
Seventh Hungarian Conference on Computer Graphics and Geometry, Budapest, 2014

Optimizing State Changes in Rendering Engines

Dániel Bányász and László Szécsi

Budapest University of Technology and Economics, Budapest, Hungary

Abstract
This paper presents an algorithm for ordering state change operations—including shader context changes and
input/output bindings—necessary to render a frame in an interactive application. We expand on the context of
the render queue, but instead of sorting renderable primitives only by material, we propose a flexible framework
grouping together drawing calls that share any of the conceivable render states, minimizing the number of CPU-
GPU communication instances required to set them.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Graphics systems

1. Introduction

A modern graphics engine has numerous requirements to
fulfill. From the consumer viewpoint, it has to create vi-
sually appealing images at a constant frame-rate. From the
developer viewpoint, it should couple numerous subsystems
and allow for flexible addition of new functionality and unre-
stricted combination of existing features4. Game design and
content integration should also be easy. Meeting all these
criteria simultaneously can be challenging.

Engines are inherently complex software systems that
serve as middleware connecting graphics hardware and
game logic. Graphics hardware itself has sophisticated ar-
chitecture running half a dozen shader programs, at least a
dozen differently accessed memory constructs, and a good
number of fixed-function elements, the operation of which
is still highly customizable. Game logic and scene manage-
ment can be similarly complex, but organized along differ-
ent principles, and usually not entirely known at the time
of engine development. This calls for a software design that
is manageable, extendable, and scalable for programmers,
even when all the underlying flexibility is exposed. In prac-
tice, for programmers with sufficient skills and understand-
ing, programming tasks should not snowball in complexity
as the system grows8.

This level of expandability is not adequately supported by
basic instruments of object-oriented design, as encapsulation
and inheritance4. In order for the addition of new features to
happen without compromising the already existing functions
in a major way, the engine needs to be very modular. This

way changing or completely remaking specific elements of
the main engine will not affect other parts of it.

Engines need to support real-time high-fidelity photore-
alistic visualization of extremely detailed game worlds11.
Much of the visual experience is dependent on the artistic
content, for which a complete pipeline of content creation
and integration, with numerous editing tools, is usually sup-
plied. However, it is the rendering capabilities of the engine
that define the limits of what game world contents can be.
Immersion into a game is reliant on continuous animation,
so image frames have to be rendered at consistently high
speed1. Thus, rendering performance and accommodation of
a highly customizable effect range are the two factors that
can define the limits of gaming experience.

Unfortunately, flexibility contradicts performance in prac-
tice. Both from a programming or a rendering perspective,
flexibility translates to a wide and extendable set of features
that can be freely combined in the definition of game world
objects. Optimization for performance, on the other hand,
means the elimination of multiple executions of the same
task through exploiting uniformity. Consequently, almost ev-
ery optimization technique depends on restricting what the
engine can do. For example, grouping some of the game ob-
ject properties into materials, then drawing objects sharing
the same material together is a natural and widely accepted
technique. However, what exactly constitutes a material de-
pends on design decisions, where choosing a too narrow sub-
set results in little reuse, while a too wide subset either leads
to too much uniformity or too many materials. Multi-level
material systems could address this problem, but then the hi-



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

erarchy of material parameters already assumes a lot about
their usage. Even if this is based on well-established best
practice, it is a restriction imposed on how the content should
be prepared for optimal performance.

In this paper we describe the outlines of a flexible graphics
engine, focusing on the capabilities of optimized rendering
without assuming any pre-established classification, unifor-
mity or hierarchy of game world objects. This is to provide
the means of high-end rendering quality while maintaining
complete freedom in the design of material or shader sys-
tems and game object construction. The main contribution
of the paper is a run-time algorithm to order all visible game
world objects for rendering so that state change overheads
are minimal.

Our optimization algorithm is a greedy one, which means
it is not always optimal. Greater performance increase can be
achieved using batching of elements or instancing. However,
this algorithm can easily work with batched resources and
instancing, is independent from the concrete graphics API
and development environment and can easily be modified
and expanded to the needs of any certain engine.

2. Component-based engine architecture

The choice of a game object model or entity model is a defin-
ing feature of game systems4. Small games fare well with
the classic monolithic model that relies on object-oriented
inheritance hierarchy. Every different type of entity is im-
plemented in a class, with common features extracted into
superclasses. This would imply multiple inheritance where
entity types share features along multiple taxonomies. Due
to the inherent design challenges of multiple inheritance, it
is only used with restrictions. Interfaces and mix-in classes
add some flexibility to a monolithic inheritance tree.

The most severe issue with an inheritance based game ob-
ject model is that of adaptability and extensibility. Game
development is often an organic process where technolog-
ical features may inspire gameplay elements4. If a new fea-
ture is added to an entity class, it is very likely that sooner
or later other, formerly unrelated entities could also use the
feature. Moving shared functionality to the lowest common
base class results in bloated classes at the top of the inher-
itance hierarchy, and requires switches to turn off function-
ality where not needed. This defeats the purpose of object-
oriented decomposition. Mix-ins solve this problem only for
simple bits of functionality that do not require further de-
composition.

Another, related problem is the strong coupling of inter-
faces. Whenever an entity class requires that the interface is
changed, this can affect a complete subtree of the inheritance
hierarchy.

The need for integration of several subsystems in an en-
gine rapidly and naturally leads to component-based sys-

tems, where entities are defined as collections of compo-
nents. The idea lends itself to implementations ranging in
complexity and flexibility from simple composition over in-
heritance schemes to run-time configurable object compo-
sitions. Property-based systems can be seen as an extreme
case, where all entities are disassembled into atomic com-
ponents, and behavior is no longer defined by components
themselves, but the logic linking those components. Opera-
tions are dispatched not based on the type of one component,
but on the occurrence of certain sets of components.

The decomposition of game objects into components can
easily be extended to features that are parts of virtual worlds,
but not readily viewed as game objects in simple systems.
Light sources, cameras, trigger zones, and audio sources
may very well share functionality with renderable objects.

A component-based architecture allows simple, yet pow-
erful and flexible couplings between entity aspects and the
ability to create or change these connections very easily. The
more abstract the component management is, the more ma-
chinery it requires to glue a component into the system, but
also the less existing components constrain what new com-
ponents can do.

3. Testbed implementation

In our implementation we opted for a strong and strict
decoupling of subsystem functionalities into rendering,
physics, etc. components. Variations within those compo-
nents are handled by inheritance, e.g. there is a common
interface for physics components allowing creation, destruc-
tion, and simulation. However, how simulation results are
transferred to rendering components is not defined in ei-
ther physics or rendering components: they are independent.
Also, there is no entity class storing components that belong
to the same entity, it is only the components themselves that
store an entity identifier. Entities exist only as components
sharing the same identifier.

As in the rendering and physics components example,
components have to communicate, and they need to do so
without compromising loose coupling. We need an object in
the engine that knows about all the different types of com-
ponents and can invoke the specific behaviors from these el-
ements. These objects are visitors, and they implement the
Visitor Pattern7, 6. For every action (render, update, release
resources etc.) we create a specific visitor object that knows
how to handle given components. This way the knowledge
about the concrete coupling and the communication between
components is comprised in the visitors and not scattered
throughout the engine. Implementing visitors is not sub-
stantially different from implementing virtual functions in
a monolithic inheritance engine, but visitors can operate on
multiple classes.



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

4. Dependency injection

This approach incurs some communication overhead, as vis-
itors need to look up objects based on entity identifiers and
discern their types, but this is easily acceptable for game
logic resolution. When it comes to rendering, however, these
loose connections can be a burden. In a monolithic engine,
all data for drawing an entity would be encapsulated in one
class, and a single render method would be responsible for
drawing the entity. With components, the visitor must gather
all the parameters, variables and resources necessary.

This overhead can be eliminated if connections between
critical components are made more direct. In order to
achieve this without undermining component separation, we
employ the dependency injection pattern3, 9. This inverts the
control flow between various components supplying ren-
dering parameters (e.g. model, camera, light poses) and
the component performing rendering. While originally the
render-performing component should locate and query all
other components, with dependency injection it is the other
components that register themselves.

5. Shader components

The render-performing component in our implementation is
called the shader component. None of the data requirements
for a shader are hard-coded. Instead, they are acquired run-
time using shader reflection API13. After loading a shader
program, all of its parameter and resource binding points,
along with their names used in the shader programs, are
gathered and saved. A shader component stores every pa-
rameter by name. Visitors can connect data providers and
shader components by querying provided items and setting
references to them into named shader parameters. A visi-
tor might contain the logic linking data items to names, but
if shader program authoring is performed at the same time
as component design, it is a clearer solution to have the
provider components use the same naming convention as the
shader programs.

After the shader components have been populated with
appropriate settings, rendering does not require any commu-
nication between components. As data provider components
pass data references to shader components, no synchroniza-
tion is necessary when the data changes.

6. Related work

A high number of render components share a large subset of
parameters. The camera properties are the same for all of the
objects in the frame, texture samplers can also be common
between lots of elements, and the lights can affect groups
of objects in the virtual world. We may be drawing a lot of
entities with the same texture or with the same world ma-
trix, if one object consists of multiple render components.
What we need to do is find the overlapping resources and set

them only once for a large number of objects, minimizing
the state changes and the communication between CPU and
GPU, maximizing the utilization of the PCI-Express band-
width, and therefore optimizing the rendering process.

The most efficient way of reducing CPU-GPU commu-
nication is reducing the number of draw calls, or batches,
themselves12. This can be done if several entities can be
drawn at once. As no state changes during the processing of
a batch are possible, any variation in drawn geometry must
be accommodated for dynamically in shaders. This requires
pre-transformed static objects stored in common geometry
buffers, the use of texture arrays instead of switching tex-
tures, and generic shaders accommodating different material
models. These optimizations can be performed when design-
ing the shader library and the scene management for the en-
gine.

A special, hardware-supported case of batching is geom-
etry instancing5. This allows rendering the same geometry
several times, with shaders able to process them with differ-
ent parameters.

For the purposes of run-time performance optimization,
we assume batching has already been done, and the enti-
ties may already constitute several game objects batched to-
gether. In other world, we define an entity as what can be
drawn in a single batch.

Minimizing the number of state changes can be accom-
plished by ordering batches so that those using similar state
settings are performed one after the other. The tool for this is
the render queue2, which accumulates batches, and executes
them only after ordering. This solution is employed gener-
ally, but the ordering strategy is often arbitrary, or manually
tuned to a certain purpose. Typically, engines have a mate-
rial system, where materials encompass a subset of all render
states. How this subset is chosen is based on industry best
practices, but it is not adaptive on the momentary runtime
set of entities. The batches are ordered according to material
IDs, which are statically assigned.

Our algorithm optimizes draw calls not by materials but
by used states and resources. We do not differentiate be-
tween render state defined at material or entity level, and
dynamically adjust the ordering strategy depending on the
composition of entities in the scene.

7. The rendering optimization problem

The virtual world, or scene, is a collection of constituent en-
tities. From the rendering point of view, we consider those
entities that are renderable, meaning that they can be drawn
into a render target image. For each of these entities there
exists a set of various render components that define the ren-
dering behavior. As a simple, but typical case, these could be
a pixel shader component, a vertex shader component and
an indexed geometry component. Such a setup allows multi-



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

material meshes if they are instantiated as several single-
shader entities.

The objective is to determine how and when to upload or
bind data to the GPU in order to minimize CPU-GPU data
transfer and communication latency. Several entities need to
be rendered using the same resources, shader programs and
state blocks, and thus, re-binding—or even re-uploading—
these could needlessly stall operation. For simple scenar-
ios, this could be addressed manually in the content creation
phase, using a material system that orders materials so that
similar ones follow each other. Then, entities can be sorted
by material ID in a render queue, in run-time, before ren-
dering. However, content-creation-phase ordering might not
be optimal for the actual set of entities that are present at
run-time. Furthermore, if rendering behavior is not merely
defined by a material, but by an ever extendable set of com-
ponents, then the render queue approach is insufficient. For
example, a future gameplay decision may dictate that the
player is given a gun that changes the texture of entities fired
upon. This can easily be solved by creating a new render
component class that imposes a texture setting when visited,
overloading the material default. However, this could break
the material system and render queue ordering, calling for
a custom workaround to be implemented. In order to avoid
development overheads of this kind, we aim to determine the
optimal render ordering at run-time.

An exact method can be easily imagined using a graph,
every node of which is an entity. The graph is a complete
graph, and going from one node to another means rendering
one entity after the other. This graph is also a weighted one,
where the edge weights between nodes represent the sever-
ity of state-changes between GPU states when rendering one
entity after the other. Before we render an object, we bind (or
even need to upload) all the necessary resources, set the ren-
der states, and when we are finished with the rendering, we
have to update some or even all of the parameters in order to
prepare for the drawing of the next object. When the weight
of an edge is low, it means we barely have to change any-
thing. When this number is high the number of differences
between used resources is significant, meaning we need a lot
of data transferred to the GPU before the actual rendering
begins. The edge weights should also represent the differ-
ences between the performance impacts of the API calls.

After the graph is ready, we need to find a path that in-
cludes every node once and only once, and has minimal
weight, i.e. a minimal weight Hamiltonian path. This would
mean that we have rendered every entity with minimal or no
overhead. Finding a Hamiltonian path in a complete graph
is trivial, but finding one with minimal weight (known as
the travelling salesman problem) is known to be NP-hard10.
There are various fast approximate algorithms, however. Our
solution can be seen as another such algorithm, also exploit-
ing our knowledge about the structure of the edge weights.

8. The algorithm

There is a high number of configuration items that influence
GPU operation. These include render states, input/output
resource bindings, dynamic resource contents, shader pro-
grams or dynamic shader linking parameters. For the sake
of brevity, we will refer to all of these as render states, even
though setting costs and the implied amount of CPU-GPU
data transfer might vary greatly for different types.

Render states are set using graphics API methods. An
atomically settable render state is something that can be
changed by invoking a single method. The basic intuition
of our algorithm is that if there are two atomically settable
render states with similar setting costs, one of which takes
just a few different values in the course of rendering, but the
other one is likely to be different for all entities, then it is
more beneficial to order entities according to the first one.

To explain this, let us assume we need to order n entities.
Let M be one of the graphics API methods, associated with
a render state. The cost of invoking M is cM , and there are
vM different values of the render state used. Then, the cost
for invoking M individually for every entity is cbase = cMn.
If sorted by the values of the render state, the cost will be
copt = cMvM . The gain is cbase− copt = cM(n− vM). Thus,
the gain is more significant if there are fewer possible values
or if setting the state is more expensive.

Thus, our algorithm will find render states that are used by
a high number of entities and are expensive to change. We set
these early and keep the GPU and its memory in the correct
state while all corresponding entities are drawn. To achieve
this, we count the number of different parameter sets for ev-
ery graphics API method that causes data transfer or state
change. We refer to a method call with a certain set of pa-
rameters as a task. Two calls with the same set of parameters
are not considered separate tasks. If a method is invoked by
numerous entity components, but repeating only a few tasks,
then a high number of entities share the render state setting.

Our algorithm first selects a render state, ordering along
which offers the maximum gain. For this we need to know
the number of different parametrizations the methods setting
render states are called with. In other words, this is the num-
ber of tasks pertaining to the method. Also required is the
cost of invoking a method over the API. When the maximum
gain render state has been selected, the entities are grouped
by the value of the render state they require for rendering—
in other words, which task of the method they invoked. The
resulting groups consist of entities for which the render state
needs only be set once, if the group is rendered together.
Such a group of entities can further be divided choosing an-
other render state (i.e. API method) to discriminate by. This
can be repeated recursively, until there remains no other API
method but the final draw call, which has to happen for every
entity.



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

8.1. Optimizer

The central construct of our algorithm is the optimizer. This
provides an interface equivalent to that of the graphics li-
brary used to control GPU operation, but for all method calls,
the calling entity also has to be specified. The optimizer does
not immediately execute the graphics library method calls,
but records them, and generates an optimized list of com-
mands, that can be played back to the same effect.

Thus, all shader objects and other rendering components
of entities issue parametrized calls to the optimizer, instead
of the graphics API. In order to explain the optimizer, let us
introduce the following nomenclature:

• A method is a graphics API function exposed on the opti-
mizer’s interface.

• The method cost is the overhead incurred by calling the
graphics API function.

• A task is a graphics API call with a given parametriza-
tion, i.e. a method–parameter-set pair. Invocations of the
same method with identical parameters are not considered
separate tasks.

• The callers of a task are those entities, the components
of which have invoked the task’s method with the task’s
parameter list.

• An entity set is a set of entities to be drawn.
• A bin is a set of the tasks that refer to the same method.
• A method of the bin is the method all tasks of the bin refer

to.
• The bin gain is the reduction in state setting overhead

achievable by grouping entities according to their tasks
in the bin. It is computed as the number of entities minus
the number of tasks in the bin, weighted by the the method
cost.

• A command represents one execution of a task. Thus, it is
a wrapper for a graphics API call with a given parameter
set. By extension, API draw calls can also be wrapped in
commands.

• The command list is a replayable sequence of API calls.

The optimizer stores all tasks into bins, one for every
method. We refer to the bin that has the highest gain as the
best bin—the choice is arbitrary in case of a tie. For every
task, the parameters and the list of callers are also stored.

The optimizer maintains this data structure when receiv-
ing invocations from rendering components of entities. If a
method is called with a parameter set that differs from every
previous, a new task is created, and added into the appropri-
ate bin. If the parameter set used by the calling entity was
already associated with a task, we just register the entity as
one of its callers.

Draw calls—the graphics API function calls that initiate
pipeline operation with current bindings—are not wrapped
or stored as tasks. These cannot be eliminated by ordering,
as a draw call must happen for every entity. (As discussed
in Section 6, optimizing the number of draw calls using in-

stancing or batching is out of the scope of our investigation.)
On the other hand, the output optimized render list must con-
tain draw commands. Thus, the optimizer maintains an en-
tity set, containing all entities that have to be drawn. This set
is identical to the union of callers of all tasks, and thus re-
dundant in information to the task bins. However, it is much
more useful for entity set partitioning operations.

8.2. Optimization

When entities are created, rendering components are also
instantiated. The core functionality is encapsulated in the
shader component class. Shader components manage all pro-
gram and resource bindings of the GPU pipeline. Initially,
however, shader components are devoid of bindings, and it
is the role of the visitors to fill these as dictated by other com-
ponents. Thus, components are decoupled, and linked only
by visitor logic. During the process, shader components re-
ceive memory locations for all the shader variables’ desired
values. After these bindings are made, the engine can start
creating the optimized render list.

First, the optimizer is instantiated, with empty bins for all
methods, and an empty entity set.

Then, we emulate the rendering process, setting required
resource bindings and render states, and rendering the ge-
ometry through the optimizer. This is accomplished by visit-
ing the shader components, that inform the optimizer about
required settings, per entity. The optimizer receives these
calls, and creates, bins and updates tasks as described in Sec-
tion 8.1. Also, the caller is inserted into the entity set, if it
was not a member yet.

By the end of this step, the optimizer has been initialized,
and the OPTIMIZE function (Algorithm 1) can be called with
the set of all bins and the complete entity set as inputs, re-
turning a list of commands (see Figure 2 for an overview).

Figure 1: Recursive subdivision of the render state space.

The function partitions the entity set into groups recur-
sively along a set of methods (Figure 1), represented by the
bins of their tasks. For an empty group E, there is no ac-
tion required (lines 2-4). Otherwise, the list of commands to
render the group must be returned, assuming all appropriate
settings have already been applied, apart from those using
the methods of B, which are currently subject to optimiza-
tion. The necessary commands are appended to an initially



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

Method 1 Parameter 1

M2P1 M2P2

M3P1 M3P2

M4P1 M4P2 M4P3 M4P3 M4P4 M4P5

Final draw calls for entities

Figure 2: The algorithm recursively partitions entity sets
along tasks, implicitly creating a tree. The green polyline
indicates the order in which the tree is traversed to find the
output render command list.

Algorithm 1 Optimize function
1: function OPTIMIZE(set of bins B,set of entities E)
2: if E is empty then
3: return empty list of commands
4: end if
5: R← empty list of commands
6: if B is empty then
7: for each entity e in E do
8: R← R+new command(draw e)
9: end for

10: else
11: M← best bin in B
12: for each task p in M do
13: R← R+new command(p)
14: I←{callers of p}∩E
15: D← empty set of bins
16: for each bin B in (B\M) do
17: D←D∪{q|q ∈ B ∧ (caller of q) ∈ I}
18: end for
19: R← R+ OPTIMIZE(D, I)
20: end for
21: end if
22: return R
23: end function

empty list R (line 5). We refer to adding commands perform-
ing tasks into the render list as compiling the tasks. If the bin
set B is empty, then all settings are already compiled into the
command list, and only the draw calls for all entities must be
issued (lines 6-9). Otherwise, a best bin M can be selected
(line 11).

Then, we loop over all tasks in the best bin (lines 12-20).
Processing one task should compile the setting of a render
state and the rendering of all entities using it. Therefore, we
append the command executing the task p to the command
list R (line 13). Then, all the entities that use p are selected

into set I (line 14). These entities must be compiled, but
without calling the method of M, as that has already been
properly applied. This is accomplished by calling OPTIMIZE

with entity set I, and a reduced set of bins D (line 19). The
returned command list is appended to R.

Set D is populated from bins of B other than M, copying
all tasks that belong to an entity in I (lines 15-18). Note that
bin M has been eliminated from the recursion, because the
entities we are left with share the same setting with respect to
that method. Tasks that concern entities other than the ones
in the processed group are also eliminated, so that the gain
computation for the bins remains correct.

After all tasks of M have been processed, the command
list is complete and can be returned (line 22).

The top level call of OPTIMIZE returns a list of render
commands that is as close to the optimum as the greedy ap-
proach allows.

However, it is possible that there is some unnecessary du-
plication amongst method calls. Suppose we render three en-
tities, using two methods A and B, issuing tasks a1,a2,b1
and b2. The three entities e1,e2,e3 use settings (a1,b1),
(a1,b2) and (a2,b2), respectively. Partitioning by A sepa-
rates the first two entities, resulting in the command se-
quence (set a1,set b1,draw e1,set b2,draw e2). On the other
branch, we get (set a2,set b2,draw e3), where (set b2) is su-
perfluous. This suboptimal behavior is possible because sep-
arate branches are processed independently, and no consid-
erations for minimizing state changes between branches are
taken. While this concession has to be made in favor of the
fast greedy evaluation scheme, a trivial elimination of inef-
fective commands can improve our solution in simple cases
like the one presented above. We could see these as lucky
coincidences, where the rendering of one group of entities
happens to end in a render state in which rendering the next
group should start—but these lucky coincidences are quite
probable if only a few possible states exist.

Visiting rendering components again is unnecessary, as
the render command list contains every method call with a
full parameter list, with pointers to resources originally spec-
ified by the render components. Thus, no additional over-
head other than the execution of the tasks is incurred when
the command list is played back for rendering. If no entities
are created or destroyed, or their components otherwise al-
tered, the command list does not need to be re-generated in
every frame. Dynamically uploaded data, like the contents
of constant buffers storing camera and model transforma-
tions is allowed to change as long as the data resides at the
same memory location. Thus, even for a dynamic scene, ev-
ery frame can be rendered by playing back an optimized se-
quence of graphics API calls.



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

Figure 3: Optimized CPU-GPU communication resulted in higher render speeds and increased CPU utilization.

9. Results

We tested our algorithm on an Intel Core i5 3570K CPU with
8 GB RAM and an MSI N670 PE 2GD5/OC graphics card.
With only a small initial computational overhead of creating
the render lists, the speed of the actual rendering increased
significantly. The differences between the optimized and un-
optimized runs were apparent on the test machine.

These tests were conducted using a simple and carefully
constructed virtual scene (see Figure 4). A small number of
objects were placed in the world, some of them forming op-
timizable groups by using several common resources. With
a test scene this size, the algorithm was fully observable.

Figure 4: Test scene with deferred shading and depth map
shadows.

We compared two methods of drawing this virtual world.
One was with the suboptimal rendering, which draws entity
by entity, collecting components and setting parameters in-
dividually. The other was the optimized method which uses
the render list created by the algorithm. There are multiple
light sources casting shadows using shadow maps, so each
of them has its own render pipeline, meaning they all have
to render the scene from their point of view. We use deferred
shading, so each of the lights contributions are blended to-
gether in a final draw sequence. In conclusion, the scene will
be rendered multiple times using separate render queues,

separate optimized passes, each pass manifested in their own
optimized method list.

The engine has some built-in tools to measure specific as-
pects of performance. We created the scene and the engine
environment in order to quantify the gain of using our opti-
mizer algorithm. In the first test, we compared the optimal
and the suboptimal renders with no other restrictions on the
engine, meaning we disabled V-Sync and any other frame
rate limits. This way the GPU ran at 100% capacity gener-
ating as many frames a second as it possibly could. We ran
the engine for a few seconds measuring at a steady interval
the CPU usage and the rendered frames per second count.
The numbers showed that using the optimized method list
to draw the scene generated nearly three times the frames a
second, than rendering without the optimized list (Figure 3).

The CPU usage was slightly higher during the optimized
rendering. This can be explained by the fact that without
optimization, the GPU communication overhead blocks the
CPU from getting higher amount of work done. During the
tests, the engine had nothing else to do but to render. It pro-
cessed some messages from the operating system in order
to allow the user to move the camera and close the program
window, but apart from that, it only prepares the scene and
uploads the data to the GPU. Faster render means more CPU
work, because the engine will require more work to be done
for the rendering process from the CPU side.

In an effort to determine the accurate gain in CPU power
we tried to level the playing field in terms of CPU usage, and
framelimited the engine. So at the second round of measure-
ments, the FPS was capped at 60. This produced very low
CPU load, probably because of the small size of the virtual
space. The CPU usage while rendering from the optimized
list however is nearly half with this simple scene than when
we render the entities one by one (Figure 5). Hopefully even
with a more complex virtual world this gain will have a huge
impact on the overall performance.



Bányász and Szécsi / Optimizing State Changes in Rendering Engines

Figure 5: CPU usage for the optimized and non-optimized
cases over several frames with limited frame rate.

10. Future work

The proposed solution needs further verification for more
extensive scenes and full, plausible gaming scenarios. More
quantitative comparison with material-based render queues
are required, and a study of circumstances where the theoret-
ical merits of the proposed algorithm manifest most strongly.
We need to investigate further on the issue of when the ren-
der command list needs to be rebuilt, and whether it is possi-
ble and advisable to keep parts of the list and update others,
trading optimality for cheaper list updates. In a related issue,
the effect of visibility algorithms removing and adding enti-
ties for the set to be drawn should be addressed. We have not
yet investigated another important option for increasing ren-
dering performance, which is sorting entities by approximate
depth. We plan to examine whether this sorting strategy can
be combined with our optimization algorithm. Also, it would
be useful to know when is one or the other more beneficial.

11. Acknowledgements

This work has been supported by OTKA PD-104710 and
the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

References

1. Kajal T Claypool and Mark Claypool. On frame rate
and player performance in first person shooter games.
Multimedia systems, 13(1):3–17, 2007.

2. Christer Ericson. Order your graph-
ics draw calls around! http://
realtimecollisiondetection.net/blog/
?p=86, 2008.

3. Martin Fowler. Inversion of control con-
tainers and the dependency injection pattern.
http://martinfowler.com/articles/
injection.html, 2004.

4. Jason Gregory, Jeff Lander, and Matt Whiting. Game
engine architecture. AK Peters, 2009.

5. Emmett Kilgariff and Randima Fernando. The geforce
6 series gpu architecture. In ACM SIGGRAPH 2005
Courses, page 29. ACM, 2005.

6. Robert Cecil Martin. Agile software development: prin-
ciples, patterns, and practices. Prentice Hall PTR,
2003.

7. Bertrand Meyer and Karine Arnout. Componentization:
the visitor example. Computer, 39(7):23–30, 2006.

8. Bob Nystrom. Game programming patterns. 2013.

9. Erick B Passos, Jonhnny Weslley S Sousa, Este-
ban Walter Gonzales Clua, Anselmo Montenegro, and
Leonardo Murta. Smart composition of game objects
using dependency injection. Computers in Entertain-
ment (CIE), 7(4):53, 2009.

10. Gerhard Reinelt. The traveling salesman: computa-
tional solutions for TSP applications. Springer-Verlag,
1994.

11. L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based
Techniques for Global Illumination Effects. Morgan
and Claypool Publishers, San Rafael, USA, 2008.

12. Matthias Wloka. Batch, batch, batch: What does it re-
ally mean? In Game developers conference, 2003.

13. Jason Zink. Direct3d 11 shader reflection in-
terface. members.gamedev.net/JasonZ/
Heiroglyph/D3D11ShaderReflection.pdf,
2009.


