.47; H, 4.88; N, 5.03. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

4.7. 4-Benzyl-5-(4-methylphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)-

1,2,4-triazole (3e) 

From tetrazole 1 (0.50 g, 0.77 mmol) and N-benzyl-4-methylbenzamide (2e, 0.52 g, 2.31 

mmol) in m-xylene according to General procedure II. Reaction time: 3 hours. Purified by 

column chromatography (1:1 EtOAc-hexane) to yield 0.32 g (49 %) brownish foam. Rf: 0.20 

(1:1 EtOAc-hexane); [α]D = −4 (c 0.50, CHCl3); 
1H NMR (CDCl3) δ (ppm): 7.97-6.98 (29H, 

m, aromatics), 6.04, 5.98, 5.68 (3 x 1H, 3 pseudo t, J = 9.5, 9.5 Hz in each, H-2’, H-3’, H-4’), 

5.50 (1H, d, J = 16.5 Hz, PhCH2), 5.31 (1H, d, J = 16.5 Hz, PhCH2), 5.13 (1H, d, J = 9.5 Hz, 

H-1’), 4.48 (1H, dd, J = 12.4, 2.6 Hz, H-6’a), 4.34 (1H, dd, J = 12.4, 5.4 Hz, H-6’b), 4.20 

(1H, ddd, J = 9.8, 5.4, 2.6 Hz, H-5’), 2.33 (3H, s, CH3); 
13C NMR (CDCl3) δ (ppm): 165.8, 

165.7, 165.0, 164.6 (CO), 156.7, 149.7 (triazole C-3, C-5), 140.2, 135.4, 133.4-123.6 

(aromatics), 76.6, 73.8, 73.0, 69.9, 69.0 (C-1’ – C-5’), 62.8 (C-6’), 47.9 (PhCH2), 21.3 (CH3). 

Anal: Calcd for C50H41N3O9 (827.88): C, 72.54; H, 4.99; N, 5.08. Found: C, 72.65; H, 4.88; 

N, 5.20. 

 

4.8. 4-Benzyl-5-(4-tert-butylphenyl)-3-(2’,3’,4’,6’-tetra- O-benzoyl-β-D-glucopyranosyl)-

1,2,4-triazole (3f)  

From tetrazole 1 (0.70 g, 1.08 mmol) and N-benzyl-4-tert-butylbenzamide (2f, 0.93 g, 3.23 

mmol) in m-xylene according to General procedure II. Reaction time: 3 hours. Purified by 

column chromatography (1:1 EtOAc-hexane) to yield 0.57 g (61 %) yellow solid. Mp: 231-

233 °C; Rf: 0.28 (1:1 EtOAc-hexane); [α]D = −43 (c 0.37, CHCl3);
1H NMR (CDCl3) δ (ppm): 

7.97-7.00 (29H, m, aromatics), 6.00, 5.97, 5.65 (3 x 1H, 3 pseudo t, J = 9.6, 9.6 Hz in each, 

H-2’, H-3’, H-4’), 5.51 (1H, d, J = 16.5 Hz, PhCH2), 5.33 (1H, d, J = 16.5 Hz, PhCH2), 5.11 

(1H, d, J = 9.6 Hz, H-1’), 4.49 (1H, dd, J =12.2, 1.9 Hz, H-6’a), 4.32 (1H, dd, J =12.2, 5.3 

Hz, H-6’b), 4.17 (1H, ddd, J =9.6, 5.2, 1.9 H-5’), 1.29 (9H, s, C(CH3)3); 
13C NMR (CDCl3) δ 
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(ppm): 165.9, 165.7, 165.1, 164.7 (CO), 156.7, 153.4 (triazole C-3, C-5), 149.7, 135.5, 133.5-

123.7 (aromatics), 76.7, 73.9, 73.1, 69.9, 69.1 (C-1’ – C-5’), 62.9 (C-6’), 48.0 (PhCH2), 34.2 

(C(CH3)3), 31.1 (C(CH3)3). Anal: Calcd for C53H47N3O9 (869.95): C, 73.17; H, 5.45; N, 4.83. 

Found: C, 73.11; H, 5.36; N, 4.91. 

 

4.9. 4-Benzyl-5-(4-trifluoromethylphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-

glucopyranosyl)-1,2,4-triazole (3g) 

From tetrazole 1 (0.60 g, 0.93 mmol) and N-benzyl-4-trifluoromethylbenzamide (2g, 0.78 g, 

2.78 mmol) in toluene according to General procedure II. Reaction time: 16 hours. Purified 

by column chromatography (1:4 → 1:1 EtOAc-hexane) to yield 0.72 g (88 %) white solid. 

Mp: 213-215 °C; [α]D = −26 (c 0.54, CHCl3); 
1H NMR (CDCl3) δ (ppm): 7.94-6.95 (29H, m, 

aromatics), 6.06-5.98 (2 x 1H, m, H-2’ and/or H-3’ and/or H-4’), 5.70 (1H, pseudo t, J = 9.2, 

9.2 Hz, H-2’ or H-3’ or H-4’), 5.60 (1H, d, J = 16.4 Hz, PhCH2), 5.29 (1H, d, J = 16.4 Hz, 

PhCH2), 5.21 (1H, d, J = 8.8 Hz, H-1’), 4.50 (1H, dd, J = 12.3, < 1 Hz, H-6’a), 4.34 (1H, dd, J 

= 12.3, 4.8 Hz, H-6’b), 4.23 (1H, ddd, J = 9.2, 4.8, < 1 Hz, H-5’); 13C NMR (CDCl3) δ (ppm): 

165.8, 165.7, 165.1, 164.8 (CO), 155.4, 150.3 (triazole C-3, C-5), 134.9-125.0 (aromatics), 

132.0 (q, 2J(C, F) = 34.6 Hz, C-CF3), 123.5 (q, 1J(C, F) = 271.3 Hz, CF3), 76.8, 73.7, 73.2, 69.9, 

68.9 (C-1’ – C-5’), 62.7 (C-6’), 48.2 (PhCH2). Anal: Calcd for C50H38F3N3O9 (881.85): C, 

68.10; H, 4.34; N, 4.77. Found: C, 68.23; H, 4.41; N, 4.63. 

 

4.10. 4-Benzyl-5-(4-methoxyphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)-

1,2,4-triazole (3i) 

From tetrazole 1 (1.0 g, 1.54 mmol) and N-benzyl-4-methoxybenzamide (2i, 1.12 g, 4.64 

mmol) in m-xylene according to General procedure II. Purified by column chromatography 

(1:1 → 2:1 EtOAc-hexane) to yield 0.81 g (62 %) white amorphous solid. Rf: 0.45 (2:1 
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EtOAc-hexane); [α]D = −19 (c 0.55, CHCl3); 
1H NMR (CDCl3) δ (ppm): 7.98-6.98 (27H, m, 

aromatics); 6.87 (2H, d, J = 8.8 Hz, aromatics), 6.06-5.91 (2 x 1H, m, H-2’ and/or H-3’ and/or 

H-4’), 5.65 (1H, pseudo t, J = 9.6, 9.6 Hz, H-2’ or H-3’ or H-4’), 5.50 (1H, d, J =16.6 Hz, 

PhCH2), 5.29 (1H, d, J = 16.6 Hz, PhCH2), 5.18 (1H, d, J = 9.6, H-1’), 4.48 (1H, dd, J = 12,3, 

2.6 Hz, H-6’a), 4.32 (1H, dd, J = 12,3 and 5.4 Hz, H-6’b), 4.19 (1H, ddd, J = 9.6, 5.4, 2.6 Hz, 

H-5’), 3.79 (3H, s, OMe); 13C NMR (CDCl3) δ (ppm): 166.0, 165.8, 165.2, 164.8 (CO), 161.1 

(MeOPh C-4), 156.7, 149.7 (triazole C-3, C-5), 135.5-126.1, 118.8, 114.2 (2) (aromatics), 

76.7, 73.9, 73.2, 70.0, 69.1 (C-1’ – C-5’), 63.0 (C-6’), 55.3 (OMe), 48.1 (PhCH2). Anal: 

Calcd for C50H41N3O10 (843.87): C, 71.16; H, 4.90; N, 4.98. Found: C, 71.08; H, 5.01; N, 

4.91. 

 

4.11. 4-Benzyl-5-(4-nitrophenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)-

1,2,4-triazole (3j) 

From tetrazole 1 (0.50 g, 0.77 mmol) and N-benzyl-4-nitrobenzamide (2j, 0.59 g, 2.31 mmol) 

in toluene according to General procedure II. Reaction time: 16 hours. Purified by column 

chromatography (1:1 EtOAc-hexane) to yield 0.25 g (38 %) yellow syrup. Rf: 0.28 (1:1 

EtOAc-hexane); [α]D = −41 (c 0.50, CHCl3); 
1H NMR (CDCl3) δ (ppm): 8.18 (2H, d, J = 8.5 

Hz, aromatics), 7.92-7.19 (25H, m, aromatics), 6.95 (2H, d, J = 6.9 Hz, aromatics), 6.05, 6.00, 

5.72 (3 x 1H, 3 pseudo t, J = 9.5, 9.5 Hz in each, H-2’, H-3’, H-4’), 5.66 (1H, d, J = 16.5 Hz, 

PhCH2), 5.31 (1H, d, J = 16.5 Hz, PhCH2), 5.26 (1H, d, J = 9.4 Hz, H-1’), 4.51 (1H, dd, J = 

12.1, < 1 Hz, H-6’a), 4.35 (1H, dd, J = 12.1, 5.1 Hz, H-6’b), 4.27 (1H, ddd, J = 9.5, 5.1, 2.2 

Hz, H-5’); 13C NMR (CDCl3) δ (ppm): 165.8, 165.6, 165.1, 164.9 (CO), 154.6, 150.7 (triazole 

C-3, C-5), 148.6, 134.6-123.7 (aromatics), 76.8, 73.6, 73.2, 70.1, 68.9 (C-1’ – C-5’), 62.7 (C-

6’), 48.4 (PhCH2). Anal: Calcd for C49H38N4O11 (858.85): C, 68.52; H, 4.46; N, 6.52. Found: 

C, 68.64; H, 4.52; N, 6.43. 
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4.12. 4-Benzyl-5-(3,5-dimethylphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-

glucopyranosyl)-1,2,4-triazole (3m) 

From tetrazole 1 (1.0 g, 1.54 mmol) and N-benzyl-3,5-dimethylbenzamide (2m, 1.11 g, 4.64 

mmol) in m-xylene according to General procedure II. Reaction time: 3 hours. Purified by 

column chromatography (1:1 → 2:1 EtOAc-hexane) to yield 0.85 g (66 %) white solid. Mp: 

225-227 °C; Rf: 0.28 (1:1 EtOAc-hexane); [α]D = −19 (c 0.37, CHCl3); 
1H NMR (CDCl3) δ 

(ppm): 7.98-7.00 (28H, m, aromatics), 6.12, 6.05, 5.75 (3 x 1H, 3 pseudo t, J = 9.5, 9.3 Hz in 

each, H-2’, H-3’, H-4’), 5.50 (1H, d, J = 16.4 Hz, PhCH2), 5.32 (1H, d, J = 16.4 Hz, PhCH2), 

5.22 (1H, d, J = 9.6 Hz, H-1’), 4.52 (1H, dd, J = 12.5, 2.6 Hz, H-6’a), 4.39 (1H, dd, J = 12.6, 

5.2 Hz, H-6’b), 4.26 (1H, ddd, J = 9.5, 5.2, 2.6 Hz, H-5’), 2.19 (6H, s, 2 x CH3); 
13C NMR 

(CDCl3) δ (ppm): 165.6, 165.5, 164.9, 164.5 (CO), 156.7, 149.6 (triazole C-3, C-5), 138.0 (2), 

135.3-126.0 (aromatics), 76.4, 73.8, 72.6, 69.8, 68.8 (C-1’ – C-5’), 62.6 (C-6’), 47.9 (PhCH2), 

20.9 (2 x CH3). Anal: Calcd for C51H43N3O9 (841.90): C, 72.76; H, 5.15; N, 4.99. Found: C, 

72.69; H, 5.07; N, 4.86. 

 

4.13. 4-Benzyl-5-(3,4,5-trimethoxyphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-

glucopyranosyl)-1,2,4-triazole (3p) 

From tetrazole 1 (0.50 g, 0.77 mmol) and N-benzyl-3,4,5-trimethoxybenzamide (2p, 0.7 g, 

2.31 mmol) in m-xylene according to General procedure II. Reaction time: 8 hours. Purified 

by column chromatography (3:2 EtOAc-hexane) to yield 0.45 g (65 %) pale yellow syrup. Rf: 

0.15 (3:2 EtOAc-hexane); [α]D = −33 (c 0.60, CHCl3); 
1H NMR (CDCl3) δ (ppm): 7.96-7.00 

(25H, m, aromatics), 6.62 (2H, s, aromatics), 6.10-5.99 (2 x 1H, m, H-2’ and/or H-3’ and/or 

H-4’), 5.70 (1H, pseudo t, J = 9.3, 9.3 Hz, H-2’ or H-3’ or H-4’), 5.55 (1H, d, J = 16.8 Hz, 

PhCH2), 5.31 (1H, d, J = 16.8 Hz, PhCH2), 5.22 (1H, d, J = 9.3 Hz, H-1’), 4.45 (1H, dd, J = 
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10.8, < 1 Hz, H-6’a), 4.32-4.24 (2 x 1H, m, H-6’b, H-5’), 3.83 (3H, s, OMe), 3.59 (6H, s, 2 x 

OMe); 13C NMR (CDCl3) δ (ppm): 165.8, 165.7, 165.0, 164.7 (CO), 156.5, 153.2, 150.0 

(triazole C-3, C-5, 3,4,5-(MeO)3Ph C-3, C-5), 135.7-121.5, 106.1 (2) (aromatics), 76.7, 73.8, 

73.1, 70.0, 68.9 (C-1’ – C-5’), 62.8 (C-6’), 60.8 (OMe), 55.8 (2 x OMe), 48.1 (PhCH2). Anal: 

Calcd for C52H45N3O12 (903.93): C, 69.09; H, 5.02; N, 4.65. Found: C, 69.19; H, 4.96; N, 

4.51. 

 

4.14. 4-Benzyl-5-(2-naphthyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)-1,2,4-

triazole (3q) 

From tetrazole 1 (0.60 g, 0.93 mmol) and N-benzyl-naphthalene-2-carboxamide (2q, 0.73 g, 

2.78 mmol) in toluene according to General procedure II. Reaction time: 3 hours. Purified by 

column chromatography (1:1 → 3:2 EtOAc-hexane) to yield 0.41 g (52 %) pale yellow 

amorphous solid. Rf: 0.25 (1:1 EtOAc-hexane); [α]D = −33 (c 0.50, CHCl3); 
1H NMR (CDCl3) 

δ (ppm): 7.96-7.01 (32H, m, aromatics), 6.08, 6.02, 5.70 (3 x 1H, 3 pseudo t, J = 9.3, 9.3 Hz 

in each, H-2’, H-3’, H-4’), 5.58 (1H, d, J = 15.9 Hz, PhCH2), 5.38 (1H, d, J = 15.9 Hz, 

PhCH2), 5.19 (1H, d, J = 9.3 Hz, H-1’), 4.49 (1H, dd, J = 11.9, 2.6 Hz, H-6’a), 4.35 (1H, dd, J 

= 11.9, 5.3 Hz, H-6’b), 4.23 (1H, ddd, J = 9.3, 5.3, 2.6 Hz, H-5’); 13C NMR (CDCl3) δ (ppm): 

165.8, 165.7, 165.0, 164.7 (CO), 156.6, 149.9 (triazole C-3, C-5), 135.4-123.9 (aromatics), 

76.7, 73.8, 73.0, 69.9, 69.0 (C-1’ – C-5’), 62.8 (C-6’), 48.2 (PhCH2). Anal: Calcd for 

C53H41N3O9 (863.91): C, 73.68; H, 4.78; N, 4.86. Found: C, 73.80; H, 4.69; N, 4.97. 

 

4.15. 4-Benzyl-5-(4-benzyloxycarbonylphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-

glucopyranosyl)-1,2,4-triazole (3s) 

From tetrazole 1 (0.30 g, 0.46 mmol) and N-benzyl-(4-benzyloxycarbonyl)-benzamide (2s, 

0.48 g, 1.39 mmol) in m-xylene according to General procedure II. Reaction time: 3 hours. 
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Purified by column chromatography (1:4 → 1:1 EtOAc-hexane) to yield 0.30 g (69 %) 

brownish foam. Rf: 0.23 (1:1 EtOAc-hexane); [α]D = −26 (c 0.54, CHCl3); 
1H NMR (CDCl3) 

δ (ppm): 8.07-6.94 (34H, m, aromatics), 6.01-5.99 (2 x 1H, m, H-2’ and/or H-3’ and/or H-4’), 

5.68 (1H, pseudo t, J = 9.4, 8.6 Hz, H-2’ or H-3’ or H-4’), 5.57 (1H, d, J = 16.5 Hz, PhCH2), 

5.35 (2H, s, PhCH2), 5.29 (1H, d, J = 16.5 Hz, PhCH2), 5.18 (1H, d, J = 9.2 Hz, H-1’), 4.49 

(1H, dd, J = 12.3, 2.0 Hz, H-6’a), 4.33 (1H, dd, J = 12.3, 5.3 Hz, H-6’b), 4.20 (1H, ddd, J = 

9.5, 5.3, 2.0 Hz, H-5’); 13C NMR (CDCl3) δ (ppm): 165.8, 165.7, 165.5, 165.0, 164.8 (CO), 

155.8, 150.3 (triazole C-3, C-5), 135.6-126.0 (aromatics), 76.8, 73.7, 73.2, 70.0, 68.9 (C-1’ – 

C-5’), 67.0 (COOCH2Ph), 62.8 (C-6’), 48.2 (PhCH2). Anal: Calcd for C57H45N3O11 (947.98): 

C, 72.22; H, 4.78; N, 4.43. Found: C, 72.28; H, 4.91; N, 4.34. 

 

4.16. 4-Benzyl-3-(β-D-glucopyranosyl)-5-phenyl-1,2,4-triazole (4d) 

From triazole 3d (0.82 g, 1.00 mmol) according to General procedure III. Reaction time: 4 

days. Purified by column chromatography (9:1 → 4:1 CHCl3-MeOH) to yield 0.29 g (73 %) 

pale yellow syrup. Rf: 0.55 (7:3 CHCl3-MeOH); [α]D = −15 (c 0.60, MeOH); 1H NMR (D2O) 

δ (ppm): 7.50-6.94 (10H, m, aromatics), 5.31 (2H, s, PhCH2), 4.48 (1H, d, J = 10.6 Hz, H-1’), 

3.98 (1H, pseudo t, J = 9.3, 9.3 Hz, H-2’ or H-3’ or H-4’), 3.67-3.47 (4 x 1H, m, H-6’a, H-

6’b, H-2’ and/or H-3’ and/or H-4’), 3.34 (1H, m, H-5’); 13C NMR (D2O) δ (ppm): 156.9, 

153.2 (triazole C-3, C-5), 135.2, 131.2, 129.3 (2), 129.1 (2), 129.0 (2), 128.3, 126.4 (2), 125.4 

(aromatics), 80.3, 77.2, 72.1, 71.8, 69.4 (C-1’ – C-5’), 60.8 (C-6’), 47.6 (PhCH2). Anal: Calcd 

for C21H23N3O5 (397.42): C, 63.46; H, 5.83; N, 10.57. Found: C, 63.32; H, 5.75; N, 10.68. 

 

4.17. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(4-methylphenyl)-1,2,4-triazole (4e) 

From triazole 3e (0.52 g, 0.63 mmol) according to General procedure III. Reaction time: 2 

days. Purified by column chromatography (9:1 → 4:1 CHCl3-MeOH) to yield 0.25 g (94 %) 
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colourless syrup. Rf: 0.35 (4:1 CHCl3-MeOH); [α]D = −4 (c 0.50, MeOH); 1H NMR (CD3OD) 

δ (ppm): 7.34-7.23 (7H, m, aromatics), 7.00 (2H, d, J = 6.6 Hz, aromatics), 5.41 (1H, d, J = 

16.9 Hz, PhCH2), 5.34 (1H, d, J = 16.9 Hz, PhCH2), 4.34 (1H, d, J = 9.7 Hz, H-1’), 3.92 (1H, 

pseudo t, J = 9.1, 8.9 Hz, H-2’ or H-3’ or H-4’), 3.75 (1H, dd, J = 12.0, < 1 Hz, H-6’a), 3.63-

3.54 (2H, m, H-6’b, H-2’ or H-3’ or H-4’) 3.43-3.72 (2H, m, H-2’ or H-3’ or H-4’, H-5’), 

2.34 (3H, s, CH3); 
13C NMR (CD3OD) δ (ppm): 157.4, 155.0 (triazole C-3, C-5), 142.4, 

136.9, 130.7 (2), 130.1 (2), 130.0 (2), 129.2, 127.5(2), 124.7 (aromatics), 82.5, 79.3, 74.2, 

73.6, 71.1 (C-1’ – C-5’), 62.7 (C-6’), 47.7 (PhCH2), 21.5 (CH3). Anal: Calcd for C22H25N3O5 

(411.45): C, 64.22; H, 6.12; N, 10.21. Found: C, 64.37; H, 6.19; N, 10.10. 

 

4.18. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(4-tert-butylphenyl)-1,2,4-triazole (4f)  

From triazole 3f (0.49 g, 0.56 mmol) according to General procedure III. Reaction time: 1 

day. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.25 g (98 %) yellow 

syrup. Rf: 0.31 (4:1 CHCl3-MeOH); [α]D = −3 (c 0.31, MeOH); 1H NMR (CD3OD) δ (ppm): 

7.45 (2H, d, J = 8.3 Hz, aromatics), 7.35 (2H, d, J =8.3 Hz, aromatics), 7.23 (3H, m, 

aromatics), 6.99 (2H, d, J = 6.4 Hz, aromatics), 5.40 (1H, d, J = 16.8 Hz, PhCH2), 5.33 (1H, 

d, J = 16.8 Hz, PhCH2), 4.31 (1H, d, J = 9.7 Hz, H-1’), 3.89 (1H, pseudo t, J = 9.4, 9.0 Hz, H-

2’ or H-3’ or H-4’), 3.74 (1H, dd, J = 12.1, 2.6 Hz, H-6’a), 3.56 (1H, dd, J = 12.1, 5.3 Hz, H-

6’b), 3.41-3.34 (2H, m, H-2’ and/or H-3’ and/or H-4’), 3.25 (1H, ddd, J = 9.8, < 1 Hz, H-5’), 

1.27 (9H, s, C(CH3)3), 
13C NMR (CD3OD) δ (ppm): 157.3, 155.4, 155.1 (triazole C-3, C-5, 4-

tBuPh C-4), 136.9-124.7 (aromatics), 82.5, 79.3, 74.2, 73.6, 71.1 (C-1’ – C-5’), 62.7 (C-6’), 

48.7 (PhCH2), 35.8 (C(CH3)3), 31.6 (C(CH3)3). Anal: Calcd for C25H31N3O5 (453.53): C, 

66.21; H, 6.89; N, 9.27. Found: C, 66.27; H, 6.78; N, 9.39. 
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4.19. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(4-trifluoromethylphenyl)-1,2,4-triazole (4g) 

From triazole 3g (0.50 g, 0.57 mmol) according to General procedure III. Reaction time: 4 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.16 g (61 %) white 

crystals. Mp: 208-210 °C; [α]D = −18 (c 0.48, MeOH); 1H NMR (CD3OD) δ (ppm): 7.77-7.05 

(9H, m, aromatics), 5.51 (1H, d, J = 16.9 Hz, PhCH2), 5.45 (1H, d, J = 16.9 Hz, PhCH2), 4.48 

(1H, d, J = 9.3 Hz, H-1’), 3.99 (1H, m, H-2’ or H-3’ or H-4’), 3.82 (1H, dd, J = 11.7, < 1 Hz, 

H-6’a), 3.65 (1H, dd, J = 11.7, < 1 Hz, H-6’b), 3.47-3.37 (3 x 1H, m, H-2’ and/or H-3’ and/or 

H-4’, H-5’); 13C NMR (CD3OD) δ (ppm): 156.0, 155.6 (triazole C-3, C-5), 136.6 (aromatics), 

133.4 (q, 2J(C, F) = 31.7 Hz, C-CF3), 131.7-127.0 (aromatics), 125.2 (q, 1J(C, F) = 271.3 Hz, 

CF3), 82.5, 79.3, 74.2, 73.6, 71.1 (C-1’ – C-5’), 62.7 (C-6’), 48.9 (PhCH2). Anal: Calcd for 

C22H22F3N3O5 (465.42): C, 56.77; H, 4.76; N, 9.03. Found: C, 56.69; H, 4.71; N, 9.14. 

 

4.20. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(4-methoxyphenyl)-1,2,4-triazole (4i) 

From triazole 3i (0.80 g, 0.95 mmol) according to General procedure III. Reaction time: 3 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.23 g (68 %) yellow 

syrup. Rf: 0.33 (4:1 CHCl3-MeOH). [α]D = −14 (c 0.35, MeOH); 1H NMR (CD3OD) δ (ppm): 

7.37 (2H, d, J = 8.8 Hz, aromatics), 7.32-7.20 (3H, m, aromatics), 7.05-6.99 (2H, m, 

aromatics), 6.96 (2H, d, J =8.8 Hz, aromatics), 5.42 (1H, d, J = 16.8 Hz, PhCH2), 5.35 (1H, d, 

J = 16.8 Hz, PhCH2), 4.35 (1H, d, J = 9.6 Hz, H-1’), 3.84 (1H, pseudo t, J = 10.8 Hz, 9.6 Hz, 

H-2’ or H-3’ or H-4’), 3.78 (3H, s, OMe), 3,77 (1H, dd, J = 12.4, 2.3 Hz, H-6’a), 3.61 (1H, 

dd, J = 12.4, 5.3 Hz, H-6’b), 3.41-3.29 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’); 13C 

NMR (CD3OD) δ (ppm): 163.0 (4-MeOPh C-4), 157.2, 154.9 (triazole C-3, C-5), 136.9, 

131.6 (2), 130.1 (2), 129.1, 127.5 (2), 119.5, 115.5 (2) (aromatics), 82.4, 79.3, 74.2, 73.6, 71.1 

(C-1’ – C-5’), 62.6 (C-6’) 55.9 (OMe), 48.6 (PhCH2). Anal: Calcd for C22H25N3O6 (427.45): 

C, 61.82; H, 5.90; N, 9.83. Found: C, 61.87; H, 6.02; N, 9.75. 
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4.21. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(4-nitrophenyl)-1,2,4-triazole (4j) 

From triazole 3j (0.23 g, 0.27 mmol) according to General procedure III. Reaction time: 6 

hours. The product precipitated from the reaction mixture and was used after filtration without 

further purification. Yield: 0.11 g (91 %), pale yellow needles. Mp: 153-155 °C; [α]D = −20 (c 

0.50, MeOH); 1H NMR (CD3OD) δ (ppm): 8.29 (2H, d, J = 8.6 Hz, aromatics), 7.75 (2H, d, J 

= 8.6 Hz, aromatics), 7.28 (3H, m, aromatics), 7.05 (2H, d, J = 6.3 Hz, aromatics), 5.54 (1H, 

d, J = 16.8 Hz, PhCH2), 5.48 (1H, d, J = 16.8 Hz, PhCH2), 4.48 (1H, d, J = 9.7 Hz, H-1’), 

3.98 (1H, pseudo t, J = 8.9, 8.9 Hz, H-2’ or H-3’ or H-4’), 3.82 (1H, dd, J = 11.9, < 1 Hz, H-

6’a), 3.65 (1H, dd, J = 12.0, 5.4 Hz, H-6’b), 3.50-3.43 (2 x 1H, m, H-2’ and/or H-3’ and/or H-

4’), 3.72 (1H, m, H-5’); 13C NMR (CD3OD) δ (ppm): 155.9, 155.5 (triazole C-3, C-5), 150.4, 

136.5, 133.9, 131.4 (2), 130.2 (2), 129.3, 127.7 (2), 125.0 (2) (aromatics), 82.6, 79.4, 74.2, 

73.7, 71.2 (C-1’ – C-5’), 62.7 (C-6’), 49.0 (PhCH2). Anal: Calcd for C21H22N4O7 (442.42): C, 

57.01; H, 5.01; N, 12.66. Found: C, 56.87; H, 5.11; N, 12.54. 

 

4.22. 4-Benzyl-5-(3,5-dimethylphenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (4m) 

From triazole 3m (0.64 g, 0.76 mmol) according to General procedure III. Reaction time: 3 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.20 g (62 %) of 

yellow syrup. Rf: 0.66 (7:3 CHCl3-MeOH); [α]D = −8 (c 0.69, MeOH); 1H NMR (CD3OD) δ 

(ppm): 7.25-6.95 (8H, m, aromatics), 5.36 (1H, d, J = 16.8 Hz, PhCH2), 5.29 (1H, d, J = 16.8 

Hz, PhCH2), 4.38 (1H, d, J = 9.7 Hz, H-1’), 3.96 (1H, pseudo t, J = 9.3, 8.9 Hz, H-2’ or H-3’ 

or H-4’), 3.76 (1H, dd, J = 12.2, 1.4 Hz, H-6’a), 3.60 (1H, dd, J = 12.2, 5.4 Hz, H-6’b), 3.48-

3.40 (2H, m, H-2’ and/or H-3’ and/or H-4’), 3.33-3.28 (1H, m, H-5’), 2.18 (6H, s, 2 x CH3); 

13C NMR (CD3OD) δ (ppm): 157.7, 155.2 (triazole C-3, C-5), 140.2 (2), 137.2, 133.4, 130.3 

(2), 129.4, 128.0 (2), 127.9 (2), 127.6 (aromatics), 82.7, 79.5, 74.4, 73.8, 71.3 (C-1’ – C-5’), 
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62.9 (C-6’), 49.1 (PhCH2), 21.6 (2 x CH3). Anal: Calcd for C23H27N3O5 (425.48): C, 64.93; H, 

6.40; N, 9.88. Found: C, 65.02; H, 6.47; N, 9.74. 

 

4.23. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(3,4,5-trimethoxyphenyl)-1,2,4-triazole (4p) 

From triazole 3p (0.42 g, 0.46 mmol) according to General procedure III. Reaction time: 6 

hours. Purified by column chromatography (9:1 → 4:1CHCl3-MeOH) to yield 0.20 g (91 %) 

colourless syrup. Rf: 0.42 (4:1 CHCl3-MeOH); [α]D = −17 (c 0.53, MeOH); 1H NMR 

(CD3OD) δ (ppm): 7.38-7.28 (3H, m, aromatics), 7.12 (2H, d, J = 7.3 Hz, aromatics), 6.69 

(2H, s, aromatics), 5.50 (1H, d, J = 17.1 Hz, PhCH2), 5.42 (1H, d, J = 17.1 Hz, PhCH2), 4.45 

(1H, d, J = 9.6 Hz, H-1’), 4.00 (1H, pseudo t, J = 8.6, 9.6 Hz, H-2’ or H-3’ or H-4’), 3.80 (1H, 

dd, J = 12.0, < 1 Hz, H-6’a), 3.77 (4H, m, H-6’b, 1 x OMe), 3.63 (7H, m, H-6’b, 2 x OMe), 

3.50-3.43 (2 x 1H, m, H-2’ and/or H-3’ and/or H-4’), 3.63 (1H, m, H-5’); 13C NMR (CD3OD) 

δ (ppm): 157.2, 155.2 (triazole C-3, C-5), 154.9 (2), 141.0, 137.4, 130.2 (2), 129.1, 127.4 (2), 

122.8, 107.5 (2) (aromatics), 82.5, 79.3, 74.2, 73.6, 71.1 (C-1’ – C-5’), 62.8 (C-6’), 61.1 

(OMe), 56.6 (2 x OMe), 48.8 (PhCH2). Anal: Calcd for C24H29N3O8 (487.50): C, 59.13; H, 

6.00; N, 8.62. Found: C, 59.22; H, 6.09; N, 8.49. 

 

4.24. 4-Benzyl-3-(β-D-glucopyranosyl)-5-(2-naphthyl)-1,2,4-triazole (4q) 

From triazole 3q (0.50 g, 0.58 mmol) according to General procedure III. Reaction time: 3 

hours. Purified by column chromatography (9:1 CHCl3-MeOH) to yield 0.22 g (85 %) white 

crystals. Mp: 243-245 °C; [α]D = −19 (c 0.51, MeOH); 1H NMR (DMSO-d6) δ (ppm): 8.03-

7.02 (12H, m, aromatics), 5.48 (1H, d, J = 16.9 Hz, PhCH2), 5.42 (1H, d, J = 16.9 Hz, 

PhCH2), 4.35 (1H, d, J = 9.3 Hz, H-1’), 3.86 (1H, pseudo t, J = 9.3, 9.3 Hz, H-2’ or H-3’ or 

H-4’), 3.62 (1H, dd, J = 11.9, < 1 Hz, H-6’a), 3.42 (1H, dd, J = 11.9, 5.3 Hz, H-6’b), 3.31-

3.17 (3 x 1H, m, H-2’ and/or H-3’ and/or H-4’, H-5’); 13C NMR (DMSO-d6) δ (ppm): 154.3, 
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153.3 (triazole C-3, C-5), 136.1-124.6 (aromatics), 81.2, 78.0, 72.3, 71.4, 69.8 (C-1’ – C-5’), 

61.0 (C-6’), 46.8 (PhCH2). Anal: Calcd for C25H25N3O5 (447.48): C, 67.10; H, 5.63; N, 9.39. 

Found: C, 67.02; H, 5.74; N, 9.27. 

 

4.25. 5-(4-Carboxyphenyl)-3-(2’,3’,4’,6’-tetra-O-benzoyl-β-D-glucopyranosyl)-1,2,4-

triazole (5l) 

Triazole 3s (0.56 g, 0.59 mmol) was dissolved in anhydrous EtOAc (35 mL), 10% Pd(C) (55 

mg) was added and H2 was bubbled through the reaction mixture at 50°C. After 

disappearance of the starting material (6 hours, monitored by TLC, 1:1 EtOAc-hexane) the 

reaction was filtered through a pad of celite, the solvent was evaporated, and the residue was 

purified by column chromatography (EtOAc) to yield 0.34 g (75 %) colourless syrup. Rf: 0.58 

(1:3 AcOH-toluene); [α]D = −33 (c 0.48, MeOH); 1H NMR (CD3OD) δ (ppm): 8.02-7.12 

(24H, m, aromatics), 6.24 (1H, pseudo t, J = 9.5, 9.5 Hz, H-3’), 6.08 (1H, pseudo t, J = 9.6, 

9.5 Hz, H-2’), 5.95 (1H, pseudo t, J = 9.5, 9.5 Hz, H-4’), 5.38 (1H, d, J = 9.9 Hz, H-1’), 4.66-

4.58 (3H, m, H-6’a, H-6’b, H-5’); 13C NMR (CD3OD) δ (ppm): 169.2 (COOH), 167.6, 167.2, 

166.7, 166.4 (CO), 134.7-127.4 (aromatics), 77.7 (C-5’), 75.7 (C-3’), 74.8 (C-1’), 73.1 (C-2’), 

71.1 (C-4’), 64.6 (C-6’). Anal: Calcd for C43H33N3O11 (767.74): C, 67.27; H, 4.33; N, 5.47. 

Found: C, 67.14; H, 4.47; N, 5.39.  

 

4.26. 3-(β-D-Glucopyranosyl)-5-methyl-1,2,4-triazole[54] (6a)  

From triazole 5a [62] (0.25 g, 0.38 mmol) according to General procedure III . Reaction time: 

3 days. Purified by column chromatography (7:3 CHCl3-MeOH) to yield 0.07 g (73 %) 

colourless syrup. Rf: 0.55 (1:1 CHCl3-MeOH); [α]D = +21 (c 0.36, MeOH); 1H NMR (D2O) δ 

(ppm): 4.36 (1H, d, J = 9.2 Hz, H-1’), 3.82 (1H, dd, J = 11.9, < 1 Hz, H-6’a), 3.68-3.63 (2H, 

m, H-2’ or H-3’ or H-4’, H-6’b), 3.56-3.43 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’), 2.36 
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(3H, s, CH3); 
13C NMR (D2O) δ (ppm): 159.6, 156.2 (triazole C-3, C-5), 80.8, 77.7, 75.3, 

73.1, 70.1 (C-1’ – C-5’), 61.5 (C-6’), 11.4 (CH3). Anal: Calcd for C9H15N3O5 (245.23): C, 

44.08; H, 6.17; N, 17.13. Found: C, 44.19; H, 6.23; N, 17.01. 

 

4.27. 5-(tert-Butyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (6b)  

From triazole 5b [62] (0.25 g, 0.36 mmol) according to General procedure III . Reaction time: 

2 days. (The mixture was neutralised with acetic acid.) Purified by column chromatography 

(4:1 CHCl3-MeOH) to yield 0.10 g (98 %) colourless syrup. Rf: 0.51 (7:3 CHCl3-MeOH); 

[α]D = –6 (c 0.25, MeOH); 1H NMR (CD3OD) δ (ppm): 4.33 (1H, d, J = 8.6 Hz, H-1’), 3.82 

(1H, dd, J = 11.9, 2.5 Hz, H-6’a), 3.69-3.64 (2H, m, H-2’ or H-3’ or H-4’, H-6’b), 3.50-3.40 

(3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’), 1.34 (9H, s, C(CH3)3); 
13C NMR (CD3OD) δ 

(ppm): 166.6, 162.1 (triazole C-3, C-5), 82.2, 79.3, 76.9, 74.2, 71.2 (C-1’ – C-5’), 62.8 (C-6’), 

33.3 (C(CH3)3) 29.6 (C(CH3)3). Anal: Calcd for C12H21N3O5 (287.31): C, 50.16; H, 7.37; N, 

14.63. Found: C, 50.09; H, 7.52; N, 14.57. 

 

4.28. 3-(β-D-Glucopyranosyl)-5-hydroxymethyl-1,2,4-triazole[54] (6c)  

From triazole 5t [62] (0.18 g, 0.25 mmol) according to General procedure III . Reaction time: 

5 days. (The mixture was neutralised with acetic acid.) Purified by column chromatography 

(3:2 CHCl3-MeOH) to yield 0.06 g (93 %) colourless syrup. Rf: 0.38 (1:1 CHCl3-MeOH); 

[α]D = –3 (c 0.42, MeOH); 1H NMR (CD3OD) δ (ppm): 4.67 (2H, s, CH2), 4.35 (1H, d, J = 

9.2 Hz, H-1’), 3.83 (1H, dd, J = 12.3, < 1 Hz, H-6’a), 3.68-3.59 (2H, m, H-2’ or H-3’ or H-4’, 

H-6’b), 3.49-3.40 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’); 13C NMR (CD3OD) δ (ppm): 

160.5, 160.4 (triazole C-3, C-5), 82.2, 79.2, 76.3, 74.4, 71.2 (C-1’ – C-5’), 62.8 (C-6’), 57.4 

(CH2). Anal: Calcd for C9H15N3O6 (261.23): C, 41.38; H, 5.79; N, 16.09. Found: C, 41.31; H, 

5.91; N, 16.23. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

24 
 

 

4.29. 3-(β-D-Glucopyranosyl)-5-phenyl-1,2,4-triazole[54] (6d) 

A) From triazole 4d (0.20 g, 0.50 mmol) according to General procedure IV. Reaction time: 4 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.13 g (85 %) 

colourless syrup.  

B) From triazole 5d [62] (0.25 g, 0.35 mmol) according to General procedure III. Reaction 

time: 3 days. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.07 g (62 %) 

colourless syrup. Rf: 0.48 (7:3 CHCl3-MeOH); [α]D = +31 (c 0.20, H2O); 1H NMR (D2O) δ 

(ppm): 7.66 (2H, d, J = 7.9 Hz, aromatics), 7.38-7.36 (3H, m, aromatics), 4.45 (1H, d, J = 9.2 

Hz, H-1’), 3.87 (1H, dd, J = 11.9, < 1 Hz, H-6’a), 3.77-3.69 (2H, m, H-2’ or H-3’ or H-4’, H-

6’b), 3.64-3.54 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’); 13C NMR (D2O) δ (ppm): 159.1, 

157.8 (triazole C-3, C-5), 130.9, 129.3 (2), 126.9, 126.5 (2) (aromatics), 80.2, 77.2, 74.7, 72.8, 

69.5 (C-1’ – C-5’), 61.0 (C-6’). Anal: Calcd for C14H17N3O5 (307.30): C, 54.72; H, 5.58; N, 

13.67. Found: C, 54.85; H, 5.45; N, 13.54.  

 

4.30. 3-(β-D-Glucopyranosyl)-5-(4-methylphenyl)-1,2,4-triazole (6e) 

From triazole 4e (0.20 g, 0.49 mmol) according to General procedure IV. Reaction time: 3 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.14 g (90 %) white 

foam. Rf: 0.51 (7:3 CHCl3-MeOH); [α]D = +6 (c 0.45, MeOH); 1H NMR (D2O) δ (ppm): 7.31 

(2H, d, J = 7.9 Hz, aromatics), 6.93 (2H, d, J = 7.9 Hz, aromatics), 4.36 (1H, d, J = 9.5 Hz, H-

1’), 3.83 (1H, dd, J = 11.9, < 1 Hz, H-6’a), 3.72 (1H, dd, J = 11.9, 3.1 Hz, H-6’b), 3.66 (1H, 

pseudo t, J = 9.2, 8.9 Hz, H-2’ or H-3’ or H-4’), 3.59-3.50 (3H, m, H-2’ and/or H-3’ and/or 

H-4’, H-5’), 2.06 (3H, s, CH3); 
13C NMR (D2O) δ (ppm): 159.5, 157.5 (triazole C-3, C-5), 

141.9, 130.0 (2), 126.6 (2), 123.8 (aromatics), 80.5, 77.6, 75.2, 73.3, 69.9 (C-1’ – C-5’), 61.4 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 
 

(C-6’), 21.1 (CH3). Anal: Calcd for C15H19N3O5 (321.33): C, 56.07; H, 5.96; N, 13.08. Found: 

C, 55.98; H, 5.85; N, 12.96. 

 

4.31. 5-(4-tert-Butylphenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole[54] (6f)  

From triazole 4f (0.20 g, 0.44 mmol) according to General procedure IV. Reaction time: 3 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.13 g (79 %) 

colourless syrup. Rf: 0.22 (4:1 CHCl3-MeOH); [α]D = +8 (c 0.55, DMSO); 1H NMR (CD3OD) 

δ (ppm): 7.90 (2H, d, J = 8.0, aromatics), 7.51 (2H, d, J = 8.0, aromatics), 4.48 (1H, d, J = 9.5 

Hz, H-1’), 3.90 (1H, dd, J = 11.5, < 1 Hz, H-6’a), 3.77-3.73 (2H, m, H-2’ or H-3’ or H-4’, H-

6’b), 3.59-3.51 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’), 1.33 (9H, s, C(CH3)3); 
13C NMR 

(CD3OD) δ (ppm): 161.6, 158.1 (triazole C-3, C-5), 154.7, 127.4 (2), 126.9 (2) (aromatics), 

82.0, 79.1, 76.3, 74.3, 71.1 (C-1’ – C-5’), 62.6 (C-6’), 35.7 (C(CH3)3), 31.6 (C(CH3)3). Anal: 

Calcd for C18H25N3O5 (363.41): C, 59.49; H, 6.93; N, 11.56. Found: C, 59.60; H, 6.84; N, 

11.47. MS-ESI (m/z): 386.169 [M+Na]+ 

  

4.32. 3-(β-D-Glucopyranosyl)-5-(4-trifluoromethylphenyl)-1,2,4-triazole (6g) 

From triazole 4g (85 mg, 0.18 mmol) according to General procedure IV. Reaction time: 1.5 

hours. Purified by column chromatography (9:1 CHCl3-MeOH) to yield 52 mg (77 %) white 

amorphous solid. Rf: 0.20 (4:1 CHCl3-MeOH); [α]D = +13 (c 0.52, MeOH); 1H NMR 

(CD3OD) δ (ppm): 8.09 (2H, br s, aromatics), 7.66 (2H, br s, aromatics), 4.40 (1H, d, J = 7.2 

Hz, H-1’), 3.80 (1H, dd, J = 10.7, < 1 Hz, H-6’a), 3.66-3.20 (5H, m, H-2’, H-3’, H-4’, H-5’, 

H-6’b); 13C NMR (CD3OD) δ (ppm): 160.2, 159.1 (triazole C-3, C-5), 134.9, 132.3 (q, 2J(C, F) 

= 34.6 Hz, C-CF3), 127.9 (2), 126.8 (2) (aromatics), 125.6 (q, 1J(C, F) = 271.3 Hz, CF3), 82.3, 

79.2, 75.9, 74.6, 71.2 (C-1’ – C-5’), 62.7 (C-6’). Anal: Calcd for C15H16F3N3O5 (375.30): C, 

48.00; H, 4.30; N, 11.20. Found: C, 48.12; H, 4.35; N, 11.07. 
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4.33. 3-(β-D-Glucopyranosyl)-5-(4-hydroxyphenyl)-1,2,4-triazole (6h)  

From triazole 5u [62] (0.57 g, 0.73 mmol) according to General procedure III . Purified by 

column chromatography (4:1 CHCl3-MeOH) to yield 0.16 g (67%) white solid. Mp: 172-174 

°C; [α]D = +14 (c 0.35, DMSO); 1H NMR (CD3OD) δ (ppm): 7.69 (2H, d, J = 8.2 Hz, 

aromatics), 6.79 (2H, d, J = 8.5 Hz, aromatics), 4.38 (1H, d, J = 9.6 Hz, H-1’) 3.82 (1H, d, J = 

11.0, < 1 Hz, H-6’a), 3.68-3.64 (2H, m, H-2’ or H-3’ or H-4’, H-6’b), 3.53-3.41 (3H, m, H-2’ 

and/or H-3’ and/or H-4’, H-5’); 13C NMR (CD3OD) δ (ppm): 162.1, 160.6, 157.6 (triazole C-

3, C-5, 4-HOPh C-4), 129.2 (2), 126.9, 116.8 (2) (aromatics), 82.0, 79.2, 76.5, 74.4, 71.2 (C-

1’ – C-5’), 62.7 (C-6’). Anal: Calcd for C14H17N3O6 (323.30): C, 52.01; H, 5.30; N, 13.00. 

Found: C, 51.93; H, 5.41; N, 13.12. 

 

4.34. 3-(β-D-Glucopyranosyl)-5-(4-methoxyphenyl)-1,2,4-triazole (6i) 

From triazole 4i (0.24 g, 0.55 mmol) according to General procedure IV. Purified by column 

chromatography (7:3 CHCl3-MeOH) to yield 0.18 g (95 %) colourless syrup. Rf: 0.52 (7:3 

CHCl3-MeOH); [α]D = +12 (c 0.41, MeOH); 1H NMR (CD3OD) δ (ppm): 7.82 (2H, d, J = 8.3 

Hz, aromatics), 6.92 (2H, d, J = 8.3 Hz, aromatics), 4.46 (1H, d, J = 9.5 Hz, H-1’), 3.86 (1H, 

dd, J = 12.1, < 1 Hz, H-6’), 3.75 (5H, m, H-2’ and/or H-3’ and/or H-4’, H-6’b, OMe), 3.60-

3.50 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’); 13C NMR (CD3OD) δ (ppm): 162.6 (4-

MeOPh C-4), 160.1, 159.1 (triazole C-3, C-5), 129.0 (2), 121.5, 115.3 (2) (aromatics), 82.0, 

79.1, 76.3, 74.3, 71.1 (C-1’ – C-5’), 62.7 (C-6’), 55.9 (OMe). Anal: Calcd for C15H19N3O6 

(337.33): C, 53.41; H, 5.68; N, 12.46. Found: C, 53.55; H, 5.63; N, 12.56.  
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4.35. 3-(β-D-Glucopyranosyl)-5-(4-nitrophenyl)-1,2,4-triazole (6j)  

From triazole 5j [62] (0.65 g, 0.85 mmol) according to General procedure III . Reaction time: 

1 day. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.22 g (75 %) pale 

yellow solid. Mp: 166-169 °C; [α]D = +20 (c 1.3, DMSO); 1H NMR (DMSO-d6) δ (ppm): 

8.34 (2H, d, J = 8.2 Hz, aromatics), 8.26 (2H, d, J = 7.8 Hz, aromatics), 5.15, 5.10, 4.57 (4H, 

3 br s, OH), 4.34 (1H, d, J = 9.7 Hz, H-1’), 3.71 (1H, dd, J = 11.7, 5.4 Hz, H-6’a), 3.63 (1H, 

pseudo t, J = 9.2, 9.0 Hz, H-2’ or H-3’ or H-4’), 3.46-3.28 (3H, m, H-2’ and/or H-3’and/or H-

4’, H-5’, H-6’b), 3.18 (1H, pseudo t, J = 9.0, 8.9 Hz, H-2’ or H-3’ or H-4’); 13C NMR 

(DMSO-d6) δ (ppm): 158.2, 157.0 (triazole C-3, C-5), 147.5, 136.7, 126.8 (2), 124.2 (2) 

(aromatics), 81.6, 77.9, 74.0, 72.5, 70.0 (C-1’ – C-5’), 61.2 (C-6’). Anal: Calcd for 

C14H16N4O7 (352.30): C, 47.73; H, 4.58; N, 15.90. Found: C, 47.81; H, 4.62; N, 15.78. MS-

ESI (m/z): 375.093 [M+Na]+. 

 

4.36. 5-(4-Aminophenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (6k)  

Triazole 6j (0.10 g, 0.28 mmol) was dissolved in dry MeOH (3 mL), and 0.01g Pd-C (10%) 

was added. The reaction mixture was stirred at rt under hydrogen atmosphere for one hour. 

After completion of the transformation monitored by TLC (1:1 CHCl3-MeOH) Pd-C was 

filtrated through a pad of celite, the solvent was evaporated in vacuo and the residue was 

purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.09 g (94 %) amorphous 

yellow product. Rf: 0.59 (1:1 CHCl3-MeOH); [α]D = +9 (c 1.46, DMSO); 1H NMR (DMSO-

d6) δ (ppm): 7.64 (2H, d, J = 8.0 Hz, aromatics), 6.60 (2H, d, J = 8.0 Hz, aromatics), 5.51 

(2H, br s, NH2), 4.98, 4.79, 4.53 (4H, 3 br s, OH), 4.13 (1H, d, J = 9.2 Hz, H-1’), 3.70-3.64 

(2H, m, H-2’or H-3’ or H-4’, H-6’a), 3.42-3.16 (4H, m, H-2’ and/or H-3’ and/or H-4’, H-5’, 

H-6’b); 13C NMR (DMSO-d6) δ (ppm): 161.3, 155.0 (triazole C-3, C-5), 150.3, 127.1 (2), 

114.7, 113.6 (2) (aromatics), 81.4, 78.3, 75.7, 72.4, 70.2 (C-1’ – C-5’), 61.3 (C-6’). Anal: 
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Calcd for C14H18N4O5 (322.32): C, 52.17; H, 5.63; N, 17.38. Found: C, 52.21; H, 5.55; N, 

17.26. MS-ESI (m/z): 345.118 [M+Na]+. 

 

4.37. 5-(4-Carboxyphenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (6l) 

From triazole 5l (0.24 g, 0.32 mmol) according to General procedure III. Reaction time: 5 

days. Purified by column chromatography (1:1 CHCl3-MeOH) to yield 0.10 g (86 %) 

yellowish syrup. Rf: 0.55 (1:1:1 toluene-AcOH-MeOH); [α]D = +6 (c 0.54, MeOH); 1H NMR 

(DMSO-d6) δ (ppm): 8.10-8.04 (4H, m, aromatics), 4.33 (1H, d, J = 9.7 Hz, H-1’), 3.74-3.65 

(2H, m, H-2’ and/or H-3’ and/or H-4’, H-6’a), 3.47 (1H, ddd, J = 8.9, 5.3, < 1 Hz, H-5’), 

3.37-3.25 (2H, m, H-2’ and/or H-3’ and/or H-4’, H-6’b), 3.20 (1H, pseudo t, J = 9.0, 8.9 Hz, 

H-2’ or H-3’ or H-4’); 13C NMR (DMSO-d6) δ (ppm): 168.7 (COOH), 158.4, 157.8 (triazole 

C-3, C-5), 134.1, 133.1, 129.9 (2), 125.7 (2) (aromatics), 81.6, 78.1, 74.5, 72.6, 70.2 (C-1’ – 

C-5’), 61.3 (C-6’). Anal: Calcd for C15H17N3O7 (351.31): C, 51.28; H, 4.88; N, 11.96. Found: 

C, 51.15; H, 4.96; N, 11.89. 

 

4.38. 5-(3,5-Dimethylphenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (6m) 

From triazole 4m (0.14 g, 0.34 mmol) according to General procedure IV. Reaction time: 3 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.11 g (98 %) 

colourless syrup. Rf: 0.54 (3:1 CHCl3-MeOH); [α]D = +12 (c 0.57, MeOH); 1H NMR 

(CD3OD) δ (ppm): 7.48 (2H, s, aromatics), 6.99 (1H, s, aromatic), 4.43 (1H, d, J = 9.6 Hz, H-

1’), 3.85 (1H, dd, J = 12.0, 1.3 Hz, H-6’a), 3.73-3.68 (2H, m, H-2’ or H-3’ or H-4’, H-6’b,), 

3.56-3.40 (3H, m, H-2’and/or H-3’and/or H-4’, H-5’), 2.25 (6H, s, 2 x CH3); 
13C NMR 

(CD3OD) δ (ppm): 162.2, 157.6 (triazole C-3, C-5), 139.7 (2), 132.7, 128.0, 125.2 (2) 

(aromatics), 82.0, 79.1, 76.2, 74.3, 71.1 (C-1’ – C-5’), 62.7 (C-6’), 21.3 (2 x CH3). Anal: 
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Calcd for C16H21N3O5 (335.36): C, 57.30; H, 6.31; N, 12.53. Found: C, 57.41; H, 6.24; N, 

12.41. 

 

4.39. 5-(3,5-Dinitrophenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (6n)  

From triazole 5n [62] (0.52 g, 0.63 mmol) according to General procedure III . Reaction time: 

3 day. Purified by column chromatography (7:3 CHCl3-MeOH) to yield 0.18 g (72%) white 

solid. Mp: 203-205 ºC; [α]D = –21 (c 0.11, DMSO); 1H NMR (DMSO-d6-D2O) δ (ppm): 9.02 

(2H, s, aromatics), 8.83 (1H, s, aromatic), 4.37 (1H, d, J = 9.8 Hz, H-1’), 3.69 (1H, dd, J = 

11.9, < 1 Hz, H-6’a), 3.58 (1H, pseudo t, J = 9.1, 9.1 Hz, H-2’ or H-3’ or H-4’), 3.47 (1H, dd, 

J = 11.9, 5.6 Hz, H-6’b), 3.35-3.30 (2H, m, H-2’ or H-3’ or H-4’, H-5’), 3.22 (1H, pseudo t, J 

= 9.1, 9.1 Hz, H-2’ or H-3’ or H-4’); 13C NMR (DMSO-d6) δ (ppm): 162.2, 157.3 (triazole C-

3, C-5), 148.5 (2), 137.7, 124.1 (2), 115.5 (aromatics), 80.8, 77.9, 75.8, 73.2, 70.5 (C-1’ – C-

5’), 61.3 (C-6’). Anal: Calcd for C14H15N5O9 (397.30): C, 42.32; H, 3.81; N, 17.63. Found: C, 

42.39; H, 3.93; N, 17.56. 

 

4.40. 5-(3,5-Diaminophenyl)-3-(β-D-glucopyranosyl)-1,2,4-triazole (6o)  

Triazole 6n (0.07 g, 0.18 mmol) was dissolved in dry MeOH (10 mL), and 0.015g Pd-C 

(10%) was added. The reaction mixture was stirred at rt under hydrogen atmosphere for one 

hour. After completion of the transformation monitored by TLC (1:1 CHCl3-MeOH) Pd-C 

was filtrated through a pad of celite, the solvent was evaporated in vacuo and the residue was 

purified by column chromatography (1:1 CHCl3-MeOH) to yield 0.04 g (72 %) amorphous 

brownish product. Rf: 0.33 (1:1 CHCl3-MeOH); 1H NMR (DMSO-d6-D2O) δ (ppm): 6.49 

(2H, d, J = 2.0 Hz, aromatics), 5.84 (1H, t, J = 2.0, aromatic), 4.16 (1H, d, J = 9.9 Hz, H-1’), 

3.65 (1H, dd, J = 12.6, < 1 Hz, H-6’a), 3.57 (1H, pseudo t, J = 9.9, 9.2 Hz, H-2’ or H-3’ or H-

4’), 3.42 (1H, dd, J = 12.6, 4.9 Hz, H-6’b), 3.32-3.17 (3H, m, H-2’ and/or H-3’ and/or H-4’, 
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H-5’); 13C NMR (DMSO-d6) δ (ppm): 159.7, 158.8 (triazole C-3, C-5), 149.6 (2), 130.6, 

102.3 (2), 102.1 (aromatics), 81.2, 78.2, 75.4, 73.1, 70.3 (C-1’ – C-5’), 61.5 (C-6’). Anal: 

Calcd for C14H19N5O5 (337.33): C, 49.85; H, 5.68; N, 20.76. Found: C, 49.99; H, 5.75; N, 

20.64. 

 

4.41. 3-(β-D-Glucopyranosyl)-5-(3,4,5-trimethoxyphenyl)-1,2,4-triazole (6p) 

From triazole 4p (0.18 g, 0.37 mmol) according to General procedure IV. Reaction time: 3 

hours. Purified by column chromatography (9:1 CHCl3-MeOH) to yield 0.14 g (92 %) 

colourless syrup. Rf: 0.37 (4:1 CHCl3-MeOH); [α]D = +5 (c 0.44, MeOH); 1H NMR (D2O) δ 

(ppm): 6.64 (2H, s, aromatics), 4.57 (1H, d, J = 9.3 Hz, H-1’), 4.05 (1H, dd, J = 11.9, < 1 Hz, 

H-6’a), 3.92 (1H, dd, J = 11.9, < 1 Hz, H-6’b), 3.88-3.72 (4H, m, H-2’, H-3’, H-4’, H-5’), 

3.65-3.64 (9H, m, 3 x OMe); 13C NMR (D2O) δ (ppm): 159.8, 157.4 (triazole C-3, C-5), 152.6 

(2), 138.3, 122.7, 103.2 (2) (aromatics), 80.5, 77.5, 75.0, 73.4, 70.0 (C-1’ – C-5’), 61.5 (C-6’), 

61.2 (OMe), 56.1 (2 x OMe). Anal: Calcd for C17H23N3O8 (397.38): C, 51.38; H, 5.83; N, 

10.57. Found: C, 51.25; H, 5.94; N, 10.64. 

 

4.42. 3-(β-D-Glucopyranosyl)-5-(2-naphthyl)-1,2,4-triazole[54] (6q) 

A) From triazole 4q (0.10 g, 0.23 mmol) according to General procedure IV. Reaction time: 3 

hours. Purified by column chromatography (4:1 CHCl3-MeOH) to yield 0.07 g (90 %) 

colourless syrup.  

B) From triazole 5q [62] (0.27 g, 0.35 mmol) according to General procedure III. Reaction 

time: 3 days. Purified by column chromatography (9:1 CHCl3-MeOH) to yield 0.10 g (81 %) 

colourless syrup. Compound characterization data were identical with those reported in our 

preliminary communication [54].  
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4.43. 3-(β-D-Glucopyranosyl)-5-(2-pyridyl)-1,2,4-triazole (6r) 

From triazole 5r [62] (0.31 g, 0.43 mmol) according to General procedure III . Reaction time: 

3.5 hours. Purified by column chromatography (7:3 CHCl3-MeOH) to yield 0.05 g (40 %) 

colourless syrup. Rf: 0.36 (1:1 CHCl3-MeOH); [α]D = +30 (c 0.22, H2O); 1H NMR (D2O) δ 

(ppm): 8.49 (1H, d, J = 4.0 Hz, Py), 7.85-7.78 (2H, m, Py), 7.41-7.38 (1H, m, Py), 4.57 (1H, 

d, J = 9.2 Hz, H-1’), 3.94 (1H, dd, J = 11.9, < 1 Hz, H-6’a), 3.83-3.76 (2H, m, H-2’ or H-3’ or 

H-4’, H-6’b), 3.70-3.57 (3H, m, H-2’ and/or H-3’ and/or H-4’, H-5’); 13C NMR (D2O) δ 

(ppm): 158.5, 156.8 (triazole C-3, C-5), 149.4, 145.3, 138.3, 125.5, 122.0 (Py), 80.0, 76.8, 

74.3, 72.5, 69.3 (C-1’ – C-5’), 60.7 (C-6’). Anal: Calcd for C13H16N4O5 (308.29): C, 50.65; H, 

5.23; N, 18.17. Found: C, 50.77; H, 5.10; N, 18.29. MS-ESI (m/z): 331.100 [M+Na]+, 639.217 

[2M+Na]+, 309.118 [M+H]+. 
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Chart 1. Glycogen phosphorylase inhibitors (GPIs, Ki [µM] against rabbit muscle GPb, I -VI I I ); synthetic 
targets of this study (IX ); outline of binding of glucose analogues at the active site of GP highlighting 
important H-bonds to His377 and interactions in the so-called β-channel for N-acyl-β-D-
glucopyranosylamine type inhibitors (X) and 2-β-D-glucopyranosyl benzimidazole (XI ) as observed by X-ray 
crystallography. 
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∗A K i value of 2.4 µM was measured by N. G. Oikonomakos et al. (unpublished results in ref. [51]) 
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Scheme 1. Retrosynthetic analysis of the target compounds IX based on 1,3-dipolar cycloadditions 
(Glc = O-protected β-D-glucopyranosyl residue, PG = protecting group). 
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Table 1. Synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles 

OBzO
BzO

BzO

BzO
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NHN
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N

NN

R

Bn

OHO
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R
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OHO
HO

OH

HO

N

NHN

R
OBzO

BzO
BzO

BzO

N

NHN

R
R N

H

O

Bn + SOCl2

1 3 4

2 5 6

R N

Cl

Bn

solvent
reflux

MeONa (cat.)
     MeOH

MeONa (cat.)
     MeOH

rt

rt

H2/Pd(C) H2/Pd(C)

 

  Yield (%) 

 R 3 (solvent) 4 5 6 

a CH3 - - see ref. [62] 73 (from 5a) 

b C(CH3)3 - - see ref. [62] 98 (from 5b) 

c CH2OH - - - 93 (from 5t) 

d C6H5 69 (toluene) 73  see ref. [62] 
85 (from 4d) 
62 (from 5d) 

e C6H4-4-CH3 49 (m-xylene) 94  - 90 (from 4e) 

f C6H4-4-C(CH3)3 61 (m-xylene) 98  - 79 (from 4f) 

g C6H4-4-CF3 88 (toluene) 61  - 77 (from 4g) 

h C6H4-4-OH - - - 67 (from 5u) 

i C6H4-4-OCH3 62 (m-xylene) 68  - 95 (from 4i) 

j C6H4-4-NO2 38 (toluene) 91  see ref. [62] 75 (from 5j) 

k C6H4-4-NH2 - - - 94 (from 6j) 

l C6H4-4-COOH - - 75 (from 3s) 86 (from 5l) 

m C6H3-3,5-(CH3)2 66 (m-xylene) 62  - 98 (from 4m) 

n C6H3-3,5-(NO2)2 - - see ref. [62] 72 (from 5n) 

o C6H3-3,5-(NH2)2 - - - 72 (from 6n) 

p C6H2-3,4,5-(OCH3)3 65 (m-xylene) 91  - 92 (from 4p) 

q C10H7 (2-naphthyl) 52 (toluene) 85  see ref. [62] 
90 (from 4q) 
81 (from 5q) 

r C5H4N (2-pyridyl) - - see ref. [62] 40 (from 5r) 

s C6H4-4-COOBn 69 (m-xylene) - - - 

t CH2OCOCH3 - - see ref. [62] - 

u C6H4-4-OCOCH3 - - see ref. [62] - 
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Table 2. Inhibition of rabbit muscle glycogen phosphorylase b by 3-(β-D-glucopyranosyl)-5-
substituted-1,2,4-triazoles (6) 

 

O

OH
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OH

N

NHN
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 R K i [µM]  R Ki [µM] 

a -CH3 499 j 
NO2 

33.5 

b -C(CH3)3 
no inh. 

at 625 µM 
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NH2 
0.67 

c -CH2OH 105 l 
COOH 

no inh. 
at 625 µM 

d 
 

7 m 

CH3

CH3  

39.7 

e 
CH3  

1.7 n 

NO2

NO2  

no inh. 
at 625 µM 

f 
C(CH3)3 

778 o 

NH2

NH2  

14 

g 
CF3 

111 p 

OCH3

OCH3

OCH3

 

518* 

h 
OH 

2.9 q 
 

0.41 

i 
OCH3 

1.9 r 
N

 
707 

*Calculated from the IC50 value by using a web-based tool [64]. 
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Legends: 

 

Chart 1. Glycogen phosphorylase inhibitors (GPIs, Ki [µM] against rabbit muscle GPb, I-

VIII ); synthetic targets of this study (IX ); outline of binding of glucose analogues at the 

active site of GP highlighting important H-bonds to His377 and interactions in the so-called 

β-channel for N-acyl-β-D-glucopyranosylamine type inhibitors (X) and 2-β-D-glucopyranosyl 

benzimidazole (XI ) as observed by X-ray crystallography. 

 

Scheme 1. Retrosynthetic analysis of the target compounds IX based on 1,3-dipolar 

cycloadditions (Glc = O-protected β-D-glucopyranosyl residue, PG = protecting group). 
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• New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles. 
• Carboximidoylation of O-protected 5-(β-D-glucopyranosyl)tetrazole. 
• New nanomolar inhibitors of glycogen phosphorylase. 
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1H and 13C NMR spectra for selected compounds.  
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1H and 13C NMR spectra of compound 3e in CDCl3. 
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1H and 13C NMR spectra of compound 4e in CD3OD. 
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1H and 13C NMR spectra of compound 6e in D2O. 
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1H and 13C NMR spectra of compound 3p in CDCl3. 
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1H and 13C NMR spectra of compound 4p in CD3OD. 
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1H and 13C NMR spectra of compound 6p in D2O. 
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1H and 13C NMR spectra of compound 3q in CDCl3. 
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1H and 13C NMR spectra of compound 4q in DMSO-d6. 
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1H and 13C NMR spectra of compound 6q in CD3OD and DMSO-d6, respectively. 


