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Abstract

We consider unitary simple vertex operator algebras whose vertex operators satisfy
certain energy bounds and a strong form of locality and call them strongly local. We
present a general procedure which associates to every strongly local vertex operator
algebra V a conformal net AV acting on the Hilbert space completion of V and prove
that the isomorphism class of AV does not depend on the choice of the scalar product
on V . We show that the class of strongly local vertex operator algebras is closed under
taking tensor products and unitary subalgebras and that, for every strongly local vertex
operator algebra V , the map W 7→ AW gives a one-to-one correspondence between the
unitary subalgebras W of V and the covariant subnets of AV . Many known examples
of vertex operator algebras such as the unitary Virasoro vertex operator algebras, the
unitary affine Lie algebras vertex operator algebras, the known c = 1 unitary vertex
operator algebras, the moonshine vertex operator algebra, together with their coset and
orbifold subalgebras, turn out to be strongly local. We give various applications of our
results. In particular we show that the even shorter Moonshine vertex operator algebra
is strongly local and that the automorphism group of the corresponding conformal net is
the Baby Monster group. We prove that a construction of Fredenhagen and Jörss gives
back the strongly local vertex operator algebra V from the conformal net AV and give
conditions on a conformal net A implying that A = AV for some strongly local vertex
operator algebra V .
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group 65

1 Introduction

We have two major mathematical formulations of chiral conformal field theory. A chiral
conformal field theory is described with a conformal net in one and with a vertex operator
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algebra in the other. The former is based on operator algebras and a part of algebraic
quantum field theory, and the latter is based on algebraic axiomatization of vertex operators
on the circle S1. The two formulations are expected to be equivalent at least under some
natural extra assumptions, but the exact relations of the two have been poorly understood
yet. In this paper, we present a construction of a conformal net from a vertex operator
algebra satisfying some nice analytic properties. Moreover, we show that the vertex operator
algebra can be recovered from the associated conformal net.

Algebraic quantum field theory is a general theory to study quantum field theory based
on operator algebras and has a history of more than 50 years, see [50]. The basic idea is that
we assign an operator algebra generated by observables to each spacetime region. In this
way, we have a family of operator algebras called a net of operator algebras. Such a net is
subject to a set of mathematical axioms such as locality (Haag-Kastler axioms). We study
nets of operator algebras satisfying the axioms, and their mathematical studies consist of
constructing examples, classifying them and studying their various properties. We need to
fix a spacetime and its symmetry group for a quantum field theory, and the 4-dimensional
Minkowski space with the Poincaré symmetry has been studied by many authors. In a chiral
conformal field theory, space and time are mixed into the one-dimensional circle S1 and the
symmetry group is its orientation preserving diffeomorphism group.

A quantum field Φ on S1 is a certain operator-valued distribution assumed to satisfy the
chiral analogue of Wightman axioms [95], see also [25], [43] and [59, Chapter 1].

For an interval I ⊂ S1, take a test function supported in I. Then the pairing 〈Φ, f〉 =
Φ(f) produces a (possibly unbounded) operator (smeared field) which corresponds to an
observable on I (if the operator is self-adjoint). We consider a von Neumann algebra A(I)
generated by such operators for a fixed I. More generally we can consider this construction
for a family Φi, i ∈ I of (Bose) quantum fields, where I is an index set, not necessarily
finite.

Based on this idea, we axiomatize a family {A(I)} as follows and call it a (local) conformal
net .

Let I be the family of open, connected, non-empty and non-dense subsets (intervals) of
S1. A (local) Möbius covariant net A of von Neumann algebras on S1 is a map

I ∋ I 7→ A(I) ⊂ B(H)

from I to the set of von Neumann algebras on a fixed Hilbert spaceH satisfying the following
properties.

• Isotony. If I1 ⊂ I2 belong to I, then we have A(I1) ⊂ A(I2).

• Locality. If I1, I2 ∈ I and I1 ∩ I2 = ∅, then we have [A(I1),A(I2)] = {0}, where
brackets denote the commutator.

• Möbius covariance There exists a strongly continuous unitary representation U of the
group Möb ≃ PSL(2,R) of Möbius transformations of S1 on H such that we have
U(γ)A(I)U(γ)∗ = A(γI), γ ∈ Möb, I ∈ I.

• Positivity of the energy. The generator of the one-parameter rotation subgroup of U
(conformal Hamiltonian) is positive.
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• Existence of the vacuum. There exists a unit U -invariant vector Ω ∈ H called the
vacuum vector , and Ω is cyclic for the von Neumann algebra

∨
I∈IA(I), where the

lattice symbol
∨

denotes the von Neumann algebra generated.

These axioms imply the Haag duality, A(I)′ = A(I ′), I ∈ I, where I ′ is the interior of
S1 \ I.

We say that a Möbius covariant net A is irreducible if
∨

I∈IA(I) = B(H). The net A is
irreducible if and only if Ω is the unique U -invariant vector up to scalar multiple, and if and
only if the local von Neumann algebras A(I) are factors. In this case they are automatically
type III1 factors (except for the trivial case A(I) = C).

Let Diff+(S1) be the group of orientation-preserving diffeomorphisms of S1. By a con-
formal net A, we mean a Möbius covariant net with the following property called conformal
covariance (or diffeomorphism covariance).

There exists a strongly continuous projective unitary representation U of Diff+(S1) on
H extending the unitary representation of Möb such that for all I ∈ I we have

U(γ)A(I)U(γ)∗ = A(γI), γ ∈ Diff+(S1),

U(γ)AU(γ)∗ = A, A ∈ A(I), γ ∈ Diff(I ′),

where Diff(I) denotes the group of orientation preserving diffeomorphisms γ of S1 such that
γ(z) = z for all z ∈ I ′.

It should be pointed out that it is not known whether or not the map I ∋ I 7→ A(I)
defined from a family {Φi}i∈I of chiral conformal covariant quantum fields on S1 will satisfy
in general the axioms of conformal nets described above. The main difficulty is given by
locality. The problem is due to the fact that the smeared fields are typically unbounded
operators and the von Neumann algebras generated by two unbounded operators commuting
on a common invariant domain need not to commute as shown by a well known example
by Nelson [86]. This difficulty is part of the more general problem of the mathematical
equivalence of Wightman and Haag-Kastler axioms for quantum field theory a problem
which has been studied rather extensively in the literature but which has not yet been
completely solved, see e.g. [8, 5, 6, 7, 32, 33, 37, 38, 45]. As it will become clear in this
paper we deal with some special but mathematically very interesting aspect of this general
problem.

A vertex operator is an algebraic formalization of a quantum field on S1, see [39, 59]. A
certainly family of vertex operators is called a vertex operator algebra. This first appeared in
the study of Monstrous Moonshine, where one constructs a special vertex operator algebra
called the Moonshine vertex operator algebra whose automorphism group is the Monster
group, see [40]. Extensive studies have been made on vertex operator algebras in the last
30 years.

Since a conformal net and a vertex operator algebra (with a unitary structure) both give
mathematical axiomatization of a (unitary) chiral conformal field theory, one expects that
these two objects are in a bijective correspondence, at least under some nice conditions, but
no such correspondence has been known so far. Actually, the axioms of vertex operator
algebras are deeply related to Wightman axioms for quantum fields, see [59, Chapter 1].
Hence, the problem of the correspondence between vertex operator algebras and conformal
nets can bee seen as a variant of the problem of the correspondence between Wightman field
theories and algebraic quantum field theories discussed above.

4



We would like to stress here an important difference between the Wightman approach
and the vertex operator algebra approach to conformal field theory. In the Wightman
approach the emphasis is on a family of fields {Φi}i∈I which generate the theory. For this
point of view it is natural to start from this family in order do define an associated conformal
net, see e.g. [14]. Many models of conformal nets are more or less directly defined in this
way from a suitable family of generating fields. On the other hand, in the vertex operator
algebra approach one considers, in a certain sense, all possible fields (the vertex operators)
compatible to a given theory and corresponding to the Borchers class of the generating
family {Φi}i∈I , cf. [50, II.5.5]. In this sense the vertex operator algebras approach in
closer in spirit to the algebraic approach, see [50, III.1] and in this paper we will take this
fact quite seriously. Another important similarity between the vertex operator approach
and the conformal nets approach is the emphasis on representation theory. The latter will
play only a marginal role in this paper but we believe that our work gives a solid basis
for further investigations in this direction and we plan to come back to the representation
theory aspects in the future.

In this paper we present for the first time a correspondence between unitary vertex
operator algebras and conformal nets. The basic idea is the following. We start with a
simple unitary vertex operator algebra V and we assume that the vertex operators satisfy
certain (polynomial) energy bounds. This assumption guarantees a nice analytic behaviour
of the vertex operators. It is rather standard in axiomatic quantum field theory and does
not appear to be restrictive but it is presently not known if it guarantees the existence of an
associated conformal net. Then, on the Hilbert space completion HV of V we can consider
the smeared vertex operators Y (a, f), f ∈ C∞(S1), a ∈ V corresponding to the vertex
operators Y (a, z) of V . We then define a family of von Neumann algebras {AV (I)}I∈I as
described at the beginning of this introduction by using all the vertex operators. We say
that V is strongly local if the map I ∋ I 7→ AV (I) satisfies locality. In this case we prove
AV is an irreducible conformal net. The idea of using all the vertex operators instead of
a suitable chosen generating family of well behaved generators has the great advantage to
make the construction more intrinsic and functorial. In particular every unitary subalgebra
W ⊂ V of a strongly local vertex operator algebra turns out to be strongly local and the map
W 7→ AW gives rise to a one-to-one correspondence between the unitary vertex subalgebras
W of V and the covariant subnets of AV . Moreover, we prove that the automorphism group
of AV coincides with the unitary automorphism group of V and that, if the latter is finite,
it coincides with the full automorphism group of V .

Although the strong locality condition appears a priori to be rather restrictive and
difficult to prove we show, inspired by the work of Driessler, Summers and Wichmann [33]
that if a generating family F of quasi-primary (i.e. Möbius covariant) Hermitian vertex
operators, generates a conformal net AF then V is strongly local and AV = AF . This
result heavily relies on the deep connection between the Tomita-Takesaki modular theory
of von Neumann algebras and the space-time symmetries of quantum field theories first
discovered by Bisognano and Wichmann [2]. As a consequence, standard arguments (see
e.g. [14]) shows that if V is generated by fields of conformal dimension one and by Virasoro
fields then it is strongly local. This gives many examples of strongly local vertex operator
algebras, e.g. the affine vertex operator algebras and their subalgebras, orbifold vertex
operator algebras and coset vertex operator algebras. Moreover, the Moonshine vertex
operator algebra V ♮ turns out to be strongly local and the automorphism group of the net
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AV ♮ is the monster, a result previously proved in [66]. As a consequence we can construct
an irreducible conformal net A

V B♮
(0)

associated with the the even shorter Moonshine vertex

operator algebra V B♮
(0) constructed by Höhn. Moreover, we show that the automorphism

group of A
V B♮

(0)
is the Baby Monster group. As far as we can see there is no known example

of simple unitary vertex operator algebra which can be shown to be not strongly local and
we conjecture that such an example does not exist.

We also show that one can reconstruct the strongly local vertex operator algebra V
from the corresponding conformal net AV by using the work of Fredenhagen and Jörss [38].
Actually we consider a variant of the construction in [38] which is directly obtained from the
Tomita-Takesaki modular theory of von Neumann algebras. We also find a set of natural
conditions on a irreducible conformal net A, including energy bounds for the Fredenhagen-
Jörss fields, which are equivalent to the requirement that A coincides with the net AV

associated with a simple unitary strongly local vertex operator algebra V . The existence of
irreducible conformal nets not satisfying these condition appears to be an open problem.

In order to keep this paper reasonably self-contained, the first four sections are devoted
to various preliminaries on operator algebras, conformal nets and vertex operator algebras.
In Sect. 5 we define and study the notion of unitary vertex operator algebra. The definition
has previously appeared more or less explicitly in the literature e.g. [81] where unitary ver-
tex operator algebras appear as vertex operator algebras having a real form with a positive
definite invariant bilinear form, see also [40, Sect.12.5]. Here we prefer an alternative defini-
tion which is easily seen to be equivalent and we replace the real forms by the corresponding
antilinear automorphisms (PCT operators). The same definition, with a slightly different
language, has also been recently used by Dong and Lin [28]. In this paper we give a further
equivalent definition of unitarity based on the requirement of locality for the adjoint (with
respect to the scalar product) vertex operators. Our proof of the equivalence of the two
definitions gives a vertex algebra version of the PCT theorem in Wightman quantum field
theory [95]. Moreover, we study the question of the uniqueness of the unitary structure, i.e.
of the invariant scalar product, in relation to the properties of the automorphism group of
the underlying vertex operator algebra. We show that the scalar product is unique if and
only if the automorphism group is compact, that in this case the automorphism group coin-
cides with the unitary automorphism group and that it must also be totally disconnected.
This happens in the special but important examples in which the automorphism group is
finite as in the case of the Moonshine vertex operator algebra.

2 Preliminaries on von Neumann algebras

In this section we introduce some of the basic concepts of the theory of von Neumann
algebras and related facts on Hilbert space operators which will be frequently used in the
following. Most of the topics discussed in this subsection can be found in any standard
introductory book on operator algebras in Hilbert spaces, see e.g. [3, 9, 63, 64]. We refer
the reader to these books for more details and for the proofs of the results described in this
section.

6



2.1 Von Neumann algebras

Let H be a (complex) Hilbert space with scalar product (·|·), let B(H) denote the algebra
of bounded linear operators H → H and denote by 1H ∈ B(H) the identity operator.
Moreover, we denote by U(H) the group of unitary operators on H.

Recall that B(H) equipped with the usual operator norm is a Banach space (in fact it is a
Banach algebra). For every A ∈ B(H) we denote by A∗ ∈ B(H) its (Hilbert space) adjoint
so that (b|Aa) = (A∗b|a) for all a, b ∈ H. The map A 7→ A∗ is an antilinear involution
B(H) → B(H) satisfying (AB)∗ = B∗A∗ for all A,B ∈ B(H).

For a given subset S ∈ B(H) we denote by S∗ the subset of B(H) defined by

S
∗ ≡ {A ∈ B(H) : A∗ ∈ S}. (1)

We say that S is self-adjoint if S = S∗.
Given S ⊂ B(H) we denote by S′ the commutant of S, namely the subset of B(H) defined

by
S
′ = {A ∈ B(H) : [A,B] = 0 for all B ∈ S}, (2)

where, for any A,B ∈ B(H), [A,B] denotes the commutator AB − BA. The commutant
S′′ of S′ is called the bicommutant of S. We denote by S′′′ the commutant of S′′ and so on.
It turns out that S′′′ = S′ for every subset S ⊂ B(H). Moreover, if S ⊂ B(H) is self-adjoint
then S′ is a self-adjoint subalgebra of B(H) which is also unital, i.e. 1H ∈ S′.

A self-adjoint subalgebra M ⊂ B(H) is called a von Neumann algebra if M = M′′.
Accordingly, (S ∪ S∗)′ is a von Neumann algebra for all subsets S ⊂ B(H) and W ∗(S) ≡
(S ∪ S∗)′′ is the smallest von Neumann algebra containing S.

A von Neumann algebra M is said to be a factor if M′ ∩M = C1H, i.e. M has a trivial
center. B(H) is a factor for any Hilbert space H. Its isomorphism class as an abstract
complex ∗-algebra only depends on the Hilbertian dimension of H. A von Neumann algebra
M isomorphic to some B(H) (here H is not necessarily the same Hilbert space on which
M acts) is called a type I factor. If H has dimension n ∈ Z>0 then M is called a type In
factor while if H is infinite-dimensional then M is called a type I∞ factor.

There exist factors which are not of type I. They are divided in two families: the type
II factors (type II1 or type II∞) and type III factors (type IIIλ, λ ∈ [0, 1], cf. [23]).

If M and N are von Neumann algebras and N ⊂ M then N is called a von Neumann
subalgebra of M. If M is a factor then a von Neumann subalgebra N ⊂ M which is also
a factor is called a subfactor. The theory of subfactors is a central topic in the theory
of operator algebras and in its applications to quantum field theory. Subfactor theory was
initiated in the seminal work [56] where V. Jones introduced and studied an index [M : N ]
for type II1 factors. Subfactor theory and the notion of Jones index was later generalized
to type III subfactors and also to more general inclusions of von Neumann algebras, see
[36, 68, 74, 78, 87].

A central result in the theory of von Neumann algebras is von Neumann bicommutant
theorem which states that a self-adjoint unital subalgebra M ⊂ B(H) is a von Neumann
algebra if and only if it is closed with respect to strong operator topology of B(H). In fact the
statement remains true if one replace the strong topology on B(H) with one of the following:
the weak topology, the σ-weak topology (also called ultra-weak topology) and the σ-strong
topology (also called ultra-strong topology). In particular, every von Neumann algebra is
also a (concrete) C*-algebra, namely it is a norm closed self-adjoint subalgebra of B(H).
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Moreover, if H is separable, as it will typically be the case in this paper, a self-adjoint unital
subalgebra M ⊂ B(H) is a von Neumann algebra if and only if for any A ∈ B(H), the
existence of a sequence An ∈ M, n ∈ Z>0, such that Ana → Aa for all a ∈ H, implies that
A ∈ M. Note also that von Neumann bicommutant theorem implies that, for any subset
S ⊂ B(H), W ∗(S) coincides with the strong closure of the unital self-adjoint subalgebra of
B(H) generated by S. If, for every α ∈ I , with I any index set, Mα ⊂ B(H) is a von
Neumann algebra then

⋂
α∈I Mα is a von Neumann algebra. Moreover,

∨

α∈I

Mα ≡ W ∗(
⋃

α∈I

Mα) =

( ⋂

α∈I

M
′
α

)′

(3)

is the von Neumann algebra generated by the von Neumann algebras Mα, α ∈ I .
If M is a von Neumann algebra on the Hilbert space H and e ∈ M′ is an (orthogonal)

projection commuting with M then the closed subspace eH is M-invariant and

Me ≡ M↾eH = {A↾eH : A ∈ M} (4)

is a von Neumann algebra on eH, the von Neumann algebra induced by e.
Now let H1 and H2 be two Hilbert spaces and let H1 ⊗ H2 be their algebraic tensor

product. Then, H1 ⊗ H2 has a natural scalar product and we denote by H1⊗H2 the
corresponding Hilbert space completion, the Hilbert space tensor product. If M1 (resp.
M2) is a von Neumann algebra on H1 (resp. H2) then the algebraic tensor product M1⊗M2

is a ∗-subalgebra of B(H1⊗H2) and the von Neumann tensor productM1⊗M2 is defined
by

M1⊗M2 ≡ (M1⊗M2)
′′ .

It can be shown that
(M1⊗M2)

′ = M
′
1⊗M

′
2.

Moreover,
B(H1)⊗B(H2) = B(H1⊗H2).

2.2 Unbounded operators affiliated with von Neumann algebras

By a linear operator (or simply an operator) on a Hilbert space H we always mean a linear
map A : D → H, where the domain D is a linear subspace of H. If the domain D(A) ≡ D
of A is dense in H we say that A is densely defined. Recall that A is said to be closed if its
graph is a closed subset of H ×H with respect to the product topology and that A is said
to be closable if the closure of its graph is the graph of an operator A called the closure of
A.

The adjoint A∗ of a densely defined operator A on H is always a closed operator on H.
A densely defined operator A on H is closable if and only if its adjoint A∗ is densely defined.
If this is the case then A = A∗∗. A bounded densely defined operator A on H is always
closable and it belongs to B(H) if and only if it is closed. If the graph of A is a subset of
the graph of B then B is said to be an extension of A and as usual we will write A ⊂ B. Let
A be closed operator with domain D(A), let D0 be a linear subspace of D(A) and let A0 be
the restriction of A to D0. Then, A0 is closable and it closure obviously satisfies A0 ⊂ A.
One says that D0 is a core for A if A0 = A. If A is a closed densely defined operator then

8



A∗A is self-adjoint (in particular densely defined and closed) with non-negative spectrum.
The absolute value of |A| of A is defined through the spectral theorem by |A| ≡ (A∗A)1/2.
Then there is a unique C ∈ B(H) such that Ker(C) = Ker(A) and C|A| = A. C is a partial
isometry, i.e. C∗C and CC∗ are (orthogonal) projections. The decomposition A = C|A|
is called the polar decomposition of A. A is injective with dense range if and only if C is
a unitary operator. Similar definitions, with analogous results, can be given for antilinear
operators on H.

An operator A on H with domain D(A) is said to commute with a bounded operator
B ∈ B(H) (and viceversa) if AB ⊂ BA, namely if BD(A) ⊂ D(A) and ABa = BAa for all
a ∈ D(A). If A is densely defined and closable and if A commutes with B ∈ B(H) then A∗

commutes with B∗. The following fact is very useful: if the densely defined operator A is
closed and D0 is a core for A then A commute with B ∈ B(H) if and only if BD0 ⊂ D(A)
and ABa = BAa for all a ∈ D0.

A closed densely defined operator A on H is said to be affiliated with a von Neumann
algebra M ⊂ B(H) if A commutes with all operators in M′. It turns out that a closed
densely defined operator A is affiliated with M if and only if there is a sequence An ∈ M,
n ∈ Z>0 such that Ana → Aa and A∗

nb → A∗b for all a ∈ D(A) and all b ∈ D(A∗).
For any closed densely defined operator A on H the set

{B ∈ B(H) : AB ⊂ BA, AB∗ ⊂ B∗A} (5)

is a von Neumann algebra and

W ∗(A) ≡ {B ∈ B(H) : AB ⊂ BA, AB∗ ⊂ B∗A}′ (6)

is the smallest von Neumann algebra to which A is affiliated called the von Neumann algebra
generated by A.

If A is a self-adjoint operator on a separable Hilbert space then, as a consequence of the
spectral theorem,

W ∗(A) = {f(A) : f ∈ Bb(R)} (7)

where Bb(R) is the set of bounded Borel functions on R.
More generally, if A is densely defined and closed with polar decomposition A = C|A|,

then W ∗(A) = W ∗(C) ∨W ∗(|A|) and hence B ∈ B(H) commutes with A if and only if it
commutes with C and with the spectral projections of |A|.

If I is an index set and {Aα : α ∈ I } is a family of closed densely defined operators
on H then we put

W ∗ ({Aα : α ∈ I }) ≡
∨

α∈I

W ∗(Aα), (8)

and we say thatW ∗ ({Aα : α ∈ I }) is the von Neumann algebra generated by {Aα : α ∈ I }.
If D ⊂ H is a linear subspace and Aα, α ∈ I are operators on H then D is called a

common invariant domain for the operators Aα, α ∈ I , if D ⊂ D(Aα) and AαD ⊂ D for
all α ∈ I .

The following proposition is well known and will be frequently used in this paper.

Proposition 2.1. Let A, B be closed densely defined operators on a Hilbert space H and
let D be a common invariant domain for A and B. Assume that W ∗(A) ⊂ W ∗(B)′. Then
ABa = BAa for all a ∈ D.
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Proof. Let Bn ∈ W ∗(B), n ∈ Z>0 be a sequence such that Bna → Ba for all a ∈ D(B).
Since Bn commutes with A for all n ∈ Z>0 then, for any a ∈ D, Bna is in the domain of
A, Aa is in the domain of B and ABna = BnAa → BAa. Since A is closed it follows that
ABa = BAa.

The converse is known to be false thanks to examples due to Nelson [86, Sect.10], see
also [90, Sect.VIII.5]. We summarize this fact in the following proposition.

Proposition 2.2. Let H be a separable infinite-dimensional Hilbert space. Then there exists
two self-adjoint operators A and B on H and a common invariant core D for A and B such
that ABc = BAc for all c ∈ D but W ∗(A) is not a subset of W ∗(B)′.

2.3 Tomita-Takesaki modular theory

Let H be a Hilbert space and let M ⊂ B(H) a von Neumann algebra. A vector Ω is said to
be cyclic for M if the linear subspace MΩ is dense in H. A vector Ω is said to be separating
for M if, for every A ∈ M, AΩ = 0 implies that A = 0. It can be shown that a vector
Ω ∈ H is cyclic for M if and only if it is separating for M′ and symmetrically that Ω ∈ H

is separating for M if and only if it is cyclic for M′.

Let M ⊂ B(H) be a von Neumann algebra and let Ω ∈ H be cyclic and separating for
M. Then the map AΩ 7→ A∗Ω is well defined and injective and give rise to an antilinear
operator S0 on H with domain MΩ and range MΩ. Hence S0 is densely defined and has
dense range. Moreover, S2

0 = 1MΩ. If in the definition of S0 we replace M with M′ we obtain
another antilinear operator F0 on H with domain M′Ω and range M′Ω. It is easy to see
that F0 ⊂ S∗

0 and, symmetrically that S0 ⊂ F ∗
0 . Accordingly, S0 and F0 are closable and

we denote by S and F respectively their closures and by D(S) and D(F ) the domain of S
and the domain of F respectively. It turns out that S and F are injective with dense range.
Moreover, F = S∗. Now, let ∆ = S∗S and let J∆1/2 be the polar decomposition of S. S
is called the Tomita operator, ∆ is called the modular operator and J the modular
conjugation.

Since S is injective with dense range then the self-adjoint operator ∆1/2 is injective and
J is antiunitary i.e. it is antilinear and satisfies J∗J = JJ∗ = 1H. Moreover, S2 = 1D(S).

It follows that J∆1/2J = ∆−1/2, that J2 = 1H and hence that J = J∗. Note also that
since SΩ = FΩ = Ω, then Ω ∈ D(∆) and ∆Ω = Ω. Thus, JΩ = Ω. Since ∆ is self-adjoint
with non-negative spectrum and injective then log∆ is densely defined and self-adjoint.
Accordingly the map R ∋ t 7→ ∆it = eit log∆ defines a strongly continuous one-parameter
group of unitary operators on H leaving Ω invariant. Note that J∆itJ = ∆it.

Now let g : H → H be a unitary operator and assume that gMg−1 = M and gΩ = Ω.
Then, for every A ∈ M, AΩ is in the domain of gSg−1 and gSg−1AΩ = SAΩ. It follows that
gSg−1 = S and hence that g∆g−1 = ∆ and gJg−1 = J . More generally, if M1 ⊂ B(H1) and
M2 ⊂ B(H2) are two von Neumann algebras on the Hilbert spaces H1, H2 with cyclic and
separating vectors Ω1 ∈ H1, Ω2 ∈ H2 respectively and if φ : H1 → H2 is a unitary operator

satisfying φM1φ
−1 = M2 and φΩ1 = Ω2 then φS1φ

−1 = S2, where S1 = J1∆
1/2
1 (resp.

S2 = J2∆
1/2
2 ) is the Tomita operator associated with the pair (M1,Ω1) (resp. (M2,Ω2)).

Accordingly we also have φ∆1φ
−1 = ∆2 and φJ1φ

−1 = J2.

The following theorem is the central result of the Tomita-Takesaki theory.
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Theorem 2.3. (Tomita-Takesaki theorem) Let M ⊂ B(H) be a von Neumann algebra, let
Ω ∈ H be cyclic and separating for M and let S = J∆1/2 be the polar decomposition of the
Tomita operator S associated with M and Ω. Then,

JMJ = M
′, and ∆it

M∆−it = M,

for all t ∈ R.

As a consequence for every t ∈ R the map M ∋ A 7→ ∆itA∆−it defines an (∗-) automor-
phism of M depending only on t and on the state (i.e. normalized positive linear functional)
ω defined by ω(A) = 1

‖Ω‖2
(Ω|AΩ). This automorphism is denoted by σω

t , t ∈ R and the cor-

responding one-parameter automorphism group R ∋ t 7→ σω
t is called the modular group

of M associated with the state ω.

3 Preliminaries on conformal nets

We gave the definition of Möbius covariant net and of conformal net in the introduction. In
this section we discuss some of the main properties of conformal nets that will be used in
the next sections for more details and proofs see e.g. [10, 18, 38, 44, 49, 65, 75], see also the
lecture notes in preparation [77] and the PhD thesis [101]. Note that in the literature, in
some cases, Möbius covariant nets are called conformal nets and conformal nets are called
diffeomorphism covariant nets.

3.1 Diff+(S1) and its subgroup Möb

In this subsection we recall some notions about the “spacetime” symmetry group of confor-
mal nets.

Let S1 ≡ {z ∈ C : |z| = 1} be the unite circle. Moreover, let S1
+ ≡ {z ∈ S1 : ℑz > 0} be

the (open) upper semicircle and let S1
− ≡ {z ∈ S1 : ℑz < 0} be the lower semicircle. Note

that S1
+, S

1
− ∈ I and S1

− = (S1
+)

′.
The group Diff+(S1) is an infinite dimensional Lie group modeled on the real topological

vector space Vect(S1) of smooth real vectors fields on S1 with the usual C∞ Fréchet topology
[83, Sect.6]. Its Lie algebra coincides with Vect(S1) with the bracket given by the negative
of the usual brackets of vector fields. Hence if g(z), f(z), z = eiϑ, are functions in C∞(S1,R)
then

[g(eiϑ)
d

dϑ
, f(eiϑ)

d

dϑ
] =

(
(
d

dϑ
g(eiϑ))f(eiϑ)− (

d

dϑ
f(eiϑ))g(eiϑ)

)
d

dϑ
. (9)

Diff+(S1) is connected but not simply connected, see [83, Sect.10] and [51, Example 4.2.6]

and we will denote by D̃iff+(S1) its universal covering group. The corresponding covering

map will be denoted by D̃iff+(S1) ∋ γ → γ̇ ∈ Diff+(S1).
For every f ∈ C∞(S1,R) we denote by R ∋ t 7→ Exp(tf d

dϑ ) the one-parameter subgroup

of Diff+(S1) generated by the vector field f d
dϑ and we denote by R ∋ t 7→ Ẽxp(tf d

dϑ) the

corresponding one-parameter group in D̃iff+(S1).

Remark 3.1. By a result of Epstein, Herman and Thurston [34, 53, 96] Diff+(S1) is a
simple group (algebraically). It follows that Diff+(S1) is generated by exponentials i.e. by
the subset {Exp(f d

dϑ) : f ∈ C∞(S1,R)}. In fact, by the same reason, Diff+(S1) is generated
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by exponentials with non-dense support i.e. by the subset
⋃

I∈I{Exp(f d
dϑ) : f ∈ C∞

c (I,R)},
cf. [83, Remark 1.7]

Recall from the introduction that, for every I ∈ I, Diff(I) denotes the subgroup of
Diff+(S1) whose elements act as the identity on I ′. Note that accordingly Diff(I) does not
coincide with the group of diffeomorphisms of the open interval I, as the notation might
suggest, but it only corresponds to proper subgroup of the latter. If f ∈ C∞

c (I,R), I ∈ I,
namely f ∈ C∞(S1,R) and suppf ⊂ I, then Exp(f d

dϑ) ∈ Diff(I). Note that by Remark 3.1
Diff+(S1) is generated by

⋃
I∈IDiff(I).

For any I ∈ I let Diffc(I) be the dense subgroup of Diff(I) whose elements are the
orientation preserving diffeomorphisms with support in I i.e.

Diffc(I) ≡
⋃

I1∈I, I1⊂I

Diff(I1). (10)

By [34, 35], see also [80], Diffc(I) is a simple group and hence it is generated by

{Exp(f d

dϑ
) : f ∈ C∞

c (I,R)}.

Now, let VectC(S
1) be the complexification of Vect(S1) and let ln ∈ VectC(S

1) be defined
by ln = −ieinϑ d

dϑ . Then
[ln, lm] = (n−m)ln+m (11)

for all n,m ∈ Z, i.e. the the complex valued vector fields ln, n ∈ Z, span a complex Lie
subalgebra Witt ⊂ VectC(S

1), the (complex) Witt algebra. As it is well known Witt

admits a nontrivial central extension Vir defined by the relations

[ln, lm] = (n−m)ln+m + δn+m,0
n3 − n

12
k (12)

[ln, k] = 0,

called the Virasoro algebra, see [62, Lecture 1].
For any f ∈ C∞(S1) ≡ C∞(S1,C) let

f̂n ≡ 1

2π

∫ π

−π
f(eiϑ)e−inϑdϑ n ∈ Z (13)

be its Fourier coefficients. Then the Fourier series

∑

n∈Z

f̂nln

is convergent in VectC(S
1) to the vector field f d

dϑ . Thus Witt is dense in VectC(S
1).

The vector fields ln, n = −1, 0, 1 generated a Lie subalgebra of Witt isomorphic to
sl(2,C). Moreover, the real vector fields il0,

i
2(l1 + l−1) and 1

2(l1 − l−1) generate a Lie
subalgebra of Vect(S1) isomorphic to sl(2,R) ≃ PSU(1, 1) which correspond to the three-
dimensional Lie subgroup Möb ⊂ Diff+(S1) of Möbius transformations of S1. It turns
out that Möb is isomorphic to PSL(2,R) ≃ PSU(1, 1). Moreover, the inverse image of Möb
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in D̃iff+(S1) under the covering map : D̃iff+(S1) → Diff+(S1) is the universal covering

group M̃öb of Möb.
A generic element of Möb is given by a map

z 7→ αz + β

βz + α
, (14)

where α, β are complex numbers satisfying |α|2 − |β|2 = 1.
The one-parameter subgroup of rotations r(t) ∈ Möb is given by r(t)(z) ≡ eitz, z ∈ S1

so that r(t) = Exp(itl0) Le δ(t) be the one-parameter subgroup of Möb defined by

δ(t)(z) =
z cosh t/2− sinh t/2

−z sinh t/2 + cosh t/2
, (15)

(“dilations”) corresponding to the vector field sinϑ d
dϑ so that

δ(t) = Exp

(
t
l1 − l−1

2

)
. (16)

We have δ(t)S1
+ = S1

+ for all t ∈ R. Moreover, if γ ∈ Möb and γS1
+ = S1

+ then γ = δ(α)
for some α ∈ R. As a consequence, if I ∈ I and γ1, γ2 ∈ Möb satisfy γiS

1
+ = I, i = 1, 2

then γ−1
2 γ1δ(t)γ

−1
1 γ2 = δ(t) for all t ∈ R. For every I ∈ I there exists γ ∈ Möb such that

γS1
+ = I. Then, the one-parameter group γδ(t)γ−1 does not depend on the choice of γ

satisfying γS1
+ = I and it will be denoted by δI(t) . In particular δS1

+
(t) = δ(t), t ∈ R. Note

also that γδI(t)γ
−1 = δγI(t) for all γ ∈ Möb and all t ∈ R. Moreover, Möb is generated by

{δI(t) : I ∈ I, t ∈ R}.
We will also consider the orientation reversing diffeomorphism j : S1 → S1 defined by

j(z) ≡ z, z ∈ S1. Given any I ∈ I we put jI ≡ γ ◦ j ◦ γ−1 where γ ∈ Möb is such that
γS1

+ = I (again jI only depends on I and not on the particular choice of γ). Clearly, jS1
+
= j

and jII = I ′ for all I ∈ I.

3.2 Positive-energy projective unitary representations of Diff+(S1) and of

D̃iff+(S1) and positive-energy representations of Vir

By a strongly continuous projective unitary representation U of a topological group G on
a Hilbert space we shall always mean a strongly continuous homomorphism of G into the
quotient U(H)/T of the unitary group of H by the circle subgroup T.

Note that although for γ ∈ G , U(γ) is defined only up to a phase as an operator on H,
expressions like U(γ)TV (γ)∗ for any T ∈ B(H) or U(γ) ∈ L for a (complex) linear subspace
L ⊂ B(H) are unambiguous for all γ ∈ G and are frequently used in this paper.

If G = D̃iff+(S1) then, by [1], the restriction of a strongly continuous projective unitary

representation U to the subgroup M̃öb ⊂ D̃iff+(S1) always lifts to a unique strongly con-

tinuous unitary representation Ũ of M̃öb. We then say that U extends Ũ , and that U is a
positive-energy representation if Ũ is a positive-energy representation of M̃öb, namely
if the self-adjoint generator L0 (the “conformal Hamiltonian”), of the strongly continuous

one parameter group eitL0 ≡ Ũ(Ẽxp(itl0)), has non-negative spectrum σ(L0) ⊂ [0,+∞),
namely, it is a positive operator.
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By a positive-energy unitary representation π of the Virasoro algebra Vir we shall always
mean a Lie algebra representation of Vir, on a complex vector space V endowed with a
(positive definite) scalar product (·|·), such that the representing operators Ln ≡ π(ln) ∈
End(V ), n ∈ Z and K ≡ π(k) ∈ End(V ) satisfy the following conditions:

(i) Unitarity: (a|Lnb) = (L−na|b) for all n ∈ Z an all a, b ∈ V ;

(ii) Positivity of the energy: L0 is diagonalizable on V with non-negative eigenvalues i.e.
we have the algebraic direct sum

V =
⊕

α∈R≥0

Vα

where Vα ≡ Ker(L0 − α1V ) for all α ∈ R≥0;

(iii) Central charge: K = c1V for some c ∈ C.

By a well known result of Friedan, Qiu and Shenker [41, 42], see also [62], unitarity
implies that the possible values of the central charge c are restricted to c ≥ 1 or c = cm ≡
1− 6

(m+2)(m+3) , m ∈ Z≥0. In the case c = 0 the representation is trivial, i.e. Ln = 0 for all
n ∈ Z. An irreducible unitary positive-energy representation ofVir is completely determined
by the central charge c and the lowest eigenvalue h of L0. Then h satisfies h ≥ 0 if c ≥ 1 and

h = hp,q(m) ≡ ((m+3)p−(m+2)q)2−1
4(m+2)(m+3) , p = 1, ...,m+1, q = 1, ..., p, if c = cm, m ∈ Z≥0 (discrete

series representations) and all such pairs (c, h) are realized for an irreducible positive-energy
representation, [46, 62]. For every allowed pair (c, h) the corresponding irreducible module
is denoted L(c, h). Note that (c, 0) is an allowed pair for every allowed value c of the central
charge.

We now discuss the correspondence between unitary positive-energy representations of
the Virasoro algebra Vir and the strongly-continuous projective unitary positive-energy

representations of D̃iff+(S1). An important tool here is given by the following estimates
due to Goodman and Wallach [48, Prop.2.1], see also [98, Sect.6]. Similar estimates are also
given in [14].

Proposition 3.2. Let π be a positive-energy unitary representation of the Virasoro algebra
Vir with central charge c ∈ R≥0 on a complex inner product space V . Let Ln ≡ π(ln) and
let ‖a‖ ≡ (a|a)1/2, for all a ∈ V . Then,

‖Lna‖ ≤
√

c/2(|n|+ 1)
3
2 ‖(L0 + 1V )a‖, (17)

for all n ∈ Z and all a ∈ V .

Remark 3.3. Starting from Prop. 3.2 it is easy to prove the following estimates

‖(L0 + 1V )
kLna‖ ≤

√
c/2(|n|+ 1)k+

3
2‖(L0 + 1V )

k+1a‖, (18)

for all k ∈ Z≥0, n ∈ Z and all a ∈ V .

Now let π be a positive-energy unitary representation of the Virasoro algebra on a
complex inner product space V and let H be the Hilbert space completion of V . The
operators Ln, n ∈ Z can be considered as densely defined operators with domain V . As
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a consequence of Prop. 3.2 and of the unitarity of π one can define operators L0(f), f ∈
C∞(S1) on H with domain V , by

L0(f)a =
∑

n∈Z

f̂nLna, (19)

for all a ∈ V , where

f̂n =

∫ π

−π
f(eiϑ)e−inϑdϑ

2π
(20)

is the n-th Fourier coefficient of the smooth function f . It follows from the unitarity of π
that, L0(f) ⊂ L0(f)∗, and hence that L0(f) is closable for every f ∈ C∞(S1) and we will
denote by L(f) the corresponding closure. Let H∞ the intersection of the domains of the
self-adjoint operators (L0 + 1H)

k, k ∈ Z≥0. Then, H∞ is a common core for the operators
L(f), f ∈ C∞(S1) and

‖L(f)a‖ ≤
√
c/2‖f‖ 3

2
‖(L0 + 1H)a‖ (21)

for all f ∈ C∞(S1) and all a ∈ H∞, where, for every s ≥ 0

‖f‖s ≡
∑

n∈Z

(|n|+ 1)s|f̂n|. (22)

It follows H∞ is a common invariant core for the operators L(f), f ∈ C∞(S1), see [98,
Sect.6] and [48]. Moreover, the map Vect(S1) → End(H∞) defined by f d

dϑ 7→ iL(f), defines
a projective representation, again denoted by π, of Vect(S1) by skew-symmetric operators,
namely −π(f d

dϑ) ⊂ π(f d
dϑ )

∗ and

[
π(f1

d

dϑ
), π(f2

d

dϑ
)

]
= π

(
[f1

d

dϑ
, f2

d

dϑ
]

)
+ iB(f1

d

dϑ
, f2

d

dϑ
)1H, (23)

on H∞, with real valued two-cocycle B(·, ·) given by

B(f1
d

dϑ
, f2

d

dϑ
) ≡ c

12

∫ π

−π

(
d2

dϑ2
f1(e

iϑ) + f1(e
iϑ)

)
d

dϑ
f2(e

iϑ)
dϑ

2π
. (24)

Now, as a consequence of Prop. 3.2 and Remark 3.3 together with the fact that [L0, L(f)] =
iL(f ′), where f ′(eiϑ) ≡ d

dϑf(e
iϑ), it can be shown that one can apply [98, Thm. 5.2.1], see

also [98, Sect.6], so that the the projective representation π of Vect(S1) integrates to a unique

strongly-continuous projective unitary representation Uπ of D̃iff+(S1). More precisely, for
every f ∈ C∞(S1,R) the operator π(f d

dϑ) = iL(f) is skew-adjoint and Uπ is the unique

strongly-continuous projective unitary representation of D̃iff+(S1) on H satisfying

Uπ

(
Ẽxp(f

d

dϑ
)

)
AUπ

(
Ẽxp(f

d

dϑ
)

)∗

= eπ(f
d
dϑ

)Ae−π(f d
dϑ

), (25)

for all f ∈ C∞(S1,R) and all A ∈ B(H). Moreover, Uπ(γ)H
∞ = H∞ for all γ ∈ D̃iff+(S1).

For any I ∈ I le f1 ∈ C∞
c (I) and f2 ∈ C∞

c (I ′), then f1
d
dϑ , f2

d
dϑ generates a two-dimensional

abelian Lie subalgebra of Vect(S1). Since B(f1
d
dϑ , f2

d
dϑ) = 0, the cocycle B(·, ·) vanishes on

this Lie subalgebra and hence π give rise to an ordinary (i.e. non-projective) Lie algebra
representation to the latter which, by (the proof in [98, page 497] of) [98, Thm. 5.2.1],
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integrates to a strongly continuous unitary representation of the abelian Lie group R2.
Hence, [

eπ(f1
d
dϑ

), eπ(f2
d
dϑ

)
]
= 0, (26)

see [14] for a proof of this fact based on [32], see also [45, Sect.19.4].
In fact Uπ factors through a strongly-continuous projective unitary representation of

Diff+(S1), which we will again denote Uπ, if and only if ei2πL0 is a multiple of the identity
operator 1H. In the latter case, as a consequence of Eq. (26), recalling that the the simple
group Diffc(I) is generated by exponentials and it is dense in Diff(I), we see that the
representation Uπ of Diff+(S1) satisfies

Uπ(Diff(I)) ⊂ Uπ(Diff(I ′))′ (27)

for all I ∈ I, see also [72, Sect.V.2].
With some abuse of language we simply say that the representation π of Vir integrates

to a strongly-continuous projective unitary positive-energy of D̃iff+(S1).
Conversely, let U be a strongly-continuous projective unitary positive-energy represen-

tation of D̃iff+(S1) on a Hilbert space H and assume that the algebraic direct sum

H
fin ≡

⊕

α∈R≥0

Ker(L0 − α1H) (28)

is dense in H. Then, using the arguments in [72, Chapter 1], se also [18, Appendix A], one
can prove that there is a unique positive-energy unitary representation π of the Virasoro
algebra on Hfin such that U = Uπ, see also [85] for related results. We collect the results
discussed above in the following theorem.

Theorem 3.4. Every positive-energy projective unitary representation π of the Virasoro
algebra on a complex inner product space V integrates to a unique strongly-continuous pro-

jective unitary positive-energy representation Uπ of D̃iff+(S1) on the Hilbert space completion
H of V . Moreover, every strongly-continuous projective unitary positive-energy representa-

tion of D̃iff+(S1) on a Hilbert space H containing Hfin as a dense subspace arises in this
way. The map π 7→ Uπ becomes one-to-one after restricting to representations π on inner
product spaces V whose Hilbert space completion H satisfies Hfin = V . These are exactly
those inner product spaces such that Vα ≡ Ker(L0 − α1V ) ⊂ V is complete (i.e. a Hilbert
space) for all α ∈ R≥0. Uπ is irreducible if and only if π is irreducible i.e. if and only if the
corresponding Vir-module is L(c, 0) for some c ≥ 1 or c = 1− 6

(m+2)(m+3) , m =∈ Z≥0.

3.3 Möbius covariant nets and conformal nets on S1

We now discuss some properties of Möbius covariant and conformal nets on S1 together
with some related notions and definitions.

Here below we describe some of the consequences of the axioms of Möbis covariant and
conformal nets on S1 and give some comments on these referring the reader to the literature
[10, 38, 44, 49] for more details and the proofs. Here A is a Möbius covariant net on S1

acting on its vacuum Hilbert space H.

(1) Reeh-Schlieder property. The vacuum vector Ω is cyclic and separating for every A(I),
I ∈ I.
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(2) Bisognano-Wichmann Property. Let I ∈ I and let ∆I , JI be the modular operator
and the modular conjugation of (A(I),Ω). Then we have

U(δI(−2πt)) = ∆it
I , (29)

JIA(I1)JI = A(jII1), (30)

JIU(γ)JI = U(jI ◦ γ ◦ jI), (31)

for all t ∈ R, all I1 ∈ I and all γ ∈ Möb. Hence the unitary representation U : Möb →
B(H) extends to an (anti-) unitary representation of Möb⋊ Z2

U(jI) = JI (32)

and acting covariantly on A.

(3) Haag duality. A(I ′) = A(I)′, for all I ∈ I.

(4) Outer regularity.

A(I0) =
⋂

I∈I,I⊃Ī0

A(I), I0 ∈ I. (33)

(5) Additivity. If I =
⋃

α Iα, where I, Iα ∈ I, then A(I) =
∨

αA(Iα).

(6) Uniqueness of the vacuum. A is irreducible if and only if Ker(L0) = CΩ

(7) Factoriality. A is irreducible if and only if either A(I) is a type III1 factor for all I ∈ I

or A(I) = C for all I ∈ I.

Note that Haag duality follows directly from the Bisognano-Wichmann property since

A(I)′ = JIA(I)JI = A(jII) = A(I ′).

Note also that if Ker(L0) = CΩ then, for every I ∈ I, CΩ coincides with the subspace of H
of U(δI(t))-invariant vectors, see [49, Corollary B.2]. Hence, by the Bisognano-Wichmann
property, the modular group of the von Neumann algebra A(I) with respect to Ω is ergodic
i.e. the centralizer

{A ∈ A(I) : ∆it
I A∆

−it
I = A ∀t ∈ R} (34)

is trivial (i.e. equal to C1H). It then follows from [23] that either A(I) is type III1 factor or
A(I) = C, see e.g. the proof of [73, Thm.3], see also [77].

Since Möb is generated by {δI(t) : I ∈ I, t ∈ R}, it follows from the the Bisognano-
Wichmann property that, for a given Möbius covariant net A on S1 the representation U
of Möb is completely determined by the vacuum vector Ω. In fact, if A is a conformal
net, then, by [101, Thm. 6.1.9] (see also [20]), the strongly-continuous projective unitary
representation U of Diff+(S1) making A covariant is completely determined by its restriction
to Möb and hence by the vacuum vector Ω (uniqueness of diffeomorphism symmetry).
We will give an alternative proof of this result in this paper, see Thm. 6.10. See also [102]
for related uniqueness results.
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For a given Möbius covariant net A on S1 and any subset E ⊂ S1 with non-empty
interior we define a von Neumann algebra A(E) by

A(E) ≡
∨

I⊂E,I∈I

A(I). (35)

Accordingly, A is irreducible if and only if A(S1) = B(H).
Given two Möbius covariant nets A1 and A2 on S1, acting on the vacuum Hilbert spaces

H1, H2, vacuum vectors ω1, Ω2 and representations U1, U2 of Möb, one can consider the
tensor product net A1 ⊗A2 acting on H1⊗H2 with local algebras given by

(A1 ⊗A2) (I) ≡ A1(I)⊗A2(I), I ∈ I, (36)

vacuum vector
Ω ≡ Ω1 ⊗ Ω2 (37)

and representation of the Möbius group given by

U(γ) ≡ U1(γ)⊗ U2(γ), γ ∈ Möb. (38)

It is easy to see that , A1 ⊗A2 is a Möbius covariant net on S1. In fact, if both A1 and A2

are conformal nets also A1 ⊗ A2 is a conformal net. One can define also the infinite tensor
product (with respect to the vacuum vectors) of an infinite sequence of Möbius covariant
nets. However it is not necessarily true that if the nets in the sequence are all conformal
nets then their infinite tensor product is also conformal but it will be in general only Möbius
covariant, [20, Sect.6].

We say that the Möbius covariant nets A1 and A2 are unitarily equivalent or isomor-
phic if there is a unitary operator φ : H1 → H2 such that φΩ1 = Ω2 and φA1(I)φ

−1 = A2(I)
for all I ∈ I. In this case we say that φ is an isomorphism of Möbius covariant nets.
Since the Möbius symmetry is completely determined by the vacuum vectors it follows that

φU1(γ)φ
−1 = U2(γ) (39)

for all γ ∈ Möb. Actually, if A1 and A2 are conformal nets then the uniqueness of diffeo-
morphism symmetry implies that

φU1(γ)φ
−1 = U2(γ) (40)

for all γ ∈ Diff+(S1).
An automorphism of a Möbius covariant net A is an isomorphism g of A onto itself.

Accordingly the automorphism group Aut(A) of a Möbius covariant net A on S1 is given
by

Aut(A) ≡ {g ∈ U(H) : gA(I)g−1 = A(I), gΩ = Ω for all I ∈ I}. (41)

By the above discussion every g ∈ Aut(A) commutes with the representation U of Möb

(resp. Diff+(S1) if A is a conformal net). Aut(A) with the topology induced by the strong
topology of B(H) is a topological group.

A Möbius covariant net A on S1 satisfies the split property if, given I1, I2 ∈ I such
that Ī1 ⊂ I2, there is a type I factor M such that

A(I1) ⊂ M ⊂ A(I2). (42)
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A Möbius covariant net A on S1 satisfies strong additivity if, given two intervals
I1, I2 ∈ I obtained by removing a point from an interval I ∈ I then

A(I1) ∨A(I2) = A(I). (43)

By [24, Thm. 3.2] if a Möbius covariant net A on S1 satisfies the trace class condi-
tion, i.e. if Tr(qL0) < +∞ for all q ∈ (0, 1) then A also satisfies the split property. One
can construct many examples Möbius covariant nets without the split property by infinite
tensor product construction, see [20, Sect.6]. These infinite tensor product nets does not
admit diffeomorphism symmetry, see [20, Thm. 6.2]. Actually, we don’t know examples of
irreducible conformal nets without the split property.

By [31, Thm. 3.1], the automorphism group Aut(A) of a Möbius covariant net A on S1

with the split property is compact and metrizable.
Let A be an irreducible Möbius covariant net on S1 with the split property and let

I1, I2, I3, I4 ∈ I be four intervals, in anti-clockwise order, obtained by removing four points
from S1. Let E ≡ I1 ∪ I3. Then I2 ∪ I4 is the interior E′ of S1 \E.

Then,
A(E) ⊂ A(E′)′ (44)

is inclusion of type III1 factors (a subfactor). If either A is strongly additive or if A is a
conformal net then the Jones index [A(E′)′ : A(E)] does not depend on the choice of the
intervals I1, I2, I3, I4 ∈ I, [67, Prop.5]. This index is called the µ-index of A and it is
denoted by µA.

An irreducible Möbius covariant net A is called completely rational [67] if it satisfies
the split property and strong additivity and if the µ-index µA is finite. If A is an irreducible
conformal net with the split property and finite µ-index then it is strongly additive and thus
completely rational, see [79, Thm. 5.3].

We will give various examples of irreducible conformal nets on S1 starting from vertex
operator algebra models in Sect. 8. In this section we consider the minimal examples namely
the Virasoro nets, see also [18, 65, 72, 101].

Let c ≥ 0 or c = cm ≡ 1 − 6
(m+2)(m+3) , m =∈ Z≥0 and let L(c, 0) be the corresponding

irreducible unitary module L(c, 0) with lowest eigenvalue of L0 equal to 0. Let H be the
Hilbert space completion of L(c, 0). Then the positive-energy unitary representation of the
Virasoro algebra on L(c, 0) integrates to a unique strongly continuous projective unitary
positive-energy representation U of Diff+(S1) which together with the map

I ∈ I 7→ AVir,c(I) ⊂ B(H) (45)

defined by
AVir,c(I) ≡ {U(γ) : γ ∈ Diff(I), I ∈ I}′′, (46)

defines an irreducible conformal net AVir,c on S1. Note that locality follows from Eq. (27).
The uniqueness of diffeomorphism symmetry implies that two Virasoro nets are unitary
equivalent if and only if they have the same central charge. For every allowed value of c the
Virasoro net AVir,c satisfies the trace class condition and hence the split property. For c ≤ 1
AVir,c satisfies strong additivity [65, 104], while for c > 1 it does not [14, Sect.4]. AVir,c is
completely rational for all c < 1 while it has infinite µ-index for all c ≥ 1.
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3.4 Covariant subnets

A Möbius covariant subnet of a Möbius covariant net A on S1 is a map I 7→ B(I) from
I in to the set of von Neumann algebras acting on HA satisfying the following properties:

B(I) ⊂ A(I) for all I ∈ I; (47)

B(I1) ⊂ B(I2) if I1 ⊂ I1, I1, I2 ∈ I. (48)

U(γ)B(I)U(γ)∗ = B(γI) for all I ∈ I, and all γ ∈ Möb; (49)

We shall use the notation B ⊂ A. If B(I) = C1H for one, and hence for all, I ∈ I we say
that B is the trivial subnet.

Let E ⊂ S1 be any subset of the circle with non-empty interior and let

B(E) ≡
∨

I⊂E,I∈I

B(I) (50)

so that B(E) ⊂ A(E). Then we define HB ⊂ H to be the closure of B(S1)Ω. Then HB = H

if and only if B(I) = A(I) for all I ∈ I. Hence, typically Ω is not cyclic for B(S1) so that B
is not a Möbius covariant net on S1 in the precise sense of the definition. However one gets
a Möbius covariant net by restricting the algebras B(I), I ∈ I, and the representation U to
the common invariant subspace HB. More precisely, let eB be the orthogonal projection of
H onto HB. Then eB ∈ B(S1)′ ∩ U(Möb)′. Then the map I ∋ I 7→ B(I)eB together with
the representation Möb ∋ γ 7→ U(γ)↾HB

defines a Möbius covariant net BeB on S1 acting
on HB. Note that the map b ∈ B(I) 7→ b↾HB

∈ B(I)eB is an isomorphism for every I ∈ I,
because of the Reeh-Schlieder property, so that, in particular, if A is irreducible and B is
nontrivial then B(I) is a type III1 factor on H for all I ∈ I. As usual, wen no confusion
can arise, we will use the symbol B also to denote the Möbius covariant net BeB on HB

specifying, if necessary, when B acts on H = HA or on HB. If A is irreducible then B is
irreducible on HB.

If A is an irreducible conformal net and B is a Möbius covariant subnet of A then, by
[101, Thm. 6.2.29], B is also diffeomorphism covariant, i.e.

U(γ)B(I)U(γ)∗ (51)

for all γ ∈ Diff+(S1). Moreover, as a consequence of [101, Thm. 6.2.31], there is a

strongly-continuous projective positive-energy representation UB of D̃iff+(S1) on H such

that U(γ̇)UB(γ)
∗ ∈ B(S1)′ for all γ ∈ D̃iff+(S1). It follows that the subnet B gives rise to

an irreducible conformal net on HB. Accordingly in this case we will simply say that B is
a covariant subnet of A.

Example 3.5. Every irreducible conformal net A we can define a covariant subnet B ⊂ A

by
B(I) ≡ {U(γ) : γ ∈ Diff(I), I ∈ I}′′. (52)

It is clear that the corresponding irreducible conformal net B onHB is unitarily equivalent to
the Virasoro net AVir,c, where c is the central charge of the representation U . Accordingly, B
is called the Virasoro subnet of A and the inclusion B ⊂ A is often denoted by AVir,c ⊂ A.
We say that c is the central charge of A.
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Example 3.6. Let A be a Möbius covariant net and G be a compact subgroup of Aut(A).
The fixed point subnet AG ⊂ A is the Möbius covariant subnet of A defined by

A
G(I) ≡ A(I)G = {A ∈ A(I) : gAg−1 = A for all g ∈ G} I ∈ I. (53)

If G is finite then AG is called an orbifold subnet.

Example 3.7. Let A be a Möbius covariant net on S1 and let B ⊂ A be a Möbius covariant
subnet. The corresponding coset subnet Bc ⊂ A is the Möbius covariant subnet of A
defined by

B
c(I) ≡ B(S1)′ ∩A(I), I ∈ I, (54)

see [69, 75, 103]. If A is an irreducible conformal net and B is a covariant subnet then, by
the results in [69], we have Bc(I) = B(I)′∩A(I), for all I ∈ I, see also [101, Corollary 6.3.6].

If A is an irreducible Möbius covariant net and B ⊂ A is a Möbius covariant subnet then
the Jones index [A(I) : B(I)] of the subfactor B(I) ⊂ A(I) does not depend on the choice
of I ∈ I. The index [A : B] of the subnet B ⊂ A is then defined by [A : B] ≡ [A(I) : B(I)],
I ∈ I. Assuming that [A : B] < +∞ then, by [75, Thm 24], A is completely rational if
and only if B is completely rational. Moreover, the set of subnets C ⊂ A such that B ⊂ C

(intermediate subnets) is finite as a consequence of [75, Thm 3].

4 Preliminaries on vertex algebras

4.1 Vertex algebras

In this paper, unless otherwise stated, vector spaces and vertex algebras are assumed to be
over the field C of complex numbers. We shall use the formulation of the book [59] with the
emphasis on locality. For other standard references on the subject see [39, 40, 70, 82]. We
will mainly consider local (i.e. not super-local) vertex algebras. Thus, differently from [59],
we will use the term vertex algebra only for the local case.

Let V be a vector space. A formal series a(z) =
∑

n∈Z a(n)z
−n−1 with coefficients

a(n) ∈ End(V ) is called a field, if for every b ∈ V we have a(n)b = 0 for n sufficiently large. A
vertex algebra is a (complex) vector space V together with a given vector Ω ∈ V called the
vacuum vector, an operator T ∈ End(V ) called the infinitesimal translation operator,
and a linear map from V to the space of fields on V (the state-field correspondence)

a 7→ Y (a, z) =
∑

n∈Z

a(n)z
−n−1 (55)

satisfying:
(i) Translation covariance: [T, Y (a, z)] = d

dzY (a, z).
(ii) Vacuum: TΩ = 0, Y (Ω, z) = 1V , a(−1)Ω = a.

(iii) Locality: For all a, b ∈ V , (z − w)N [Y (a, z), Y (b, w)] = 0 for a sufficiently large
non-negative integer N .
The fields Y (a, z), a ∈ V , are called vertex operators.

Remark 4.1. Translation covariance is equivalent to

[T, a(n)] = −na(n−1), a ∈ V, n ∈ Z. (56)
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If a is a given vector in V it follows from the field property that there is a smallest non-
negative integer N such that a(n)Ω = 0 for all n ≥ N . It follows that 0 = Ta(N)Ω =
[T, a(N)]Ω = −Na(N−1)Ω and hence N = 0. As a consequence, in the definition of vertex
algebras, the condition a(−1)Ω = a can be replaced by the stronger one Y (a, z)Ω|z=0 = a.

Remark 4.2. In every vertex algebra one always have

[T, Y (a, z)] = Y (Ta, z), (57)

see [59, Corollary 4.4 c].

With the above definition of vertex algebras, the so-called Borcherds identity (or
Jacobi identity), i.e. the equality

∞∑

j=0

(
m
j

)(
a(n+j)b

)
(m+k−j)

c =

∞∑

j=0

(−1)j
(
n
j

)
a(m+n−j)b(k+j)c

−
∞∑

j=0

(−1)j+n

(
n
j

)
b(n+k−j)a(m+j)c, a, b, c ∈ V, m, n, k ∈ Z, (58)

is not an axiom, but a consequence, see [59, Sect. 4.8].
For future use we recall here the following useful identity known as Borcherds commu-

tator formula which follows directly from Eq. (58) after setting n = 0 (see also [59, Eq.
(4.6.3)]).

[a(m), b(k)] =

∞∑

j=0

(
m
j

)(
a(j)b

)
(m+k−j)

, m, k ∈ Z. (59)

We shall call a linear subspace W ⊂ V a vertex subalgebra, if Ω ∈ W and a(n)b ∈ W
for all a, b ∈ W,n ∈ Z. Since Ta = −a(−2)Ω, a vertex subalgebra is always T -invariant and
thus W inherits the structure of a vertex algebra. The intersection of a family of vertex
subalgebras is again a vertex subalgebra. Accoringly for every subset F ⊂ V there is a
smallest vertex subalgebra W (F ) containing F , the vertex subalgebra generated by F . If
W (F ) = V we say that V is generated by F .

We shall call a subspace J ⊂ V an ideal if it is T -invariant and a(n)b ∈ J for a ∈ V ,
b ∈ J , n ∈ Z. If J is an ideal then we also have b(n)a ∈ J for a ∈ V , b ∈ J , n ∈ Z,
see [59, Eq. (4.3.1)]. Conversely if a subspace J ⊂ V satisfies a(n)b ∈ J and b(n)a ∈ J
for a ∈ V , b ∈ J , n ∈ Z then it is T-invariant and hence an ideal. A vertex algebra V is
simple if every ideal J ⊂ V is either {0} or V .

A homomorphism, resp. antilinear homomorphism, from a vertex algebra V to
a vertex algebra W is a linear, resp. antilinear, map φ : V → W such that φ(a(n)b) =
φ(a)(n)φ(b) for all a, b ∈ V and n ∈ Z. Sometimes we shall simply write φa instead of φ(a).

Accordingly, one defines the notions of automorphisms and antilinear automor-
phisms. Note that if g is an automorphism or an antilinear automorphism, then

g(Ω) = g(Ω)(−1)Ω = g(Ω(−1)g
−1(Ω)) = g(g−1Ω) = Ω. (60)

Moreover,
g(Ta) = g(a(−2)Ω) = g(a)(−2)Ω = Tg(a), (61)

for all a ∈ V , i.e. g commutes with T .
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Let M be a vector space, and suppose that for each a ∈ V there is a field on M

Y M (a, z) =
∑

n∈Z

aM(n)z
−n−1, aM(n) ∈ End(M) (62)

that the map a 7→ Y M (a, z) is linear. We shall say that M (with this action) is a module
over the vertex algebra V , if Y M (Ω, z) = 1M and the Borcherds identity holds on M i.e.

∞∑

j=0

(
m
j

)(
a(n+j)b

)M
(m+k−j)

c =
∞∑

j=0

(−1)j
(
n
j

)
aM(m+n−j)b

M
(k+j)c

−
∞∑

j=0

(−1)j+n

(
n
j

)
bM(n+k−j)a

M
(m+j)c, a, b ∈ V, c ∈ M m,n, k ∈ Z. (63)

Accordingly, one defines the notions of module-homomorphism, submodules and irre-
ducibility.

Every vertex algebra V becomes itself a V -module by setting Y V (a, z) = Y (a, z). This
module is called the adjoint module. If the adjoint module is irreducible then V is clearly
a simple vertex algebra but the converse is not true in general since the submodules of the
adjoint module V need not to be T -invariant.

4.2 Conformal vertex algebras

Let V be a vector space and let L(z) =
∑

n∈Z Lnz
−n−2 be a field on V . If the endomorphisms

{Ln : n ∈ Z} satisfy Virasoro algebra relations

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δ−n,m1V (64)

with central charge c ∈ C, then L(z) is called a Virasoro field.
If V is a vertex algebra we shall call ν ∈ V a Virasoro vector if the corresponding

vertex operator Y (ν, z) =
∑

n∈Z Lnz
−n−2, Ln = ν(n+1), is a Virasoro field.

As in [59] we shall call a Virasoro vector ν ∈ V a conformal vector if L−1 = T and
L0 is diagonalizable on V . The corresponding vertex operator Y (ν, z) is called an energy-
momentum field and L0 a conformal Hamiltonian for the vertex algebra V . A vertex
algebra V together with a fixed conformal vector ν ∈ V is called a conformal vertex
algebra, see [59, Sect.4.10]. If c is the central charge of the representation of the Virasoro
algebra given by the operators Ln = ν(n+1), n ∈ Z we say that V has central charge c.

Remark 4.3. Every submodule of the adjoint module of a conformal vertex algebra V is
T -invariant and hence it is an ideal of V . Accordingly V is simple if and only if its adjoint
module is irreducible.

Let V be a conformal vertex algebra and let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the corre-

sponding energy-momentum field. Set Vα = Ker(L0 − α1V ), α ∈ C. The fact that L0 is
diagonalizable means that V is the (algebraic) direct sum of the subspaces Vα i.e.

V =
⊕

α∈C

Vα (65)

is graded by L0.
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A non-zero element a ∈ Vα is called a homogeneous element of conformal weight
(or dimension) da = α. For such an element we shall set

an ≡ a(n+da−1), n ∈ Z− da. (66)

With this convention,

Y (a, z) =
∑

n∈Z−da

anz
−n−da . (67)

We have the following commutation relations ([59, Sect.4.9 and Sect.4.10])

[L0, an] = −nan (68)

[L−1, an] = (−n− da + 1)an−1 (69)

[L1, an] = −(n− da + 1)an+1 + (L1a)n+1 (70)

for all homogeneous a ∈ V , n ∈ Z.
Note that it follows from Eq. (68) that

eαL0ane
−αL0 = e−nαan, α ∈ C. (71)

A homogeneous vector a in a conformal vertex algebra V and the corresponding field
Y (a, z) are called quasi-primary if L1a = 0 and primary if Lna = 0 for every integer
n > 0. Since LnΩ = ν(n+1)Ω = 0 for every integer n ≥ −1, the vacuum vector Ω is a primary
vector in V0. Moreover, it follows by the Virasoro algebra relations that the conformal vector
ν is a quasi-primary vector in V2 which cannnot be primary if c 6= 0.

We have the following commutation relations:

[Lm, an] = ((da − 1)m− n) am+n, (72)

for all primary (resp. quasi-primary) a ∈ V , for all n ∈ Z and all m ∈ Z (resp. m ∈
{−1, 0, 1}), see e.g. [59, Cor.4.10].

We shall say that a conformal vertex algebra V and the corresponding conformal vector
are of CFT type if Vα = {0} for α /∈ Z≥0 and V0 = CΩ. If V is of CFT type, or more
generally if Vα = {0} for α /∈ Z we can define the operators an, n ∈ Z, for all a ∈ V , by
linearity. In this way Eq. (68) still holds for any a ∈ V . Moreover, we have

Y (zL0a, z) =
∑

n∈Z

anz
−n (73)

for all a ∈ Z, cf. [39, Eq. (5.3.13)]. It is obvious that if a ∈ V is homogeneous then an = 0
for all n ∈ Z implies a = 0 and it is not hard to see that this is true also for arbitrary a ∈ V .

In general a vertex algebra V can have more then one conformal vector and hence more
then one structure of conformal vertex algebra even after fixing the grading. When V has
a conformal vector ν of CFT type the conformal vectors of V giving the same grading as ν
are described by the following proposition.

Proposition 4.4. Let V be a vertex algebra and let ν ∈ V be a conformal vector of CFT
type with corresponding energy-momentum field Y (ν, z) =

∑
n∈Z Lnz

−n−2. Then a vector
ν̃ ∈ V such that ν̃(1) = L0 is a conformal vector if and only if

ν̃ = ν + Ta (74)

where a ∈ V is such that L0a = a and a(0) = 0. In this case we have a = 1
2L1ν̃.
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Proof. Let Vn = Ker(L0 − n1V ), n ∈ Z≥0. Since by assumption ν is of CFT type we have

V =
⊕

n∈Z≥0

Vn, V0 = CΩ.

If ν̃ is a conformal vector satisfying ν̃(1) = L0 then ν̃ ∈ V2.
From Borcherds identity (58) with m = −1, n = 1 and k = 0 we get:

∞∑

j=0

(
−1
j

)(
ν(1+j)ν̃

)
(−1−j)

Ω =
∞∑

j=0

(−1)j
(
1
j

)
ν(−j)ν̃(j)Ω

−
∞∑

j=0

(−1)j+1

(
1
j

)
ν̃(1−j)ν(j−1)Ω = ν̃(1)ν = 2ν.

Since ν̃ ∈ V2 we have ν(1+j)ν̃ = 0 for j > 2 and since ν(3)ν̃ ∈ V0 = CΩ we have (ν(3)ν̃)(−3) =
0. It follows that 2ν = (ν(1)ν̃)(−1)Ω− (ν(2)ν̃)(−2)Ω = ν(1)ν̃ − Tν(2)ν̃ = 2ν̃ − TL1ν̃.

Now with a = 1
2L1ν̃ we have L0a = a and ν̃ = ν + Ta. Hence a(0) = (Ta)(1) =

ν̃(1) − ν(1) = 0.
Conversely let us assume that a ∈ V1 and a(0) = 0. Let ν̃ = ν + Ta and let Y (ν̃, z) =∑

n∈Z L̃nz
−n−2 be the corresponding vertex operator. Then we have L̃−1 = L−1 = T and

L̃0 = L0. Moreover, ν̃ ∈ V2. Now L̃nν̃ ∈ V2−n and hence, using the fact that ν is of CFT type
we find L̃nν̃ = 0 for n > 2 and L̃2ν̃ = c̃Ω. Thus ν̃ is a conformal vector by [59, Thm.4.10 (b)].
Finally recalling that V0 = CΩ and that L1ν = 0 we find L1ν̃ = L1Ta = [L1, L−1]a = 2a,
because L1a ∈ V0 = CΩ and hence L−1L1a = 0.

4.3 Vertex operator algebras and invariant bilinear forms

A vertex operator algebra (VOA) is a conformal vertex algebra such that the cor-
responding energy-momentum field Y (ν, z) =

∑
n∈Z z

−n−1Ln and homogeneous subspaces
Ker(L0 − α1V ) satisfy the following additional conditions:

(i) V =
⊕

n∈Z Vn, i.e. Ker(L0 − α1V ) = {0} for α /∈ Z.
(ii) Vn = {0} for n sufficiently small.
(iii) dim(Vn) < ∞.

Remark 4.5. If V0 = CΩ, then condition (ii) is in fact equivalent to the stronger condition
Vn = {0} for all n < 0. Indeed, by [92, Prop. 1], for n < 0 we have that Vn = L1−n

1 V1 ⊂
L−n
1 V0 and hence if V0 = CΩ, then Vn = {0}. Hence in this case V is of CFT type.

To introduce the notion of invariant bilinear forms, first we shall talk about the restricted
dual V ′ of V . As a graded vector space it is defined as

V ′ =
⊕

n∈Z

V ∗
n (75)

i.e. it is the direct sum of the duals V ∗
n of the finite-dimensional vector spaces Vn, n ∈ Z.

The point is that V ′ can be naturally endowed with a V -module structure. Denote by 〈·,·〉
the pairing between V ′ and V . For each a ∈ V , the condition

〈Y ′(a, z)b′, c〉 = 〈b′, Y (ezL1(−z−2)L0a, z−1)c〉 c ∈ V, b′ ∈ V ′ (76)
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determines a field Y ′(a, z) on V ′ and one has that the map a 7→ Y ′(a, z) makes V ′ a V -
module, see [39, Sect.5.2]. The module V ′ is called the contragradient module and
the fields Y ′(a, z) adjoint vertex operators. Note however that the endomorphisms
a′(n) ∈ End(V ) in the formal series Y (a′(n), z) =

∑
n∈Z a

′
(n)z

−n−1 are not the adjoint of the
endomorphisms a(n) in the usual sense. Note also that we have

〈L′
na

′, c〉 = 〈a′, L−nb〉 a′ ∈ V ′, b ∈ V, n ∈ Z, (77)

where L′
n = ν ′(n+1). It follows that V

′ is a Z-graded V module in the sense that L′
0a

′ = na′

for a′ ∈ V ′
n ≡ V ∗

n .
It should be clear from the definition that the V -module structure on V ′ depends on the

conformal vector ν (more precisely on L1) and not only on the vertex algebra structure of
V .

An invariant bilinear form on V is a bilinear form (·, ·) on V satisfying

(Y (a, z)b, c) = (b, Y (ezL1(−z−2)L0a, z−1)c) a, b, c ∈ V. (78)

As the module structure on V ′, whether a bilinear form is invariant on V depends on the
choice of the conformal vector giving to the vertex algebra V the structure of a VOA. By
straightforward calculation one finds that a bilinear form (·,·) on a vertex operator algebra
V is invariant if and only if

(anb, c) = (−1)da
∑

l∈Z≥0

1

l!
(b, (Ll

1a)−nc) (79)

for all b, c ∈ V and all homogeneous a ∈ V . In particular, in case of invariance, it follows
that

(Lna, b) = (a, L−nb) a, b ∈ V, n ∈ Z (80)

and hence, by considering n = 0, that (Vk, Vl) = 0 whenever k 6= l. Thus the linear
functional (a, ·) is in the restricted dual for every a ∈ V and one can see that the map
a 7→ (a, ·) is a module homomorphisms from V to V ′. Conversely, if φ : V → V ′ is a module
homomorphism, then the bilinear form defined by the formula

(a, b) ≡ 〈φ(a), b〉 (81)

is invariant. Since the homogeneous subspaces Vn (n ∈ Z) are finite-dimensional, every
V -module homomorphism from V to V ′, being grading preserving, is injective if and only if
it is surjective. In particular, there exists a non-degenerate invariant bilinear form on V if
and only if V ′ is isomorphic to V as a V -module. In the following proposition we list some
useful facts concerning invariant bilinear forms for later use.

Proposition 4.6. Let V be a VOA. Then:

(i) Every invariant bilinear form on V is symmetric.

(ii) The map (·,·) 7→ (Ω, ·)↾V0
gives a linear isomorphism from the space of invariant

bilinear forms onto (V0/L1V1)
∗.

(iii) If V is a simple VOA then every non-zero invariant bilinear form on V is non-
degenerate. Moreover, if V has a non-zero invariant bilinear form (·, ·) then every
invariant bilinear form on V is of the form α(·, ·) for some complex number α.
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(iv) If V has a non-degenerate invariant bilinear form and V0 = CΩ then V is a simple
VOA.

Proof. For (i) and (ii) see [71, Prop. 2.6] and [71, Thm.3.1], respectively.
(iii). Let (·, ·) a non-zero invariant bilinear form on V . As a consequence of Eq. (79),

the subspace
N ≡ {a ∈ V : (a, b) = 0 ∀b ∈ V }

is an ideal of V , which by assumption is not equal to V . Hence if V is simple, then N = {0},
i.e. (·,·) is non-degenerate. Now let {·, ·} be another invariant bilinear form on V . If it is
zero there is nothing to prove and hence we can assume that it is non-degenerate. Then
there exists a V -module isomorphism φ : V 7→ V such that {a, b} = (φ(a), b) for all a, b ∈ V .
Since φ commutes with every an, a ∈ V , n ∈ Z, V is a simple VOA and hence an irreducible
V -module, φ must be a multiple of the identity by Schur’s lemma because every VOA has
countable dimension, see e.g. [22, Lemma 2.1.3]. Hence there is a complex number α such
that {a, b} = α(a, b) and the claim follows.

(iv) If J is an ideal of V , then L0J ⊂ J and hence J =
⊕

n∈Z(Vn ∩ J ). If
Ω ∈ J then of course J = V . On the other hand, if Ω /∈ J and V0 = CΩ we have that
V0 ∩ J = {0} and so Ω ∈ J ◦ ≡ {a ∈ V : (a, b) = 0 ∀b ∈ J }. However, J ◦ is clearly an
ideal, and hence it coincides with V . Thus J = {0} by the non-degeneracy of (·, ·).

Note that by (ii), if V0 = CΩ, then a non-zero invariant bilinear form exists if and only
if L1V1 = {0}. In this case, again by (iii), there is exactly one invariant bilinear form (·, ·)
which is normalized i.e. such that (Ω,Ω) = 1. Similarly, if we assume that V is simple,
then we see from (iii) that there is at most one normalized invariant bilinear form on V .

Remark 4.7. One can define invariant bilinear forms with similar properties for conformal
vertex algebras such that L0 has only integer eigenvalues but without assuming that the
corresponding eigenspaces Vn, n ∈ Z have finite dimension, see [92].

Proposition 4.8. Let V be a vertex algebra with a conformal vector ν and assume that
the corresponding conformal vertex algebra is a VOA such that V0 = CΩ and having a non-
degenerate invariant bilinear form. Moreover, let ν̃ ∈ V be another conformal vector such
that ν̃(1) = ν(1) and assume that there is still a non-degenerate invariant bilinear form on V
for the corresponding VOA structure. Then ν̃ = ν.

Proof. Let (·,·) be the unique normalized invariant bilinear form on V with respect to
the conformal vector ν and let ν̃ be another conformal vector with the properties in the
proposition. By Remark 4.5 ν is a conformal vector of CFT type and hence, by Prop. 4.4,
ν̃ = ν + T 1

2L1ν̃, where L1 = ν(2). Hence L̃1 ≡ ν̃(2) = L1 − (L1ν̃)(1) Let us assume that
L1ν̃ 6= 0. Since (·, ·) is non-degenerate, there is b ∈ V1 such that (L1ν̃(1), b) 6= 0. Thus

(Ω, L̃1b) = (Ω, (L1 − (L1ν̃)(1))b) = (L1ν̃, b) 6= 0. (82)

Hence L̃1V1 6= {0} and by Prop. 4.6 (ii) there is no non-zero invariant bilinear form on V
corresponding to ν̃.

Remark 4.9. It follows from the results in [92] that Prop. 4.8 still holds true if V with the
conformal vector ν is a conformal vertex algebra of CFT type, namely the assumption that
the L0 eigenspaces Vn, n ∈ Z have finite dimension is not really needed.
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Remark 4.10. Prop. 4.8 can be considered as a VOA analogue of the uniqueness results
for diffeomorphism symmetry proved in [20] and [101]. At the end of Sect. 6 it will be
shown that the uniqueness results in [20, 101] can be proved starting from Prop. 4.8.

Corollary 4.11. Let V be a VOA with energy-momentum field Y (ν, z) =
∑

n∈Z Lnz
−n−2.

Assume that V0 = CΩ and that V has a non-degenerate invariant bilinear form (·,·). Then
for a vertex algebra automorphism or antilinear automorphism g of V , the following are
equivalent.

(i) g is grading preserving i.e. g(Vn) = Vn for all n ∈ Z.

(ii) g preserves (·,·) i.e. either (g(a), g(b)) = (a, b) for all a, b ∈ V if g is linear, or
(g(a), g(b)) = (a, b) for all a, b ∈ V if g is antilinear.

(iii) g(ν) = ν.

Proof. (i) ⇒ (iii). If g is grading preserving, then g(ν) is a conformal vector such that
g(ν)(1) = ν(1) and (g(·), g(·)) (or (g(·), g(·)), in the antilinear case) is a non-degenerate
invariant bilinear form for the corresponding VOA structure. Hence by Prop. 4.8 g(ν) = ν.

(iii) ⇒ (ii). If g(ν) = ν then (g(·), g(·)) (or (g(·), g(·)), in the antilinear case) is an
invariant bilinear form on V and hence by Prop. 4.6 it must coincide with (·,·) because
g(Ω) = Ω and (Ω,Ω) 6= 0 by non-degeneracy.

(ii) ⇒ (i). Every vertex algebra automorphism or antilinear automorphism g commutes
with T = L−1. If g preserves (·,·) then also its inverse does so, and as g−1 also commutes
with T = L−1, we have

(a, L1g(b)) = (Ta, g(b)) = (Tg−1(a), b) = (g−1(a), L1b) = (a, g(L1b)) (83)

for all a, b ∈ V . Thus by the non-degeneracy of (·,·) it follows that L1g(b) = g(L1b); i.e.
that g commutes with L1. But then it also commutes with L0 =

1
2 [L1, L−1] and hence it is

grading preserving.

In the following we shall say that a vertex algebra automorphism, resp. antilinear au-
tomorphism, g of a vertex operator algebra V with conformal vector ν is a VOA auto-
morphism, resp. VOA antilinear automorphism, if g(ν) = ν and we shall denote by
Aut(V ) the group of VOA automorphisms of V .

The group Aut(V ) has a natural topology making it into a metrizable topological group.
First note that the group

∏
n∈ZGL(Vn) of grading preserving vector space automorphisms

of V is the direct product of the finite-dimensional Lie groups GL(Vn), n ∈ Z. Hence∏
n∈ZGL(Vn) with the product topology is a metrizable topological group. Now, Aut(V ) is

a subgroup of
∏

n∈Z GL(Vn) and hence it becomes a topological group when endowed with
the relative topology.

A sequence gn ∈∏n∈Z GL(Vn) converges to g ∈∏n∈Z GL(Vn) if and only if for all a ∈ V
and all b′ ∈ V ′ the sequence of complex numbers 〈b′, gna〉 converges to 〈b′, ga〉. Now let gn be
a sequence in Aut(V ) converging to an element g of

∏
n∈Z GL(Vn). Then for all a, b ∈ V , c′ ∈

V ′ and m ∈ Z we have 〈c′, g(a(m)b)〉 = limn→∞〈c′, gn(a(m)b)〉 = limn→∞〈c′, gn(a)(m)gn(b)〉
= 〈c′, g(a)(m)g(b)〉. It follows that g(a(m)b) = g(a)(m)g(b) and g ∈ Aut(V ). Thus Aut(V ) is
a closed subgroup of

∏
n∈ZGL(Vn).
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5 Unitary vertex operator algebras

In this section we define and study the notion of unitary VOA. For closely related material
cf. [28].

5.1 Definition of unitarity

Now let V be a VOA with conformal vector ν, and let (·|·) be a scalar product on V , namely
a positive-definite sesquilinear form (linear in the second variable). We say that the scalar
product is normalized if (Ω|Ω) = 1 and we say that (·|·) is invariant if there is a VOA
antilinear automorphism θ of V such that (θ · |·) is an invariant bilinear form on V . In this
case we will say that θ is a PCT operator associated with (·|·).

Now let ν be the conformal vector of V and let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the cor-

responding energy-momentum field. Moreover, let (·|·) be a normalized invariant scalar
product on V with an associated PCT operator θ. Since θ(ν) = ν, θ commutes with all Ln,
n ∈ Z. It follows from Eq. (79) that, for all a, b, c ∈ V and n ∈ Z, we have

(anb|c) = (θ(θ−1a)nθ
−1b|c) = (b|(θ−1eL1(−1)L0a)−nc). (84)

In particular if a is quasi-primary we have

(anb|c) = (−1)da(b|(θ−1a)−nc), (85)

for all b, c ∈ V and n ∈ Z. In particular

(Lna|b) = (a|L−nb), (86)

for all a, b ∈ V and n ∈ Z, i.e. the corresponding representations of the Virasoro algebra
and of its Möbius subalgebra C{L−1, L0, L1} (isomorphic to sl2(C)) are unitary and hence
completely reducible. In particular we have Vn = 0 for n < 0.

Proposition 5.1. Let (·|·) be a normalized invariant scalar product on the vertex operator
algebra V . Then there exists a unique PCT operator θ associated with (·|·). Moreover, θ is
an involution i.e. θ2 = 1V and it is is antiunitary i.e. (θa|θb) = (b|a) for all a, b ∈ V .

Proof. Assume that θ̃ is another PCT operator associated with (·|·). Then it follows from
Eq. (84) that (θ−1eL1(−1)L0a)n = (θ̃−1eL1(−1)L0a)n for all a ∈ V and all n ∈ Z. Hence (see
Subsect. 4.2) θ−1eL1(−1)L0a = θ̃−1eL1(−1)L0a for all a ∈ V . Since eL1(−1)L0 is surjective,
it follows that θ = θ̃. Now, from Eq. (84) it also follows that a = (eL1(−1)L0)2θ−2a for all
a ∈ V . It follows from Eq. (71) that (−1)L0eL1(−1)L0 = e−L1 and hence (eL1(−1)L0)2 = 1.
Thus θ2 = 1. Finally, given a, b ∈ V , the symmetry of the invariant bilinear form (θ · |·)
implies that (θa|θb) = (θ2b|a) = (b|a) and hence θ is antiunitary.

Note that if (·|·) is an invariant normalized scalar product on the VOA V and θ is the
corresponding PCT operator then the invariant bilinear form (θ · |·) is obviously normalized
and non-degenerate. Hence as a V -module V is equivalent to the contragradient module V ′.
Note also that as a consequence of Prop. 5.1, θ is determined by (·|·). Conversely, if V is
simple, we have (·|·) = (θ·, ·) where (·, ·) is the unique normalized invariant bilinear form on
V and hence (·|·) is determined by θ.
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Definition 5.2. A unitary vertex operator algebra is a pair (V, (·|·)) where V is a
vertex operator algebra and (·|·) is a normalized invariant scalar product on V .

We have the following:

Proposition 5.3. Let (V, (·|·)) be a unitary V OA. Then V is simple if and only if V0 = CΩ.
In particular every simple unitary VOA is of CFT type.

Proof. Let a ∈ V0. Then

(L−1a|L−1a) = (a|L1L−1a) = 2(a|L0a) = 0.

Hence L−1a = 0 and by [59, Remark 4.4b], Y (a, z) = a(−1). Thus, by locality a(−1) com-
mutes with every bn, n ∈ Z, b ∈ V . Accordingly if V is simple a(−1) is a multiple of the
identity by Schur’s lemma because every VOA has countable dimension, see e.g. [22, Lemma
2.1.3]. Thus a ∈ CΩ. Conversely if V0 = CΩ then V is simple by Prop. 4.6 (iv).

Remark 5.4. Let (V, (·|·)) be a unitary VOA unitary with PCT operator θ. Then the real
subspace

VR = {a ∈ V : θa = a} (87)

contains the conformal vector ν and the vacuum vector Ω and inherits from V the structure
of a real vertex operator algebra. Moreover, V = VR+ iVR and VR ∩ iVR = {0}, i.e. V is the
complexification of VR. Such a real subspace is called a real form [81]. The restriction of
(·|·) to VR is positive definite real valued invariant R-bilinear form on VR and hence (·|·) is
a positive definite invariant Hermitian form on V in the sense of [81, Sect.1.2]. Conversely
let Ṽ be vertex operator algebra over R with a positive definite normalized real valued
invariant R-bilinear form (·, ·) (see [84] for an interesting class of examples) and let V be
the complexification of Ṽ . Then, (·, ·) extends uniquely to an invariant scalar product (·|·)
on the complex vertex operator algebra. Moreover, Ṽ coincide with the corresponding real
form VR defined in Eq. (87).

Remark 5.5. It is straightforward to show that if V1 and V2 are unitary vertex operator
algebras then then also V1 ⊗ V2 is unitary.

We conclude this section with some examples of unitary VOAs.

Example 5.6. The vertex algebra L(c, 0) associated with the unitary representation of the
Virasoro algebra with central charge c and lowest conformal energy 0 is a simple unitary
VOA. We call it the unitary Virasoro VOA with central charge c. The possible value of c
are restricted by unitarity, see Subsect. 3.2.

Example 5.7. Let g be a simple complex Lie algebra and let Vgk be the conformal vertex
algebra associated with the unitary representation of the affine Lie algebra ĝ corresponding
to g, having level k and lowest conformal energy 0. Then Vgk is the simple unitary VOA
corresponding to the level k chiral current algebra CFT model associated g.

Example 5.8. Let VH be the Heisenberg vertex operator algebra associated with the unitary
representation of the (rank one) Heisenberg Lie algebra with lowest conformal energy 0.
Then VH is a simple unitary VOA corresponding to the U(1) chiral current algebra CFT
model (free boson).
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Example 5.9. Let L be an even positive definite lattice. Then the corresponding lattice
VOA VL is unitary, cf. [84, Prop.2.7] and [28, Thm.4.12].

Example 5.10. Let V ♮ be the moonshine VOA constructed by Frenkel, Lepowsky and
Meurman [40], see also [84]. Then V ♮ is a simple unitary VOA. Aut(V ) is the Monster
group M, the largest among the 26 sporadic finite simple groups, cf. [40].

5.2 An equivalent approach to unitarity

The definition of unitarity given in the previous section appears to be very natural from
the point of view of vertex operator algebras theory. In this subsection we will show that
it is natural also from the point of view of quantum field theory (QFT). To simplify the
exposition we shall consider in detail only the case of vertex operator algebras V with
V0 = CΩ.

From the QFT point of view, in agreement with Wightman axioms [95] the basic re-
quirements for unitarity should reflect the following properties:
(1) The spacetime symmetries act unitarily.
(2) The adjoints of local fields are local.

To give a precise formulation of these requirements we need some preliminaries. Let
V be a vertex operator algebra with energy-momentum field Y (ν, z) =

∑
n∈Z Lnz

−n−2 and
let (·|·) be a normalized scalar product on V . We say that the pair (V, (·|·)) has unitary
Möbius symmetry if for all a, b ∈ V

(Lna|b) = (a|L−nb), n = −1, 0, 1. (88)

Now let A ∈ End(V ). We say that A have an adjoint on V (with respect to (·|·)) if there
exists A+ ∈ End(V ) such that

(a|Ab) = (A+a|b), (89)

for all a, b ∈ V . Clearly if A+ exists then it is unique and we say that A+ is the adjoint
of A on V . If HV denotes the Hilbert space completion of (V, (·|·)) then each A ∈ End(V )
may be considered as a densely defined operator on HV . Then A+ exists if and only if the
domain of Hilbert space adjoint A∗ of A contains V and in this case we have A+ ⊂ A∗, i.e.
A+ = A∗↾V .

It is easy to see that the set of elements in EndV having an adjoint on V is a subalgebra
of EndV containing the identity 1V and closed under the operation A 7→ A+. In fact if
A,B ∈ EndV admit an adjoint on V then, for all α, β ∈ C, (αA + βB)+ = αA+ + βB+,
(AB)+ = B+A+ and A++ ≡ (A+)+ = A.

Lemma 5.11. Let (V, (·|·)) have unitary Möbius symmetry. Then, for any a ∈ V and
n ∈ Z, the adjoint a+n of an on V exists. Moreover, for any b ∈ V there exists an N ∈ Z≥0

such that if n ≥ N then a+−nb = 0

Proof. From unitary Möbius symmetry it follows that the finite-dimensional subspaces Vn =
Ker(L0−n1V ) of V are pairwise orthogonal. Since an(Vk) ⊂ Vk−n, we may view an↾Vk

as an
operator between two finite-dimensional scalar product spaces, and so it has a well-defined
adjoint (an↾Vk

)∗ ∈ Hom(Vk−n, Vk). It is easy to check that

a+n ≡
⊕

k∈Z
(an↾Vk

)∗ (90)
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is indeed the adjoint of an on V (and so it exists). From its actual form we also see that
a+−n(Vk) ⊂ Vk−n which shows that indeed for any b ∈ V there exists an N ∈ Z such that if
n ≥ N then a+−nb = 0.

Now let (V, (·|·)) have unitary Möbius symmetry. From the previous lemma it follows
that for every a ∈ V the formal series

Y (a, z)+ ≡
∑

n∈Z

a+(n)z
n+1 =

∑

n∈Z

a+(−n−2)z
−n−1 (91)

is well defined and gives a field on V i.e., for every b ∈ V , a+(−n−2)b = 0 if n is sufficiently
large.

For a ∈ V we say that the vertex operator Y (a, z) has a local adjoint if for every b ∈ V
the fields Y (a, z)+, Y (b, z) are mutually local i.e.

(z − w)N
[
Y (a, z)+, Y (b, w)

]
= 0, (92)

for sufficiently large N ∈ Z≥0 and we denote by V (·|·) the subset of V whose elements are
the vectors a ∈ V such that Y (a, z) has a local adjoint.

Remark 5.12. The adjoint vertex operator Y (a, z)+ should not be confused with the
adjoint vertex operator Y ′(a, z) in the definition of the contragradient module V ′ in Subsect.
4.3.

Lemma 5.13. For a, b ∈ V , Y (a, z)+ and Y (b, z) are mutually local if and only if Y (a, z)
and Y (b, z)+ are mutually local.

Proof. Let N ∈ Z≥0. Then

(z − w)N
[
Y (a, z)+, Y (b, w)

]
= 0 ⇔

N∑

j=0

∑

(m,n)∈Z2

[
a+(m), b(n)

](N
j

)
(−1)jwjzN−jzm+1w−n−1 = 0 ⇔

∀m,n ∈ Z,
N∑

j=0

[
a+
(m+j−N)

, b(n+j)

](N
j

)
(−1)j = 0 ⇔

∀m,n ∈ Z,




N∑

j=0

[
a+(m+j−N), b(n+j)

](N
j

)
(−1)j




+

= 0 ⇔

∀m,n ∈ Z,

N∑

j=0

[
a(m+j−N), b

+
(n+j)

](N
j

)
(−1)j = 0 ⇔

∀m,n ∈ Z,

N∑

j=0

[
a(m+j), b

+
(n+j−N)

](N
j

)
(−1)j = 0 ⇔

(z − w)N
[
Y (b, z)+, Y (a,w)

]
= 0.
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Proposition 5.14. V (·|·) is a vertex subalgebra of V .

Proof. It is clear that V (·|·) is a subspace of V containing Ω. Now let a, b ∈ V (·|·), c ∈ V and
n ∈ Z. By Lemma 5.13 Y (a, z), Y (b, z) and Y (c, z)+ are pairwise mutually local fields on
V . Hence by [59, Prop. 4.4.] and Dong’s Lemma [59, Lemma 3.2.] Y (a(n)b, z) and Y (c, z)+

are mutually local. Since c ∈ V was arbitrary Lemma 5.13 then shows that Y (a(n)b, z) has

a local adjoint, i.e. a(n)b ∈ V (·|·).

Lemma 5.15. Let a ∈ V (·|·) be a quasi-primary vector. Then there is a quasi-primary
vector a ∈ V (·|·) with da = da and such that z−2daY (a, z)+ = Y (a, z), equivalently a+n = a−n

for all n ∈ Z.

Proof. The field z−2daY (a, z)+ coincides with
∑

n∈Z a
+
−nz

−n−da . Since

[L−1, a
+
−n] = −[L+

−1, a−n]
+ = −[L1, a−n]

+

= −((da − 1 + n)a−n+1)
+ = −(da − 1 + n)a+−n+1, (93)

it is translation covariant and hence, cf. [59, Remark 1.3.] z−2daY (a, z)+Ω = ezL−1a+daΩ. By

assumption Y (a, z)+ is mutually local with all fields Y (b, z), b ∈ V . Hence z−2daY (a, z)+

is also mutually local with all fields Y (b, z), b ∈ V . From the uniqueness theorem [59,
Thm.4.4.] it then follows that z−2daY (a, z)+ = Y (a, z) where a = a+daΩ. Since Y (a, z)+ =

z2daY (a, z) we have a ∈ V (·|·). Moreover, L0a
+
da
Ω = −[L0, ada ]

+Ω = daa
+
da
Ω and L1a

+
da
Ω =

−[L−1, ada ]
+Ω = (−2da + 1)a+da−1Ω = 0 and hence a is quasi-primary of dimension da.

The following theorem is a vertex algebra formulation of the PCT theorem [95].

Theorem 5.16. Let V be a vertex operator algebra with a normalized scalar product (·|·).
Assume that that V0 = CΩ. Then the following are equivalent

(i) (V, (·|·)) is a unitary VOA.

(ii) (V, (·|·)) has unitary Möbius symmetry and V (·|·) = V , i.e. every vertex operator has
a local adjoint.

Proof. Let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the energy-momentum field of V . That (i) ⇒ (ii) is

rather trivial. Indeed, suppose that (V, (·|·)) is a unitary VOA and let θ be the corresponding
PCT operator. From Eq. (86) it follows that the pair has unitary Möbius symmetry.
If a ∈ V is a homogeneous vector, then by Eq. (84) and the properties of θ we have
a+−n = (−1)da

∑
l∈Z≥0

1
l!(L

l
1θa)n for all n ∈ Z. Hence

Y (a, z)+ = (−1)da
∑

l∈Z≥0

1

l!
Y (Ll

1θa, z)z
2da−l (94)

is mutually local with all fields Y (b, z), b ∈ V and since the homogeneous vector a was
arbitrary it follows that V (·|·) = V .

Let us now prove (ii) ⇒ (i). Assume that (V, (·|·)) has unitary Möbius symmetry and
that V (·|·) = V . We first show that V is simple.

Since V0 = CΩ, by Remark 4.5, V is of CFT type. Let J ⊂ V be a non-zero ideal.
Since L0J ⊂ J we have

J =
⊕

n≥m

J ∩ Vn
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for some m ∈ Z≥0 such that J ∩Vm 6= {0}. Let a be a non-zero vector in J ∩Vm. Then a is
quasi-primary of dimension m and by Lemma 5.15 there exists a ∈ Vm such that am = a+−m.
Then ama = ama−mΩ is a non-zero vector in J ∩ V0. Accordingly Ω ∈ J and J = V .
Hence V is simple.

Now let a ∈ V1. Since V0 = CΩ and L1a ∈ V0 we have L−1L1a = 0 and from unitary
Möbius symmetry it follows that (L1a|L1a) = 0 and hence L1a = 0. Accordingly L1V1 = {0}
and by Prop. 4.6 it follows that there is a unique normalized invariant bilinear form (·, ·)
on V which is non-degenerate being V simple.

The finite-dimensional subspaces Vn, n ∈ Z≥0, satisfy (Vn|Vm) = 0 and (Vn, Vm) = 0 for
n 6= m. Thus there exists a unique θ : V → V antilinear, grading preserving map such that
(·,·) = (θ · |·).

By Corollary 4.11 and Prop. 5.1 all we have to show is that the above introduced
conjugate linear map θ is actually a vertex algebra antilinear automorphism.

First of all from the non-degeneracy of (·, ·) it follows that θ is injective and since
θVn ⊂ Vn and Vn is finite-dimensional for all n ∈ Z≥0 then θ is invertible. Note also that by
unitary Möbius symmetry it follows that θ commutes with Ln, n = −1, 0, 1.

Now let a ∈ V = V (·|·) be a quasi-primary vector. By Lemma 5.15 there exists a
quasi-primary vector a ∈ Vda such that a+n = a−n, n ∈ Z. We have

(θanb|c) = (anb, c) = (−1)da(b, a−nc) = (−1)da(θb|a−nc) = (−1)da(anθb|c),

for all b, c ∈ V , showing that θan = (−1)daanθ. Since V0 = CΩ and (Ω|Ω) = (Ω,Ω) = 1, we
have that θΩ = Ω. Therefore, θa = θa−daΩ = (−1)daa−daθΩ = (−1)daa. Hence, for every
quasi-primary vector a we have θa(n)θ

−1 = (θa)(n) for all n ∈ Z. Since θ commutes with

L−1 and since by unitary Möbius symmetry the vectors of the form Lk
−1a with k ∈ Z≥0 and

a quasi-primary span V , then, recalling Remark 4.2, it follows that θb(n)θ
−1 = (θb)(n) for

all b ∈ V , n ∈ Z and hence θ is a vertex algebra antilinear automorphism.

Now let V be a vertex operator algebra with a normalized scalar product (·|·) and let
a ∈ V be a quasi-primary vector. Then we shall call the corresponding quasi-primary field
Y (a, z) Hermitian (with respect to (·|·)) if (anb|c) = (b|a−nc) for all b, c ∈ V and all n ∈ Z.
This means that for all n ∈ Z the adjoint a+n of an on V exists and coincides with a−n. The
following consequence of Thm. 5.16 gives a useful characterization of simple unitary vertex
operator algebras.

Proposition 5.17. Let V be a vertex operator algebra with conformal vector ν and let
(·|·) be a normalized scalar product on V . Assume that V0 = CΩ. Then the following are
equivalent

(i) (V, (·|·)) is a unitary vertex operator algebra.

(ii) Y (ν, z) is Hermitian and V is generated by a family of Hermitian quasi-primary fields.

Proof. (i) ⇒ (ii). If (V, (·|·)) is a unitary vertex operator algebra and θ is the corresponding
PCT operator then Y (ν, z) is Hermitian by Eq. (86). Moreover, if a is a quasi-primary
vector then, by Eq. (85) a+n = (−1)da(θa)−n for all n. Accordingly if b = 1

2(a + (−1)daθa)
and c = −i

2 (a − (−1)daθa) then Y (b, z) are and Y (c, z) are Hermitian quasi-primary fields
such that Y (a, z) = Y (b, z) + iY (c, z). Since V is generated by its quasi-primary fields then
it follows that it is also generated by its Hermitian quasi-primary fields.
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(ii) ⇒ (i) If Y (ν, z) is Hermitian then the normalized scalar product (·|·) has clearly
unitary Möbius symmetry. Now let F ⊂ V be the generating family of quasi-primary
vectors corresponding to a generating family of Hermitian quasi-primary fields. Then for
a ∈ F the hermiticity condition gives Y (a, z)+ = z2daY (a, z) and hence Y (a, z) has a local
adjoint i.e. a ∈ V (·|·). Hence F ⊂ V (·|·) and since F generates V and V (·|·) is vertex
subalgebra of V by Prop. 5.14 it follows that V = V (·|·) and hence, by Thm. 5.16, (V, (·|·))
is a unitary vertex operator algebra.

5.3 Unitary automorphisms and essential uniqueness of the unitary struc-

ture

Now, let (V, (·|·)) be a unitary vertex operator algebra. We denote by Aut(·|·)(V ) the sub-
group of the elements of Aut(V ) which are unitary with respect to (·|·). In other words
an element g of Aut(·|·)(V ) is a VOA automorphism of V such that (ga|gb) = (a|b) for
all a, b ∈ V . We will say that Aut(·|·)(V ) is the automorphism group of the unitary VOA
(V, (·|·)).

Remark 5.18. It follows from Prop. 4.6 (iii) that if V is simple and g ∈ Aut(V ) then
g ∈ Aut(·|·)(V ) if and only if g−1θg = θ. Accordingly, if VR = {a ∈ V : θa = a} is the real
form as in Remark 5.4, then g ∈ Aut(·|·)(V ) if and only if g restricts to a VOA automorphism
of the real vertex operator algebra VR. Conversely, every VOA automorphism of VR give rise
to a VOA automorphism of V and hence we have the identification Aut(·|·)(V ) = Aut(VR).

In general Aut(·|·)(V ) is properly contained in Aut(V ). If g ∈ Aut(V ) is VOA auto-
morphism of V which does not belong to Aut(·|·)(V ) then {·|·} = (g · |g·) is a normalized

invariant scalar product on V different from (·|·). In fact θ̃ = g−1θg is an antilinear VOA
automorphism of V and {θ̃ · |·} = (θg · |g·) is an invariant bilinear form on V . In the case of
a simple unitary VOA every normalized invariant scalar product arises in this way. In fact
we have the following

Proposition 5.19. Let (V, (·|·)) be a simple unitary VOA with PCT operator θ and let {·|·}
be another normalized invariant scalar product on V with corresponding PCT operator θ̃.
Then there exists a unique h ∈ Aut(V ) such that:

(i) {a|b} = (ha|hb) for all a, b ∈ V ;

(ii) θ̃ = h−1θh;

(iii) θhθ = h−1;

(iv) (a|ha) > 0 for every non-zero a ∈ V .

Proof. Let g ≡ θθ̃. Then g is an automorphism of V . Moreover, since θ and θ̃ are involutions
we have θgθg = 1V and hence θgθ = g−1. From Prop. 4.6 (iii) we have {θg · |·} = {θ̃ · |·} =
(θ · |·) and hence

(ga|b) = (θθga|b) = {θgθga|b}
= {a|b},

for all a, b ∈ V . It follows that for every integer n the restriction of g to Vn is a strictly
positive Hermitian operator (with respect to (·|·) ) end hence that g is diagonalizable on
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V with positive eigenvalues. Hence we can take the square root of g and define h ≡ g1/2.
With this h (i) – (iv) hold and we have to show that h ∈ Aut(V ). It is clear that h leaves
Ω and ν invariant. Now if a, b are eigenvectors of g with eigenvalues λa and λb respectively
and n ∈ Z then

g(a(n)b) = g(a)(n)g(b) = λaλba(n)b.

Hence
h(a(n)b) = (λaλb)

1/2a(n)b = h(a)(n)h(b),

and by linearity, since g is diagonalizable, it follows that h ∈ Aut(V ). The uniqueness of h
can be easily shown using (i) and (ii).

As a consequence of the above proposition a simple VOA has, up to unitary isomor-
phisms, at most one structure of unitary VOA. We know from the same Prop. that this
structure is really unique (i.e. not up unitary isomorphisms) iff every automorphism of V is
unitary. Using [59, Remark 4.9c] one can easily give examples of non-unitary automorphism.
However there are VOA for which the the normalized invariant scalar product is unique and
we will give a characterization of this class using the topological properties of Aut(V ).

Let (V, (·|·)) be a unitary VOA. Then V is a normed space with the norm ‖a‖ = (a|a)1/2,
a ∈ V . Using the norm on V we can topologize End(V ) with the strong operator topology.
The corresponding topology on Aut(V ) coincides with the topology discussed at the end of
Subsect. 4.3. Being a subgroup of Aut(V ), Aut(·|·)(V ) is also a topological group. We have
the following

Lemma 5.20. Let (V, (·|·)) be a unitary VOA. Then Aut(·|·)(V ) is a compact subgroup of
Aut(V ).

Proof. Let U(Vn), n ∈ Z be the compact subgroup of GL(Vn) whose elements are the
unitary endomorphisms with respect to the restriction of (·|·) to Vn. Then

∏
n∈Z U(Vn) is

the subgroup of unitary elements the group
∏

n∈ZGL(Vn) of grading preserving vector space
automorphisms of V . Since

∏
n∈Z U(Vn) is compact by Tychonoff’s theorem

Aut(·|·)(V ) = Aut(V ) ∩
∏

n∈Z

U(Vn)

is also compact because Aut(V ) is closed in
∏

n∈ZGL(Vn), see the end of Subsect. 4.3.

Theorem 5.21. Let (V, (·|·)) be a simple unitary VOA and let θ be the corresponding PCT
operator. Then the following are equivalent:

(i) (·|·) is the unique normalized invariant scalar product on V .

(ii) Aut(·|·)(V ) = Aut(V ).

(iii) Every g ∈ Aut(V ) commutes with θ.

(iv) Aut(V ) is compact.

(v) Aut(·|·)(V ) is totally disconnected.

36



Proof. The implication (i) ⇒ (ii) is clear from the comments before Prop. 5.19. Now, let g
be a VOA automorphism of V . Then g ∈ Aut(·|·)(V ) iff (gθa|gb) = (θa|b) for all a, b ∈ V . By
Corollary 4.11 we have (θga|gb) = (θa|b) for all a, b ∈ V . Hence g ∈ Aut(·|·)(V ) if and only
if θ and g commute proving (ii) ⇔ (iii). The implication (ii) ⇒ (iv) follows from Lemma
5.20.

Now let {·|·} be a normalized invariant scalar product on V . By Prop. 5.19 there is a
VOA automorphism h of V which is diagonalizable with positive eigenvalues and such that
{a|b} = (ha|hb) for all a, b ∈ V . Moreover, by the same proposition λ is an eigenvalue of h
if only if λ−1 is. Hence if h is not the trivial automorphism then it has an eigenvalue λ > 1
and since h preserves the grading we can find a corresponding eigenvector a ∈ Vn for some
positive integer n. But then the sequence hm(a) = λmv is unbounded in Vn and (iv) cannot
hold proving that (iv) → (i). Similarly if a nontrivial h ∈ Aut(V ) has the properties given
in Prop. 5.19 then R ∋ t 7→ hit is a nontrivial continuous one-parameter group in Aut(·|·)(V )
so that (v) cannot hold. Hence (v) ⇒ (i).

To conclude the proof of the theorem we now show that (ii) ⇒ (v). Let us assume
that Aut(·|·)(V ) is not totally disconnected and denote by G its component of the identity.
Then G is a closed connected subgroup of Aut(·|·)(V ) which is not just the identity subgroup

{1V }. For every N ∈ Z≥0 we denote πN the projection of
∏

n∈ZGL(Vn) onto
∏N

n=0GL(Vn).
The maps πN , N ∈ Z≥0 separate points in

∏
n∈Z GL(Vn) (recall that Vn = {0} if n <

0). Moreover, if N1, N2 are non-negative integers and N2 ≥ N1 we denote by πN2,N1 the

projection of
∏N2

n=0 GL(Vn) onto
∏N1

n=0 GL(Vn) so that πN2,N1 ◦ πN2 = πN1 . For every
N ∈ Z≥0 GN ≡ πN (G) is a compact (and thus closed) connected subgroup of the finite-
dimensional Lie group

∏N1
n=0 GL(Vn) and ,for sufficiently large N , GN is not the identity

subgroup. Moreover, if N1, N2 are non-negative integers and N2 ≥ N1 πN2,N1 restricts to a
group homomorphism of GN2 onto GN1 . As a consequence, for every N , we can choose a
continuous one-parameter group t 7→ φN (t) in GN so that φN (t) is nontrivial for sufficiently
large N and πN2,N1(φN2(t)) = φN1(t) for N2 ≥ N1. Now it is not hard to show that there
is a group homomorphism R ∋ t 7→ φ(t) in G such that πN (φ(t)) = φN (t) for all N ∈ Z≥0.
Clearly R ∋ t 7→ φ(t) is continuous and nontrivial. Now let δ be the endomorphism of
V defined by δ(a) = d

dtφ(t)a|t=0, a ∈ V . Then δ is a derivation of V ( i.e. δ(a(n)b)

= δ(a)(n)b+ a(n)δ(b) for a, b ∈ V , n ∈ Z) commuting with L0. Moreover, φ(t) = etδ so that

δ is non-zero and the VOA automorphism eαδ cannot be unitary for every α ∈ C.

5.4 Unitary subalgebras

Let (V, (·,·)) be a unitary VOA, with PCT operator θ and energy-momentum field Y (ν, z) =∑
n∈Z Lnz

−n−2 and let W ⊂ V be a vertex subalgebra. Recall that the invariant scalar
product allows to consider the adjoints of vertex operators. Obviously, if W is a vertex
subalgebra of V and a, b ∈ W , then the product a(n)b belongs to W for every n ∈ Z, but

there is no guarantee that a+(n)b is in W , too. This fact motivates the following definition.

Definition 5.22. A unitary subalgebra W of a unitary vertex operator algebra (V, (·,·))
is a vertex subalgebra of V satisfying the following two additional properties:

(i) W compatible with the grading, namely W =
⊕

n∈Z(W ∩ Vn) (equivalently L0W ⊂
W ).

(ii) a+(n)b ∈ W for all a, b ∈ W and n ∈ Z.
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Note that if (i) is satisfied then (ii) is equivalent to a+n b ∈ W for all a, b ∈ W and n ∈ Z.
The following proposition gives a useful characterization of unitary subalgebras of the

unitary vertex operator algebra V .

Proposition 5.23. A vertex subalgebra W of a unitary vertex operator algebra V is unitary
if and only if θW ⊂ W and L1W ⊂ W .

Proof. Let W be a unitary subalgebra of V . If a ∈ W is homogeneous, by Eq. (84) we have

a+n = (−1)da
∞∑

j=0

1

j!
(Lj

1θa)−n, (95)

for all n ∈ Z. Hence
∑∞

j=0
1
j!(L

j
1θa)−nΩ ∈ W for all n ∈ Z. For n = 0 we find that

Lda
1 θa ∈ W . For n = 1 that also Lda−1

1 θa ∈ W and so on. Hence, Lj
1θa ∈ W for all j ∈ Z≥0.

Since the homogeneous vector a ∈ W was arbitrary it follows that θW ⊂ W and L1W ⊂ W .
Conversely let us assume that W is a vertex subalgebra of V such that θW ⊂ W and

L1W ⊂ W . Since every vertex subalgebra is L−1 invariant we also have

L0W =
1

2
[L1, L−1]W ⊂ W.

Moreover, Property (ii) in the definition of unitary subalgebras is an easy consequence of
Eq. (84).

Using the definition and the above proposition one can give various examples of unitary
subalgebras of a unitary vertex operator algebra V .

Example 5.24. The vertex subalgebra L(c, 0) ⊂ V generated by the conformal vector ν of
the unitary VOA V having central charge c is a unitary subalgebra. We call it the Virasoro
subalgebra of V .

Example 5.25. For a closed subgroup G ⊂ Aut(·|·)(V ), the the fixed point subalgebra V G

(i.e. the set of fixed elements of V under the action of elements of G) is unitary. In fact
every g ∈ G commutes with θ and L1 and hence θV G ⊂ V G and L1V

G ⊂ V G. When G is
finite V G is called orbifold subalgebra.

Example 5.26. A vertex subalgebra W ⊂ V generated by a θ invariant family of quasi-
primary vectors, is clearly invariant for θ and from Eq. (70) it easily follows that it is also
invariant for L1. Hence W is unitary.

Example 5.27. Let W be a vertex subalgebra of a unitary vertex operator algebra V .
Then W c = {b ∈ V : [Y (a, z), Y (b, w)] = 0 for all a ∈ W} is a vertex subalgebra of V , and
we call it coset subalgebra (see [59, Remark 4.6b] where W c is called centralizer). By
the Borcherds commutator formula Eq. (59) b ∈ V belongs to W c if and only if a(j)b = 0
for all a ∈ W and j ∈ Z≥0, cf. [59, Cor.4.6. (b)]. Now if W is a unitary subalgebra and
a, b ∈ W c then, for all c ∈ W and all n,m ∈ Z, we have [a+(n), c(m)] = [c+(m), a(n)]

+ = 0,

as a consequence of Eq. (95). Hence for all c ∈ W , j ∈ Z≥0, n ∈ Z we have c(j)a
+
(n)b =

a+(n)c(j)b = 0 so that a+(n)b ∈ W c. Moreover, if a ∈ W is homogeneous and b ∈ W c then

a(j)L0b = aj−da+1L0b = L0aj−da+1b+ (j − da +1)aj−da+1b = L0a(j)b+ (j − da +1)a(j)b = 0
for all j ∈ Z≥0. Hence L0W

c ⊂ W c. It follows that if W ⊂ V is an unitary subalgebra then
the corresponding coset subalgebra W c ⊂ V is also unitary.
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Now, suppose that W ⊂ V is a unitary subalgebra. Then W , is a vertex algebra and it
inherits from V the normalized scalar product (·|·). We want to show that when V is simple
can we find a conformal vector for the vertex algebra W making the pair (W, (·|·)) into a
simple unitary VOA. In order to do so, let us first note that the orthogonal projection eW
onto W , is a well-defined element in End(V ). This is an easy consequence of the fact that
W is compatible with the grading, and that the subspaces Vn (n ∈ Z) are finite-dimensional.
Note also that e+W = eW .

Lemma 5.28. Let W ⊂ V be a unitary subalgebra. Then [Y (a, z), eW ] = 0 for all a ∈ W ,
[Ln, eW ] = 0 for n = −1, 0, 1 and [θ, eW ] = 0. Moreover, for every a ∈ V , eWY (a, z)eW =
Y (eW a, z)eW .

Proof. Let a ∈ W . Since, for every n ∈ Z, W is invariant for a(n) and a+
(n)

we have eW a(n) =

eW a(n)eW = (eW a+(n)eW )+ = (a+(n)eW )+ = eW a(n) for integer n. Hence [Y (a, z), eW ] = 0.

By Prop. 5.23, W is also invariant for Ln, n = −1, 0, 1 and for θ. Since L+
1 = L−1,

L+
0 = L0 and θ is an antiunitary involution it follows that [Ln, eW ] = 0 for n = −1, 0, 1 and

[θ, eW ] = 0.
Now let a ∈ V . Then eWY (a, z)eW ↾W is a field on W which is mutually local with all

vertex operators Y (b, z)↾W , b ∈ W . Moreover, eWY (a, z)eWΩ = eW ezL−1a = ezL−1eW a.
By the uniqueness theorem [59, Thm.4.4], we have eWY (a, z)eW ↾W = Y (eW a, z)↾W . Thus
eWY (a, z)eW = Y (eW a, z)eW .

Proposition 5.29. Let (V, (·|·)) be a simple unitary VOA with conformal vector ν, W be a
unitary subalgebra of V and νW = eW ν. Then θνW = νW and Y (νW , z) =

∑
n∈Z L

W
n z−n−2

is a Hermitian Virasoro field on V such that LW
n ↾W = Ln↾W for n = −1, 0, 1. In particular

νW is a conformal vector for the vertex algebra W and W endowed with νW is a vertex
operator algebra. Moreover, (W, (·|·)) with the conformal vector νW is a simple unitary
VOA with PCT operator θ↾W .

Proof. By Lemma 5.28 νW is a quasi-primary vector in V2 and the coefficients in the expan-
sion Y (νW , z) =

∑
n∈Z L

W
n z−n−2 satisfy LW

n eW = eWLneW . Moreover, for n = −1, 0, 1 we
also have LW

n eW = LneW and hence LW
n ↾W = Ln↾W .

From Borcherds commutator formula Eq. (59) and the fact that LW
j νW = 0 for j > 2

we have (m,n ∈ Z)

[LW
m , LW

n ] = (LW
−1ν

W )(m+n+2) + (m+ 1)(LW
0 νW )(m+n+1)

+
m(m+ 1)

2
(LW

1 νW )(m+n) +
m(m2 − 1)

6
(LW

2 νW )(m+n−1).

Now, LW
−1ν

W = L−1ν
W , LW

0 νW = L0ν
W = 2νW and LW

1 νW = L1ν
W = 0. Moreover, since

V is simple, we have V0 = CΩ by Prop. 5.3 so that LW
2 νW = cW

2 Ω for some cW ∈ C. Hence

[LW
m , LW

n ] = −(m+ n+ 2)(νW )(m+n+1) + 2(m+ 1)(νW )(m+n+1)

+
cW
12

(m3 −m)δm,−n1V

= (m− n)LW
m+n +

cW
12

(m3 −m)δm,−n1V ,

i.e. Y (νW , z) is a Virasoro field with central charge cW . That (W, (·|·)) is a unitary VOA
with PCT operator θ↾W now follows directly from the fact that W is invariant for θ, and
Ln, n = −1, 0, 1. Moreover, W is simple by Prop. 5.3 because W0 = W ∩ V0 = CΩ.
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Remark 5.30. Let W be a unitary subalgebra of a simple unitary vertex operator algebra.
Then the following are equivalent:

(i) W = CΩ.

(ii) νW = 0, where νW = eW ν.

(iii) cW = 0, where cW is the central charge of νW .

Proposition 5.31. Let (V, (·|·)) be a simple unitary VOA with conformal vector ν, let W
be a unitary subalgebra of V and le W c be the corresponding coset subalgebra. Then we have
ν = νW + νW

c
. Moreover, the operators LW

0 = νW(1) and LW c

0 = νW
c

(1) are simultaneously
diagonalizable on V with non-negative eigenvalues.

Proof. Let ν ′ = ν−νW and let a ∈ W . By Prop. 5.29 we have ν ′(j)a = 0 for j = 0, 1, 2. Hence

by the Borcherds commutator formula Eq. (59) we have [ν ′(m), a(n)] = 0, for m = 0, 1, 2

and all n ∈ Z. Note also that since νW is quasi-primary then [L0, L
W
0 ] = 0 and hence

z
LW
0

1 = elog(z1)L
W
0 is well defined on V . As a consequence we find

zL0
1 Y (a, z)z−L0

1 = z
LW
0

1 Y (a, z)z
−LW

0
1 (96)

and
z
LW
0

1 Y (ν ′, z)z
−LW

0
1 = Y (ν ′, z). (97)

Hence if a ∈ W is homogeneous then

z
LW
0

1 [Y (ν ′, z), Y (a,w)]z
LW
0

1 = [Y (ν ′, z), zL0
1 Y (a,w)z−L0

1 ]

= wda [Y (ν ′, z), Y (a, z1w)]. (98)

Hence, by locality, [Y (ν ′, z), Y (a,w)] = 0 for all homogeneous a ∈ W so that ν ′ ∈ W c.
The same argument also shows that ν− νW

c ∈ W cc. Accordingly, for every b ∈ W c we have

[Y (ν ′, z), Y (b, w)] = [Y (ν, z), Y (b, w)] = [Y (νW
c

, z), Y (b, w)] (99)

and thus ν ′ − νW
c ∈ W c ∩W cc. It follows that Y (ν ′ − νW

c
, z) commutes with the energy-

momentum field Y (ν, z) and hence with all vertex operators Y (a, z), a ∈ V . Since V is
simple we have Y (ν ′ − νW

c
, z) ∈ C1 and hence ν ′ = νW

c
so that ν = νW + νW

c
.

Now, LW
0 and LW c

0 coincide with their adjoints on V and commute. Moreover, they
commute with L0 which is diagonalizable with finite-dimensional eigenspaces. Hence LW

0

and LW c

0 are simultaneously diagonalizable on V with real eigenvalues. It remains to show
that these eigenvalues are in fact non-negative. Let a ∈ V be a non-zero vector such that
LW
0 a = sa and LW c

0 a = ta, s, t ∈ R. Assume that s < 0. Then as a consequence of unitarity
and of the fact that Y (νW , z) is a Virasoro field it easy to show that (LW

1 )na is non-zero for
every positive integer n. Moreover, L0(L

W
1 )na = (s + t − n)(LW

1 )na in contradiction with
the fact that L0 has non-negative eigenvalues. Hence s ≥ 0 and similarly t ≥ 0.

Corollary 5.32. Let W be a unitary subalgebra of the unitary Virasoro VOA L(c, 0). Then,
either W = CΩ or W = L(c, 0).
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Proof. Since L(c, 0)2 = CL−2Ω = Cν, see e.g. [62], then either W2 = {0} and hence νW = 0
so that W = 0 by Remark 5.30 or W2 = Cν and hence W = L(c, 0), because L(c, 0) is
generated by ν.

We conclude this section with the following example.

Example 5.33. Let V ♮ be the moonshine VOA. Then, V ♮ is a framed VOA of rank 24
namely it is an extension of L(1/2, 0)⊗48, [84]. In fact , V ♮ contains the corresponding copy
of L(1/2, 0)⊗48 as a unitary subalgebra. Now, let W ⊂ V ♮ be the unitary subalgebra of V ♮

isomorphic to L(1/2, 0) corresponding to the embedding L(1/2, 0)⊗Ω⊗47 ⊂ L(1/2, 0)⊗48 ⊂
V ♮. Then W c is a simple unitary framed VOA of rank 47/2, namely, the even shorter

Moonshine vertex operator algebra V B♮
(0) constructed by Höhn, see [54, Sect. 1]. It has

been proved by Höhn that the atomorphism group Aut(V B♮
(0)) of V B♮

(0) is the Baby Monster

group B, the second largest sporadic simple finite group, see [54, Thm.1].

6 Energy bounds and strongly local vertex operator algebras

Let (V, (·|·)) be a unitary VOA. We say that a ∈ V (or equivalently the corresponding field
Y (a, z)) satisfies (polynomial) energy bounds if there exist positive integers s, k and a
constant M > 0 such that, for all n ∈ Z and all b ∈ V

‖anb‖ ≤ M(|n|+ 1)s‖(L0 + 1V )
kb‖. (100)

If every a ∈ V satisfies energy bounds we say that V is energy-bounded. Note that if
V is energy-bounded then, obviously, every unitary subalgebra W ⊂ V is energy-bounded.

The following proposition will be useful.

Proposition 6.1. If V is generated by a family of homogeneous elements satisfying energy
bounds then V is energy-bounded.

Proof. A linear combination of elements satisfying energy bounds also satisfies energy bounds.
Moreover, if a ∈ V(d), then (Ta)n = −(n+ d)an and hence if a satisfies energy bounds, then
so does Ta. However, starting from a generating set, any element of V can be obtained
by a repeated use of: derivatives (multiplication by T = L−1), (n)-products with n ≥ 0,
(n)-product with n = −1 (which correspond to normally ordered product of vertex op-
erators [59, Sect.3.1]), and linear combinations. This follows from Eqs. (56) and (57), see
also [59, Sect.3.1 and Prop.4.4].

Derivatives or (n)-products of homogeneous elements are homogeneous, and taking linear
combinations “commutes” with taking derivatives and with forming (n)-products. Thus it
is enough to show, that if a and b are homogeneous elements satisfying energy bounds, then
a(n)b satisfies energy bounds for all n ≥ 0 and for n = −1.

So suppose that a, b ∈ V are homogeneous elements of conformal weight da and db,
respectively, and that there exist some positive Mx, sx and rx (where x = a, b) such that for
all c ∈ V and m ∈ Z, we have

‖xmc‖ ≤ Mx(1 + |m|)sx‖(1V + L0)
rxc‖ (x = a, b). (101)
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As [L0, ym] = −mym, we have that (1V + L0)
rxym = ym ((1−m)1V + L0)

rx and so from
the assumed energy bounds it follows that for every c ∈ V

‖xm1ym2c‖ ≤ Mx(1+|m1|)sx‖(1V + L0)
rxym2c‖

= Mx(1+|m1|)sx‖ym2((1−m2)1V + L0)
rxc‖

≤ MxMy(1+|m1|)sx(1+|m2|)sy‖(1V + L0)
ry((1−m2)1V + L0)

rxc‖
≤ MxMy(1+|m1|)sx(1+|m2|)1+sy‖(1V + L0)

rx+ryc‖. (102)

To have a bound for (am1b)m2 rather than for am1bm2 , we use the special case of the
Borcherds identity obtained by substituting m = 0 into (58):

(a(n)b)(k) =

∞∑

j=0

(−1)j
(
n
j

)(
a(n−j)b(k+j) − (−1)nb(n+k−j)a(j)

)
. (103)

When n ≥ 0, there are at most n+ 1 possibly non-zero terms in the sum appearing on the

right-hand side, since if j > n ≥ 0 then

(
n
j

)
= 0. So using (102), it is straightforward to

show that in this case a(n)b satisfies energy bounds.
If n = −1, then in general :ab :m≡ (a(−1)b)m cannot be reduced to a finite sum. As :ab :

is of conformal weight da + db, by (103) we have

:ab :m=
∑

j≥da

a−jbm+j +
∑

j<da

bm+ja−j . (104)

Nevertheless, to estimate ‖ :ab :m c‖ for a c ∈ V(k), we only have to deal with a finite sum,
since a−jc = 0 for j < k and bm+jc = 0 for j > k − m. This, together with (102), gives
a k-depending bound for ‖ : ab :m c‖. But as kc = L0c, the k-dependence can be easily
“integrated” into the degree of (1V + L0).

Finally, if c is not homogeneous, then it is a sum c =
∑

c(k) of homogeneous elements.
Correspondingly, we may try to “sum up” our already obtained inequality for the homoge-
neous vectors appearing in the sum.

Of course, in general the norm inequalities ‖vk‖ ≤ ‖wk‖ (k = 0, 1, ...) do not imply that
‖∑k vk‖ ≤ ‖∑k wk‖. They do however, if one has some extra conditions; for example that
both {vk : k = 0, 1, ...} and {wk : k = 0, 1, ...} are sets of pairwise orthogonal vectors.

This is exactly our case, since by the corresponding eigenvalues of L0, one has that both
{:ab :m c(k) : k = 0, 1, ...} and {(1V + L0)

rc(k) : k = 0, 1, ...} are sets of pairwise orthogonal
vectors. Hence the obtained bound is applicable to every c ∈ V .

Corollary 6.2. If V α and V β are energy-bounded VOAs then V α ⊗ V β is energy-bounded.

Proposition 6.3. If V is a simple unitary VOA generated by V1 ∪ F , where F ⊂ V2 is a
family of quasi-primary θ-invariant Virasoro vectors, then V is energy-bounded.

Proof. From the commutator formula in Eq. (59) it follows that V1 is a Lie algebra with
brackets [a, b] = a0b. Again from Eq. (59) we have that for a, b ∈ V1, m,k ∈ Z,

[am, bk] = [a, b](m+k) +m(θa|b)δm,−k1V ,

i.e. the operators ak, a ∈ V1, k ∈ Z satisfy affine Lie algebra commutator relations. As
a consequence the vectors a ∈ V1 ∪ F satisfy the energy bounds in Eq. (100) with k = 1
(linear energy bounds), see e.g. [14, Sect.2], and the conclusion follows from Prop. 6.1.
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The first step in the construction of a conformal net associated with the unitary VOA
(V, (·|·)) is the definition of the complex Hilbert space H = H(V,(·|·)) as the completion of V
with respect to (·|·). For every a ∈ V and n ∈ Z we can consider a(n) has an operator on
H with dense domain V ⊂ H. Due to the invariance of the scalar product a(n) has densely
defined adjoint and hence it is closable. Now let V be energy-bounded and let f(z) be a
smooth function on S1 = {z ∈ C : |z| = 1} with Fourier coefficients

f̂n =

∫ π

−π
f(eiϑ)e−inϑdϑ

2π
=

∮

S1

f(z)z−n dz

2πiz
(105)

For every a ∈ V we define the operator Y0(a, f) with domain V by

Y0(a, f)b =
∑

n∈Z

f̂nanb for b ∈ V. (106)

The sum converges in H due to the energy bounds and hence Y0(a, f) is a densely defined
operator on H . From the invariance of the scalar product it follows that Y0(a, f) has densely
defined adjoint and hence it is closable. We denote Y (a, f) the closure of Y0(a, f) and call
it smeared vertex operator. Note also that if the vector a satisfies the energy bounds

‖anb‖ ≤ M(|n|+ 1)s‖(L0 + 1V )
kb‖, b ∈ V, (107)

then the operator Y (a, f) satisfies

‖Y (a, f)b‖ ≤ M‖f‖s‖(L0 + 1H)
kb‖, b ∈ V (108)

where
‖f‖s =

∑

n∈Z

(|n|+ 1)s|f̂n| (109)

In particular the domain Hk of (L0 + 1H)
k is contained in the domain of Y (a, f) and every

core for the first operator is a core for the second. It follows that

H
∞ =

⋂

k∈Z≥0

H
k (110)

is a common core for the operators Y (a, f), f ∈ C∞(S1), a ∈ V . Moreover, the map
f 7→ Y (a, f)b, b ∈ H∞ is continuous and linear from C∞(S1) to H namely f 7→ Y (a, f) is
an operator valued distribution. Moreover, using the straightforward equality

eitL0Y (a, f)e−itL0 = Y (a, ft), t ∈ R, (111)

where ft is defined by ft(z) = f(e−itz), and the energy bounds it is rather easy to show
that, if b ∈ H∞ then Y (a, f)b ∈ H1 and

L0Y (a, f)b = −iY (a, f ′)b+ iY (a, f)L0b,

where f ′(eiϑ) = d
dϑf(e

iϑ). It follows that Y (a, f)b ∈ H∞ so that the common core H∞ is
invariant for all the smeared vertex operators.

If a ∈ V is homogeneous we can use the formal notation
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Y (a, f) =

∮

S1

Y (a, z)f(z)zda
dz

2πiz
. (112)

Note that if a ∈ V is homogeneous and L1a = 0 we have the usual relation for the
quasi-primary field Y (a, z):

(−1)daY (θa, f̄) ⊂ Y (a, f)∗. (113)

If a ∈ V is arbitrary Y (a, f)∗ still contains H∞ in its domain as a consequence of Eq.
(94).

Now we can associate with every interval I ∈ I a von Neumann algebra A(V,(·|·))(I) by

A(V,(·|·))(I) ≡ W ∗({Y (a, f) : a ∈ V, f ∈ C∞(S1), suppf ⊂ I}). (114)

The map I 7→ A(V,(·|·))(I) is obviously inclusion preserving. Moreover, it is not hard to show
that Ω is cyclic for the von Neumann algebra

A(V,(·|·))(S
1) ≡

∨

I∈I

A(V,(·|·))(I). (115)

We now discuss covariance. The crucial fact here is that the unitary representation
of the Virasoro algebra on V associated with the conformal vector ν ∈ V gives rise to a
strongly continuous unitary projective positive-energy representation of the covering group
˜Diff+(S1) of Diff+(S1) on H by [48, 98] which factors through Diff+(S1) because ei2πL0 = 1,

see Subsect. 3.2.
Hence there is a strongly continuous projective unitary representation U of Diff+(S1)

on H such that, for all f ∈ C∞(S1,R) and all A ∈ B(H),

U(Exp(tf
d

dϑ
))AU(Exp(tf

d

dϑ
))∗ = eitY (ν,f)Ae−iY (ν,f), (116)

Moreover, for all γ ∈ Diff+(S1) we have U(γ)H∞ = H∞.
For any γ ∈ Diff+(S1) consider the function Xγ : S1 → R defined by

Xγ(e
iϑ) = −i

d

dϑ
log(γ(eiϑ)). (117)

Since γ is a diffeomorphism of S1 preserving the orientation then Xγ(z) > 0 for all z ∈ S1.
Moreover, Xγ ∈ C∞(S1). Another straightforward consequence of the definition is that

Xγ1γ2(z) = Xγ1(γ2(z))Xγ2(z). (118)

It follows that, for any d ∈ Z>0 the family of continuous linear operators βd(γ), γ ∈ Diff+(S1)
on the Fréchet space C∞(S1) defined by

(βd(γ)f)(z) =
(
Xγ(γ

−1(z))
)d−1

f(γ−1(z)) (119)

gives a strongly continuous representation of Diff+(S1) leaving the real subspace of real
functions invariant.

Proposition 6.4. If V is a simple energy-bounded unitary VOA and a ∈ V is a quasi-
primary vector then U(γ)Y (a, f)U(γ)∗ = Y (a, βda(γ)f) for all γ ∈ Möb. If a ∈ V is a
primary vector then U(γ)Y (a, f)U(γ)∗ = Y (a, βda(γ)f) for all γ ∈ Diff+(S1).
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Proof. Let Y (ν, z) =
∑

n∈Z Lnz
−n−2 be the Virasoro field associated to the conformal vector

ν. The case in which a is quasi-primary follows by a straightforward adaptation of the
argument in pages 1100–1001 of [21] and recalling the commutation relations between an
and Lm, n ∈ Z, m = −1, 0, 1 given in Eq. (72).

The case in which a is primary can be treated in a similar but taking into account
the commutation relations an and Lm, n,m ∈ Z given again in Eq. (72). Note that for
expository reasons in the proof in [21] complete argument is given only for γ ∈ Möb but the
proof can be adapted to cover the case γ ∈ Diff+(S1) by noticing that as a consequence of
the results in [98] we have eiY (ν,f)H∞ ⊂ H∞ for all f ∈ C∞(S1,R) and that Diff+(S1) is
generated by exponentials of vector fields because it is a simple group [83].

We now discuss locality. It follows from Prop. A.1 in Appendix A that for any a, b ∈ V
the fields Y (a, z) and Y (b, z) are mutually local in the Wightman sense, i.e. for any f, f̃ ∈
C∞(S1) with suppf ⊂ I, suppf̃ ⊂ I ′, I ∈ I we have

[Y (a, f), Y (b, f̃)]c = 0 (120)

for all c ∈ H∞. As discussed in the Introduction and in Subsect.2.2 this is a priori not
enough to ensure the the locality condition for the map I 7→ A(V,(·|·))(I).

Lemma 6.5. Let A be a bounded operator on H, a ∈ V , and I ∈ I . Then AY (a, f) ⊂
Y (a, f)A for all f ∈ C∞(S1) with suppf ⊂ I if and only if (A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac)
for all b, c ∈ V , and all real f ∈ C∞(S1) with suppf ⊂ I.

Proof. The only if part is obvious. The proof of if part is based on a rather straightfor-
ward adaptation of the proof of [33, Lemma 5.4]. Let us assume that (A∗b|Y (a, f)c) =
(Y (a, f)∗b|Ac) for all b, c ∈ V , and all real valued f ∈ C∞(S1) with suppf ⊂ I. Then the
same relation holds also for all complex valued f ∈ C∞(S1) with suppf ⊂ I. Now let f be
a given function in C∞(S1) with suppf ⊂ I. Then there is a δ > 0 such that the support of
the function ft(z) ≡ f(e−itz) is again contained in the open interval I for all real numbers t
such that |t| < δ. From the relation eitL0Y (a, f)e−itL0 = Y (a, ft) for all t ∈ R and the fact
that eitL0V = V for all t ∈ R it then follows that, for all b, c ∈ V and every smooth function
ϕ on R with support in the open interval (−δ, δ), (A(ϕ)∗b|Y (a, f)c) = (Y (a, f)∗b|A(ϕ)c),
where A(ϕ) =

∫
R
eitL0Ae−itL0ϕ(t)dt. Now, a standard argument shows that A(ϕ)c ∈ H∞

for every c ∈ V and from the fact that H∞ is contained in the domain of Y (a, f) we can
conclude that A(ϕ)Y (a, f)c = Y (a, f)A(ϕ)c for every smooth function ϕ on R with support
in (−δ, δ) and every c ∈ V .

For any real number s ∈ (0, δ) we fix a smooth positive function ϕs on R with support in
(−s, s) and such that

∫
R
ϕs(t)dt = 1. For every c ∈ V we then have A(ϕs)Y (a, f)c =

Y (a, f)A(ϕs)c. Now, a standard argument shows that if s tends to 0 A(ϕs) tends to
A in the strong operator topology. Accordingly lims→0 Y (a, f)A(ϕs)c = AY (a, f)c and
lims→0A(ϕs)c = Ac for every c ∈ V . Since Y (a, f) is closed it follows that Ac is in domain
of Y (a, f) and Y (a, f)Ac = AY (a, f)c for every c ∈ V and since V is a core for the closed
operator Y (a, f) it follows that AY (a, f) ⊂ Y (a, f)A.

The following proposition shows that the algebras A(V,(·|·))(I) are generated by quasi-
primary fields.
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Proposition 6.6. Let A be a bounded operator on H and let I ∈ I. Then A ∈ A(V,(·|·))(I)
′

if and only if (A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac) for all quasi-primary a ∈ V , all b, c ∈ V and
all real f ∈ C∞(S1) with suppf ⊂ I. In particular

A(V,(·|·))(I) = W ∗({Y (a, f) : a ∈
⋃

k∈Z

Vk, L1a = 0, f ∈ C∞(S1,R), suppf ⊂ I}). (121)

Proof. Given I ∈ I we denote by Q(I) the set of bounded operators A such that

(A∗b|Y (a, f)c) = (Y (a, f)∗b|Ac)

for all quasi-primary a ∈ V , all b, c ∈ V and all f ∈ C∞
R (S1) with suppf ⊂ I. Then the

same equalities hold also for all complex valued functions f ∈ C∞
R (S1) with suppf ⊂ I. It is

evident that A(V,(·|·))(I)
′ ⊂ Q(I) and hence we have to show that Q(I) ⊂ A(V,(·|·))(I)

′. Now,
if A ∈ Q(I), a ∈ V is quasi primary, b, c ∈ V and f ∈ C∞(S1) has support in I we have, for
all quasi-primary a ∈ V , all b, c ∈ V and all f ∈ C∞(S1) with suppf ⊂ I.

(Ab|Y (a, f)c) = (−1)da(Ab|Y (θa, f̄)∗c) = (−1)da(Y (θa, f̄)∗c|Ab)
= (−1)da(A∗c|Y (θa, f̄)b) = (−1)da(A∗c|Y (θa, f̄)b)

= (−1)da(Y (θa, f̄)b|A∗c) = (Y (a, f)∗b|A∗c).

It follows that A∗ ∈ Q(I).
Now let a ∈ V be homogeneous. An elementary calculation shows that (L−1a)n = −(n+

da)an and hence that Y (L−1a, f) = Y (a, if ′ − daf) for every smooth function on S1, where
f ′(eiϑ) = d

dθf(e
iϑ). It follows that, for a non-negative integer k, Y ((L−1)

ka, f) = Y (a, f(k,a)),

where f(k,a) is a linear combination of f, f ′, f ′′, . . . , f (k). If suppf ⊂ I also suppf(k,a) ⊂ I
and hence if a is quasi-primary we have

(A∗b|Y ((L−1)
ka, f)c) = (A∗b|Y (a, f(k,a))c) = (Y (a, f(k,a))

∗b|Ac)
= (Y ((L−1)

ka, f)∗b|Ac).

Since the Lie algebra representation determined by L−1, L0, L1 is completely reducible, V is
spanned by elements of the form (L−1)

ka with k a non-negative integer and a quasi-primary.
Hence, for all a, b, c ∈ V we have (A∗b|Y (a, f)c) = (Y (a, f)∗b,Ac). It follows from Lemma
6.5 that AY (a, f) ⊂ Y (a, f)A for all a ∈ V and all f ∈ C∞(S1) with suppf ⊂ I. Since also
A∗ ∈ Q(I) we also have A∗Y (a, f) ⊂ Y (a, f)A∗ and hence AY (a, f)∗ ⊂ Y (a, f)∗A for all
a ∈ V and all f ∈ C∞(S1) with suppf ⊂ I. It follows that A ∈ A(V,(·|·))(I)

′

From the covariance properties of quasi-primary fields it follows that the net is Möbius
covariant.

Definition 6.7. We say that a unitary VOA (V, (·|·)) is strongly local if it is energy-
bounded and A(V,(·|·))(I) ⊂ A(V,(·|·))(I

′)′ for all I ∈ I.

Theorem 6.8. Let (V, (·|·)) be a simple strongly local unitary VOA. Then the map I 7→
A(V,(·|·))(I) defines an irreducible conformal net A(V,(·|·)) on S1. If {·|·} is another normalized
invariant scalar product on V then (V, {·|·}) is again strongly local and A(V,(·|·)) and A(V,{·|·})

are isomorphic conformal nets.
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Proof. We only discuss covariance. The Möbius covariance of the net follows from Prop. 6.4
and Prop. 6.6. Then conformal (i.e. diffeomorphism) covariance follows from [18, Prop.3.7].

Due to the above theorem, when no confusion arises, we shall denote the conformal net
A(V,(·|·)) simply by AV . We shall say that AV is the irreducible conformal net associated
with the strongly local unitary simple vertex operator algebra V .

Using the strategy in [66, Sect.5] we can now prove the following theorem.

Theorem 6.9. Let V be a strongly local simple unitary VOA and let AV be the corresponding
irreducible conformal net. Then Aut(AV ) = Aut(·|·)(V ). If Aut(V ) is finite then Aut(AV ) =
Aut(V ).

Proof. Let H be the Hilbert space completion of V . Then any g ∈ Aut(·|·)(V ) uniquely
extends to a unitary operator on H again denoted by g. We have gΩ = Ω. Moreover, since
gY (a, f)g−1 = Y (ga, f) for all a ∈ V and all f ∈ C∞(S1) we also have that gA(I)g−1 = A(I)
and hence g ∈ Aut(AV ). Conversely let g ∈ Aut(AV ). Then gLng

−1 = Ln for n = −1, 0, 1.
It follows that g restricts to a linear invertible map V → V preserving the invariant scalar
product (·|·). For any a ∈ V the formal series gY (a, z)g−1 is a field on V and, since A is
local then, by Prop. 2.1 and Prop. A.1, gY (a, z)g−1 is mutually local (in the vertex algebra
sense) with all Y (b, z), b ∈ V . Moreover, gY (a, z)g−1Ω = gY (a, z)Ω = gezL−1a = ezL−1ga,
where for the last equality we used [59, Remark 1.3]. Hence, by the uniqueness theorem for
vertex algebras [59, Thm.4.4] we find that gY (a, z)g−1 = Y (ga, z) and hence g is a (linear)
vertex algebra automorphism of V . Since g commutes with L0 we have gVn = Vn for all
n ∈ Z and hence gν = ν by Corollary 4.11 so that g ∈ Aut(·|·)(V ). Now, if Aut(V ) is finite
then Aut(V ) = Aut(·|·)(V ) by Thm. 5.21 and hence Aut(AV ) = Aut(V ).

We end this section with a new proof of the uniqueness result for diffeomorphism sym-
metry for irreducible conformal nets given in [101, Thm.6.1.9]. The theorem was first proved
in [20] using the additional assumption of 4-regularity.

Theorem 6.10. Let A be an irreducible Möbius covariant net on S1 and let U be the
corresponding unitary representation of Möb. If Uα and Uβ are two strongly-continuous
projective unitary representations of Diff+(S1) extending U and making into A an irreducible
conformal net. Then Uα = Uβ.

Proof. Let H be the vacuum Hilbert space of A and let Hfin be the algebraic direct sum of
the eigenspaces Ker(L0−n1H), n ∈ Z≥0. Then, by Thm. 3.4, then one can differentiate the
representations Uα and Uβ in order to define two unitary representations of the Virasoro

algebra on Hfin by operators Lα
n, n ∈ Z and Lβ

n, n ∈ Z, see also [18, 20, 72]. By assumption

we have Lα
n = Lβ

n for n = −1, 0, 1. The formal series Lα(z) =
∑

n∈Z L
α
nz

−n−2 and Lβ(z) =∑
n∈Z L

β
nz−n−2 are fields on Hfin that are local and mutually local in the Wightman sense

as a consequence of the locality of A and of Prop. 2.1. Hence they are local and mutually
local (in the vertex algebra sense) by Prop. A.1. Let V be the cyclic subspace generated

from the action of the operators Lα
n, L

β
n, n ∈ Z on the vacuum vector Ω. By the existence

theorem for vertex algebras, cf. [59, Thm.4.5], V is a Vertex algebra of CFT type and it

has two conformal vectors, να = Lα
−2Ω and νβ = Lβ

−2Ω. It satisfies V0 = CΩ and L1V1 = 0.
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Hence by [92, Thm.1] there exists a unique normalized invariant bilinear form (·, ·) on V
and this form satisfy (Ω, a) = (Ω|a) for all a ∈ V . By the invariance property of (·, ·) and
the unitarity of the Virasoro algebra representations it follows that for any b ∈ V we have
(a, b) = 0 for all a ∈ V if and only if (a|b) = 0 for all a ∈ V i.e. if and only if b = 0.
Therefore, (·, ·) is non-degenerate. Accordingly, by Prop. 4.8 and Remark 4.9 we have that
να = νβ and hence Uα = Uβ.

7 Covariant subnets and unitary subalgebras

Let W ⊂ V be a unitary subalgebra of the simple unitary vertex operator algebra V . Then,
by Prop. 5.29, W is simple unitary vertex operator algebra.

Theorem 7.1. Let W be a unitary subalgebra of a strongly local simple unitary VOA
(V, (·|·)). Then the simple unitary VOA (W, (·|·)) is strongly local and AW embeds canoni-
cally as a covariant subnet of AV .

Proof. Let H be the Hilbert space completion of V and let eW be the orthogonal projection
of H onto the closure HW of W . Then we have

W = eWV = HW ∩ V.

The vertex operator Ỹ (a, z), a ∈ W of W coincides with the restriction to W of Y (a, z) and
therefore it is obvious that W satisfies energy bounds. Moreover, for b ∈ V , f ∈ C∞(S1)
we have

Y (a, f)eW b ∈ HW , Y (a, f)∗eW b ∈ HW .

Hence for a ∈ W , b, c ∈ V we have

(b|eWY (a, f)c) = (Y (a, f)∗eW b|c) = (Y (a, f)∗eW b|eW c)

= (eW b|Y (a, f)eW c) = (b|Y (a, f)eW c)

and being V a core for Y (a, f) it follows that Y (a, f) commutes (strongly) with eW .
Now, define a covariant subnet BW ⊂ AV by

BW (I) = AV (I) ∩ {eW }′ I ∈ I.

It follows from the previous discussion that Y (a, f) is affiliated with BW (I) if a ∈ W and
suppf ⊂ I. As a consequence HBW

= HW and hence the subnet net BW is irreducible when
restricted to HW . In particular, for all I ∈ I we have

(BW (I)eW )′ = BW (I ′)eW .

Note also that, since for a ∈ W , Y (a, f) commutes with eW and Y (a, f)b = Ỹ (a, f)b for
all b ∈ W , then

D(Ỹ (a, f)) = eWD(Y (a, f)) = D(Y (a, f)) ∩HW .

Hence, if suppf ⊂ I, Ỹ (a, f) is affiliated with (BW (I ′)eW )′ = BW (I)eW . It follows that the
von Neumann algebras AW (I), I ∈ I on HW defined by

AW (I) ≡ W ∗({Ỹ (a, f) : a ∈ W, suppf ⊂ I})

satisfy AW (I) ⊂ BW (I)eW for all I ∈ I proving that (W, (·|·) is strongly local. Finally from
Thm. 6.8 and Haag duality for conformal nets we find AW (I) = BW (I)eW for all I ∈ I.
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We now want to prove a converse of Thm. 7.1. We begin with the following lemma.

Lemma 7.2. Let A be a self-adjoint operator on a Hilbert space H and let U(t) ≡ eitA,
t ∈ R be the corresponding strongly-continuous one-parameter group of unitary operators on
H. For any k ∈ Z≥0 let Hk denote the domain of Ak and let H∞ = ∩k∈Z≥0

Hk. Assume
that there exists a real number δ > 0 and two dense linear subspaces Dδ and D of H∞ such
that U(t)Dδ ⊂ D if |t| < δ. Then, for every positive integer k, D is a core for Ak.

Proof. Let k any positive integer and let B denote the restriction of Ak to D. We have to
show that (Ak)∗ = B∗ and since (Ak)∗ ⊂ B∗ it is enough to prove that B∗ ⊂ (Ak)∗ = Ak.

Let D(B∗) denote the domain of B∗ and let b ∈ D(B∗). Then, by assumption we have

(U(t)Aka|b) = (AkU(t)a|b) = (U(t)a|B∗b),

for all a ∈ Dδ and all t ∈ (−δ, δ). Now let ϕ : R → R be a smooth non-negative function
whose support is a subset of the interval (−δ, δ). We can assume that

∫ +∞

−∞
ϕ(x)dx = 1.

For any positive integer n let ϕn : R → R be defined by ϕn(x) = nϕ(nx), x ∈ R so that
suppϕn ⊂ (−δ, δ) and

ϕ̂n(p) ≡
∫ +∞

−∞
ϕn(x)e

−ipxdx = ϕ̂(
p

n
),

for all p ∈ R. From equality (U(t)Aka|b) = (U(t)a|B∗b), t ∈ R and the spectral theorem
from self-adjoint operators it follows that

(Akϕ̂n(A)a|b) = (ϕ̂n(A)a|B∗b),

for all n ∈ Z>0 and all a ∈ Dδ and since Akϕ̂n(A), and ϕ̂n(A) belong to B(H) for for every
positive integer n we also have that

(Akϕ̂n(A)a|b) = (ϕ̂n(A)a|B∗b),

for all n ∈ Z>0 and all a ∈ H. Now, it follows from the spectral theorem for self-adjoint
operators that ϕ̂n(A)a → a and Akϕ̂n(A)a → Aka for n → +∞, for all a ∈ Hk. Hence
(Aka|b) = (a|B∗b), for all n ∈ Z>0 and all a ∈ Hk so that b ∈ Hk and Akb = B∗b. Thus,
since b ∈ D(B∗) was arbitrary we can conclude that B∗ ⊂ Ak.

We will need the following proposition, cf. the appendix of [16] and [101, Thm.2.1.3]

Proposition 7.3. Let A be an irreducible Möbius covariant net on S1 ant let H be its
vacuum Hilbert space. Then A(I)Ω ∩ H∞ is a core for (L0 + 1H)

k for all I ∈ I and all
k ∈ Z≥0.

Proof. We first show that A(I)Ω ∩H∞ is dense in H for all I ∈ I. The argument is rather
standard. For any I ∈ I, let I1 ∈ I be such that I1 ⊂ I. Then there is a real number δ > 0
such that eitI1 ⊂ I for all t ∈ (−δ, δ). Now now let ϕn, n ∈ Z>0, as in the proof of Lemma
7.2. Then, for any A ∈ A(I1) we consider the operators Aϕn , n ∈ Z>0 defined by

(a|Aϕnb) =

∫ +∞

−∞
ϕn(t)(a|eitL0Ae−itL0a)dt, a, b ∈ H.
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Then Aϕn ∈ A(I) for all n ∈ Z>0. Moreover,

AϕnΩ = ϕ̂n(L0)AΩ ∈ H
∞, n ∈ Z>0.

Since ϕ̂n(L0)AΩ → AΩ for n → +∞ and A ∈ A(I1) was arbitrary we can conclude that the
closure of A(I)Ω∩H∞ contains A(I1)Ω and hence it coincides with H by the Reeh-Schlieder
property. Hence, since I was arbitrary we have shown that A(I)Ω ∩H∞ is dense in H for
all I ∈ I.

Now, let I1 and I and δ as above. We know that A(I1) ∩H∞ is dense in H. Moreover,

eit(L0+1H) (A(I1)Ω ∩H
∞) = A(eitI1)Ω ∩H

∞

⊂ A(I)Ω ∩H
∞,

for all t ∈ (−δ, δ). Hence, the conclusion follows from Lemma 7.2.

Theorem 7.4. Let (V, (·|·)) be a simple strongly local unitary VOA and let B a Möbius
covariant subnet of AV . Then W = HB ∩ V is a unitary subalgebra of V such that and
AW = B.

Proof. Since HB is globally invariant for the unitary representation of the Möbius group on
H we have Ω ∈ W and LnW ⊂ W for n = −1, 0, 1. In particular W is compatible with
the grading of V i.e it is spanned by the subspaces W ∩ Vn, n ∈ Z≥0. Now let a ∈ W and
assume that, for a given positive integer n, a(−n)Ω ∈ W . Then

a(−n−1)Ω =
1

n
[L−1, a(−n)]Ω =

1

n
L−1a(−n)Ω ∈ W.

Since a(−1)Ω = a ∈ W it follows that a(n)Ω ∈ W for all n ∈ Z and all a ∈ W . Hence
Y (a, f)Ω ∈ HB for every smooth function f on S1 and every a ∈ W . Now let eB be the
projection of HV onto HB, a ∈ W , f ∈ C∞(S1) and, for I ∈ I let ǫI′ be the unique vacuum
preserving normal conditional expectation of AV (I

′) onto B(I ′), see e.g. [75, Lemma 13]. If
suppf ⊂ I and A ∈ AV (I

′) we find

Y (a, f)eBAΩ = Y (a, f)ǫI′(A)Ω = ǫI′(A)Y (a, f)Ω

= eBAY (a, f)Ω = eBY (a, f)AΩ.

Since AV (I
′)Ω is a core for Y (a, f) by Prop. 7.3 it follows that Y (a, f) commutes with eB.

Hence, Y (a, f) and Y (a, f)∗ are affiliated with A(I) ∩ eB
′ = B(I). Now if f is an arbitrary

smooth function on S1 it is now easy to see that Y (a, f) and eB again commute if a ∈ W . As
a consequence we find that anb ∈ W for all a, b ∈ W and all n ∈ Z and hence W is a vertex
subalgebra. Moreover, using the fact that also Y (a, f)∗ and eB commute for every smooth
function f on S1 and all a ∈ W , we have a∗nb ∈ W for all a, b ∈ W and all n ∈ Z. Hence,
since we also have L0W ⊂ W , W is a unitary subalgebra of V . Finally that B(I) = AW (I)
follows easily.

As a direct consequence of Thm. 7.1 and Thm. 7.4 we get the following theorem.

Theorem 7.5. Let V be a strongly local simple unitary vertex operator algebra. Then the
map W 7→ AW gives a one-to-one correspondence between the unitary subalgebras W ⊂ V
and the Möbius covariant subnets B ⊂ AV .
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Proposition 7.6. Let V be a simple unitary strongly local VOA and let G be a closed
subgroup of Aut(·|·)(V ) = Aut(AV ). Then AG

V = AV G .

Proof. For any g ∈ G we have gY (a, f)g−1 = Y (a, f) for all a ∈ V G and all f ∈ C∞(S1).
Hence g ∈ AV G(I)′ for all I ∈ I so that AV G ⊂ AG

V . Conversely, by Thm. 7.4 there is
a unitary subalgebra W ⊂ V such that AG

V = AW . Clearly W ⊂ V G and hence AG
V ⊂

AV G .

We now can prove the following Galois correspondence for compact automorphism groups
of strongly local vertex operator algebras (“Quantum Galois theory”), cf. [29, 52].

Theorem 7.7. Let V be a simple unitary strongly local VOA and let G be a closed subgroup
of Aut(·|·)(V ). Then the map H 7→ V H gives a one-to-one correspondence between the closed

subgroups H ⊂ G and the unitary subalgebras W ⊂ V containing V G.

Proof. Let W be a unitary subalgebra of V such that W ⊃ V G. Fix an interval I0 ∈ I. By
Thm. 7.1 and Prop. 7.6 we have

AV (I0)
G ⊂ AW (I0) ⊂ AV (I0).

Moreover, by [17, Prop.2.1], the subfactor AV (I0)
G ⊂ AV (I0) is irreducible, i.e.

(
AV (I0)

G
)′∩

AV (I0) = C1. Since Aut(·|·)(V ) and G ⊂ Aut(·|·)(V ) is closed then, G is compact. Hence,

by [55, Thm.3.15] there is unique closed subgroup H ⊂ G such that AW (I0) = AV (I0)
H .

Hence, by conformal covariance AW (I) = AH
V (I) for all I ∈ I and hence, again by Prop.

7.6, AW (I) = AV H (I) and thus W = V H .

The following proposition shows that in the strongly local case the coset construction
for VOAs corresponds exactly to the coset construction for conformal nets.

Proposition 7.8. Let V be a strongly local unitary simple VOA and let W ⊂ V be a unitary
subalgebra. Then Ac

W = AW c.

Proof. Let UW be the projective unitary representation of ˜Diff+(S1) on H obtained from
the representation of the Virasoro algebra on V given by the operators LW

n , n ∈ Z defined

in Prop. 5.31. For an element γ̃ ∈ ˜Diff+(S1) we denote by γ ∈ Diff+(S1) its image under

the covering map ˜Diff+(S1) → Diff+(S1). Then for any γ̃ ∈ ˜Diff+(S1) and any I ∈ I we
have UW (γ̃)AUW (γ̃)∗ = U(γ)AU(γ)∗ for all A ∈ AW (I) and UW (γ̃)AUW (γ̃)∗ = A for all
A ∈ AW c(I). It follows that A ∈ AW c(I) commute with AW (I1) for every I1 ∈ I and
thus AW c(I) ⊂ Ac

W (I) so that AW c ⊂ Ac
W . On the other hand, by Thm. 7.4 there is a

unitary subalgebra W̃ ⊂ V such that Ac
W = AW̃ . Let a ∈ W̃ . Then Y (a, f) is affiliated

with AW (S1)′ for all I ∈ I and all f ∈ C∞(S1) with suppf ⊂ I. It follows that Y (a, f) is
affiliated with AW (S1)′ for all f ∈ C∞(S1). As a consequence [Y (a, z), Y (b, w)] = 0 for all
b ∈ W and hence a ∈ W c. Since a ∈ W̃ was arbitrary we can conclude that W̃ ⊂ W c and
hence that Ac

W ⊂ AW c .

We conclude this section with a result on finiteness of intermediate subalgebras for
inclusions of strongly local vertex operator algebras, cf. [61, 105].
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Theorem 7.9. Let V be a simple unitary strongly local vertex operator algebra and let
W ⊂ V be a unitary subalgebra. Assume that [AV : AW ] < +∞. Then the set of unitary

subalgebras W̃ ⊂ V such that W ⊂ W̃ is finite.

Proof. The claim follows directly from Thm. 7.5 and the fact that that, since the index
[AV : AW ] is finite, the set of intermediate covariant subnets for the inclusion AW ⊂ AV is
also finite, see Subsect. 3.4.

8 Criteria for strong locality and examples

In this section we consider some useful criteria which imply strong locality. We then apply
them in order to give various examples of strongly local vertex operator algebras.

Let V be a simple unitary VOA satisfying energy bounds. If F is a subset of V and
I ∈ I we define a von Neumann subalgebra AF (I) of AV (I)

AF (I) = W ∗({Y (a, f) : a ∈ F , suppf ⊂ I}). (122)

The following theorem is inspired by [33, Thm.6.1].

Theorem 8.1. Let F ⊂ V be a subset of the simple unitary energy-bounded VOA V .
Assume that F contains only quasi-primary elements. Assume moreover that F generates V
and that, for a given I ∈ I, AF (I ′) ⊂ AF (I)′. Then, V is strongly local and AF (I) = AV (I)
for all I ∈ I.

Proof. As a consequence of Lemma 6.5 we have AF (I) = AF∪θF (I), for all I ∈ I. Accord-
ingly we can assume that F = θF . We first observe that the map I 7→ AF (I) is obviously
isotonous and since every element of F is quasi-primary it is also Möbius covariant as a
consequence of Prop. 6.4. Hence AF (I ′) ⊂ AF (I)′ for all I ∈ I.

Now, let PF be the algebra generated by the operators Y (a, f) with a ∈ F , and f ∈
C∞(S1). Moreover, for I ∈ I, let PF (I) be the subalgebra of PF corresponding to functions
f ∈ C∞(S1) with suppf ⊂ I. Both algebras haveH∞ as invariant domain and are ∗-algebras
because F is θ invariant. Moreover, since F is generating V ⊂ PFΩ and hence the latter
subspace is dense in H. With a slight modification of the argument in [38, page 544] it
can be shown that, for every I ∈ I, PF (I)Ω is invariant for the action of the Möbius group
and hence it is independent from the choice of I and we denote it by HF . Then, it can be
shown that HF ∩H∞ is left invariant by the algebras PF (I) for all I ∈ I. As a consequence
PFΩ ⊂ HF and hence PF (I)Ω is dense in H for all I ∈ I (Reeh-Schlieder property for
fields). Now, let f ∈ C∞(S1) have support in a given I ∈ I and a ∈ F . Since Y (a, f) is
affiliated with AF (I) there is a sequence An ∈ AF (I) such that limn→∞Anb = Y (a, f)b for
all b ∈ H∞. It follows that AF (I)Ω∩H∞ is left invariant by the action of PF (I) and hence
PF (I)Ω ⊂ AF (I)Ω which implies that also AF (I)Ω is dense in H. Accordingly the map
I 7→ AF (I) also satisfies the cyclicity of the vacuum conditions and it thus define a local
irreducible Möbius covariant net on S1 acting on H.

We have to show that AV (I) ⊂ AF (I) for all I ∈ I. By Möbius covariance it is enough
to prove the inclusion when I is the upper semicircle S1

+. Let ∆ and J be the Tomita’s

modular operator and modular conjugation associated withAF (S1
+) and Ω and let S = J∆

1
2 .

It follows from [49, Prop.1.1] that JAF (I)J = AF (j(I)) and JU(γ)J = U(j ◦ γ ◦ j) for
every I ∈ I and every Möbius transformation γ of S1, where j : S1 7→ S1 is defined by
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j(z) = z (|z| = 1). It follows that JLnJ = Ln for n = −1, 0, 1. In particular JV = V and
for every a ∈ V the formal series Φa(z) =

∑
n∈Z Ja(n)Jz

−n−1 is a well defined field on V

such that [L1,Φa(z)] =
d
dzΦa(z) and Φa(z)Ω|z=0 = Ja so that Φa(z)Ω = ezTJa. From the

properties of the action of J on the net AF one can show that, for a, b, c ∈ F , Φa(z), Y (b, z)
and Y (c, z) are pairwise mutually local fields (in the vertex algebra sense) as a consequence
of the locality of A of Prop. 2.1 and Prop. A.1. Hence, since F generates V , Φa(z) and
Y (b, z) are mutually local for every a ∈ F and every b ∈ V as a consequence on Dong’s
lemma [59, Lemma 3.2]. It then easily follows that for all a ∈ F and all b ∈ V also Y (a, z)
and Φb(z) are mutually local. Using again Dong’s lemma and the fact that F generate V
we obtain that Φa(z) and Y (b, z) are mutually local for all a, b ∈ V . Hence it follows from
the uniqueness theorem for vertex algebras [59, Thm.4.4] that Φa(z) = Y (Ja, z) for every
a ∈ V and thus that J defines an antilinear automorphism of V .

Now let a ∈ F and let f ∈ C∞(S1) with suppf ⊂ S1
+. Since Y (a, f) is affiliated with

AF (S1
+) we have J∆

1
2Y (a, f)Ω = Y (a, f)∗Ω. On the other hand since a is quasi-primary

using the Bisognano-Wichmann property for AF and Thm. B.4 in Appendix B we find

θ∆
1
2Y (a, f)Ω = θe

1
2
KY (a, f)Ω = Y (a, f)∗Ω.

By the Bisognano-Wichmann property of Möbius covariant nets on S1 and the fact that
θLnθ = JLnJ = Ln for n = −1, 0, 1 we see that both J∆

1
2J and θ∆

1
2 θ are equal to

∆− 1
2 . Hence we find that JY (a, f)Ω = θY (a, f)Ω. Since θ and J commute with L0 we

find that JY (a, ft)Ω = θY (a, ft)Ω for all t ∈ R. By partition of unity it follows that
JY (a, f)Ω = θY (a, f)Ω for all f ∈ C∞(S1) and hence that Ja = θa. Since a ∈ F was
arbitrary, θ and J are antilinear automorphisms and F generates V it follows that θ = J .
Hence, again by Thm. B.4 in Appendix B we find that, for every quasi-primary element
a ∈ V and every f ∈ C∞(S1) with suppf ⊂ S1

+, Y (a, f)Ω is in the domain of S and
SY (a, f)Ω = Y (a, f)∗Ω.

Now, let I be an open interval containing the closure of S1
+ and let A ∈ AF (I ′). Then

there is a δ > 0 such that eitL0Ae−itL0 ∈ AF (S1
−) for all t ∈ R such that |t| < δ. Hence if ϕs,

s ∈ (0, δ) and A(ϕs) are defined as in the proof of Lemma 6.5 we have that A(ϕs) ∈ AF (S1
−)

for all s ∈ (0, δ). Let X1,X2 ∈ PF (S1
−) and B ∈ AF (S1

+). Then we have

(X∗
1A(ϕs)X2Ω|SBΩ) = (X∗

1A(ϕs)X2Ω|B∗Ω)

= (BX∗
1A(ϕs)X2Ω|Ω)

= (X∗
1A(ϕs)X2BΩ|Ω)

= (BΩ|X∗
2A(ϕs)

∗X1Ω).

As a consequence X∗
1A(ϕs)X2Ω is in the domain of S∗ and

S∗X∗
1A(ϕs)X2Ω = X∗

2A(ϕs)
∗X1Ω.

Using this fact we find that, for every quasi-primary a ∈ V every f ∈ C∞(S1) with suppf ⊂
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S1
+ and all X1,X2 ∈ PF (S1

−),

(X1Ω|A(ϕs)Y (a, f)X2Ω) = (X∗
2A(ϕs)

∗X1Ω|Y (a, f)Ω)

= (S∗X∗
1A(ϕs)X2Ω|Y (a, f)Ω)

= (SY (a, f)Ω|X∗
1A(ϕs)X2Ω)

= (Y (a, f)∗Ω|X∗
1A(ϕs)X2Ω)

= (Y (a, f)∗X1Ω|A(ϕs)X2Ω)

= (X1Ω|Y (a, f)A(ϕs)X2Ω),

s ∈ (0, δ). Hence, since PF (S1
−)Ω is dense we find that A(ϕs)Y (a, f)XΩ = Y (a, f)A(ϕs)XΩ

for all X ∈ PF (S1
−) and all s ∈ (0, δ). Now, we have lims→0A(ϕs)c = Ac for all c ∈ H

and hence, for every X ∈ PF (S1
−), AXΩ is in the domain of Y (a, f) and Y (a, f)AXΩ =

AY (a, f)XΩ. Since V is energy-bounded by assumption, there exists a positive integer k
such that any core for (L0 + 1H)

k is a core for Y (a, f). We want to show that PF (S1
−)Ω is

a core for (L0 + 1H)
k. To this end let I ∈ I whose closure is contained in S1

−. Then there
exists a real number δ > 0 such that eitI ⊂ S1

− for all t ∈ (−δ, δ). Hence, by the Möbius
covariance of the vertex operators we see that U(t)PF (I)Ω ⊂ PF (S1

−)Ω for all t ∈ (−δ, δ)
and hence, by Lemma 7.2, PF (S1

−)Ω is a a core for (L0 + 1H)
k and consequently a core for

Y (a, f). It follows that AY (a, f) ⊂ Y (a, f)A and since the latter relation holds for every
A ∈ AF (I ′) it follows that Y (a, f) is affiliated with AF (I) = AF (I ′)′ for all quasi-primary
a ∈ V and all f ∈ C∞(S1) with suppf ⊂ S1

+ . Hence using Prop. 6.6 we can conclude that
AV (S

1
+) ⊂ AF (I) whenever the interval I ∈ I contains the closure of S1

+. Now, it follows
easily from Möbius covariance that

AF (S1
+) =

⋂

I⊃S1
+

AF (I).

Hence we can conclude that AV (S
1
+) ⊂ AF (S1

+).

Corollary 8.2. Let V α and V β be strongly local simple unitary VOAs. Then V α ⊗ V β is
strongly local and AV α⊗V β = AV α ⊗AV β .

Proof. By Corollary 6.2 the simple unitary VOA V α⊗V β is energy-bounded. Now let Fa be
the family of all quasi-primary vectors in V α and let Fβ be the family of all quasi-primary
vectors in V β. Then, V α ⊗ V β is generated by the family F of quasi-primary vectors in
V α ⊗ V β defined by F ≡ (Fα ⊗ Ω)∪ (Ω⊗ Fβ) and AF (I) = AV α(I)⊗AV β(I) for all I ∈ I

so that AF (I ′) = AV α(I ′)⊗AV β(I ′) ⊂ (AV α(I)⊗AV β(I))
′. Then the conclusion follows

from Thm. 8.1.

The following consequence of Thm. 8.1 is more directly applies to many interesting
models.

Theorem 8.3. If V is a simple unitary VOA generated by V1 ∪ F , where F ⊂ V2 is a
family of quasi-primary θ-invariant Virasoro vectors, then V is strongly local.

Proof. By Prop. 6.3 (and its proof) V is energy-bounded and the vectors a ∈ V1∪F satisfy
the energy bounds in Eq. (100) with k = 1 (linear energy bounds). Then, the argument
in [14, Sect.2] based on [32], see also [45, Sect.19.4], can be used to show that the von
Neumann algebras AV1∪F (I), I ∈ I, satisfy the locality condition in Thm. 8.1 so that
AV1∪F (I) = AV (I) for all I ∈ I and thus V is strongly local.
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We now give various examples of VOAs that can be easily shown to be strongly local as
a consequence of Thm. 8.3.

Example 8.4. The simple unitary vertex algebra L(c, 0) is strongly local. The correspond-
ing irreducible conformal net AL(c,0) is the Virasoro net AVir,c defined in Subsect. 3.3.

We use the above example to give an application of Thm. 7.4 by giving a a new proof
of the main result in [15].

Theorem 8.5. Let B be a Möbius covariant subnet of the Virasoro net AVir,c. Then, either
B = C1H or B = AVir,c.

Proof. By Thorem 7.4 there is a unitary subalgebra W ⊂ L(c, 0) such that B = AW . The
conclusion then follows from Corollary 5.32.

Example 8.6. Let VH be the (rank one) Heisenberg conformal vertex operator algebra [59].
Then VH is generated by the one-dimensional subspace (VH)1 = Ker(L0 − 1VH

) and hence
it is strongly local. The central charge is given by c = 1. The corresponding conformal net
AVH

coincides with free Bose chiral field net AU(1) considered in [13].

Example 8.7. Let g be a complex simple Lie algebra and let Vgk be the corresponding level
k simple unitary VOA, see [58, 59, 70]. Then Vgk is generated by (Vgk)1 ≃ g and hence it
is strongly local. The real Lie subalgebra gR ≡ {a ∈ g : θa = a} is a compact real form
for g. Let G be the compact connected simply connected real Lie group with simple Lie
algebra gR. Then AVgk

coincides with the loop group conformal net AGk
associated to the

level k positive-energy projective unitary representations of the loop group LG [47, 88, 98],
see [44, 57, 97, 99, 100] (see also [60, Sect.5]).

Example 8.8. Let n be a positive integer and let L2n ≡ Z
√
2n be the rank-one positive

definite even lattice equipped with the Z-bilinear form 〈m1

√
2n,m2

√
2n〉 ≡ 2nm1m2. More-

over, let VL2n be the simple unitary lattice VOA with central charge c = 1 associated with
L2n, see e.g. [27, Sect.2]. Then VL2n contains the the Heisenberg vertex operator algebra VH

as a unitary subalgebra. Moreover, VL2n describes the same CFT model as the irreducible
conformal net AU(1)2n ⊃ AU(1) with c = 1 and µ-index equal to 2n considered in [104]. The
net AU(1)2n is denoted by AN , N = n in [13]. We have VL2 ≃ Vg1 for g = sl(2,C) = A1.
For n > 1 VL2n can be realized, by a coset construction, as a unitary subalgebra of Vg1 for
g = D2n, see [13, Sect.5B]. It follows that VL2n is strongly local for every n ∈ Z>0 and using
the classification results in [13] and [104] it is not difficult to show that AVL2n

= AU(1)2n .

Example 8.9. The known c = 1 simple unitary vertex operator algebras are

V G
L2
, VL2n , V

Z2
L2n

, (123)

where G is a closed subgroup of SO(3) and n is not the square of an integer, see [26, Sect.7]
and [104, Sect.4]. It follows from Example 8.8 that all these vertex operator algebras are
strongly local. The corresponding c = 1 irreducible conformal nets are the c = 1 irreducible
conformal nets classified in [104] by assuming a certain “spectrum condition”.

We now show another application of our general results by giving a new proof of [17,
Thm.3.2]. Let us consider the case g = sl(2,C) and level k = 1. Then Vsl(2,C)1 has central
charge c = 1 and hence we have the embedding L(1, 0) ⊂ Vsl(2,C)1 .
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Lemma 8.10. Let W be a unitary subalgebra of Vsl(2,C)1 . Then either W = CΩ or W ⊃
L(1, c).

Proof. Assume first that W1 6= {0}. Then we can find a vector a ∈ W such that L0a = a,
θa = a and ‖a‖ = 1. By the proof of Prop. 6.3 we see that the operators an satisfies the
Heisenberg Lie algebra commutation relations

[am, an] = mδm,−n1,

for all m,n ∈ Z and hence a generate a copy of the Heisenberg vertex operator algebra VH

inside W , cf. Example 5.8. Since the central charge of VH is 1, VH have to contain the
Virasoro subalgebra L(1, 0) of V . Accordingly, L(1, 0) ⊂ W .

Assume now that W1 = {0}. The characters formulae in [58] gives for q ∈ (0, 1),

TrVsl(2,C)1
qL0 =

∑

j∈Z

qj
2
p(q),

where p(q) =
∏

n∈Z>0
(1− qn)−1. Hence,

TrVsl(2,C)1
qL0 = 1 + 3q + 4q2 + · · · (124)

so that the dimension of
(
Vsl(2,C)1

)
2
is 4.

Since W1 = {0}, then

(a|b−2Ω) = (a|L−1b) = (L1a|b) = 0,

for all a ∈ W and all b ∈
(
Vsl(2,C)1

)
1
. Hence W2 is orthogonal to the three-dimensional

subspace {a−2Ω : a ∈
(
Vsl(2,C)1

)
1
}. But also the conformal vector ν is orthogonal to the

latter subspace since for any a ∈
(
Vsl(2,C)1

)
1
we have

(ν|a−2Ω) = (Ω|[L2, a−2]Ω) = (Ω|2a0Ω) = 0.

Hence W2 ⊂ Cν. Now, by Remark 5.30 if νW = 0 then W = CΩ. Hence if W 6= CΩ
then W2 = Cν and hence L(1, 0) ⊂ W .

Now, let a ∈
(
Vsl(2,C)1)

)
1
. Then, by [59, Remark 4.9c] ea0 converges on Vsl(2,C)1 and

defines an element in Aut
(
Vsl(2,C)1

)
. In fact, if θa = a then ea0 is unitary i.e. ea0 ∈

Aut(·|·)
(
Vsl(2,C)1

)
, and the group generated by such unitaries is isomorphic to SO(3). The

following proposition was first proved in [27], see also [91].

Proposition 8.11. The fixed point subalgebra V
SO(3)
sl(2,C)1

coincides with the Virasoro subalgebra

L(1, 0).

Proof. By characters formulae for the unitary representations of affine Lie algebras, see e.g.
[58], and for the unitary representations of the Virasoro algebra, see e.g. [62], one finds

Tr
V

SO(3)
sl(2,C)1

qL0 = (1− q)p(q) = TrL(1,0)q
L0 ,

see [27, 91]. Since L(1, 0) ⊂ V
SO(3)
sl(2,C)1

the conclusion follows.
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Corollary 8.12. Aut(·|·)
(
Vsl(2,C)1

)
= SO(3).

Theorem 8.13. The map H 7→ V H
sl(2,C)1

gives a one-to-one correspondence between the

closed subgroups H ⊂ SO(3) and the unitary subalgebras W ⊂ Vsl(2,C)1 such that W 6= CΩ.

Proof. Let W ⊂ Vsl(2,C)1 be a unitary subalgebra such that W 6= CΩ. By Lemma 8.10 and

by Prop. 8.11 W contains the fixed point subalgebra V
SO(3)
sl(2,C)1

and the conclusion follows
from Thm. 7.7.

The following theorem is [17, Thm.3.2]

Theorem 8.14. The map H 7→ AH
SU(2)1

gives a one-to-one correspondence between the

closed subgroups H ⊂ SO(3) and the subnets B ⊂ ASU(2)1 of the loop group net ASU(2)1 such
that B 6= C1.

Proof. It follows from Example 8.7 that ASU(2)1 is the irreducible conformal net associated
with the strongly local simple unitary vertex operator algebra Vsl(2,C)1 . The claim then
follows from Thm. 7.5 and Thm. 8.13.

The next example is given by the moonshine vertex operator algebra V ♮. As explained
in Example 5.10 V ♮ is a simple unitary VOA. We now show that it is strongly local. Note
that the following theorem also gives a a new proof of [66, Thm.5.4].

Theorem 8.15. The moonshine vertex operator algebra V ♮ is a simple unitary strongly
local VOA. If AV ♮ denotes the corresponding irreducible conformal net then Aut(AV ♮) is
the Monster group M. Moreover, up to unitary equivalence, AV ♮ = A♮ where A♮ is the
moonshine conformal net constructed in [66].

Proof. By [66, Lemma 5.1] the moonshine vertex operator algebra V ♮ is generated by a

family F ♮ of Hermitian quasi-primary Virasoro vectors in V ♮
2 and hence , it is strongly local

by Thm. 8.3. Moreover, by Thm. 8.1, AV ♮ = AF ♮ , where AF ♮ is defined as in Eq. (122).
Since Aut(V ♮) = M is finite then, by Thm. 6.9, Aut(AV ♮) = M. Moreover, by [66, Corollary
5.3], A♮ = AF ♮ and hence A♮ = AV ♮ .

As a consequence of Thm. 7.1 also the unitary subalgebras of the above examples, such
as orbifolds, cosets, etc., are strongly local. Further examples of strongly local VOAs are
obtained by taking tensor products. All these examples give a rather large and interesting
class of strongly local VOAs. Moreover, they show that our results gives a uniform procedure
to construct conformal nets associated to the corresponding CFT models. As an example
we consider here the case of the even shorter moonshine vertex operator algebra V B♮

(0), cf.
Example 5.33.

Theorem 8.16. The even shorter moonshine vertex operator algebra V B♮
(0) is a a simple

unitary strongly local VOA. If A
V B♮

(0)

denotes the corresponding net then Aut(A
BV ♮

(0)

) is the

Baby Monster group B.

Proof. As explained in Example 5.33 V B♮
(0) is a unitary subalgebra of the moonshine vertex

operator algebra V ♮ and hence V B♮
(0) is a simple unitary VOA. Since V ♮ is strongly local

by Thm. 8.15 then, also V B♮
(0) is strongly local as a consequence of Thm. 7.1. Since

Aut(V B♮
(0)) = B is finite then, by Thm. 6.9, Aut(A

V B♮
(0)

) = B.
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We conclude this section with two conjectures.

Conjecture 8.17. Let L be an even positive definite lattice. Then the corresponding sumple
unitary lattice VOA VL is strongly local and the corresponding conformal net AVL

coincides
with the lattice conformal net AL constructed in [30].

Conjecture 8.18. Every simple unitary vertex operator algebra is strongly local and hence
generates an irreducible conformal net AV .

9 Back to vertex operators

In this section we discuss problem of (re-) constructing vertex operator algebras starting from
a given irreducible conformal net A. This problem is related to the problem of constructing
quantum fields from local net of von Neumann algebras. In particular we will prove that for
any strongly local vertex unitary operator algebra V it is possible to recover all the vertex
operators, and hence V together with its VOA structure, from the conformal net AV . To
this end we will crucially rely on the ideas developed by Fredenhagen and Jörss in [38] where
pointlike-localized fields where defined starting from irreducible Möbius covariant nets. In
fact we will give a variant of the construction in [38] which avoids the scaling limit procedure
considered there and completely relies on Tomita-Takesaki modular theory together with
the results in Appendix B of this article.

We first need to recall some facts by the Tomitata-Takesaki theory, see e.g. [94, Sect.1.2]
for details and proofs. Let M be a von Neumann algebra on a Hilbert space H and let Ω ∈ H

be cyclic and separating for M. As usual we denote by S the Tomita operator associated
with the pair (M,Ω) and by ∆ and J the corresponding modular operator and modular
conjugation respectively. Hence S = J∆1/2. For a ∈ H consider the operator L 0

a with
dense domain M′Ω and defined by L 0

aAΩ = Aa, A ∈ M′. If a is in the domain D(S)
it is straightforward to see that L 0

Sa ⊂ (L 0
a )

∗ and hence L 0
Sa and L 0

a are closable and
their closures LSa and La satisfy LSa ⊂ L ∗

a . Moreover, LSa and La are affiliated with
M. As pointed out in [19] that in certain situations the operators La, a ∈ D(S) can be
considered as abstract analogue of the smeared vertex operators, see also [4]. Our variant
of the Fredenhagen and Jörss construction will clarify this point of view.

Let A be an irreducible Möbius covariant net on S1 acting on its vacuum Hilbert space

H. For any I we can consider the Tomita operator SI = JI∆
1/2
I . The covariance of the

net implies that for any γ ∈ Möb we have U(γ)SIU(γ)∗ = SγI , U(γ)JIU(γ)∗ = JγI and
U(γ)∆IU(γ)∗ = ∆γI . Moreover, by the Bisognano-Wichmann property we have ∆it

S1
+

=

eiKt, t ∈ R. where K ≡ iπ(L1 − L−1). Hence ∆
1/2

S1
+

= e
1
2
K . We will denote JS1

+
by θ (PCT

operator). Then θ commutes with L−1, L0 and L1.
Now, let a ∈ H be a quasi-primary vector of conformal weight da ∈ Z≥0. Then, for every

f ∈ C∞(S1) we can consider the vector a(f) defined in Appendix B, namely

a(f) =
∑

n∈Z≥0

f̂−n−da

1

n!
Ln
−1a. (125)

In the following for unexplained notations and terminology we refer the reader to Appendix
B.
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By Thm. B.4, if suppf ⊂ S1
+ then a(f) is in the domain of SS1

+
and

SS1
+
a(f) = (−1)da(θa)(f). (126)

Hence the operator AΩ 7→ Aa(f), A ∈ A(S1
+)

′, is closable and its closure L
S1
+

a(f) is affiliated

with A(S1
+). By the above stated covariance property of the modular operators ∆I , I ∈ I

and Prop. B.1 we see that we can define in a similar way an operator L I
a(f) for any I ∈ I

and any f ∈ C∞(S1) with suppf ⊂ I. Then by the discussion above and Prop. B.1 we have

U(γ)L I
a(f)U(γ)∗ = L γI

a(βda (γ)f)
, (127)

for all I ∈ I, all f ∈ C∞(S1) with suppf ⊂ I and all γ ∈ Möb. Moreover,

(−1)daL I
(θa)(f )

⊂ (L I
a(f))

∗ (128)

for all I ∈ I, and all f ∈ C∞(S1) with suppf ⊂ I. Note also that also that for any I ∈ I and
any b ∈ A(I)′Ω the linear map : C∞

c (I) → H given by f 7→ L I
a(f)b is continuous, namely

f 7→ L I
a(f) is an operator valued distribution on C∞

c (I1). Note also that if I1 ⊂ I2, I1, I2 ∈ I,

and f ∈ C∞
c (I1) then L I2

a(f) ⊂ L I1
a(f).

All the above properties justify the following notation and terminology. For every quasi-
primary vector a ∈ H and all f ∈ C∞

c (I) we define YI(a, f) by YI(a, f) ≡ L I
a(f). We call

the operators YI(a, f), I ∈ I, f ∈ C∞
c (I) Fredenhagen-Jörss (shortly FJ) smeared vertex

operators or FJ fields.
The FJ smeared vertex operators have many properties in common with the smeared

vertex operators. These are obtained simply by a change of notations for the corresponding
properties of the operators L I

a(f), I ∈ I, f ∈ C∞(S1). First of all, for any I ∈ I, f 7→ YI(a, f)

is an operator valued distribution on C∞
c (I1) in the sense that the map : C∞

c (I) → H given
by f 7→ YI(a, f)b is linear and continuous for every b ∈ A(I)′Ω. Moreover, the following
compatibility condition holds

YI2(a, f) ⊂ YI1(a, f) (129)

if I1 ⊂ I2, I1, I2 ∈ I, and f ∈ C∞
c (I1) so that if b ∈ A(I2)

′Ω the vector valued distribution
C∞
c (I2) ∋ f 7→ YI2(a, f)b extends C∞

c (I1) ∋ f 7→ YI1(a, f)b. Finally, from Eq. (127) and
Eq. (128) we get the following covariance and hermiticity relations

U(γ)YI(a, f)U(γ)∗ = YγI(a, βda(γ)f)), (130)

for all I ∈ I, all f ∈ C∞(S1) with suppf ⊂ I and all γ ∈ Möb. Moreover,

(−1)daYI(θa, f) ⊂ YI(a, f)
∗ (131)

for all I ∈ I, and all f ∈ C∞(S1) with suppf ⊂ I.
As usual for distributions we can use the formal notation

YI(a, f) =

∫

I
YI(a, z)f(z)z

da dz

2πiz
. (132)

Then we say that the family {YI(a, z) : I ∈ I} is an FJ vertex operator or an FJ field.
Unfortunately there it is not known if the FJ smeared vertex operators admit a common
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invariant domain. Hence we cannot extend the family of distributions {YI(a, z), z ∈ I :
I ∈ I} to a unique distribution Ỹ (a, z). In particular the FJ fields cannot in general be
considered as quantum fields in the sense of Wightman [95].

The following proposition is a slightly weaker form of the result vi) stated in [38, Sect.2]
and proved in [38, Sect.4].

Proposition 9.1. The FJ smeared vertex operators generate the irreducible Möbius covari-
ant net A, namely

A(I) = W ∗({YI1(a, f) : a ∈
⋃

k∈Z≥0

Ker(L0 − k1H), L1a = 0, f ∈ C∞
c (I1), I1 ∈ I, I1 ⊂ I}).

Proof. For any I ∈ I we define B(I) by

B(I) ≡ W ∗({YI1(a, f) : a ∈
⋃

k∈Z≥0

Ker(L0 − k1H), L1a = 0, f ∈ C∞
c (I1), I1 ∈ I, I1 ⊂ I}).

Clearly the family {B(I) : I ∈ I} is a Möbius covariant subnet of A. Let HB ≡ B(S1)Ω be
the corresponding vacuum Hilbert space. Then a(f) ∈ HB for every quasi-primary vector
a ∈ H and every f ∈ C∞(S1). Since the representation U of Möb is completely reducible
the linear span of the vectors a(f) with a quasi-primary and f ∈ C∞(S1) is dense in H so
that HB = H and thus B = A.

Our next goal in this section is to prove that the FJ smeared vertex operators of a
conformal net AV associated with a strongly local simple unitary VOA V coincide with the
ordinary smeared vertex operator of V .

Theorem 9.2. Let V be a simple unitary strongly local VOA and let AV be the corresponding
irreducible conformal net. Then, for any quasi-primary vector a ∈ V we have YI(a, f) =
Y (a, f) for all I ∈ I and all f ∈ C∞

c (I), i.e. the smeared vertex operator of V coincide with
the FJ smeared vertex operator of AV . In particular one can recover the VOA structure on
V = Hfin from the conformal net AV .

Proof. We first observe that, for any f ∈ C∞
c (I), Y (a, f) is affiliated with A(I) and hence

its domain contains A(I)′Ω ⊃ A(I ′) ∩H∞. Since the latter is a core for Y (a, f), by Prop.
7.3 then also A(I)′Ω is a core for the same operator. On the other hand A(I)′Ω is a core
for YI(a, f) by definition. Using Prop. B.5 in Appendix B, for any A ∈ A(I)′ we find

Y (a, f)AΩ = AY (a, f)Ω = Aa(f) = YI(a, f)AΩ.

Accordingly the closed operators Y (a, f) and YI(a, f) coincides on a common core and hence
they must be equal.

We now consider a general irreducible conformal net A. We want to find conditions on
A which allow to prove that A = AV for some simple unitary strongly local VOA V . As a
consequence of Thm. 9.2 a necessary condition is that for every primary vector a ∈ H the
corresponding FJ vertex operator {YI(a, z) : I ∈ I} satisfies energy bounds i.e. there exist
a real number M > 0 and positive integers k and s such that

‖YI(a, f)b‖ ≤ M‖f‖s‖(L0 + 1H)
kb‖ (133)

60



for all I ∈ I, all f ∈ C∞
c (I) and all b ∈ A(I)′Ω ∩H∞. We will see that the condition is also

sufficient and that actually it can be replaced by an apparently weaker condition.

We say that a family F ⊂ H of quasi-primary vectors generates A if the corresponding
FJ smeared vertex operators generates the local algebras i.e. if

A(I) = W ∗({YI1(a, f) : a ∈ F , f ∈ C∞
c (I1), I1 ∈ I, I1 ⊂ I}). (134)

Theorem 9.3. Let A be an irreducible conformal net that is generated by a family of quasi-
primary vectors F . Assume θF = F and that for every a ∈ F the FJ vertex operator
{YI(a, z) : I ∈ I} satisfies energy bounds. Moreover, assume that Ker(L0 − n1H) is finite-
dimensional for all n ∈ Z≥0. Then, the vector space V ≡ Hfin admits a VOA structure
making V into a simple unitary strongly local VOA such that AV = A.

Proof. By the same argument used for the ordinary smeared vertex operator in Sect. 6 it
can be shown that the energy bounds imply that H∞ is a common invariant core for the
operators YI(a, f), I ∈ I, f ∈ C∞

c (I), a ∈ F . Let {I1, I2}, I1, I2 ∈ I be a cover of S1

and let {ϕ1, ϕ2}, ϕ1, ϕ2 ∈ C∞(S1,R) be a partition of unity on S1 subordinate to {I1, I2},
namely suppϕk ⊂ Ik, k = 1, 2, and

∑2
j=1 ϕk(z) = 1 for all z ∈ S1. For any a ∈ F and any

f ∈ C∞(S1) we define an operator Ỹ (a, f) on H with domain H∞ by

Ỹ (a, f)b =

2∑

j=1

YIj(a, ϕjf)b, b ∈ H
∞.

Let {Ĩ1, Ĩ2}, Ĩ1, Ĩ2 ∈ I be another cover of S1 and ϕ̃1, ϕ̃2 ∈ C∞(S1,R) be a partition of unity
on S1 subordinate to {Ĩ1, Ĩ2}. Then, using the compatibility conditions in Eq. (129) for the
FJ smeared vertex operator we find that

2∑

j=1

YIj (a, ϕjf)b =

2∑

j,m=1

YIj(a, ϕ̃mϕjf)b

=
2∑

j,m=1

YIm(a, ϕ̃mϕjf)b

=
2∑

m=1

YĨm
(a, ϕ̃mf)b

for all b ∈ H∞. Hence, Ỹ (a, f) does not depend on the choice of the partition of unity
{ϕ1, ϕ2} nor on the choice of the cover {I1, I2}. It follows that for any I ∈ I and any
f ∈ C∞

c (I) we have Ỹ (a, f)b = YI(a, f)b for all b ∈ H∞. Moreover, we have the covariance
property

U(γ)Ỹ (a, f)U(γ)∗ = Ỹ (a, βda(γ)f)),

the adjoint relation
(−1)da Ỹ (θa, f) ⊂ Ỹ (a, f)∗

and the state field correspondence Ỹ (a, f)Ω = a(f) for all f ∈ C∞(S1) and all γ ∈ Möb.
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By assumption the FJ vertex operator {YI(a, z) : I ∈ I} satisfies energy bounds with a
real number M > 0 and positive integers s, k. Given ϕ, f ∈ C∞(S1) we have

(|n|+ 1)s|(̂ϕf)n| ≤
∑

j∈Z

(|n|+ 1)s|f̂j| · |ϕ̂n−j |

hence

‖ϕf‖s =
∑

n∈Z

(|n|+ 1)s|(̂ϕf)n|

≤
∑

n,j∈Z

(|n|+ 1)s|f̂j| · |ϕ̂n−j |

=
∑

j,m∈Z

(|m+ j|+ 1)s|f̂j | · |ϕ̂m|

≤ ‖ϕ‖s‖f‖s.

It follows that

‖Ỹ (a, f)b‖ = ‖
2∑

j=1

YIj(a, ϕjf)b‖

≤ M




2∑

j=1

‖ϕj‖s


 ‖f‖s‖(L0 + 1H)

kb‖

for all f ∈ C∞(S1) and all b ∈ H∞, i.e. the operators Ỹ (a, f), f ∈ C∞(S1) satisfy energy

bounds with the same positive integers s, k and the positive constant M̃ ≡ M
(∑2

j=1 ‖ϕj‖s
)
.

Now, let en ∈ C∞(S1), n ∈ Z, be defined by en(z) = zn, z ∈ S1. For every a ∈ F we
define an ≡ Ỹ (a, en), n ∈ Z. We have

‖anb‖ ≤ 2sM̃(|n|+ 1)s‖(L0 + 1H)
kb‖,

for all n ∈ Z and all b ∈ H∞. By the covariance property we have eitL0ane
−itL0 = e−intan

for all t ∈ R. It follows that [L0, an]b = −nanb for all n ∈ Z and all b ∈ H∞ and hence
that anH

fin ⊂ Hfin for all n ∈ Z. The covariance properties also implies that [L−1, an]b =
(−n − da + 1)an−1b and [L1, an]b = −(n − da + 1)an+1b for all n ∈ Z and all b ∈ H∞.
Moreover, we have a−daΩ = a(e−da) = a for all a ∈ F . Now let, V ⊂ Hfin be the linear
span of the vector of the form

a1n1
a2n2

· · · aknk
Ω,

with a1, a2, · · · , ak ∈ F and n1, n2, · · · , nk ∈ Z. We want to show that V = Hfin. Let
HV ⊂ H be the closure of V and eV be the orthogonal projection onto HV . First note that
since the series

∑
n∈Z f̂nen converges to f in C∞(S1) and thus

∑

n∈Z

f̂nanb = Ỹ (a, f)

for all a ∈ F , all b ∈ H∞ and all f ∈ C∞(S1). It follows that Ỹ (a, f)b and Ỹ (a, f)∗b belong
to HV for all a ∈ F , all b ∈ Hfin and all f ∈ C∞(S1).
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From the fact that ≡ Ker(L0 − n1H) is finite-dimensional for all n ∈ Z≥0 it follows that
eV H

fin = V . As consequence we have [eV , Ỹ (a, f)]b = 0 for all a ∈ F , all b ∈ V and all
f ∈ C∞(S1). Recalling that Hfin is a core for every FJ smeared vertex operator we can
conclude that eV YI(a, f) ⊂ YI(a, f)eV for all a ∈ F , all I ∈ I and all f ∈ C∞

c (I). Hence,
since the family F generates the net A, we see that eV = 1H by the irreducibility of A so
that V = Hfin.

The above properties imply that the formal series

Φa(z) ≡
∑

n∈Z

anz
−n−da , a ∈ F

are fields on V that are local and mutually local (in the vertex algebra sense) as a consequence
of the locality of the conformal netA and Prop. A.1. In fact they satisfy all the assumption of
the existence theorem for vertex algebras [59, Thm.4.5]. Accordingly V is a vertex algebra
whose vertex operators satisfy Y (a, z) = Φa(z) for all a ∈ F . A unitary representation
of the Virasoro algebra on V by operators Ln, n ∈ Z is obtained by differentiating the
representation U of Diff+(S1) making A covariant, see Thm. 3.4 and [18, 20, 72]. Then,
L(z) =

∑
n∈Z Lnz

−n−2 is a local field on V , which, as a consequence of the locality of A, is
mutually local with all Y (a, z), a ∈ V . Moreover, L(z)Ω = ezL−1L−2Ω. By the uniqueness
theorem for vertex algebras [59, 4.4] we have L(z) = Y (ν, z) where ν ≡ L−2Ω. Hence ν is a
conformal vector and hence V is a VOA.

Now, the scalar product on H restrict to a normalized scalar product on V having
unitary Möbius symmetry in the sense of Subsect. 5.2. For every a ∈ F the adjoint vertex
operator Y (a, z)+ defined in Eq. (91) satisfies

Y (a, z)+ = (−1)daY (θa, z)

and hence it is local and mutually local with respect to all the vertex operators Y (b, z),
b ∈ V . Now, let

F+ = {a+ (−1)daθa

2
: a ∈ F}

and let

F− = {−i
a− (−1)daθa

2
: a ∈ F}.

Then, {Y (a, z) : a ∈ F+∪F−} is a family of Hermitian quasi-primary fields which generates
V . Hence, V is unitary by Prop. 5.17. Moreover, by Prop. 5.3 V is simple because V0 = CΩ.
By Prop. 6.1, V , being generated by the family F of elements satisfying energy bounds,
is energy-bounded. Since the net AF , cf. Eq. (122), coincides, by assumption, with A, we
can apply Thm. 8.1 to conclude that V is strongly local and AV = A.

We end this section with the following conjecture.

Conjecture 9.4. For every conformal net A there exists a simple unitary strongly local
vertex operator algebra V such that A = AV .
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A Vertex algebra locality and Wightman locality

The axiom of locality for vertex algebras is a purely algebraic formulation of the locality
axiom for Wightman fields, see [59, Chapter 1]. In this work we use in various occasions
some consequences of the correspondence of these two formulations of the axiom of locality.
In the this appendix, using the simplifying assumption of the existence of polynomial energy
bounds, we give a proof of the equivalence of these two formulations in a framework which
is sufficiently general for all the applications in this paper.

Let H be a Hilbert space and let L0 be self-adjoint operator on H with spectrum con-
tained in Z≥0. We denote by V the algebraic direct sum

H
fin ≡

⊕

n∈Z≥0

Ker(L0 − n1H). (135)

Then V is dense in H. Moreover, we denote by H∞ ⊂ H, the dense subspace of C∞ vectors
for L0 namely

H
∞ ≡

⋂

k∈Z>0

D

(
(L0 + 1H)

k
)
. (136)

Let an, bn, n ∈ Z be operators on H with common domain V and assume that

eitL0ane
−itL0 = e−intan, eitL0bne

−itL0 = e−intbn

for all t ∈ R and all n ∈ Z. It follows that

anKer(L0 − k1H) ⊂ Ker(L0 − (k − n)1H)

and
bnKer(L0 − k1H) ⊂ Ker(L0 − (k − n)1H)

for all n ∈ Z and all k ∈ Z≥0 so that the operators an, bn restrict to endomorphisms of V
and for every c ∈ V we have anc = bnc = 0 for n sufficiently large. As a consequence the
formal series Φa(z) =

∑
n∈Z anz

−n and Φb(z) =
∑

n∈Z bnz
−n are fields on V in the sense

of Subsect.4.1, see also [59, Sect.3.1]. We assume that the fields Φa(z) and Φb(z) satisfy
(polynomial) energy bounds in the sense of Sect.6 i.e. there exist positive integers s, k and
a constant M > 0 such that, for all n ∈ Z and all c ∈ V

‖anc‖ ≤ M(|n|+ 1)s‖(L0 + 1H)
kc‖, ‖bnc‖ ≤ M(|n|+ 1)s‖(L0 + 1H)

kc‖. (137)

Accordingly we can define the smeared fields

Φa(f) =
∑

n∈Z

anf̂n, Φb(f) =
∑

n∈Z

bnf̂n, (138)

f ∈ C∞(S1), having H∞ as common invariant domain.
According to Subsect.4.1 we say that the fields Φa(z) and Φb(z) are mutually local in

the vertex algebra sense if there exists a non-negative integer N such that

(z − w)N [Φa(z),Φb(w)]c = 0 (139)
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for all c ∈ V . Moreover, we say that the fields Φa(z) and Φb(z) are mutually local in the
Wightman sense if

[Φa(f),Φb(f̃)]c = 0 (140)

for all c ∈ H∞ if suppf ⊂ I and suppf̃ ⊂ I ′, I ∈ I, cf. [95]. We now show that under our
assumptions these two locality conditions are equivalent.

Proposition A.1. The fields Φa(z) and Φb(z) are mutually local in the vertex algebra sense
if and only if they are mutually local in the Wightman sense.

Proof. For every c, d ∈ V the two variable formal series

(d|[Φa(z),Φb(w)]c) =
∑

n,m∈Z

(d|[an, bm]c)z−nw−m

can be considered as a formal distribution ϕc,d(z, w) on S1 × S1 i.e. a linear functional on
the complex vector space of the two variable trigonometric polynomials, see [59, Sect.2.1].
Because of the energy bounds this formal distribution extends by continuity to a unique
ordinary distribution, again denoted by ϕc,d(z, w), on S1 × S1, i.e. a continuous linear
functional on C∞(S1 × S1). If the fields Φa(z) and Φb(z) are mutually local in the vertex
algebra sense then, by [59, Thm.2.3 (i)], the distribution ϕc,d(z, w) has support in the
diagonal z = w of S1 × S1 and hence (d|[Φa(f),Φb(f̃)]c) = 0 if suppf ⊂ I and suppf̃ ⊂ I ′,
I ∈ I. Since c, d ∈ V where arbitrary it follows that [Φa(f),Φb(f̃)]c = 0 for all c ∈ V if
suppf ⊂ I and suppf̃ ⊂ I ′, I ∈ I. Now, as a consequence of the energy bounds, the same
equalities also hold for for any c ∈ H∞ and hence the fields Φa(z) and Φb(z) are mutually
local in the Wightman sense.

Conversely let us assume that the fields Φa(z) and Φb(z) are mutually local in the
Wightman sense. Then, the distribution ϕc,d(z, w) has support in the diagonal z = w of
S1 × S1. Moreover, as a consequence of the energy bounds, there is an integer N > 0 such
that, for all c, d ∈ V , ϕc,d(z, w) is a distribution of order less then N − 1, i.e. for every
c, d ∈ V there is a constant Mc,d > 0 such that

|〈ϕc,d, f〉| ≤ Mc,d max
{∣∣∂αf(eiϑ1 , eiϑ2)

∣∣ : eiϑ1 , eiϑ2 ∈ S1, |α| ≤ N − 1
}

for all f ∈ C∞(S1 × S1), where, as usual, for a multi-index α ≡ (α1, α2), α1, α2 ∈ Z≥0, |α|
denotes the sum α1+α2 and ∂α denotes the partial differential operator of order |α| defined
by

∂α ≡
(

∂

∂ϑ1

)α1
(

∂

∂ϑ2

)α2

,

see [93, Chapter 6]. Then, it follows by a rather straightforward adaptation of [93, Thm.6.25]
and by [59, Thm.2.3], that (z − w)Nϕc,d(z, w) = 0 for all c, d ∈ V and hence that the fields
Φa(z) and Φb(z) are mutually local in the vertex algebra sense.

B On the Bisognano-Wichmann property for representations

of the Möbius group

Let U be a strongly continuous unitary positive-energy representation of the Möbius group
Möb ≃ PSL(2,R) on a Hilbert space H. Let L0 be the self-adjoint generator of the one
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parameter subgroup of U of (anti-clockwise) rotations. Then the spectrum of L0 is a subset
Z≥0. Accordingly, the (algebraic) direct sum Hfin of the subspaces Ker(L0−n1H), n ∈ Z≥0

is dense in H. As it is well known the vectors in Hfin are smooth vectors for the represen-
tation U and it is invariant for the representation of sl(2,R) obtained by differentiating U ,
see [76, 89] and [18, Prop.A.1]. Accordingly there is a representation of sl(2,R) on Hfin by
essentially skew-adjoint operators and hence a unitary representation of its complexification
sl(2,C). The latter Lie algebra representation is spanned by L0 together with operators L1,
L−1 satisfying L1 ⊂ L∗

−1 and the commutation relations [L1, L−1] = 2L0, [L1, L0] = L1 and
[L−1, L0] = −L−1.

We say that a vector a ∈ Hfin is quasi-primary if L1a = 0 and L0a = daa for some
da ∈ Z≥0. We say that da is the conformal wight of a. If a is quasi-primary we consider
the vectors an ∈ Hfin, n ∈ Z≥0 defined by an ≡ 1

n!L
n
−1a. The linear span Ha,fin of

{an : n ∈ Z≥0} is invariant for the action of the operators L−1, L0, L1 and the corresponding
representation of sl(2,C) on Ha,fin is the irreducible unitary representation of sl(2,C) with
lowest conformal energy da. Note that L0a

n = (n + da)a
n for all n ∈ Z≥0. Moreover, the

closure Ha of Ha,fin is an irreducible U -invariant subspace of H carrying the unique (up
to unitary equivalence) strongly continuous unitary positive-energy representation of Möb

with lowest conformal energy da ∈ Z≥0.
If da = 0 then an = 0 for all n > 0 and the corresponding representation of Möb is

the trivial one. For da > 0 it is rather straightforward to prove by induction that L1a
n =

(2da + n)an−1 for all n ∈ Z>0 and that, as a consequence,

‖an‖2 =
(
2da + n− 1

n

)
‖a‖2, for all n ∈ Z≥0. (141)

The above computation shows that for every f ∈ C∞(S1) the series
∑

n∈Z≥0

f̂−n−daa
n

converges to an element a(f) ∈ Ha ⊂ H. Moreover, f 7→ a(f) is a linear continuous map
: C∞(S1) → Ha. Now, for any γ ∈ Diff+(S1) let βda(γ) : C

∞(S1) → C∞(S1) be the map
defined in Eq. (119). Following the strategy for the proof of Prop. 6.4 one can prove the
following proposition which in fact can also be easily proved to be a consequence of Prop.
6.4 together with Prop. B.5 here below.

Proposition B.1. Let a ∈ H be a quasi-primary vector of of conformal weight da > 0.
Then U(γ)a(f) = a

(
βda(γ)f

)
for all γ ∈ Möb and all f ∈ C∞(S1).

Now, for every I ∈ I we define the closed real linear subspace Ha(I) ⊂ Ha to be the
closure of the real linear subspace subspace

{a(f) : f ∈ C∞(S1,R), suppf ⊂ I}.

Then, as a consequence of Prop. B.1, the family {Ha(I) : I ∈ I} is Möbius covariant,
namely U(γ)Ha(I) = Ha(γI) for all I ∈ I and all γ ∈ Möb. Moreover, the family obviously
satisfies isotony, namely Ha(I1) ⊂ Ha(I2) if I1 ⊂ I2, I1, I2 ∈ I.

We now want to show that the family is a local Möbius covariant net of real linear
subspaces of Ha in the sense of [76, Def. 4.1], see also [77] and [11]. To this end we need to
show that the family satisfies locality. Let f1, f2 ∈ C∞(S1,R). Then
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ℑ(a(f1)|a(f2)) =
1

2i

∞∑

n=0

(
(̂f1)n+da

(̂f2)−n−da
− (̂f2)n+da

(̂f1)−n−da

)
‖an‖2

=
1

2i

∞∑

n=0

(
(̂f1)n+da

(̂f2)−n−da
− (̂f2)n+da

(̂f1)−n−da

)(2da + n− 1
n

)
‖a‖2

=
1

2i

∞∑

n=da

(
(̂f1)n(̂f2)−n − (̂f2)n(̂f1)−n

)(da + n− 1
n− da

)
‖a‖2.

Now let pda(x) be the polynomial defined by

pda(x) ≡
(da + x− 1)(da + x− 2) · · · (da + x− 2da + 1)

2da − 1
. (142)

Then

pda(n) =

(
da + n− 1
n− da

)

for every integer n ≥ da. Moreover, pda(n) = 0 for n = 0, 1, · · · , da − 1. Note also that
pda(x) = x for da = 1 while for da > 1 we have

pda(x) =
x

2da − 1

da−1∏

n=1

(x2 − n2), (143)

so that pda(x) is an odd polynomial. Hence

ℑ(a(f1)|a(f2)) =
‖a‖2
4i

∑

n∈Z

(
(̂f1)n(̂f2)−n − (̂f2)n(̂f1)−n

)
pda(n)

=
‖a‖2
4πi

∫ 2π

0
f2(e

iϑ)pda(−i
d

dϑ
)f1(e

iϑ)dϑ.

As a consequence, if suppf1 ⊂ I and suppf2 ⊂ I ′, I ∈ I then ℑ(a(f1)|a(f2)) = 0 and hence
the Möbius covariant isotonous family {Ha(I) : I ∈ I} satisfies locality so that it is a local
Möbius covariant net of real linear subspaces of Ha in the sense of [76, Def. 4.1].

Lemma B.2. Let a ∈ H be a quasi-primary vector of conformal weight da > 0 and let
K ≡ iπ(L1 − L−1). Then, there exists αa ∈ C with |αa| = 1 such that a(f) is in the domain

of e
1
2
K and e

1
2
Ka(f) = αaa(f ◦ j) for all f ∈ C∞(S1) with suppf ⊂ S1

+, where j(z) = z−1

for all z ∈ S1.

Proof. Let H ≡ Ha(S1
+). Then by [76, Thm.4.2] H is a standard subspace of Ha, see

[76, Sect.3]. Hence one can define on Ha the antilinear closed operator SH having polar

decomposition JH∆
1/2
H as in [76, Sect.3]. Le δ(t) be the one-parameter subgroup of Möb

defined by

δ(t)(z) =
z cosh t/2− sinh t/2

−z sinh t/2 + cosh t/2
,

(“dilations”) corresponding to the vector field sinϑ d
dϑ on S1, z = eiϑ. We have δ(t)S1

+ = S1
+

for all t ∈ R.
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Since eiKt = U(δ(−2πt)) for all t ∈ R, it follows from [76, Thm.4.2] that ∆
1/2
H coincides

with the restriction to Ha of e
1
2
K . Accordingly, if f : S1 → C is a smooth function with

suppf ⊂ S1
+ then a(f) is in the domain of e

1
2
K and JHe

1
2
Ka(f) = SHa(f) = a(f) and thus

e
1
2
Ka(f) = JHa(f). Now, again by [76, Thm.4.2], JH commutes with the restrictions of L−1,

L0, L1 to Ha and hence there exists αa ∈ C with |αa| = 1 such that JHan = αaa
n for all

n ∈ Z≥0. It follows that JHa(f) = αaa
(
f ◦ j

)
for all f ∈ C∞(S1). Hence, if suppf ⊂ S1

+

then e
1
2
Ka(f) = αaa(f ◦ j).

Our next goal is to compute the constant αa in Lemma B.2 for every quasi-primary
a ∈ H with conformal weight da > 0.

Proposition B.3. αa = (−1)da for every quasi-primary vector a ∈ H of conformal weight
da > 0.

Proof. Let f be a smooth real function on S1 whose support is a subset of S1
+ and let

fda,t ≡ βda(δ(−2πt))f , t ∈ R.
Consider the function ϕ : R → C defined by

ϕ(t) ≡ (a|a(fda,t)) = ‖a‖2(̂fda,t)−da
=

‖a‖2
2π

∫ π

−π
fda,t(eiϑ)eidaθdϑ.

Recalling the explicit form of fda,t(eiϑ) and Eq. ( 119) we find

ϕ(t) =
‖a‖2
2π

∫ π

−π

(
Xδ(−2πt)(δ(2πt)(e

iϑ))
)da−1

f(δ(2πt)(eiϑ))eidaθdϑ.

We now change the variable in the integral by setting eiϑ = δ(−2πt)(eiα), α ∈ [−π, π] with
the following result

ϕ(t) =
‖a‖2
2π

∫ π

−π
f(eiα)

(
Xδ(−2πt)(e

iα)
)da−2 (

δ(−2πt)(eiα)
)da

dα

=
‖a‖2
2π

∫ π

−π
f(eiα)

(
−i

d

dα
log(δ(−2πt)(eiα))

)da−2 (
δ(−2πt)(eiα)

)da
dα

=
‖a‖2
2π

∫ π

0
f(eiα)

(
−i

d

dα
log(δ(−2πt)(eiα))

)da−2 (
δ(−2πt)(eiα)

)da
dα

≡
∫ π

0
kda(t, α)f(e

iα)dα

where we used the fact that f(eiα) = 0 for α ∈ [−π, 0] by assumption. Now, using the
explicit expression

δ(−2πt)(eiα) =
eiα cosh(πt) + sinh(πt)

eiα sinh(πt) + cosh(πt)
,

it is straightforward to check that, for any α ∈ [0, π]. t 7→ kda(t, α) extends to a continuos
function z 7→ kda(z, α) on the closed strip S ≡ {z ∈ C : ℑz ∈ [−1/2, 0]}, which is holo-
morphic in the interior of S. Moreover, the function of two variables (z, α) 7→ kda(z, α) is
continuous on S× [0, π]. Accordingly

Φ1(z) ≡
∫ π

0
kda(z, α)f(e

iα)dα
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is continuous on the strip S and holomorphic in its interior. Clearly Φ1(t) = ϕ(t) for all
t ∈ R. Moreover, one finds that

kda(−i/2, α) =
‖a‖2
2π

(−1)dae−idaα

and thus

Φ1(−i/2) = (−1)da
‖a‖2
2π

∫ π

0
f(eiα)e−idaαdα

= (−1)da
‖a‖2
2π

∫ 0

−π
f(e−iα)eidaαdα

= (−1)da(a|a(f ◦ j)).

On the other hand, since ϕ(t) = (a|eiKta(f)) for all t ∈ R and a(f) is in the domain of e
K
2

there is a function Φ2(z) which is continuous on the strip S and holomorphic in its interior,
such that Φ2(t) = ϕ(t). Moreover, by Lemma B.2 we have Φ2(−i/2) = αa(a|a(f ◦ j)).
Now, Φ1(t) = Φ2(t) for all t ∈ R and hence, by the Schwarz reflection principle we have
Φ1(z) = Φ2(z) for all z ∈ S and hence (−1)da(a|a(f ◦ j)) = αa(a|a(f ◦ j)). The conclusion
then follows from the fact that we can take f ∈ C∞(S1,R) with support in S1

+ and such
that (a|a(f ◦ j)) 6= 0

The following theorem is a straightforward consequence of Lemma B.2 together with
Prop. B.3.

Theorem B.4. Let K ≡ iπ(L1 − L−1) and let f ∈ C∞(S1) with suppf ⊂ S1
+. Then a(f)

is in the domain of e
1
2
K and e

1
2
Ka(f) = (−1)daa(f ◦ j), where j(z) = z−1 for all z ∈ S1.

Proposition B.5. Let V be a simple unitary energy-bounded VOA and let a ∈ Vda be
quasi-primary. Then Y (a, f)Ω = a(f).

Proof. It follows directly from Eq. (69) that a−n−daΩ = 1
n!L

n
1Ω for all n ∈ Z≥0. Moreover,

anΩ = 0 for all integers n > −da. Hence the conclusion follows from the definition of
a(f).

The following theorem plays a crucial role in the proof of Thm. 8.1.

Theorem B.6. Let V be a simple unitary energy-bounded VOA and let a ∈ Vda be quasi-
primary. Let K ≡ iπ(L1 − L−1) and let f ∈ C∞(S1) with suppf ⊂ S1

+. Then Y (a, f)Ω

is in the domain of e
1
2
K and e

1
2
KY (a, f)Ω = (−1)daY (a, f ◦ j), where j(z) = z−1 for all

z ∈ S1.

Proof. The theorem follows directly from Thm. B.4 and Prop. B.5 in the case da > 0. In
the case da = 0 it holds true trivially.

Acknowledgements. We thank V. Kac and F. Xu for useful discussions and comments.
S. C. would like to thank Y. Tanimoto for pointing him references [35] and [80].

69



References

[1] V. Bargmann: On unitary ray representations of continuous groups. Ann. of Math 59
(1954), no. 1, 1-46.

[2] J. Bisognano, E. Wichmann: On the duality condition for a Hermitian scalar field. J.
Math. Phys. 16 (1975), 985-1007.

[3] B. Blackadar: Operator algebras. Springer-Verlag, Berlin-Heidelberg-New York, 2006.

[4] H.J. Borchers, D. Buchholz and S. J. Summers: Polarization free generators and the
S-matrix. Commun. Math. Phys. 219 (2001), no. 1, 125-140.

[5] H.J. Borchers and J. Yngvason: Positivity of Wightman functionals and the existence
of local nets. Commun. Math. Phys. 127 (1990), no. 3, 607-615.

[6] H.J. Borchers and J. Yngvason: From quantum fields to local von Neumann algebras.
Rev. Math. Phys. Special Issue (1992), 15-47.

[7] H.J. Borchers and W. Zimmermann: On the self-adjointness of field operators. Nuovo
Cimento XXXI (1963), 1047-1059.

[8] H. Bostelmann: Phase space properties and the short distance structure in quantum
field theory. J. Math. Phys. 46 (2005), no. 5, 052301, 17 pp.

[9] O. Bratteli and D.W. Robinson: Operator algebras and quantum statistical mechanics
1. Springer-Verlag, Berlin-Heidelberg-New York, 1987.

[10] R. Brunetti, D. Guido and R. Longo: Modular structure and duality in conformal
quantum field theory. Commun. Math. Phys. 156 (1993), no. 1, 201-219.

[11] R. Brunetti, D. Guido and R. Longo: Modular localization and Wigner particles. Rev.
Math. Phys. 14 (2002), Nos. 7, 8, 759-785.

[12] D. Buchholz: On quantum fields that generate local algebras. J. Math. Phys. 31 (1990),
no. 8,1839 -1846.

[13] D. Buchholz, G. Mack and I.T. Todorov: The current algebra on the circle as a germ
of local field theories. Nucl. Phys. B (Proc. Suppl.) 5B (1988) , 20-56.

[14] D. Buchholz and H. Schulz-Mirbach: Haag duality in conformal quantum field theory.
Rev. Math. Phys. 2, no. 1, (1990), 105-125.

[15] S. Carpi: Absence of subsystems for the Haag-Kastler net generated by the energy-
momentum tensor in two-dimensional conformal field theory. Lett. Math. Phys 45
(1998), no. 3, 259-267.

[16] S. Carpi: Quantum Noether’s theorem and conformal field theory: a study of some
models. Rev. Math. Phys. 11 (1999), no. 5, 519-532.

[17] S. Carpi: Classification of subsystems for the Haag-Kastler nets generated by c = 1
chiral current algebras. Lett. Math. Phys. 47 (1999), no. 4, 353-364.

70



[18] S. Carpi: On the representation theory of Virasoro nets. Commun. Math. Phys. 244
(2004), no. 2, 261-284.

[19] S. Carpi: Intersecting Jones projections. Int. J. Math. 16 (2005), no. 6, 687-691.

[20] S. Carpi and M. Weiner: On the uniqueness of diffeomorphism symmetry in conformal
field theory. Commun. Math. Phys. 258 (2005), no.1, 203-221.

[21] S. Carpi, Y. Kawahigashi and R. Longo: Structure and classification of superconformal
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