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Abstract

We prove that the Minimal Spanning Tree and the Invasion Percolation Tree on

a version of the triangular lattice in the complex plane have unique scaling limits,

which are invariant under rotations, scalings, and, in the case of the MST, also under

translations. However, they are not expected to be conformally invariant. We also

prove some geometric properties of the limiting MST. The topology of convergence is

the space of spanning trees introduced by Aizenman, Burchard, Newman & Wilson

(1999), and the proof relies on the existence and conformal covariance of the scaling

limit of the near-critical percolation ensemble, established in our earlier works.

The MST in a box, and InvPerc started from the midpoint of the left boundary of the box
until reaching the right boundary, on Z2.

1

ar
X

iv
:1

30
9.

02
69

v2
  [

m
at

h.
PR

] 
 1

3 
Fe

b 
20

14



Contents

1 Introduction 2
1.1 The Minimal Spanning Tree MST . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Invasion Percolation Tree InvPerc . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The scaling limit of the near-critical ensemble . . . . . . . . . . . . . . . . . 8
1.4 Strategy of the proof and organization of the paper . . . . . . . . . . . . . . 10

2 Topological and measurability preliminaries 11
2.1 The space of essential spanning forests . . . . . . . . . . . . . . . . . . . . . 11
2.2 The quad-crossing topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Pivotals and pivotal measures . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Enhanced networks and cut-off forests built from the near-critical ensem-
ble 21

4 Approximation of MSTη by the cut-off trees MSTλ̄,εη 30

4.1 Preparatory lemmas and the definition of MSTλ̄,εη . . . . . . . . . . . . . . . 30
4.2 Approximation as ε→ 0 and (λ, λ′)→ (−∞,∞). . . . . . . . . . . . . . . . 33

5 Proof of the main result 36
5.1 Putting the pieces together for MST on tori T2

M . . . . . . . . . . . . . . . . 36
5.2 Extension to the full plane; invariance under translations, scalings and rotations 37

6 Geometry of the limit tree MST∞ 38
6.1 Degree types and pinching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 A dimension bound for the trunk . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Invasion percolation 44

8 Questions and conjectures 46

References 46

1 Introduction

The Minimal Spanning Tree of weighted graphs is a classical combinatorial object, and is
also very interesting from the viewpoint of probability theory and statistical physics: when
the weights on the edges of a graph are chosen at random, using i.i.d. variables, then the
resulting random tree turns out to be closely related to the near-critical regime of Bernoulli
bond percolation on that graph.

In Bernoulli bond percolation at density p ∈ [0, 1], each edge of the graph is kept open
with probability p or becomes closed with probability 1 − p, independently, and then one
looks at the connected open components, called clusters. In site percolation, the vertices
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are chosen to be open or closed instead of the edges. These are among the most important
spatial stochastic processes, due to their simultaneous simplicity and richness [Gri99]. The
main interest is in the phase transition near the critical density pc, below which all clusters
are small, above which a cluster (sometimes clusters) of positive density emerge. The theory
of critical percolation in the plane has seen a lot of progress lately, starting with Smirnov’s
proof of conformal invariance of crossing probabilities for site percolation on the triangular
lattice [Smi01], and with the introduction of the Stochastic Loewner Evolution [Sch00] that
describes the conformally invariant curves that are the scaling limits of interfaces between
open and closed clusters. These SLE curves can be used to understand critical percolation
in depth [Wer09], including the computation of critical exponents that had been predicted
by physicists using non-rigorous conformal field theory techniques.

Beyond the static critical system, it is natural to consider dynamical versions: first,
to slowly change p near pc and observe how the phase transition exactly takes place —
called near-critical percolation; second, to apply a stationary dynamics and observe how the
critical system is changing in time — called dynamical percolation. Indeed, by “perturbing”
critical percolation, the static results of the previous paragraph have also given way to an
exhaustive study of dynamical and near-critical percolation [SchSt10, GPS10, HmPS13,
GPS13a, GPS13b]; see also the surveys [Ste09, GaS12]. In particular, in [GPS13a, GPS13b]
we have proved the existence and conformal covariance of the scaling limit of the near-
critical percolation ensemble, w.r.t. the quad-crossing topology introduced in [SchSm11].
Very roughly, this near-critical scaling limit is constructed from the critical scaling limit,
plus independent randomness that governs how macroscopic clusters merge as we raise p.

It turns out that the macroscopic structure of the Minimal Spanning Tree (MST) and
the Invasion Percolation Tree (InvPerc) can also be described based on this merging process.
Thus, building on [GPS13a, GPS13b], in the present paper we prove the existence and some
conformal properties of the scaling limits of MST and InvPerc on the triangular lattice, in
the space of essential spanning forests introduced in [AiBNW99]. In that paper, tightness
results were proved, implying that subsequential scaling limits of the Minimal and Uniform
Spanning Trees in the plane exist. Our proof of the uniqueness of the scaling limit has
the important implication that the conjectural universality of critical percolation implies
universality for many processes related to the near-critical ensemble, including MST and
InvPerc. That this program of describing near-critical objects from the critical scaling limit
may have a chance to work was suggested in [CFN06]. Another motivation for our work
is that it leads to interesting new objects: these two scaling limits are invariant under
rotations and scalings, but, conjecturally, not under general conformal maps. Furthermore,
the methods developed to establish these scaling limits also give information about the
large-scale geometry of the discrete trees.

1.1 The Minimal Spanning Tree MST

For each edge of a finite graph, e ∈ E(G), let U(e) be an independent Unif[0, 1] label. The
Minimal Spanning Tree, denoted by MST, is the spanning tree T for which

∑
e∈T U(e)

is minimal. This is well-known to be the same as the union of lowest level paths between
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all pairs of vertices (i.e., the path between the two points for which the maximum label
on the path is minimal). One can also use the so-called reversed Kruskal algorithm to
construct MST: delete from each cycle the edge with the highest label U . This algorithm also
shows that MST depends only on the ordering of the labels, not on the values themselves.
Moreover, this algorithm also makes sense on any infinite graph, and produces what in
general is called the Free Minimal Spanning Forest (FMSF) of the infinite graph. The
Wired Minimal Spanning Forest (WMSF) is the one when we also remove the edge with
the highest label (if such edge exists) from each cycle that “goes through infinity”, i.e.,
which is the union of two disjoint infinite simple paths starting from a vertex. For the case
of Euclidean planar lattices, these two measures on spanning forests are known to be the
same, again denoted by MST, and it almost surely consists of a single tree [AleM94]. This
measure can also be obtained as a thermodynamical limit: take any exhaustion by finite
subgraphs Gn(Vn, En), introduce a boundary condition by identifying some of the vertices
on the boundary of Gn (i.e., elements of Vn that have neighbors in G outside of Vn), and
then take the weak limit. On a general infinite graph, when no identifications are made in
the boundary, one gets the FMSF, and when all vertices are glued into a single vertex, one
gets the WMSF. Studying these measures has a rich history on Zd, on point processes in Rd,
and on general transitive graphs; see [Ale95], [Pen96], [AldS04], [Yuk98], [LPS06], [Tim06],
[LyP13] and the references therein.

One can use the same Unif[0, 1] labels that defined the MST to obtain a coupling of
percolation for all densities p ∈ [0, 1]: an edge is “open at level p” if U(e) ≤ p. This way we
get a coupling between the MST and the percolation ensemble. Moreover, as we explain
in the next paragraph, the macroscopic structure of the MST is basically determined by the
labels in the near-critical regime of percolation, and hence one may hope that the scaling
limit of the MST is determined by the scaling limit of the near-critical ensemble.

Figure 1.1: The MST connects the percolation p-clusters without creating cycles, yielding
the cluster-tree MSTp.

Consider the p-clusters (i.e., open components at level p) in the percolation ensemble
on some large finite graph. Contract each component into a single vertex, keeping the edges
(together with their labels) between the clusters, resulting in the “cluster graph”. It is easy
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to verify that making these contractions on the MST we get exactly the MST on the cluster
graph. We denote this cluster tree by MSTp. See Figure 1.1. Now assume that p1 is
small enough so that even the largest p1-clusters are of small macroscopic size — then the
tree MSTp1 will tell us the macroscopic structure of MST. On the other hand, if p2 > p1 is
large enough, then most sites are in just one giant p2-cluster. Note that, for any p > p1,
we get the tree MSTp from MSTp1 by contracting the edges with labels in (p1, p]. Thus, if
we have the collection of all the p-clusters for all p ∈ (p1, p2), then by following how they
merge as we are raising p, we can reconstruct the tree MSTp1 . Now, one may hope that in
order to tell the macroscopic structure of MSTp1 , it is enough to know only the macroscopic
p-clusters for all p ∈ (p1, p2) and follow how those merge. The near-critical window of
percolation is exactly the window (p1, p2) in which the above phase transition of the cluster
sizes takes place, and the scaling limit of the near-critical ensemble is exactly the object
that describes the macroscopic p-clusters in this window. Therefore, the above hope has the
interpretation that the scaling limit of the near-critical ensemble should describe the scaling
limit of the MST. This, of course, raises several questions: May the dust of microscopic
p-clusters condensate into a new macroscopic p′-cluster at some p′ > p, ruining the strategy
of “following how macroscopic clusters merge”? Could MSTp1 go through microscopic p1-
clusters in a way that significantly influences its macroscopic structure?

Our work addresses these questions in the case of planar lattices. The near-critical
window for Bernoulli(p) percolation on the triangular lattice ηT or the square lattice ηZ2

with mesh η > 0 is given by

p = 1/2 + λr(η) with λ ∈ (−∞,∞) fixed and η → 0 , (1.1)

where r(η) = η2/α4(η, 1), with α4(η, 1) being the alternating 4-arm probability of critical
percolation [Wer09]. It was proved on ηT using SLE6 computations [SmW01] that r(η) =
η3/4+o(1). As shown in [Kes87], for λ� −1 we are at the subcritical end of the near-critical
window, for λ � 1 we are at the supercritical end, and for any fixed λ ∈ R, box-crossing
probabilities are comparable to the critical case, hence (1.1) is indeed the near-critical
window. Then it was proved in [GPS13a, GPS13b] that for any λ ∈ R there is a unique
scaling limit as η → 0; moreover, the entire coupled percolation ensemble, viewed near the
critical point via the parametrization (1.1), where all the macroscopic changes happen, has
a scaling limit as a Markov process in λ ∈ R. It is important to keep in mind that even for
any given λ 6= 0, this scaling limit is an interesting new object, known to be different from
the critical scaling limit: the interfaces are singular w.r.t. SLE6 [NoW09].

Since we have a proof of the existence and properties of the scaling limit of the near-
critical ensemble only for site percolation on the triangular lattice T, if we want to use that
to build the MST scaling limit, we will need a version of the MST that uses Unif[0, 1] vertex
labels {V (x)} on T. So, assign to each edge e = (x, y) the vector label

U(e) :=
(
V (x) ∨ V (y), V (x) ∧ V (y)

)
, (1.2)

and consider the lexicographic ordering on these vectors to determine the MST. See Fig-
ure 1.2. With a slight abuse of terminology, this is what we will call the MST on the lattice
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T. Our strongest results will apply to this model, but some of them will also hold for
subsequential limits of the usual MST on Z2, known to exist by [AiBNW99].

0.56

0.07 0.92 0.54

0.050.41

0.230.36

0.890.73

0.12

0.45

Figure 1.2: The minimal spanning tree associated to vertex labels of the triangular lattice
T, with a periodic boundary condition.

Let us make an important remark here. The use of the lexicographic ordering for the
vector labels (1.2) is somewhat arbitrary, and starting from the same vertex labels, using a
different way to get edge labels or using a different natural ordering, one could a priori get
an MST with a very different global structure. In fact, this does happen if the vertex labels
are assigned maliciously. Nevertheless, with the Unif[0, 1] labels, for any rule to construct
the MST on T that ensures that any two p-clusters are connected by a unique path of this
MST, our approximation of the macroscopic structure of the MST using the near-critical
ensemble will work with large probability, and hence the scaling limit will be the same.

We can now state our main theorem:

Theorem 1.1 (Limit of MSTη in C). As η → 0, the spanning tree MSTη on ηT converges
in distribution, in the metric dΩ of Definition 2.2 below, to a unique scaling limit MST∞
that is invariant under translations, scalings, and rotations.

The strategy of the proof will be described in Subsection 1.4. As a key step, we also
prove convergence in any fixed torus T2

M ; see Theorem 5.1. We work in tori to avoid
the technicalities related to boundary issues, but with not too much additional work the
extension to finite domains with free or wired boundary conditions would be certainly doable.

In Section 6, strengthening the results of [AiBNW99], we study the geometry of the
limiting tree MST∞. The degree of a vertex in a tree graph has the usual meaning, but the
degree of a point in a spanning forest of the plane needs to be defined carefully, which we
will do in Subsection 6.1. To give an example, a pinching point on an MST∞ path should not
be called a branching point, but it still gives rise to a degree 4 point. Consequently, stating
the results on the geometry of the limiting tree also needs some care, to be done precisely
only in Theorem 6.2. Nevertheless, here are some of the earlier results and our new ones
in rough terms. It was proved in [AiBNW99] that there is an unspecified absolute bound
k0 such that almost surely all degrees in any subsequential limit of MSTη are at most k0.
Furthermore, the set of branching points was shown to be almost surely countable. Here, we
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will prove that there are almost surely no pinching points, all degrees are bounded by 4, and
the set of points with degree 4 is at most countable. We will also prove, in Subsection 6.2,
that the Hausdorff dimension of the trunk is strictly below 7/4.

To conclude this subsection, let us note that the recent works [AdBG12, AdBGM13]
follow a strategy similar to ours, but in a very different setting: namely, in the mean-field
case. It is well-known that there is a phase transition at p = 1/n for the Erdős-Rényi
random graphs G(n, p). Similarly to the above case of planar percolation, it is a natural
problem to study the geometry of these random graphs near the transition pc = 1/n. It
turns out in this case that the meaningful rescaling is to work with p = 1/n+λ/n4/3, λ ∈ R.
If Rn(λ) = (C1

n(λ), C2
n(λ), . . .) denotes the sequence of clusters at p = 1/n+λ/n4/3, ordered

in decreasing order of size, say, then it is proved in [AdBG12] that as n→∞, the normalized
sequence n−1/3Rn(λ) converges in law to a limiting object R∞(λ) for a certain topology on
sequences of compact spaces which relies on the Gromov-Hausdorff distance. This near-
critical coupling {R∞(λ)}λ∈R has then been used in [AdBGM13] to obtain a scaling limit as
n→∞ (in the Gromov-Hausdorff sense) of the MST on the complete graph with n vertices.
One could say that [GPS13b] is the Euclidean (d = 2) analogue of the mean-field case
[AdBG12], and our present paper is the analogue of [AdBGM13]. However, an important
difference is that in the mean-field case one is interested in the intrinsic metric properties
(and hence works with the Gromov-Hausdorff distance between metric spaces), while in the
Euclidean case one is first of all interested in how the graph is embedded in the plane.

1.2 The Invasion Percolation Tree InvPerc

The connection between WMSF and critical percolation on infinite graphs can also be seen
through invasion percolation. For a vertex x in an infinite graph G(V,E), and the labels
{U(e)}, let T0 = {x}, then, inductively, given Tn, let Tn+1 = Tn ∪ {en+1}, where en+1 is
the edge in ∂ETn with the smallest label U . The Invasion Percolation Tree of x is then
InvPerc(x) :=

⋃
n≥0 Tn. It is easy to see that, even deterministically, if U : E(G) −→ R is

an injective labelling of a locally finite graph, then WMSF =
⋃
x∈V (G) InvPerc(x).

Once the invasion tree enters an infinite p-cluster C, it will not use edges outside it.
Furthermore, it is not surprising (though non-trivial to prove, see [HäPS99]) that for any
transitive graph G and any p > pc(G), the invasion tree eventually enters an infinite p-
cluster. Therefore, lim inf{U(e) : e ∈ InvPerc(x)} = pc(G) for any x ∈ V (G). This way,
invasion percolation can be considered as a “self-organized criticality” version of critical
percolation; finer results for the planar case are given in [CCN85, DSV09, DaS12]. Moreover,
InvPerc can be used to study Bernoulli percolation itself: e.g., for the well-behavedness of
the supercritical phase on Zd, d > 2 [CCN87], and for uniqueness monotonicity on non-
amenable graphs [HäPS99]. Invasion percolation can be analyzed very well on regular trees
[AnGHS08], with a scaling limit that can be described using diffusion processes [AnGM13].

For planar lattices, since InvPercη is so intimately related to MSTη, it will be quite easy
to modify the proof of Theorem 1.1 for the case of InvPerc; see Section 7.

7



1.3 The scaling limit of the near-critical ensemble

We need to recall how the scaling limit of the near-critical ensemble is constructed in
[GPS13a, GPS13b], because the present paper is heavily built on this. To start with, we
slightly change the near-critical parametrization given in (1.1):

Definition 1.2. The near-critical coupling (ωλη )λ∈R will denote the following process:

(i) Sample ωλ=0
η according to Pη, the law of critical percolation on ηT. We will sometimes

represent this as a black-and-white coloring of the faces of the dual hexagonal lattice,
with white hexagons standing for closed (empty) sites.

(ii) As λ increases, closed sites (white hexagons) switch to open (black) at an exponential
rate r(η), as given after (1.1).

(iii) As λ decreases, black hexagons switch to white at rate r(η).

Note that, for any λ ∈ R, the near-critical percolation ωλη corresponds exactly to a percolation
configuration on ηT with parameter{

p = pc + 1− e−λ r(η) if λ ≥ 0

p = pc − (1− e−|λ| r(η)) if λ < 0 .

The same definition can be made on ηZ2.

It is easy to understand intuitively why r(η) is the right time rescaling to obtain the
near-critical window: say, in the unit square, if there is no left-right crossing in ωλ=0

η , then
the expected number of those sites that are closed at λ = 0 but are pivotal for the left-right
crossing and which become open in ωλη is of order λ. Therefore, for λ > 0 small, it is unlikely
that a left-right crossing has been established if it was not already there, hence the system
must have stayed very close to critical; on the other hand, one may expect that for λ � 1
a crossing is already quite likely, hence the system should already be quite supercritical.
This was rigorously proved in [Kes87]. Then, if one wants to describe the scaling limit of
ωλη , a natural idea that was detailed in [CFN06] is that this should be possible by following
which of those points get opened (for λ > 0) or get closed (for λ < 0) that were pivotal at
λ = 0 for at least some small macroscopic distance ε > 0. To this end, one should look at
the counting measure on ε-pivotal points at criticality, normalized such that the measure
stays non-trivial as η → 0, and hope that these ε-pivotal measures have limits that are
measurable w.r.t. the scaling limit of critical percolation itself. This is the main result of
[GPS13a] (with a slight change of what ε-pivotal means). Then, hopefully, the scaling limit
of the near-critical ensemble can be described by taking Poisson point processes of switch
times, with intensity measures being these ε-pivotal measures, and by updating the crossings
of all the quads according to these pivotal switches. This is done in [GPS13b]. Here there
are roughly two main issues: firstly, it is not immediately clear how one can update the
crossings of all the quads by pivotal switches that are happening at all spatial and time
scales. For this, one should code the percolation configuration in a suitable manner that

8



is minimal enough so that the updates can be done, but rich enough so that it contains
all the relevant information. This coding and updating takes up a large part of [GPS13b],
done through the so-called ε-networks that we will actually recall in Section 3. The second
main issue is that one needs to prove that despite all the switches that take place as λ
increases, following the switches of all the initially ε-pivotal sites gives a good idea about
the ε-pivotal switches at later times. For this, the key discrete result in [GPS13b] is the
following proposition, which we will often use also in the present paper:

Proposition 1.3 (Near-critical stability). For any fixed −∞ < λ < λ′ < ∞, in the near-
critical ensemble on ηT, let Aλ,λ

′

k (r, R) denote the following near-critical polychromatic
k-arm event: there exist k ≥ 2 disjoint paths in the lattice that connect the boundary pieces
of the annulus BR(0) \Br(0), each called either “primal” or “dual”, and all the percolation
ensemble labels along all the primal arms are at most λ′, while all the labels along the dual
arms are at least λ. Note that λ = λ′ gives back the usual notion of primal and dual arms
in the percolation configuration ωλη . Then,

P
[
Aλ,λ

′

k (r, R)
]
≤ Cλ,λ′ αk(r, R) ,

where αk(r, R) is the polychromatic k-arm probability in critical percolation on the same
lattice. Similarly, for the monochromatic k-arm events, where all arms are primal,

P
[
Aλ′k (r, R)

]
≤ C ′λ,λ′ α

′
k(r, R) ,

where α′k(r, R) is the monochromatic k-arm probability at criticality.
The same statements hold for bond percolation on ηZ2, just with dual arms being paths

in the dual lattice, in the usual manner.

The proof of this proposition for the alternating 4-arm event is given in [GPS13b, Lemma
8.4]. For general k, the case of λ = λ′ is known as Kesten’s near-critical stability [Kes87].
And just as in Kesten’s approach, the proof for general k and general λ < λ′ is a simple
modification of the proof for the alternating 4-arm event: the key point is that the pivotality
of a site for a general k-event still depends on an alternating 4-arm event around that site,
and hence the near-critical stability of the alternating 4-arm probability, proved using a
recursion in [GPS13b], easily implies the stability of the general k-arm event, as well. We
omit the details.

The above sketch of the contents of [GPS13a, GPS13b] should make it clear that the
scaling limit of the near-critical ensemble is constructed entirely from the critical scaling
limit, plus independent randomness of the pivotal switch times. Moreover, all the proofs
in [GPS13a, GPS13b] are universal in the sense that they use lattice-independent discrete
percolation technology that have been available since [Kes87]. Altogether, once one proves
Cardy’s formula for critical percolation on ηZ2, which would imply the same scaling limit
as on ηT, we would also immediately get that the scaling limit for the entire near-critical
ensemble is the same. This universal aspect remains true for the present paper.
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1.4 Strategy of the proof and organization of the paper

First of all, in Subsection 2.1, we describe the topological space in which the convergence of
our random trees will take place: the space of essential spanning forests in C, introduced in
[AiBNW99]. There are possible alternatives to using this topology, such as the quad-crossing
topology of [SchSm11] (suggested to us for this purpose by Nicolas Broutin) or the topology
introduced in [Sch00] for the scaling limit of the Uniform Spanning Tree. Especially the
quad-crossing topology (recalled in Subsection 2.2) would seem natural, since the scaling
limit of near-critical percolation is taken in this space. Nevertheless, we chose the topology
of [AiBNW99] for several reasons: that was the first paper dealing with subsequential scaling
limits of MSTη, proving results that we are sharpening here; using this topology to describe
paths in the spanning trees is not harder than using quad-crossings, while it also gives
a natural way to glue the paths into more complicated trees; there is a simple explicit
metric generating this topology. However, we will unfortunately need more topological
preparations than just recalling these definitions, because the minimalist structure, based
on just the pivotal measures of [GPS13a], that was enough to describe the scaling limit of
the near-critical ensemble in [GPS13b], will not be enough for the tree structures of the
present paper. In particular, in Proposition 2.6, we will prove that that set of colored
pivotals also has a limit as η → 0.

In Section 3, we first recall the definition of the networks Nλ̄,εη and Nλ̄,ε∞ introduced in
[GPS13b], where λ̄ = (λ, λ′) is a pair of near-critical parameters with λ < λ′. These are
graphs with vertex sets X given by those ε-pivotals in the configuration ωλ on a torus T2

M

that experience a switch between level λ and λ′, and edges given roughly by the primal and
dual connections in ωλ \X. Then we need to add a bit more structure to these networks:
roughly, we will need to know which of these pivotals are contained together in the same
open cluster of ωλ \X, and will need to know the colors of these pivotals in ωλ. For this,
we will use Proposition 2.6 mentioned in the previous paragraph and Proposition 3.6 saying
that clusters of large diameter also have large volume. From these enhanced networks,
we will obtain finite labelled graphs whose vertices will basically be open λ-clusters that
have ε-pivotals switching in the time interval (λ, λ′), with edges labelled by the times of
the pivotal switches, showing how the λ-clusters merge. We will define the MST on this
finite labelled graph, denoted by MSTλ̄,εη in the discrete and MSTλ̄,ε∞ in the continuum case
— these are basically the macroscopic approximations to the cluster trees that we discussed
in Subsection 1.1. (To be more precise, in Section 3 we define only some Minimal Spanning
Forests, and we need a bit more work until in Lemma 4.4 we can actually define the trees.)
The fact that these approximating cut-off trees MSTλ̄,εη and MSTλ̄,ε∞ are close to each

other if the underlying near-critical ensembles ω
[λ,λ′]
η and ω

[λ,λ′]
∞ are close follows easily from

[GPS13b].
In Section 4 we prove that the cut-off trees MSTλ̄,εη are close to the true MSTη if λ� −1,

λ′ � 1, and ε > 0 is small. Here the key technique is near-critical stability, Proposition 1.3.
Summarizing, we get that MSTη is close to MSTλ̄,ε∞ . Since the latter does not depend on

η, while the former does not depend λ̄ and ε, they both need to be close to an object that
does not depend on any of these parameters: this will be the scaling limit MST∞. To give
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a succinct pictorial summary of this strategy:

MSTη MSTλ̄,εη MSTλ̄,ε∞

MST∞

This conclusion will be materialized in Section 5, together with the extension from the case
of the tori T2

M to the full plane, and with the proof of the claimed invariance properties.
As already advertised in Subsections 1.1 and 1.2, the results on the geometry of MST∞

are discussed in Section 6, while Section 7 establishes the existence and invariance properties
of InvPerc∞. We conclude the paper with some open problems in Section 8.
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2 Topological and measurability preliminaries

2.1 The space of essential spanning forests

The following topological setup for discrete and continuum spanning trees was introduced
in [AiBNW99]. We are summarizing here the definitions and the notation, with small
modifications; the main difference is roughly that Ω will also contain spanning trees of
subsets of the complex plane, to accommodate the invasion percolation tree InvPerc and our
approximating trees MSTλ̄,ε.

We will work in a one-point compactification of C = R2, denoted by Ĉ = C∪{∞}, with
the Riemannian metric

4

(1 + x2 + y2)2

(
dx2 + dy2

)
; (2.1)

by stereographic projection, Ĉ is isometric with the unit sphere. Note that this metric is
equivalent to the Euclidean metric in bounded domains, while the distance between any two
points outside the square of radius M around the origin in C is at most O(1/M). This will
imply that convergence of spanning trees in Ĉ is the same as convergence within bounded
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subsets of C. This is necessary, since convergence of random spanning trees cannot be
uniform in C: on ηZ2, inside the infinitely many pieces [i, i+ 1)× [j, j+ 1), i, j ∈ Z, one can
find arbitrary topological behavior (e.g., macroscopically vanishing areas with arbitrarily
large numbers of macroscopic branches emanating from them) that will be very far from
the almost sure behavior of the continuum tree.

Spanning trees on infinite graphs are usually defined and studied as weak limits of
spanning trees in finite subgraphs exhausting the infinite graph. For these finite graphs, one
may consider different boundary conditions: most importantly, free or wired. As mentioned
in the Introduction, for the MST on Euclidean planar lattices, all such boundary conditions
give the same limit measure, and we will work in the tori T2

M of side-length 2M , which can
be realized as the subdomains [−M,M)2 of C, or even as subgraphs of ηT for suitable values
of M , with a periodic boundary condition (which is sandwiched between the free and the
wired conditions). See Figure 1.2 in the Introduction.

Definition 2.1. A reference tree τ is a tree with a finite set of leaves (or external vertices),
denoted by ξ(τ), with each edge considered to be a unit interval. A reparametrization is
a continuous map φ : τ −→ τ that fixes all the vertices and is monotone on the edges.
An immersed tree indexed by τ is an equivalence class of continuous maps f : τ −→
Ĉ, where f1 and f2 are considered equivalent if there exist reparametrizations φ1, φ2 with
f1 ◦φ1 = f2 ◦φ2. The collection of immersed trees indexed by τ is denoted by Sτ , and we set

S(`) :=
⋃

τ : |ξ(τ)|=`

Sτ .

Immersed trees with leaves x1, . . . , x` ∈ Ĉ will often be denoted by T (x1, . . . , x`) ∈ S(`).
We will also consider trees immersed into the torus T2

M with the flat Euclidean metric;

the corresponding collection of immersed trees with ` leaves is denoted by S(`)
M .

One may consider trees immersed not just into Ĉ or T2
M , but into a graph G(V,E) that

is embedded into Ĉ or T2
M , and then the image of τ is required to be a subtree of G(V,E),

with its vertices mapped into V and any of its edges mapped to a union of edges from E.

Note that if a reference tree τ ′ is given by contracting some edges of some τ , denoted
by τ ′ ≺ τ , then Sτ ′ is naturally a subset of Sτ , represented by maps f : τ −→ Ĉ that are
constants on the contracted edges. This also means that S(`) may be viewed as covered by
patches Sτ that are sewn together along “smaller dimensional” patches Sτ ′ , similarly to a
simplicial complex.

We now equip each Sτ with a very natural metric, extending the notion of uniform
closeness up to reparametrization of curves: for two immersed trees f1, f2 : τ −→ Ĉ,

distτ (f1, f2) = inf
φ1,φ2

sup
t∈τ

distĈ
(
f1 ◦ φ1(t), f2 ◦ φ2(t)

)
, (2.2)

where the φi’s run over all reparametrizations of τ . This can be easily extended to immersed
trees indexed by different reference trees: by the above remark about patches, for any pair
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τ

ξ1

ξ2 ξ3

ξ4

x1

x2

x3

x4

Figure 2.1: A reference tree τ with four leaves, with one immersion into Z2 and another
into C. The image in C is not a tree, but this is allowed. In the scaling limit of any discrete
random tree in Ĉ one cannot see such self-intersections, but could see touch-points, and
self-intersections might happen in scaling limits in higher dimensions.

of reference trees τ, τ ′ there exist sequences τ = τ0, τ1, . . . , τm = τ ′ such that τi ≺ τi+1 or
τi � τi+1 for all i = 0, . . . ,m−1, and then for any f : τ −→ Ĉ and f ′ : τ ′ −→ Ĉ we can take

dist(f, f ′) = inf

{
m−1∑
i=0

distτigτi+1
(fi, fi+1) : f0 = f, fm = f ′, τi

fi−→ Ĉ for i = 1, . . . ,m− 1

}
,

where, with a rather obvious notation, τi g τj = τi if τi � τj. For instance, for any τ, τ ′

there exists τ ′′ with τ, τ ′ ≺ τ ′′, hence dist(f, f ′) ≤ distτ ′′(f, f
′).

With this metric, S(`) is clearly a complete separable metric space, called the space of
`-trees. Of course, a Cauchy sequence of trees contained fully in C might have a limit that
has an edge going through ∞. Similarly, S(`)

M is complete and separable with the analogous
metric, just using the Euclidean metric on T2

M in (2.2).
Now that we have a definition for the space of finite trees immersed in Ĉ or T2

M , we can
start defining what a spanning tree of Ĉ or T2

M should be: a set of finite trees that satisfy
certain compatibility conditions.

The set of closed subsets of S(`) in the above metric, equipped with the Hausdorff metric,
is denoted by Ω(`). We will consider graded sets

F =
(
F (`)

)
`≥1
∈ Ω× := X

`≥1
Ω(`) ,

with the product topology. Clearly, Ω× is again complete, separable and metrizable; in one
word, it is a Polish metric space.

Extending the map τ 7→ ξ(τ) giving the external vertices of an index tree, we can define

ξ : Ω× −→ 2Ĉ , ξ(F) :=
⋃{

f(ξ(τ)) : τ
f−→ Ĉ ∈ F (`), ` ≥ 1

}
,

which gives the set of external vertices occurring in F . It is clearly continuous (w.r.t. the

pseudo-metric d(S, T ) := dHaus(S, T ) on 2Ĉ), hence measurable.
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Let SB1,...,B` be the set of immersed trees with endpoints xi ∈ Bi, where each Bi is a
closed subset of Ĉ. Note that this is a closed subset of S(`). It is clear from the general
properties of the Hausdorff space of closed subsets that the map

Ω× −→ ΩB1,...,B` ⊆ Ω(`) , F 7→ F (`) ∩ SB1,...,B`

is measurable. In words, extracting the subtrees of F with leaves in prescribed closed sets
(e.g., the branches of F connecting two given points) is a measurable map.

Definition 2.2. A graded set F =
(
F (`)

)
`≥1
∈ Ω× is called an essential spanning forest

on its external vertices ξ(F) if it satisfies the following properties:

(i) for each ` ∈ N+ and any `-tuple {x1, . . . , x`} of vertices in ξ(F), there exists at least
one immersed tree T (x1, . . . , x`) ∈ F (`) with those leaves;

(ii) for any immersed tree T ∈ F (`), any subtree T ′ ⊂ T (given by restricting the immersion
to a combinatorial subtree of the index tree τ) is again in some F (`′);

(iii) for any two trees Ti ∈ F (`i), i = 1, 2, there is a tree in some F (`) that contains both
Ti’s as subtrees and has no leaves beyond those of the Ti’s.

Note that (ii) implies that ξ(F) contains all the vertices of all the embedded trees, not
just the external ones.

An essential spanning forest F is called a spanning tree if ξ(F) ⊂ C and every path
T (x, y) ∈ F (2) stays within a bounded region of C. A spanning tree is called quasi-local if
for any bounded Λ ⊂ C there exists a bounded domain Λ̄(F ,Λ) ⊂ C such that every tree of
F with leaves in Λ is contained in Λ̄.

The set of essential spanning forests in Ĉ (with an arbitrary set of vertices ξ(F)) will
be denoted by Ω. It is easy to check that Ω is a closed subset of the Polish space Ω×, hence
itself is Polish. A simple explicit metric, denoted by dΩ, is given by the restriction from
Ω× to Ω of the sum over ` of the Hausdorff distance on S(`) multiplied by the weight 2−`.

For the tori T2
M , the spaces Ω

(`)
M , Ω×M , ΩM are defined analogously, with the only difference

being that any essential spanning forest here is a single tree. The metric dΩM is defined the
same way as dΩ.

The only way in which two vertices may be disconnected in an essential spanning forest
F in Ĉ is that all the paths between them go through ∞; therefore, either F is a spanning
tree, or no component of it is contained in a bounded domain of C. This is the property
that the adjective “essential” for these spanning forests refers to. (In the setting of discrete
infinite graphs, this reduces to saying that all components of the forest are infinite trees.)
Also, note that the above definition allows for having more than one path between two
vertices. This will in fact happen in the scaling limit of the MST: there will exist pairs
of points x, y (depending on the configuration) with two distinct paths between them. In
every such case, item (iii) requires that we also have a subtree that contains both paths,
and indeed, x or y (but not both) will have the property that the two paths concatenated
at this vertex will also be a subtree of the MST scaling limit.
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2.2 The quad-crossing topology

Let us quickly recall the notation and the basic results for the quad-crossing topology
of percolation configurations, introduced in [SchSm11] and studied further in [GPS13a,
GPS13b].

Let D ⊂ Ĉ = C ∪ {∞} be open, or be equal to the torus T2
M . A quad in the do-

main D can be considered as a homeomorphism Q from [0, 1]2 into D. The space of all
quads in D, denoted by QD, can be equipped with the following metric: dQ(Q1, Q2) :=
infφ supz∈∂[0,1]2 |Q1(z) − Q2(φ(z))|, where the infimum is over all homeomorphisms φ :
[0, 1]2 −→ [0, 1]2 which preserve the 4 corners of the square. A crossing of a quad Q
is a connected closed subset of [Q] := Q([0, 1]2) that intersects both ∂1Q = Q({0} × [0, 1])
and ∂3Q = Q({1} × [0, 1]). We say that Q has a dual crossing between ∂1Q and ∂3Q by
some closed subset S ⊆ [Q] if there is no crossing in S between ∂2Q = Q([0, 1] × {0}) and
∂4Q = Q([0, 1]× {1}).

From the point of view of crossings, there is a natural partial order on QD: we write
Q1 ≤ Q2 if any crossing of Q2 contains a crossing of Q1. Furthermore, we write Q1 < Q2

if there are open neighborhoods Ni of Qi (in the uniform metric) such that N1 ≤ N2 holds
for any Ni ∈ Ni. A subset S ⊂ QD is called hereditary if whenever Q ∈ S and Q′ ∈ QD
satisfies Q′ < Q, we also have Q′ ∈ S. The collection of all closed hereditary subsets of QD
will be denoted by HD. Any discrete percolation configuration ωη of mesh η > 0, considered
as a union of the topologically closed percolation-wise open hexagons in the plane, naturally
defines an element S(ωη) of HD: the set of all quads for which ωη contains a crossing. In
particular, near-critical percolation at level λ ∈ R, as defined in Definition 1.2, induces a
probability measure on HD, which will be denoted by Pλ

η .
By introducing a natural topology, HD can be made into a compact metric space. Indeed,

let
�Q := {S ∈HD : Q ∈ S} for any Q ∈ QD ,

and let
�U := {S ∈HD : S ∩ U = ∅} for any open U ⊂ QD .

Then, define TD to be the minimal topology that contains every �cQ and �cU as open sets. It
is proved in [SchSm11, Theorem 3.10] that for any nonempty open D, the topological space
(HD, TD) is compact, Hausdorff, and metrizable. Furthermore, for any dense Q0 ⊂ QD, the
events {�Q : Q ∈ Q0} generate the Borel σ-field of HD. An arbitrary metric generating the
topology TD will be denoted by dH . Now, since Borel probability measures on a compact
metric space are always tight, we have subsequential scaling limits of Pλ

η on HD, as η =
ηk → 0. Moreover, the following convergence of probabilities holds. For critical percolation,
λ = 0, it is Corollary 5.2 of [SchSm11]; for general λ, the exact same proof works, using
that the RSW estimates hold in near-critical percolation.

Lemma 2.3. For any λ ∈ R, any subsequential scaling limit Pλ
ηk
→ Pλ

∞, and any quad
Q ∈ QD, one has Pλ

∞[∂�Q] = 0. Therefore, by the weak convergence of Pλ
ηk

to Pλ
∞,

Pλ
ηk

[�Q]→ Pλ
∞[�Q] .
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For the case of site percolation on ηT, we know much more than just the existence of
subsequential limits. As explained in [GPS13a, Subsection 2.3], the existence of a unique
quad-crossing scaling limit for λ = 0 follows from the loop scaling limit result of [Smi01,
CaN06]. The case of general λ is Theorem 1.4 of [GPS13b]:

Theorem 2.4 (Near-critical scaling limit). For any λ ∈ R, there is a unique measure Pλ
∞

for percolation configurations ωλ∞ in (HD, TD) such that the weak convergence ωλη
d−→ ωλ∞

holds.

We have shown in [GPS13a] that the arm events between the boundary pieces of an an-
nulus are measurable w.r.t. the quad-crossing topology, and the convergence of probabilities
(analogous to Lemma 2.3) holds. Namely, for any topological annulus A ⊂ D with piece-
wise smooth inner and outer boundary pieces ∂1A and ∂2A (and for the case of D = T2

M ,
we also require A to be null-homotopic), we define the alternating 4-arm event in A as
A4 =

⋃
δ>0Aδ4, where Aδ4 is the existence of quads Qi ⊂ D, i = 1, 2, 3, 4, with the following

properties (see the left side of Figure 2.2):

(i) Q1 and Q3 are disjoint and are at distance at least δ from each other; the same for Q2

and Q4;

(ii) for i ∈ {1, 3}, the sides ∂1Qi = Qi({0} × [0, 1]) lie inside ∂1A and the sides ∂3Qi =
Qi({1} × [0, 1]) lie outside ∂2A; for i ∈ {2, 4}, the sides ∂2Qi = Qi([0, 1] × {0}) lie
inside ∂1A and the sides ∂4Qi = Qi([0, 1]× {1}) lie outside ∂2A; all these sides are at
distance at least δ from the annulus A and from the other Qj’s;

(iii) the four quads are ordered cyclically around A according to their indices;

(iv) For i ∈ {1, 3}, we have ω ∈ �Qi , while for i ∈ {2, 4}, we have ω ∈ �cQi . In plain
words, the quads Q1, Q3 are crossed, while the quads Q2, Q4 are dual crossed between
the boundary pieces of A, with a margin δ of safety.

The definitions of general (mono- or polychromatic) k-arm events in A are of course
analogous: for arms of the same color we require the corresponding quads to be completely
disjoint, and we still require all the boundary pieces lying outside the annulus A to be
disjoint.

The following lemma is proved for critical percolation in Lemma 2.9 of [GPS13a]. For
near-critical percolation, the same proofs work, using the stability of multi-arm probabilities
(see Lemma 8.4 and Proposition 11.6 of [GPS13b], or [Kes87]), together with the existence
of the near-critical scaling limit [GPS13b, Theorem 1.4].

Lemma 2.5. Let A ⊂ D be a piecewise smooth topological annulus (with finitely many non-
smooth boundary points). Then the 1-arm, the alternating 4-arm and any polychromatic
6-arm event in A, denoted by A1, A4 and A6, respectively, are measurable w.r.t. the scaling
limit of critical percolation in D, and one has

lim
η→0

Pλ
η [Ai] = Pλ

∞[Ai] .
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∂2A = γ

U ε

Figure 2.2: Defining the alternating 4-arm event (in Subsection 2.2) and the color of a
pivotal point (in Subsection 2.3) using quad-crossings. Quads with a primal crossing are in
solid red, quads with a dual crossing are in dashed blue.

Moreover, in any coupling of the measures {Pλ
η} and Pλ

∞ on (HD, TD) in which ωλη → ωλ∞
a.s. as η → 0, we have

P
[
{ωλη ∈ Ai}4{ωλ∞ ∈ Ai}

]
→ 0 (as η → 0) . (2.3)

2.3 Pivotals and pivotal measures

In [GPS13b], we managed to describe the changes of macroscopic connectivities in a per-
colation configuration under the stationary or the asymmetric near-critical dynamics using
just the pivotal measures of [GPS13a], without making explicit use of notions like clusters
or the set of pivotal sites in continuum percolation. Unfortunately, the situation is slightly
more complicated for the models in the present paper, hence we need some foundational
work in addition to what was done in [GPS13a, Section 2.4].

Let x be a point surrounded (with a positive distance) by a piecewise smooth Jordan
curve γ ⊂ D, where “surrounded” means “homotopic”. We say that x is pivotal for γ in
ωλ∞ if, for any ε > 0 such that Bε(x) is surrounded by γ, the alternating 4-arm event occurs
in the annulus with boundary pieces ∂Bε(x) and γ, as defined in Subsection 2.2. We let
Pγ denote the set of pivotal points for γ in D. Furthermore, we can identify the color of
a pivotal point x ∈ Pγ: it will be called open (black) if, for all ε > 0 as above, there
exist quads Qε,i, i = 1, 2, 3, 4, showing the 4-arm event from ∂Bε(x) to γ such that the quad
U ε, given by taking the union of Uε := Qε,1 ∪ Qε,3 ∪ Bε(x) and the bounded components
of C \ Uε, is crossed between the boundary pieces Qε,1({1} × [0, 1]) and Qε,3({1} × [0, 1]);
see the right side of Figure 2.2 in the previous subsection. This event will be denoted by
x ∈ Pγopen =

⋂
ε>0Pγ,εopen; it is straightforward to check that it is measurable w.r.t. the quad-

crossing topology. We will use the notation x ∈ Pγ,ε,δopen for the event that the annulus between
∂Bε(x) and γ satisfies Aδ4, the 4-arm event with a δ margin of safety. Furthermore, we call
x closed (white, empty), denoted by x ∈ Pγclosed, if the analogous dual crossing holds in the
quad given by Qε,2 ∪Qε,4 ∪Bε(x), for each small enough ε > 0.
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Note that for a discrete percolation configuration ωλη the above definitions do not work:
instead of taking all small enough ε > 0, we just need to take the annulus between γ and
the hexagon of the point x ∈ D. And here it is clear what the sets Pγopen(ωλη ) and Pγclosed(ωλη )
are: their disjoint union is the set of pivotal hexagons Pγ(ωλη ), and the color is determined
by the color of the hexagon itself.

Proposition 2.6 (The set of pivotals, with colors). In any coupling of the measures {Pλ
η}

and Pλ
∞ on (HD, TD) in which ωλη

a.s.−−→ ωλ∞ as η → 0, for any piecewise smooth null-
homotopic Jordan curve γ ⊂ D we have the following statements:

(i) Pγopen(ωλη ) converges in probability to Pγopen(ωλ∞) in the Hausdorff metric of closed sets.
Same for Pγclosed.

(ii) Almost surely, Pγopen(ωλ∞) ∪ Pγclosed(ωλ∞) = Pγ(ωλ∞), a disjoint union.

(iii) Almost surely, whenever x ∈ Pγ for some γ, the color of x does not depend on γ.

Note that (ii) is not a tautology (neither that the two colored sets are disjoint, nor that
their union is the set of all the pivotals), since in ωλ∞ we did not define the set of closed
pivotals as the complement of open pivotals.

Clearly, the main difficulty in proving (i) is that the event x ∈ Pγopen is not an open set in
the quad-crossing topology (HD, TD): perturbing a configuration even by an arbitrary small
amount may destroy a pivotal for γ, making the 4-arm event happen only from a strictly
positive distance ε > 0 to γ. In terms of discrete percolation configurations, if there is an
open pivotal connecting two halves of a cluster, then making the connection between the
two halves a bit thicker is a small change w.r.t. the quad-crossing topology, but it kills the
pivotal. In particular, the harder direction in (i) will be to prove that there are “enough”
pivotals in ωλ∞, since this requires controlling all scales simultaneously.

Proof. For (i), we need to prove that for any ε > 0, if η > 0 is small enough, then with
probability at least 1− ε, for every xη ∈ Pγopen(ωλη ) there exists some x ∈ Pγopen(ωλ∞) within
distance ε from xη, and vice versa, for every x ∈ Pγopen(ωλ∞) there exists xη ∈ Pγopen(ωλη ).

There will be two key ingredients. Firstly, for any small α, ε > 0 there exists δ, η̄ > 0
such that for all 0 < η < η̄,

P
[
Pγ,εopen(ωλη ) = Pγ,ε,δopen(ωλη )

]
> 1− α . (2.4)

The existence of a δ that still depends on x ∈ Pγ,εopen(ωλη ) is just a special case of [GPS13a,
Corollary 2.10]. Then, taking a cover of the domain by ε/10-squares and taking the proba-
bility α of the error much smaller than ε2, we can find a δ > 0 that works for all points in
Pγ,εopen(ωλη ) simultaneously, proving (2.4).

The point of introducing the δ margin of safety in (2.4) is that it immediately implies that
there exists some monotone function f = fα,ε : [0,∞) −→ [0,∞) that could be described
using the dyadic uniformity structures of [GPS13a, Lemma 2.5] and [GPS13b, Proposition
3.9]) such that

P
[
∀x ∈ Pγ,εopen(ωλη ) and ∀ ω̃ ∈HD with dH (ω̃, ωλη ) < f(δ),

we have x ∈ Pγ,ε,δ/2open (ω̃)
]
> 1− α ,

(2.5)

18



for some δ > 0 and any 0 < η < η̄, given by (2.4).
The second key ingredient is that for any small α, β > 0, if ε, η̂ > 0 is small enough, then

P
[
∀x ∈ Pγ,εopen(ωλη ) ∃ x̃ ∈ Pγopen(ωλη ) with d(x̃, x) < β

]
> 1− α (2.6)

for all 0 < η < η̂. Before proving this, let us see how (2.5) and (2.6) imply item (i). We
start with the first direction.

Fix α, β > 0 small. Corresponding to them, (2.6) gives some ε0, η̂0 > 0. Now, corre-
sponding to α and this ε0, there are δ0, η̄0 > 0 given by (2.5). Take 0 < η0 < η̄0∧ η̂0 so small
that dH (ωλη , ω

λ
∞) < f(δ0)/2 is satisfied for all η < η0 in the coupling ωλη

a.s.−−→ ωλ∞ that we
have. Then, for all η < η0 we have dH (ωλη , ω

λ
η0

) < f(δ0), and hence, (2.5) and (2.6) together
give that

P
[
∀x ∈ Pγ,ε0open(ωλη0

) ∃ x̃ ∈ Pγopen(ωλη ) with d(x̃, x) < β
]
> 1− 2α .

Similarly, for k ≥ 1, corresponding to α/2k and β/2k, there are εk, η̂k > 0 given by (2.6);
we can make sure that εk < εk−1/2. Then, corresponding to α/2k and εk, there are δk, η̄k > 0
given by (2.5). Take 0 < ηk < ηk−1/2 ∧ η̄k ∧ η̂k so small that dH (ωλη , ω

λ
∞) < f(δk)/2 is

satisfied for all η < ηk. Then, for all η < ηk, (2.5) and (2.6) together give that

P
[
∀x ∈ Pγ,εkopen(ωληk) ∃ x̃ ∈ P

γ
open(ωλη ) with d(x̃, x) < β/2k

]
> 1− α/2k−1 .

Iterating this procedure, we get that there exist sequences ηk → 0 and εk → 0 such that
with probability at least 1− 2α

∑
k≥0 2−k = 1− 4α, for any x0 ∈ Pγ,ε0open(ωλη0

) there exist

xk ∈ Pγ,εkopen(ωληk) for k = 1, 2, . . . , satisfying d(xk+1, xk) < β/2k . (2.7)

These points have a limit xk → x̃0, which satisfies d(x0, x̃0) < 2β. Unsurprisingly, we
claim that x̃0 ∈ Pγopen(ωλ∞). Indeed, otherwise there would exist some ε̃ > 0 such that
x̃0 6∈ Pγ,ε̃open(ωλ∞), but for some small enough ε, this would clearly contradict the existence of
an ωληk satisfying dH (ωληk , ω

λ
∞) < ε and having an almost-pivotal xk ∈ Pγ,εopen(ωληk) at distance

d(xk, x̃0) < ε, which we have from (2.7). Since we can take α and β arbitrarily small, this
finishes the proof of the first direction of item (i).

For the other direction, if x ∈ Pγopen(ωλ∞), then, by definition, for all ε > 0 there is some
δ > 0 such that x ∈ Pγ,ε,δopen(ωλ∞). Now, if ωλη is close enough to ωλ∞ (again quantifiable in the

sense of dyadic uniformity structures), then x ∈ Pγ,ε,δ/2open (ωλη ) also occurs. By (2.6), if ε > 0
is small enough, this means with large probability that there is an actual pivotal of ωλη close
to x, as required.

We still owe the proof of (2.6). Assume that x ∈ Pγ,εopen(ωλη ) but there are no open
pivotal sites in Bβ(x). This implies that there is a 6-arm event from ∂Bε(x) to ∂Bβ(x): the
interfaces between the open and closed arms cannot touch each other within Bβ(x), hence
their open sides form two disjoint open paths, creating four open arms besides the two closed
ones; see the left side of Figure 2.3. Since the 6-arm exponent is strictly larger than 2 at any
fixed near-critical level λ (see [SchSt10, Corollary A.8] for λ = 0 and [GPS13b, Proposition
11.6] or Proposition 1.3 in the present paper for general λ), we can take β := εζ with ζ > 0
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γ

β

ε

Figure 2.3: Left: an open ε-almost pivotal event without actual pivotals in the β-square
implies a 6-arm event (four open and two closed arms) between radii ε and β. Right: having
both an open and a closed γ-pivotal in an ε-square implies a 6-arm event from ε to γ.

small enough for α6(ε, β) = o(ε2), and then the probability that such a 6-arm event occurs
anywhere in the domain tends to zero as ε→ 0, and we are done.

In item (ii), the fact that the union of the two colored sets gives all the pivotals follows
immediately from the discrete analogue and item (i). To prove the disjointness claim, by
part (i) it is enough to prove that the probability of having a closed and an open pivotal for
γ within distance ε from each other goes to 0 as ε→ 0. But this event implies the existence
of 6 disjoint arms from ε to γ (see the right side of Figure 2.3), and hence, as usual, the
6-arm exponent being larger than 2 implies the claim.

Item (iii) is again clear from the discrete analogue and item (i).

Beyond the set of pivotals, we are also interested in the normalized counting measure on
them. In [GPS13b, Subsection 2.6], for any fixed ε > 0, we defined the set of ε-important
points Pε(ωη) of any discrete percolation configuration in a bounded domain D ⊂ Ĉ, relative
to the (ε, 3ε)-annuli given by a fixed lattice εZ2. Then we considered the normalized counting
measure µε(ωη) on this set Pε. Of course, the same discrete definition works for near-
critical percolation configurations ωλη . Then, the main result of [GPS13a] is the following
convergence of µε for λ = 0, extended to general λ ∈ R by [GPS13b, Theorem 11.5]:

Theorem 2.7. For any λ ∈ R, there exists a random finite measure µε(ωλ∞), measurable
w.r.t. ωλ∞, such that

(ωλη , µ
ε(ωλη ))

d−→ (ωλ∞, µ
ε(ωλ∞))

in the quad-crossing topology (HD, TD) in the first coordinate and in the Lévy-Prokhorov
distance of measures in the second one, as η → 0. Furthermore, the above Proposition 2.6
implies immediately the convergence(

Pεopen(ωλη ),Pεclosed(ωλη )
) d−→

(
Pεopen(ωλ∞),Pεclosed(ωλ∞)

)
20



in the Hausdorff metric of closed sets.

3 Enhanced networks and cut-off forests built from

the near-critical ensemble

The pivotal measures of [GPS13a] that we recalled in Theorem 2.7 were used in [GPS13b]
as the intensity measures for the Poisson point processes of pivotal sites that switch as the
near-critical parameter λ ∈ R changes. Here is the exact notation that we will use:

Definition 3.1. Let λ̄ = (λ, λ′) ∈ R2 be any pair of near-critical parameters with λ < λ′,
and let ε > 0 be fixed. Let ωλ be a near-critical configuration ωλη or ωλ∞ in T2

M . We will
denote by PPPελ̄ = PPPλ̄(µ

ε(ωλ)) the Poisson point process

PPPελ̄ = {(xi, ti), 1 ≤ i ≤ p} ⊂ Pε(ωλ)× [λ, λ′]

of intensity measure µε(ωλ)(dx) × 1[λ,λ′](t) dt. The set {x1, . . . , xp} of pivotals will usually
be denoted by X. For the case of ωλη , the process PPPελ̄ can clearly be constructed measurably

from ω
[λ,λ′]
η , and we will always work in this natural coupling.

In Section 6 and Subsection 11.2 of [GPS13b], for any quad Q ⊂ C, any ε > 0, any
discrete or continuum near-critical percolation configuration ωλ and the associated Poisson
point process PPPελ̄(ω

λ), we constructed an edge-colored graph NQ(ωλ,PPPελ̄), called an ε-
network, whose vertex set was the Poisson point set X = {x1, . . . , xp} of pivotals together
with the four boundary arcs of Q, and whose edge set was given by the primal and dual
connections in ωλ between the vertices. Since in this paper we are primarily interested in
spanning trees, not in quad-crossings, it will be useful to change the boundary conditions in
the definition slightly (but still using the quad-crossing topology). We will also need to add
a bit more structure to these networks: roughly, we will need to know which of the pivotals
in X are contained in the same open cluster of ωλ \X, and will need to know the colors of
these pivotals in ωλ. The resulting structures will be called enhanced networks. Just as in
[GPS13b], we start with the following simple definition:

Definition 3.2 (A nested family of dyadic coverings). For any b > 0 in 2−N, let Gb be
a disjoint covering of T2

M using b-squares of the form [0, b)2 along the lattice bZ2. Now,
for any r ∈ 2−N and any finite subset X = {x1, . . . , xp} ⊂ T2

M , one can associate uniquely
r-squares Br

x1
, . . . , Br

xp in the following manner: for all 1 ≤ i ≤ p, there is a unique square

B̃xi ∈ Gr/2 which contains xi and we define Br
xi

to be the r-square in the grid rZ2−(r/4, r/4)

centered around the r/2-square B̃xi. We will denote by Br(X) this family of r-squares. This
family of r-squares has the following two properties:

(i) The points xi are at distance at least r/4 from ∂Br
xi

.

(ii) For any set X, {Br(X)}r∈2−N forms a nested family of squares in the sense that for
any r1 < r2 in 2−N, and any x ∈ X, we have Br1

x ⊂ Br2
x .
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For a finite set of points X ⊂ T2
M , let r∗(X) > 0 denote one-tenth of the smallest

distance between any pair xi, xj ∈ X. With minor changes from the case of a domain with
a boundary to the case of a torus, it is proved in [GPS13b, Proposition 5.2] that for X being
the pivotals in PPPελ̄, the random variable r∗(PPPελ̄) is almost surely positive (with a small
abuse of notation, since PPPελ̄ is formally not a set of points in T2

M).

Definition 3.3. For 0 < r < r∗(PPPελ̄), the r-mesoscopic ε-network Nr-meso
M (ωλ,PPPελ̄)

associated to a near-critical percolation configuration ωλ in the torus T2
M and the Poisson

point process PPPελ̄ of Definition 3.1 is the graph with vertex set {x1, . . . , xp} and two types
of edges, labelled primal or dual, with a primal edge connecting xi and xj if there exists a
quad R such that ∂1R and ∂3R remain strictly inside Br

xi
and Br

xj
, and R remains strictly

away from the squares Br
xk
, k /∈ {i, j}, and for which ωλ ∈ �R.

We will now take r → 0, get a network NM(ωλ,PPPελ̄), and then compare these networks
for ωλη and ωλ∞. The following results were proved in [GPS13b, Theorem 6.14] and [GPS13b,
Subsection 7.4] for λ = 0, extended to general λ in [GPS13b, Subsection 11.2], for networks
defined using slightly different boundary conditions than here, but with the same proofs
working fine:

Proposition 3.4 (r-stabilization and η-convergence of networks).

(i) There exists a measurable scale 0 < rM = rM(ωλ∞,PPP
ε
λ̄) < r∗(PPPελ̄(ω

λ
∞)) such that

for all r ∈ (0, rM) we get the same r-mesoscopic ε-network Nr-meso
M (ωλ∞,PPP

ε
λ̄). This

stabilized network will be called the ε-network Nλ̄,ε∞ = NM(ωλ∞,PPP
ε
λ̄). For discrete

percolation configurations, the definition of Nλ̄,εη = NM(ωλη ,PPP
ε
λ̄) is the obvious one.

(ii) For any α > 0 there is a scale rα = rα(M, λ̄, ε) such that in any coupling with
ωλη

a.s.−−→ ωλ∞ in T2
M , for all sufficiently small η > 0 there is a coupling of PPPελ̄(ω

λ
η ) and

PPPελ̄(ω
λ
∞) such that with probability at least 1− α the following holds: rα is less than

both rM(ωλ∞,PPP
ε
λ̄) < r∗(PPPελ̄(ω

λ
∞)) and r∗(PPPελ̄(ω

λ
η )), and for all r < rα we have

Nr-meso
M (ωλη ,PPP

ε
λ̄(ω

λ
η )) = Nr-meso

M (ωλ∞,PPP
ε
λ̄(ω

λ
∞)) ;

in this sense, Nλ̄,εη = NM(ωλη ,PPP
ε
λ̄) coincides with Nλ̄,ε∞ = NM(ωλ∞,PPP

ε
λ̄). (Only in

this sense, not exactly, since the vertex sets PPPελ̄(ω
λ
∞) and PPPελ̄(ω

λ
η ) are only close

to each other, but do not coincide.)

Note that a network in itself may completely fail to describe the structure of clusters:
see Figure 3.1. This is a bit of a problem for the purposes of the present paper, hence we
are going to add some extra structure to our networks that will be measurable w.r.t. the
quad-crossing topology (in particular, it makes sense for ωλ∞), while it describes how the
pivotals of PPPελ̄ are connected to each other in ωλ.

Definition 3.5 (Mesoscopic sub-routers). Utilizing the notation introduced in Definition 3.2,
let Br(T2

M) be the finite covering of T2
M by overlapping r-squares. Given a subset Y of the set

X = {x1, . . . , xp} of the pivotals in PPPελ̄, with |Y | ≥ 2, an (r, ρ)-mesoscopic sub-router
for Y is an r-square B ∈ Br(T2

M) with the following properties:
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Figure 3.1: The same graph structure in a network (the middle picture) may correspond to
very different cluster structures (on the two sides).

• it is at distance at least 2ρ from each xi ∈ X;

• there is an open circuit (i.e., no dual arm) in the square annulus with inner face B
and outer radius ρ� r;

• for each xi ∈ Y , there exists a quad R with ∂1R contained in B, ∂3R contained in Br
xi

,
remaining strictly away from all the squares Br

xk
with xk ∈ X \ {xi}, and for which

ωλ ∈ �R.

Let RY (B) denote the event that an r-square B is an (r, ρ)-mesoscopic router for some
Y ⊆ X. This is measurable w.r.t. ωλ, and using Lemmas 2.3 and 2.5, in the coupling of
Proposition 3.4 (ii), the set of r-squares B for which RY (B) holds in ωλη is the same with
probability tending to 1 (as η → 0) as in ωλ∞. Furthermore, by choosing (r, ρ) appropriately,
this set is non-empty with high probability, by the following argument.

6

5

1

3

2

4

B

ρ ∧ ε
r r

Figure 3.2: Connections from possible sub-routers B can avoid other r-squares Br
xk

unless
a 6-arm event happens.

Assume that, in a configuration ωλη , the points in some Y ⊂ X belong to the same cluster
of ωλη \X. Let ρ be less than r∗(X), take r � ρ, and consider any r-square B that intersects
the cluster and whose distance from Br(X) is at least ρ. By the definition of r∗(X) and by
|Y | ≥ 2, such a B certainly exists. The required quad connecting B with an xi ∈ Y can fail
to exist only if all the connections from B to Br

xi
are r-close to some xk ∈ X \{xi}; however,
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this would imply a 6-arm event from radius r to ρ∧ ε (see Figure 3.2), which does not occur
anywhere in T2

M if r is small enough. We still need to show that, among the r-squares B
as above, there is at least one that also has the open circuit in the (r, ρ)-annulus around it.
For this, a key proposition, interesting in its own right, is the following:

Proposition 3.6 (The volume of clusters). For any λ ∈ R, M > ρ > 0 and ζ > 0 fixed, for
percolation ωλη in T2

M , with probability tending to 1 as η → 0, all clusters of diameter at least
ρ have at least (ρ/η)91/48−ζ sites. (Note that 91/48 equals 2 minus the one-arm exponent
5/48 [LSW02].)

Similarly, with probability tending to 1 as r → 0, uniformly in the mesh η, all these
clusters have a “large r-volume” in the following sense: the number of r-squares in Br(T2

M)
that intersect the cluster is at least (ρ/r)91/48−ζ.

After the first version of this paper was posted, Rob van den Berg pointed out that
this proposition follows from (3.15) of [Jár03]. However, since the proof there is quite
hard to read, we decided to keep our proof for the sake of completeness. Furthermore,
[vdBC13, Lemma 9] gives a bit more elegant version of our argument, but proving a little
less; in particular, it is not proved there that all the radial crossings of a (ρ/3, ρ)-annulus
are everywhere well-separated from each other (see our proof below).

Proof. The proof will rely only on multi-arm exponents, hence, in view of Proposition 1.3,
the reader may just think of λ = 0. We will do the case of the standard volume (number of
sites in the η-mesh); the proof works the same way for the case of the r-volume.

Take the lattice (ρ/3)Z2, and centered around each ρ/3-square, consider the square of
side-length ρ and the annulus between these two square boundaries. It is easy to check that
any cluster of diameter at least ρ produces a radial crossing of such a (ρ/3, ρ)-annulus. The
number of such annuli is � (M/ρ)2.

Whether a given (ρ/3, ρ)-annulus Aρ is radially crossed can be decided using the ra-
dial exploration process started at any point along the boundary at radius ρ/3, with open
hexagons on the right side, closed hexagons on the left, stopped when reaching the boundary
at radius ρ. (See around Figure 2.6 of [GPS13a] or [Wer09, Section 4.3] for the definition of
this exploration process.) If the annulus is crossed, there are two cases: either (a) there is
also an open circuit, or (b) there is also at least one radial dual crossing.

(a) Condition on having an open circuit; this is slightly more general than the first of the
two above cases, since we do not condition on having also a radial crossing. Condition on
the smallest open circuit, Γ. The radial exploration process finds it from inside, hence the
configuration in the annulus between Γ and ∂2Aρ, denoted by AΓ, is undisturbed percolation.
Moreover, by the half-plane 3-arm exponent being 2, the probability that the distance
between Γ and ∂2Aρ is smaller than δρ is O(δ). Let this distance be the random variable
δΓρ, take any 0 < δ < δΓ, and take the set of points of AΓ whose distance from Γ is less
than δρ. It is clear that this set, denoted by ÃΓ,δ, contains a collection of K ≥ c/δ disjoint
balls of diameter δρ, denoted by Ãi, i = 1, . . . , K, such that all their pairwise distances are
at least δρ; for instance, take a family of vertical parallel lines with mesh δρ, and in every
other slab, take the uppermost ball of diameter δρ that touches Γ. See the first picture in
Figure 3.3.
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Figure 3.3: If the annulus Aρ has an open circuit or is crossed radially, then the radial
exploration process gives an open path Γ that has macroscopically wide unexplored space
on one side, collecting large enough volume connected to Γ with high probability.

If a site in some Ãi has an open arm to distance at least cδρ, then with a uniformly
positive probability it is connected to Γ, within the δρ/2-neighborhood of Ãi that will be
denoted by B̃i. Vice versa, most sites in Ãi need to have an arm of some length cδρ in order
to be connected to Γ. Thus, letting Xi be the number of sites in Ãi that are connected to
Γ within B̃i, and using quasi-multiplicativity of α1(·, ·), we have

Eλ
η [Xi] � (δρ/η)2α1(η, δρ) = (δρ/η)91/48+o(1).

It is a standard argument using quasi-multiplicativity and a summation over dyadic scales
that the second moment of Xi is comparable to the square of the first moment (see, e.g.,
[GPS10, Lemma 3.1] for the second moment of the number of pivotals). Thus, by the
Paley-Zygmund second moment inequality (a simple consequence of Cauchy-Schwarz; see,
e.g., [LyP13, Section 5.5]), there exists a uniform constant c = cλ > 0 such that Pλ

η

[
Xi >

cEλ
ηXi

]
> c. Using the independence of the variables Xi (conditionally on Γ) that follows

from the disjointness of the neighborhoods B̃i, and letting t = δ91/48+o(1), we get that

Pλ
η

[
cluster of Γ has volume ≤ t(ρ/η)91/48+o(1)

∣∣∣Γ]
≤ Pλ

η

[
Xi < t(ρ/η)91/48+o(1) for all i = 1, . . . , K

∣∣∣Γ]
≤ (1− c)K = exp

(
− t−48/91+o(1)

)
.

(3.1)

We want to take t = (ρ/η)−ζ , but this is legitimate only if δ = t48/91+o(1) = (ρ/η)−48ζ/91+o(1)

is less than δΓ. This fails with probability (ρ/η)−48ζ/91+o(1), which, for η small enough,
is much smaller than (ρ/M)2. Therefore, with probability tending to 1 as η → 0, in all
the at most O((M/ρ)2) annuli where case (a) occurs, the cluster of Γ has volume at least
(ρ/η)91/48−ζ .
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(b) Condition on the second case, and let Γ be the clockwisemost radial open crossing
that the exploration process has found. We claim that, similarly to case (a), there is a
random variable δΓ, uniformly positive in η, such that no hexagons have been explored in
the clockwise δΓρ-neighborhood of Γ. Indeed, this was already used in [GPS13a, Lemma
2.9] in the proof of the quad-measurability of the 1-arm event, and the reason is simply that
this maximal distance δΓ can be less than some δ > 0 only if the radial exploration path
comes to distance δρ to itself without touching, which would imply a full plane 6-arm event
from distance δρ to distance of order ρ (or a half-plane 3-arm event, if it happens close to
one of the boundary components of Aρ). See the second and third pictures in Figure 3.3.
Now, we can repeat the rest of the proof of case (a) within this unexplored space of width
δΓρ, and we are almost done: we have just proved that, with very high probability as η → 0,
the cluster found by the radial exploration process started at some arbitrary (say, uniform
random) point at radius ρ/3 has large volume. However, we want this for all clusters that
cross Aρ, while the above procedure finds larger clusters with larger probability.

ρ/3 ρ

Figure 3.4: Consecutive radial exploration processes.

To this end, once we have found one crossing cluster, we start a new radial exploration
from radius ρ/3, at the first point on ∂Bρ/3 to the right of the last boundary touching point
of the first exploration path that has an open site on the right and a closed site on the
left side. We stop the process either when it reaches an open site explored by the previous
exploration path and hence turns inside, towards ∂Bρ/3, or when it reaches ∂Bρ (which we
may call a “success”). Then we take the next point on ∂Bρ/3 that has an open site on the
right and a closed site on the left side, and so on, until the entire boundary ∂Bρ/3 has been
explored and hence all radially crossing clusters have been found. Now, before each success,
the right boundary of what has been built by the sequence of unsuccessful explorations is
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an open arm from ∂Bρ/3 to ∂Bρ, and from each point of this open arm, there is also a closed
arm to ∂Bρ/3. Therefore, if the next successful exploration path comes δρ-close to this right
boundary, then it creates a full plane 6-arm or a half-plane 3-arm event (the third picture
of Figure 3.3 applies locally), which do not happen anywhere in Aρ if δ is small enough.
Therefore, all these right boundaries have the open unexplored space to their right that is
required for our argument to work. Since each radially crossing cluster has, as a subset,
such a right boundary (not necessarily the right boundary of the entire cluster), the proof
of Proposition 3.6 is complete.

Recall that we are looking for (r, ρ)-mesoscopic sub-routers for Y ⊆ X. If ρ < r∗(X),
then any cluster C connecting the points of Y has a connected subset C ′ of diameter at least
ρ that has a distance at least ρ from all points of X. (We used here the definition of r∗(X)
and that |Y | ≥ 2.) For the maximal such C ′, the proof of Proposition 3.6 clearly applies,
and for r � ρ, the number of r-squares in Br(T2

M) intersected by C ′ is at least (ρ/r)91/48−ζ

with probability tending to 1 as r → 0. On the other hand, any of these r-squares fails to be
an (r, ρ)-mesoscopic sub-router only if there is no open circuit in the (r, ρ)-annulus around
B. In such a case, we have both a primal and a dual arm in the (r, ρ)-annulus, which event
has probability (r/ρ)1/4+o(1), uniformly in η > 0, by the 2-arm exponent [SmW01]. Thus
the number of such r-squares is (ρ/r)7/4+o(1) in expectation, and by Markov’s inequality,
it is unlikely to be much larger, for any of the possible subsets Y ⊆ X (whose number is
independent of r). Since (ρ/r)7/4+o(1) is negligible compared to the r-volume (ρ/r)91/48−ζ if
ζ > 0 is small enough, with probability going to 1 as r → 0, we do have (r, ρ) sub-routers
in every cluster spanned by some Y ⊆ X.

If B1, B2 are (r, ρ) sub-routers for Y1, Y2 ⊆ X, respectively, we will call them connected
if there exists a quad R with ∂1R contained in B1, ∂3R contained in B2, remaining strictly
away from all the squares Br

X , and for which ωλ ∈ �R. As before, in the coupling of
Proposition 3.4 (ii), for ρ < rM , the relation of being connected converges in probability as
ωη → ω∞, which also implies that it is an equivalence relation. If Bi is an (r, ρ) sub-router
for Yi ⊆ X, i = 1, 2, and B1 and B2 are connected, then both Bi’s are (r, ρ) sub-routers for
Y1∪Y2, since we can glue the path between B1 and B2, the circuit around B2, and the path
from B2 to any of the r-squares B ∈ Br(Y2) to get a path from B1 to B. Therefore, for
each equivalence class of (r, ρ) sub-routers there exists a maximal subset Y ⊆ X for which
all elements of the equivalence class are sub-routers. An equivalence class with maximal
subset Y will sometimes be called a cluster of pivotals spanned by Y . For instance,
in Figure 3.1, the left configuration has two clusters, spanned by the same three pivotals,
while the right configuration has three clusters, each with a maximal Y of two elements.
In each equivalence class of sub-routers, single out one of them, say, the leftmost one of
the lowermost ones in some fixed embedding of T2

M into C as [−M,M)2. The set of these
sub-routers will be the (r, ρ)-mesoscopic routers of X, or, after fixing ρ = rM/2, the set
of r-mesoscopic routers. Note that by restricting ourselves to subsets |Y | ≥ 2, clusters
containing only one pivotal from X will not have routers.

Although we will not really need them, for the sake of symmetry in our presentation,
analogously to the above routers that used primal (open) connections, we also define dual
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clusters of pivotals and dual r-mesoscopic routers.
We can now define the enhanced networks we promised.

Definition 3.7. The r-mesoscopic enhanced ε-network ENr-meso
M (ωλ,PPPελ̄) is the fol-

lowing vertex- and edge-labeled bipartite graph. One part of the vertex set is the set X of the
pivotals of PPPελ̄, the other part is the r-mesoscopic routers of X (both the primal and dual
ones). The vertices in PPPελ̄ are colored open or closed, according to the definitions before
Proposition 2.6; the routers are colored in the obvious way. The edge set consists of the
connections between the routers and the elements of their maximal Y ⊂ X, labelled primal
or dual according to the color of the router. The edges are drawn on the torus so that they
are homotopic (with fixed endpoints) to the connections they represent; clearly, one can also
achieve that they do not intersect each other. See Figure 3.5.

Figure 3.5: A schematic picture of a percolation configuration ωλη with the pivotals of PPPελ̄
on a torus, and the corresponding enhanced network. Pivotals are represented by circles,
routers are represented by squares. Primal connections are shown using red solid lines, dual
connections are shown using blue dashed lines.

Note that the networks of Definition 3.3 are measurable functions of these enhanced
networks in a very simple way: there exists an primal (or dual) router with edges to xi, xj ∈
X in ENr-meso

M (ωλ,PPPελ̄) if and only if there is a primal (dual, resp.) edge between xi and
xj in Nr-meso

M (ωλ,PPPελ̄). Moreover, the same proof as for Proposition 3.4, together with
Theorem 2.7, implies the following:

Proposition 3.8 (r-stabilization and η-convergence of enhanced networks).

(i) There is a measurable scale r̃M = r̃M(ωλ∞,PPP
ε
λ̄) ∈ (0, r∗) such that for all r ∈ (0, r̃M)

we get the same r-mesoscopic enhanced ε-network ENr-meso
M (ωλ∞,PPP

ε
λ̄) in the sense

that the colors in X and the collections of primal and dual clusters of pivotals are
the same. (The corresponding routers do not exactly stabilize, since for a smaller
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r new (r, rM/2) sub-routers can appear; but they cannot disappear, and hence each
router does converge to a point in T2

M as r → 0.) This stabilized network will be
called the enhanced ε-network ENλ̄,ε∞ = ENM(ωλ∞,PPP

ε
λ̄). For discrete percolation

configurations, the definition of ENλ̄,εη = ENM(ωλη ,PPP
ε
λ̄) is the obvious one.

(ii) In any coupling with ωλη
a.s.−−→ ωλ∞ in T2

M , there is a coupling of PPPελ̄(ω
λ
η ) and PPPελ̄(ω

λ
∞)

such that with probability tending to 1 as η → 0, we have that ENλ̄,εη = ENM(ωλη ,PPP
ε
λ̄)

is the same as ENλ̄,ε∞ = ENM(ωλ∞,PPP
ε
λ̄) in the sense that the vertex sets for η and ∞

(consisting of the pivotals in PPPελ̄ and the routers) are arbitrarily close to each other,
and the labelled graph structures coincide.

Remark 3.9. These enhanced networks are very useful planar (more precisely, toroidal) rep-
resentations of the discrete and continuous percolation configurations, which was not a priori
obvious how to achieve, since the quad-crossing space allows for non-planar configurations
and hence is not ideal to express planarity.

Using the enhanced networks, we are now going to define a spanning forest MSFλ̄,ε with
vertices being the primal routers in ENλ̄,ε. We will show in Section 4 that, for λ < 0 very
negative, λ′ > 0 very large, and ε > 0 small, this forest has a unique giant tree component,
which will be the cut-off tree MSTλ̄,ε that approximates well the macroscopic structure of
MST in T2

M .
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Figure 3.6: Building the cut-off forest MSFλ̄,ε from the enhanced network of Figure 3.5. On
level λ there was a cycle that had to be broken. The numbers from −6 to 6 on the closed
pivotals of ωλη represent their levels ti ∈ (λ, λ′) in PPPελ̄ at which they become open. The
resulting spanning forest has two components.

Definition 3.10 (Constructing the cut-off spanning forest MSFλ̄,ε on T2
M).

1. The vertices are the primal routers in ENλ̄,ε. Connect two routers by an edge if they
are both connected in ENλ̄,ε to the same open pivotal of ωλε . The resulting graph usually
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has several components (e.g., seven of them on the left-hand picture of Figure 3.6),
which more-or-less represent the λ-clusters in ωλε (this will be made more precise in
the next section).

2. In each component of this graph, choose a spanning tree in an arbitrary deterministic
way, and label each edge of this tree by λ.

3. For each pivotal xi of PPPελ̄ that is closed in ωλε , add an edge between the corresponding
routers, and label it by its ti ∈ (λ, λ′) value. Note that these edges may be loops, as
the one labelled by −5 on the left-hand picture of Figure 3.6, for instance.

4. As in the so-called reversed Kruskal algorithm, from each cycle delete the edge with the
largest label, and get a minimal spanning tree in each component of the above graph.

5. Draw all the edges of the thus constructed forest as straight line segments, respecting
the torus topology (i.e., choosing the line segment on the torus that is homotopic to
the concatenation of the embedded edges of ENr-meso

M (ωλ,PPPελ̄) that gave rise to this
edge of the forest). See the right-hand picture of Figure 3.6.

4 Approximation of MSTη by the cut-off trees MSTλ̄,εη

4.1 Preparatory lemmas and the definition of MSTλ̄,εη

Our first lemma is a RSW-type result that is interesting even in the critical case. Neverthe-
less, the simplest proof we have found uses our dynamical and near-critical stability results
from [GPS13b, Section 8].

Lemma 4.1 (Local Ring Lemma). There exists δ > 0 such that for any λ < −1 and any
radius R ≤ |λ|−4/3, for all small enough mesh η > 0, one has

P
[
AR,λ,δ

]
> 1− 1

100
,

where AR,λ,δ stands for the event that there exist λ-clusters for the restriction of ωλη to the
annulus AR,2R: C1, . . . , CN , CN+1 = C1 which satisfy the following conditions:

1. for each i ∈ [1, N ], diam(Ci) ≥ δ R. Note in particular that the clusters C̃i of the
percolation configuration non-restricted to AR,2R also have diameter ≥ δR;

2. for each i ∈ [1, N ], there exists at least one closed site yi neighboring both Ci and Ci+1;
note that such a site is automatically δR-pivotal in ωλη ;

3. the circuit {C1, . . . , CN} disconnects the annulus AR,2R in the sense that the two bound-
aries of the annulus are not connected in the graph AR,2R \

⋃N
i=1(Ci ∪ {yi}).

Moreover, we can choose the clusters Ci and the points yi such that all the yi’s are elements
of the Poisson point set PPPελ̄, with ε = δR and λ′ large enough (depending on R).
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Proof. Consider the near-critical coupling (ωtη)t∈R. For λ′ � 1 large enough (on the order

of R3/4), there is a probability at least 995/1000 that ωλ
′
η has an open circuit even in the

smaller annulus A5R/4,7R/4; this follows from known results on the correlation length, e.g.,
[GPS13b, Theorem 10.7]. Now sample ωλη , consider some small ε > 0 to be fixed in a second,

and let ω̃λ
′
η be the configuration where we open only those vertices in the coupling while

getting from λ to λ′ that are given in PPPελ̄. Choosing R < |λ|−4/3, below the correlation
length given by [GPS13b, Theorem 10.7], and choosing η > 0 small enough compared to
R imply that ωλη has 4-arm probabilities inside the domain AR,2R that are comparable to
the critical ones. Therefore, the critical case computations of [GPS13b, Section 8] apply
uniformly in λ < −1, and by a straightforward modification of [GPS13b, Proposition 8.6]
from quad-crossings to annulus circuits, for ε = δR > 0 with δ > 0 small enough (uniformly
in λ), the probability that ωλ

′
η has an open circuit in A5R/4,7R/4 but ω̃λ

′
η does not have one

in AR,2R is less than 5/1000. Altogether, the probability that ω̃λ
′
η has an open circuit in

AR,2R is at least 99/100. But such a circuit must be composed of λ-clusters and ε-important
points that have become open, which implies that all these λ-clusters must have diameter
at least ε, and the lemma is proved.

Lemma 4.2 (Global Ring Lemma). For any λ < −1 and α > 0, there is a radius r =
r(λ, α) < δ

2
|λ|−4/3 such that, for any small enough η, with probability at least 1−α, one can

find around all points x ∈ T2
M an annulus AR,2R surrounding x with r̄ = r/δ ≤ R ≤ |λ|−4/3

that satisfies the event AR,λ,δ. (The value of δ is taken from Lemma 4.1, and the choice
r̄ = r/δ is made so that the clusters we find are at least of diameter r.)

Proof. Consider the covering of T2
M by the squares given by r̄Z2, and around each such

r̄-square, consider the dyadic annuli up to scale |λ|−4/3. By Lemma 4.1, the probability that
there is an r̄-square for which all the dyadic annuli fail to have the required ring of clusters
is at most

O(1)(M/r̄)2(1/100)log2
|λ|−4/3

r̄ = O(M2) |λ|4/3 log2 100r̄−2+log2 100 ,

which can be made arbitrarily small as r̄ → 0.

Part (ii) of the next lemma again has a RSW feeling to it, and is again proved using
[GPS13b, Section 8].

Lemma 4.3 (Subcritical lakes joining the supercritical ocean). Consider percolation ωλη on
T2
M with λ < −1, and fix an arbitrarily small α > 0.

(i) For any s > 0, if λ < −1 is small enough, then for all η > 0 small enough, with
probability at least 1− α, all clusters in ωλη have diameter less than s.

(ii) For any λ < −1 and any r > 0, there is a λ′0 > 0 and an ε0 > 0 such that for all λ′ ≥ λ′0
and ε ≤ ε0, with probability at least 1− α, all the clusters in ωλη of diameter at least r

are connected via primal paths in the enhanced network ENλ̄,εη = ENM(ωλη ,PPP
ε
λ̄) with

λ̄ = (λ, λ′), defined in Proposition 3.8, in the sense that each such cluster contains a
primal router and these routers are all connected by primal edges (through closed or
open pivotals, as in Definition 3.10) in the enhanced network.
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Proof. It is proved in [GPS13b, Theorem 10.7] that, for any fixed s > 0, as λ → ∞, the
probability of having an open circuit in a given annulus As/3,s in ωλη converges to 1. Consider
a tiling of T2

M by s/3-squares, and the annuli of side-length s centered around them. By
the FKG inequality, the probability of having open circuits in all of them converges to 1.
When all these circuits are present, their union is a single component, and any subset of
T2
M of diameter at least s intersects this cluster.

Running the above argument for dual circuits and with λ → −∞ gives that, with
probability tending to 1, the diameter of the largest open cluster must be less than s,
proving item (i).

For item (ii), we use [GPS13b, Proposition 8.1], which says that in the configuration ω̃λ
′
η

that we get by starting from the configuration ωλη and opening the pivotal points of PPPελ̄,
all the quad-crossings we get in T2

M with high probability will be very close to the actual
crossings by ωλ

′
η , provided that ε > 0 is small enough. We also use the first paragraph with

s = r/10. This way, any cluster C of ωλη with diameter at least r will radially cross two such
annuli at distance at least r/2 from each other, A1 and A2, with the additional property
that not all of the eight neighboring inner squares are intersected by C. However, with high
probability, in ω̃λ

′
η all annuli will have open circuits, which can happen in the two annuli Ai

only if C have points of PPPελ̄ in both annuli that are closed in ωλη but open in ω̃λ
′
η . These

two pivotal points appear in the enhanced network, and C has a primal router connecting
them with high probability. Furthermore, the approximation by ω̃λ

′
η can be good only if the

enhanced network connects the routers coming from all these large clusters.

Using the above lemmas, we can now see why there is typically a unique giant component
in the cut-off forests MSFλ̄,εη and MSFλ̄,ε∞ of Definition 3.10:

Lemma 4.4 (Defining the cut-off trees MSTλ̄,εη and MSTλ̄,ε∞ ). For any M > 0, any small
s > 0 and α > 0, if λ < −1 is very negative, ε > 0 is small, and λ′ > 1 is large enough, then
with probability at least 1 − α for any mesh η > 0, there is a unique giant component
in the cut-off forest MSFλ̄,εη (and hence, by Proposition 3.8, in MSFλ̄,ε∞ ), with the properties
that it comes to distance at most s from any point of T2

M , while all other components of
MSFλ̄,εη have diameter at most s. This giant tree component will be our approximating

cut-off tree, denoted by MSTλ̄,εη and MSTλ̄,ε∞ ; whenever the above large probability event

fails to occur, we set MSTλ̄,ε to be a single point in T2
M , and call this tree degenerate.

Proof. Take λ < −1 such that δ|λ|−4/3 < s holds (with δ from Lemma 4.1) and the
diameter bound of Lemma 4.3 (i) applies. By Lemma 4.2, with probability at least 1−α/2,
every point of T2

M has in its s-neighborhood a ring of λ-clusters of diameter at least r(λ, α)
each (possibly a single cluster, but still of diameter in T2

M less than s). Now, if we take
ε > 0 small and λ′ > 0 large, then Lemma 4.3 (ii) says that with probability at least
1 − α/2 all λ-clusters of diameter at least r(λ, α) get connected in the enhanced network
ENλ̄,εη . Therefore, with probability altogether at least 1 − α, there is a component of the
graph of Definition 3.10 that has distance at most s from any point of T2

M , while all other
components have diameter at most r(λ, α) ≤ s. The spanning trees of these components
inherit these properties, hence we are done.
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Now that we have finally defined the trees MSTλ̄,εη and MSTλ̄,ε∞ , we can immediately see,
using Proposition 3.8, that they are close to each other in the space of essential spanning
forests, introduced in Definition 2.2:

Corollary 4.5. For any M > 0 and s, α > 0, if λ < −1 is very negative, ε > 0 is small,
and λ′ > 1 is large enough, then, in the coupling of Proposition 3.8 (ii) between (ωλη ,PPP

ε
λ̄)

and (ωλ∞,PPP
ε
λ̄), we have

P
[
dΩM (MSTλ̄,εη ,MSTλ̄,ε∞ ) < s

]
> 1− α ,

for all η > 0 small enough.

Proof. The parameters λ, λ′, ε can be set so, by Lemma 4.4, that both MSTλ̄,εη and MSTλ̄,ε∞
are non-degenerate with probability at least 1 − α/2, for any η > 0 small enough. Now,
by Proposition 3.8 (ii), we can take η > 0 so small that, with probability at least 1− α/2,
the enhanced networks ENλ̄,εη and ENλ̄,ε∞ agree as graphs and the Hausdorff distance between
their vertex sets is less than s. On the event that both trees exist, the networks agree, and
the vertex sets are closer than s to each other, which occurs with probability at least 1−α,
the uniform distance between the corresponding `-trees is always less than s, and hence the
sum with the weights 2−` is also less than s, and we are done.

4.2 Approximation as ε→ 0 and (λ, λ′)→ (−∞,∞).

After these preparations, we can turn to approximating MSTη on ηT ∩ T2
M by the cut-off

trees MSTλ̄,εη . First of all, note that if two vertices of ηT ∩ T2
M are in the same λ-cluster,

then the path in MSTη that connects them remains in that λ-cluster. This also means that
for any two λ-clusters of ηT ∩ T2

M , there is a unique path in MSTη that connects them.
The next lemma is a key step in approximating MSTη by cut-off trees:

Lemma 4.6 (Paths through macroscopic clusters). For any λ < −1, ρ > 0, α > 0, if ε > 0
is small and λ′ > 0 is large enough, then with probability at least 1−α, for any two clusters
of diameter at least ρ in ωλη , there is a unique path in MSFλ̄,εη that connects the two clusters,
and the unique path in MSTη doing the same goes through the same closed pivotals of PPPελ̄,
and hence the distance of these two paths in the uniform metric is at most the maximal
diameter of all λ-clusters.

Proof. Choose ε1 > 0 small and λ′1 > 1 large enough so that the event of Lemma 4.3 (ii)
occurs with probability at least 1 − α/3, condition on this event, and consider the path
in MSFλ̄1,ε1

η that connects two of the clusters. There is a corresponding path in ηT, going
through the same finitely many ε1-important points of ωλη and some λ-clusters, using labels
at most λ′1. Therefore, the true path in MSTη also uses labels at most λ′1. Assume now
that this path goes through some λ-cluster C of diameter at most r � ρ. This path must
go through a vertex x of ηT, neighboring C, with the following properties (see Figure 4.1):

• it is closed in ωλη but open in ω
λ′1
η ;
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• it has two λ-closed arms emanating from it, which together separate the two clusters
of diameter at least ρ that we started with;

• on the side of these two closed arm that contains C, there is an open arm from x only
to distance at most r.

ρ

ε1

x

C

Figure 4.1: The path in MSTη connecting two large λ-clusters does not go through very
small λ-clusters, basically because of the near-critical stability of 4-arm probabilities.

If x had the alternating 4-arm event to a distance more than r in ωλη , that could happen
only if the two open arms out of these four were on the side of the two long closed arms
that does not contain C, which altogether yield a 5-arm event. Moreover, since the labels
along the path in MSTη are all at most λ′1, we would get a (λ, λ′1)-near-critical six-arm event
from x to distance r, as defined in Proposition 1.3. By that proposition and by the 6-arm
exponent being larger than two (see [SchSt10, Corollary A.8]) this happens with very small
probability if η is small enough. So, we can basically assume that x is not r-pivotal in ωλη .
On the other hand, if we now change all the labels above λ along the path in MSTη to
λ, then, in the new configuration, x will have the alternating 4-arm event to distance at
least ε1. Since the labels we have changed are all in [λ, λ′1], we can apply a different form
of near-critical stability, Lemma 8.5 of [GPS13b], implying that the probability that there
is a vertex x ∈ T2

M whose importance can be changed from r to ε1 by these label changes,

and additionally the status of this vertex is different in ω
λ′1
η than in ωλη , is arbitrarily small

if r is small. Summarizing, there exists r > 0 depending on M,α, λ and ρ, such that for all
small enough η > 0, with probability at least 1 − α/3, the path in MSTη connecting any
two λ-clusters of diameter at least ρ does not go through λ-clusters smaller than r.

Now choosing ε > 0 small and λ′ > 1 large, again by Lemma 4.3 (ii), the enhanced
network ENλ̄,εη will connect all the λ-clusters of diameter at least r with probability at least
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1 − α/3. Altogether, with probability at least 1 − α, for any two λ-clusters of diameter
at least ρ, the unique paths in MSTη and MSFλ̄,εη both go through the same λ-clusters,
connected by λ-closed pivotals of importance at least r. The last half sentence of the lemma
follows immediately from the way Definition 3.10 is done.

We can now easily prove the main result of this section:

Proposition 4.7. For any M > 0 and s, α > 0, if λ < −1 is very negative, ε > 0 is small,
and λ′ > 1 is large enough, then we have

P
[
dΩM (MSTη,MSTλ̄,εη ) < s

]
> 1− α ,

for all η > 0 small enough.

Proof. As in the proof of Lemma 4.4, take λ < −1 such that with probability at least
1 − α/2, all λ-clusters in T2

M have diameter less than s, and every point of T2
M has in its

s/2-neighborhood a ring of λ-clusters of diameter at least r each, for some 0 < r < s/2,
uniformly in η, as provided by Lemma 4.2. Now, if we take ε > 0 small and λ′ > 0 large,
then, with probability at least 1−α/2, all λ-clusters of diameter at least r are connected in
MSTλ̄,εη , and, by Lemma 4.6, the paths connecting them are at a uniform distance at most
s from the corresponding paths of MSTη. We will assume that both events of probability
at least 1− α/2 hold.

x

y
γ

Cx

Cy

Figure 4.2: Paths in MSTη can be approximated by paths through macroscopic λ-clusters.

Consider any path γ of MSTη connecting some x, y ∈ T2
M . Both x and y have the above-

mentioned ring of macroscopic λ-clusters around them, and γ must intersect at least one
member of each ring. See Figure 4.2. But then, the part of γ connecting the intersected
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members closest to x and y, denoted by Cx and Cy, respectively, by the previous paragraph,

is uniformly s-close to a path in MSTλ̄,εη , denoted by γλ̄,ε. And this γλ̄,ε is of course s-close
to the entire γ, since the parts of γ going from x to Cx and from y to Cy are contained in
the s-neighborhoods of Cx and Cy.

In the other direction, consider any path γλ̄,ε in MSTλ̄,εη , connecting two routers. The
clusters of pivotals corresponding to these routers have diameter at most s, but could be
rather small. Nevertheless, fixing one point in each cluster, there is a ring of macroscopic
λ-clusters around each, which certainly contains a cluster of pivotals that γλ̄,ε goes through.
The rest of the proof is just as above.

Now that we have good approximations for paths in the two trees connecting any two
vertices, the extension to trees with ` > 2 leaves is straightforward.

5 Proof of the main result

5.1 Putting the pieces together for MST on tori T2
M

In this subsection, we prove convergence in any fixed torus T2
M .

Theorem 5.1 (Limit of MSTη and MSTλ̄,ε∞ in T2
M). In the metric space ΩM of spanning

trees in the torus T2
M , as defined in Definition 2.2, the spanning tree MSTη on the lattice

ηT∩T2
M converges in law to a translation invariant MST∞, which is also the distributional

limit of the cut-off trees MSTλ̄,ε∞ , as λ̄→ (−∞,∞) and ε→ 0.

Proof. Using the results of the previous section, the proof is classical; e.g., the exact same
strategy was used in [GPS13b, Section 9]. By Proposition 4.7, for any k ∈ N there exists
λ̄k = (λk, λ

′
k) and εk > 0, such that, for all 0 < η < ηk sufficiently small,

P
[
dΩM (MSTη,MSTλ̄k,εkη ) < 2−k

]
> 1− 2−k . (5.1)

Now, by Corollary 4.5, there is a coupling between (ωλη ,PPP
ε
λ̄) and (ωλ∞,PPP

ε
λ̄), and by the

same token, between ω
[λ,λ′]
η and (ωλ∞,PPP

ε
λ̄), such that, for all 0 < η < η′k sufficiently small,

P
[
dΩM (MSTλ̄k,εkη ,MSTλ̄k,εk∞ ) < 2−k

]
> 1− 2−k . (5.2)

Combining (5.1) and (5.2) using the triangle inequality, in the same coupling,

P
[
dΩM (MSTη,MSTλ̄k,εk∞ ) < 2−k+1

]
> 1− 2−k+1 .

We can now couple all the trees MSTλ̄k,εk∞ to MSTη one-by-one, and given MSTη, conditionally
independently to each other, such that, for all k < ` simultaneously, again using the triangle
inequality,

P
[
dΩM (MSTλ̄k,εk∞ ,MSTλ̄`,ε`∞ ) < 2−k+2

]
> 1− 2−k+2 .

Using Borel-Cantelli in this coupling, in the space ΩM , the sequence MSTλ̄k,εk∞ is a Cauchy
sequence. The space is complete, hence there is an almost sure limit MST∞. Of course, this
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limit may a priori depend on the sequences {λ̄k}, {εk} and on the coupling. However, using
the triangle inequality again, going through MSTλ̄k,εk∞ , we have that for any δ > 0, if η > 0
small enough, then

P
[
dΩM (MSTη,MST∞) < δ

]
> 1− δ .

Therefore, in this coupling, MSTη converges in probability, and hence in law, to MST∞, in
the metric space ΩM . Since MSTη and the metric dΩM are translation invariant, the limit
MST∞ is also invariant.

To prove the convergence of MSTλ̄,ε∞ , note that the bounds (5.1) and (5.2) hold not just
for λ̄k and εk, but for all ε < εk and λ < λk and λ′ > λ′k, thus we have that MSTλ̄,ε∞ is close
in distribution in the dΩM -metric to MSTη and hence to MST∞.

5.2 Extension to the full plane; invariance under translations,

scalings and rotations

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. We will use the notation MSTMη and MSTM∞ for MSTη and its

scaling limit on the torus T2
M . We will also use the approximations MSTλ̄,ε,M .

It was proved in [AiBNW99, equation (8.1)] that MSTη is uniformly quasi-local in
the sense that for any δ > 0 and compact Λ ⊂ C there exists a Λ̄δ ⊂ C such that for any
small enough η > 0, with probability at least 1− δ, all trees with leaves in Λ are contained
in Λ̄δ. Since this event is measurable w.r.t. the percolation ensemble inside Λ̄δ, by taking
δ > 0 small and M > 0 so large that Λ̄δ ⊂ [−M,M ]2, we get that the law of MSTη restricted
to Λ is close in total variation distance to the law of MSTMη restricted to Λ. By the (λ̄, ε)-

approximation result Proposition 4.7, the same holds for MSTλ̄,ε,Mη , and by the uniformity

in η > 0, also for MSTλ̄,ε,M∞ . In the proof of Theorem 5.1, we have constructed MSTM∞ as
a limit of MSTλ̄,ε,M∞ , thus we also have that the law of MSTM∞ restricted to Λ converges as
M →∞, in the metric dΩM that is based on the flat Euclidean metric on T2

M .
Now we take Λ = [−L,L]2, with L → ∞. As pointed out at the beginning of Subsec-

tion 2.1, the metric defined in (2.1) for Ĉ is equivalent to the Euclidean metric in bounded
domains, while the distance between any two points in Ĉ\ [−L,L]2 is at most O(1/L). Thus
the uniform distance between any two trees embedded in Ĉ \ [−L,L]2 is at most O(1/L),
and if two essential spanning forests are δ-close in the metric dΩM restricted to [−L,L]2,
then their distance in dΩ is OL(δ) + O(1/L). Therefore, the convergence in dΩM for any
given Λ ⊂ C, established in the previous paragraph, implies convergence in dΩ.

Translation invariance of the limit measure MST∞ follows from a standard trick: for
any compact Λ ⊂ C, quasi-locality implies that the limit of MST[−M,M ]2

∞ restricted to Λ,
as M → ∞, is the same as the limit of MST[−M+x,M+x]2

∞ restricted to the same Λ, for any
x ∈ R, and hence MST∞ restricted to Λ has the same distribution as restricted to Λ− x.

To prove scale-invariance, consider the scaling fα(z) := αz. The conformal covariance
of the pivotal measures, proved in [GPS13a, Theorem 6.1], says that

(fα)∗(µ
ε(ωλ∞)) = α−3/4µαε(fα(ωλ∞)) . (5.3)
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Also, by the conformal covariance of ωλ∞, proved in [GPS13b, Theorem 10.3], we have

fα(ωλ∞)
d
= ωα

−3/4λ
∞ . (5.4)

Scaling the spatial intensity measure of a Poisson point process by α−3/4 as in (5.3) is the
same as scaling the time duration by the same factor, in the sense that there is a natural
coupling in which the spatial coordinates of the arrivals are the same, and there is a simple
scaling between the time coordinates. Thus, combining (5.3) and (5.4), and denoting the
notion of “same” in the previous sentence by ≈, we have

fα
(
PPPελ̄(ω

λ
∞)
) d
≈ PPPαεα−3/4λ̄(ω

α−3/4λ
∞ ) . (5.5)

Since our constructions of MSFλ̄,ε∞ and MSTλ̄,ε∞ in Definition 3.10 and Lemma 4.4 are equiv-
ariant under spatial and time scalings, the identities (5.4) and (5.5) imply that

fα(MSTλ̄,ε,M∞ )
d
= MSTα

−3/4λ̄, αε, αM
∞ .

Since we obtained MST∞ as a limit of MSTλ̄,ε,M∞ with λ̄ → (−∞,∞), ε → 0, M → ∞, the

last identity gives that fα(MST∞)
d
= MST∞.

Next, let fθ : C −→ C be the rotation by angle θ. Now [GPS13a, Theorem 6.1] and
[GPS13b, Theorem 10.3] give for full plane configurations that

fθ
(
ωλ∞,PPP

ε
λ̄(ω

λ
∞)
) d

=
(
ωλ∞,PPP

ε,θ

λ̄
(ωλ∞)

)
, (5.6)

where PPPε,θ
λ̄

is constructed using a rotated grid to define ε-importance. (As pointed out in
[GPS13a, Remark 6.3], this rotational equivariance of the ε-importance measure and hence
the Poisson point process is not a tautology, since the normalization factor in the definition
of the measure is not changed with the rotation.) Now, if we want to consider MSTλ̄,ε on the
torus T2

M , the rotated ε- and r-grids cannot be exactly defined; nevertheless, we can consider
the squares in the grid fully contained in fθ([−M,M ]2), and make some arbitrary definition
close to the boundary — due to quasi-locality, this will not matter. Hence, from (5.6) we
get that for large M > 0, the distribution of fθ(MSTλ̄,ε,M∞ ) restricted to some fixed domain
Λ, which is close to fθ(MST∞) restricted to Λ, is close to MSTλ̄,ε,M,θ

∞ restricted to Λ. On
the other hand, Corollary 4.5 and Proposition 4.7 work fine with the rotated grids, giving
that MSTλ̄,ε,M,θ

∞ is close to MSTλ̄,ε,M,θ
η , and the latter is close to MSTη. Finally, since MSTη

is close to MST∞, after taking all the limits we get that fθ(MST∞) agrees with MST∞ in
distribution.

6 Geometry of the limit tree MST∞

6.1 Degree types and pinching

The degree of a point x ∈ Ĉ in an immersed tree f : τ −→ Ĉ is

degf (x) :=
∑
f(v)=x

degτ (v) , (6.1)
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where the sum is over all points v of τ , meaning a vertex in V (τ) or a point on an edge in
E(τ), and degτ (v) is the combinatorial degree in the first case, while equals 2 in the second
case. For an essential spanning forest F ,

degF(x) := sup
`≥1

sup
f∈F(`)

degf (x) . (6.2)

The degree type of a point x in an immersed tree f : τ −→ Ĉ is the vector of summands
in (6.1), ordered in decreasing order, and the degree type in an essential spanning forest F is
the supremum as in (6.2), now w.r.t. a natural partial order on the vectors of degree types:
after padding vectors with zeros at the end, use the lexicographic ordering. The supremum
in this partial order exists because of condition (iii) of Definition 2.2. See Figure 6.1 (ignoring
at this point the dual trees on the pictures).

Figure 6.1: Degree type (5) and two examples of (2, 1, 1, 1) in a spanning tree of the plane,
giving degree types (1, 1, 1, 1, 1), (4, 1) and (3, 2) in a dual spanning tree.

For instance, saying that x ∈ C is a pinching point for F if F (2) includes a path which
passes through x twice without terminating there can be expressed as saying that x has
degree type at least (2, 2). If one of the two branches terminates at x, the other does not,
i.e., degree type at least (2, 1), then we talk about a figure of 6, while degree type at least
(1, 1) is called a point of non-uniqueness, or a loop at x. Points of degree type at least
(2) constitute the trunk of F : the union of curves in F (2) excluding the endpoints. A
branching point is a point with degree type at least (3).

Lemma 6.1 (Dual spanning tree). There is a spanning tree MST†∞ of C coupled with MST∞
that is dual in the sense that none of its paths intersect any of the paths of MST∞, and whose
distribution is again that of MST∞.

Note that we are not claiming that MST†∞ is measurable w.r.t. MST∞, nor that there is
a unique such spanning tree. These claims should be possible to prove, but we will not need
them. For all subsequential scaling limits of the Uniform Spanning Tree on Z2, they were
proved in [Sch00] via first establishing that the trunk is a topological tree that is everywhere
dense in C, and then defining the dual tree in the complement of the trunk.

Proof of Lemma 6.1. The planar dual of T is the hexagonal lattice T∗, and, as usual,

MSTMη on ηT∩T2
M has a dual graph on ηT∗∩T2

M , denoted by MSTMη
†
. Because of the torus
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geometry, this dual has some cycles, but it is easy to check that for any null-homotopic
cycle in ηT∗∩T2

M , the edge whose dual in ηT∩T2
M has the minimal weight must be present

in MSTMη , hence must be missing from MSTMη
†
, and thus we are basically talking about

the Maximal Spanning Tree on ηT∗ ∩ T2
M . More precisely, taking a pair of null-homotopic

domains Λ ⊂ Λ̄, the probability that all the paths of MSTMη
†

connecting vertices in Λ stay
inside Λ̄ is the same as in the MaxSTη, and conditioning both measures on this event, the
distribution of these paths agree. Of course, MaxSTη has the same distribution as MSTη
on ηT∗ ∩ T2

M , and we can use uniform quasi-locality just as in Subsection 5.2. Now, in the
spirit of the remark after Figure 1.2, the macroscopic structure of MSTη on ηT∗ ∩ T2

M can

be described using the near-critical ensemble on ηT, and hence we get that MSTMη
†

has a

unique scaling limit as η → 0 then M →∞, denoted by MST†∞, with the same distribution
as MST∞.

The fact that the paths of MST†∞ do not cross the paths of MST∞ is clear from obtaining
them as scaling limits of discrete dual graphs.

It was proved in [AiBNW99] that any subsequential limit of MSTη in Ĉ is a spanning tree
of Ĉ, and hence, using Lemma 6.1, it has one end (a single route to infinity). Furthermore,
regularity properties of MST paths proved in that paper implied that the degrees in MST∞
are almost surely bounded from above by some absolute deterministic constant k0 ∈ N,
and that the set of points with loops has Hausdorff dimension strictly between 1 and 2.
It was also shown, using a Burton-Keane-type argument with trifurcation points and the
amenability of the graph Z2 (see [BuK89] or [LyP13, Section 7.3]) that the set of branching
points is at most countable. It was conjectured in [AiBNW99] that there are no branching
points of degree 4 or larger, and that there are no pinching points. We are now able to
establish the latter conjecture, and get close to the former:

Theorem 6.2 (Degree types in MST). Almost surely in MST∞ on C:

(i) there are no points of degree type at least (2, 2); in other words, for any two points
x, y ∈ C, none of the paths connecting the two vertices has a pinching point;

(ii) there are no points of degree at least 5 (with any degree type);

(iii) the set of points of degree 4 (with any degree type) is at most countable.

These hold not only for the scaling limit on ηT but also for any subsequential limit on ηZ2.

Proof. (i) It is enough to show that for any M > 1 and 0 < ρ < 1, the probability in
MSTη = MSTMη of having an r-square B ∈ Br([0, 1]2) (as in Definition 3.2, with r < ρ) such
that there are two disjoint paths, γ1 and γ2, entering B with all four endpoints at distance
at least ρ from B tends to 0 as r → 0, uniformly in η > 0, because then the probability in
MST∞ in C of having in any given unit square a point of degree type (2, 2) with the four
paths going to distance at least ρ will be zero.

Fix α > 0 arbitrarily small. As in the proof of Proposition 4.7, we can take λ < −1,
ε > 0, and λ′ > 0 such that with probability at least 1 − α/2, all λ-clusters in T2

M have
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diameter less than ρ/10, every point of T2
M has in its ρ/20-neighborhood a ring of λ-clusters

of diameter at least δ each, for some 0 < δ < ρ/20 (uniformly in η), and all λ-clusters of
diameter at least δ are connected in MSTλ̄,εη , with these paths going through the same closed
pivotals of PPPελ̄ as the corresponding paths of MSTη. We will assume that this event of
probability at least 1 − α/2 holds, and also that the above r-square B exists, with some
r � ρ to be determined later.

Since γ1 and γ2 are connected in MSTη (by being a spanning tree), and a path in MSTη
that connects two points in the same λ-cluster cannot leave that cluster, we have that γ1

and γ2 go through disjoint λ-clusters, all of diameter at most ρ/10, connected by λ-closed
pivotals. Close to each end of each γi, there is such a λ-closed pivotal, at distance at least
ρ − ρ/5 from B. Thus there must exist two λ-closed paths, separating the λ-clusters of γ1

from those of γ2, going through B, of radius at least 4ρ/5. See Figure 6.2.

x1

x2

γ1 γ2

r

ρ

< ρ/10

> δ
< ρ/10

< ρ/20

Figure 6.2: Pinching would imply a near-critical 6-arm event.

On the other hand, we would like to bound the labels from above on the MSTη paths. To
this end, let xi be the point where γi leaves the ρ-neighborhood of B, at the end of γi that
is opposite from γ3−i, for i = 1, 2. Around each xi, there is a ring of macroscopic λ-clusters,
the MSTη path from x1 to x2 must intersect at least one λ-cluster from each ring, and the
part of the path connecting the two rings must go through λ-clusters connected by pivotals
with labels at most λ′. Thus, besides the two λ-closed arms between radii r and 4ρ/5 we
also have four λ′-open arms between the same radii. By the near-critical stability of 6-arm
probabilities, Proposition 1.3, the probability of this happening anywhere in T2

M is smaller
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than α/2 if r/ρ is chosen small enough. Therefore, the probability of the existence of B is
less than α if r > 0 is chosen small enough, uniformly in the mesh η > 0, and we are done.

(ii) It is proved in [BeN11] that the critical monochromatic 5-arm exponent is strictly
larger than the polychromatic one, which is 2 (see [SchSt10, Corollary A.8]). Therefore,
near-critical stability for the monochromatic 5-arm exponent (again, Proposition 1.3) tells
us that no near-critical monochromatic 5-arm event between radii r and ρ happens anywhere
in [0, 1]2 if r/ρ is small enough. Based on this, as before, we will exclude the existence of
an r-square B ∈ Br([0, 1]2) with degree 5 to distance at least ρ.

4

2

3

5

6
1

Figure 6.3: Degree 5 would imply a near-critical monochromatic 5-arm or a polychromatic
6-arm event.

We look at the λ-clusters traversed by the five branches, for some small λ < −1. As
in part (i), the branches contributed by components at least 2 in the vector of the degree
type traverse macroscopic λ-clusters, and hence the labels of their λ-closed pivotals are all
at most some uniform λ′. On the other hand, the branches contributed by components of
size 1 in the vector of the degree type are necessarily separated from the other branches by
λ-closed paths. See Figure 6.3. Therefore, if we have k ∈ {0, 1, . . . , 5} branches contributed
by components of size at least 2, and 5 − k branches contributed by components of size 1,
then we have at least k λ′-open arms from r to ρ and, provided that k < 5, at least 5−k+1
λ-closed arms. If k = 5, this means a near-critical monochromatic 5-arm event, and if k < 5,
a near-critical polychromatic 6-arm event. Neither happens if r/ρ is small enough, and we
are done.

(iii) Degree 4 points can have five different degree types: (4), (3, 1), (2, 2), (2, 1, 1),
(1, 1, 1, 1). The countability of the first two types follows from the countability of branching
points proved in [AiBNW99]. Points of the third type do not exist, by part (i) above. At
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a point of the fourth type, the dual MST∞ tree defined in Lemma 6.1 would either have a
branching of degree 3, for which we already know countability, or a degree type (2, 2), which
does not exist by part (i). (See Figure 6.1 for examples of dual degree types.) Finally, if a
point has degree type (1, 1, 1, 1), then the dual tree has a branching point of degree 4 there,
so we have countability again.

Since the well-known 5- and 6-arm bounds and Proposition 1.3 hold also for Z2, all the
above arguments work fine for subsequential limits of MSTη on ηZ2, as well.

It is tempting to try and argue that a figure of 6 should imply 5 arms with labels bounded
suitably by λ and λ′, and hence by the near-critical stability of the 5-arm exponent (which
is 2), the set of points with degree type (2, 1) should be at most countable, but we did not
manage to make this argument work.

6.2 A dimension bound for the trunk

Our present techniques reveal very little about the dimension of different subsets of interest
in MST∞. It was proved in [AiBNW99] that all the curves connecting any two points almost
surely have Hausdorff dimension at least some unspecified deterministic dmin > 1 and at most
another constant dmax < 2. Note that, having a countable number of branching points, the
trunk is a countable union of such curves, hence we can equivalently talk about the dimension
of the trunk. We will now slightly improve the upper bound to dmax = 2−α′2 < 7/4, where α′2
is the monochromatic two-arm (or backbone) exponent of critical percolation, shown to be
strictly larger than the polychromatic two-arm exponent α2 = 1/4 in [BeN11]. According to
simulations, the true value of the Hausdorff dimension is close to 1.22− [WieW03, SwM13],
while 2− α′2 is close to 79/48 = 1.646− [BeN09].

Theorem 6.3. The lower Minkowski dimension (and hence the Hausdorff dimension) of
the trunk of MST∞ is almost surely at most 2 − α′2 < 7/4, where α′2 is the monochromatic
two-arm exponent of critical percolation.

Proof. For any ρ > 0, let Trunkρη (resp. Trunkρ∞) be the set of points in [0, 1]2 that have
a path of MSTη (resp. MST∞) passing through them, going to distance at least ρ in both
directions. Since the trunk of MST∞ is a countable union of sets of the form Trunkρ∞, it is
enough to prove the dimension bound on each Trunkρ∞. Consider our usual grid Br([0, 1]2)
of r-squares, with r � ρ. The subset of those r-squares that are intersected by Trunkρη
(resp. Trunkρ∞) will be denoted by Trunkρ,rη (resp. Trunkρ,r∞ ), and it is clear that in any
coupling where MSTη converges to MST∞, for small enough η > 0 we have |Trunkρ,rη |/9 ≤
|Trunkρ,r∞ | ≤ 9|Trunkρ,rη |, where the factors of 9 accommodate the possibility of the points of
Trunkρ moving across the boundaries of r-squares. Therefore, it suffices to prove that for
any β > 0 there is a sequence rk → 0 such that

P
[
|Trunkρ,rkη | > r

−2+α′2−β
k

]
< 2−k (6.3)

for all small enough η = ηk > 0, because then Borel-Cantelli gives that the lower Minkowski
dimension is almost surely at most 2− α′2 + β.
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To prove (6.3), take λ̄k and εk such that with probability at least 1− 3−k all λk-clusters
have diameter at most ρ/10, all points have a ring of λk-clusters of diameter at least δ > 0 in
their ρ/20-neighborhood, and all λk-clusters of diameter at least δ are connected in MSTλ̄k,εkη .
Condition on this event, denoted by Gk. Then, just as in the proof of Theorem 6.2, every
element of Trunkρ,rη has a λ̄k-near-critical monochromatic 2-arm event from radius r to δ/2.
From near-critical stability, we know that, for any B ∈ Br([0, 1]2), denoting this 2-arm event
by A′2(B, r, δ/2, λ̄k), we have

P
[
A′2(B, r, δ/2, λ̄k)

]
< Cδ,k r

α′2 .

Since 1/(1− 3−k) < 2, the previous line gives

P
[
A′2(B, r, δ/2, λ̄k)

∣∣ Gk] < 2Cδ,k r
α′2 ,

and, summing up over B,

E
[
|Trunkρ,rη |

∣∣ Gk] < 2Cδ,k r
−2+α′2 .

Then, by Markov’s inequality, for any β > 0,

P
[
|Trunkρ,rη | > 2Cδ,k r

−2+α′2−2β
∣∣ Gk] < r2β .

By taking rk > 0 so small that Cδ,k < r−βk and rβk < 3−k, we get that

P
[
|Trunkρ,rkη | > r

−2+α′2−β
k

∣∣ Gk] < 3−k .

Since we have

P
[
|Trunkρ,rkη | > r

−2+α′2−β
k

]
< P

[
|Trunkρ,rkη | > r

−2+α′2−β
k

∣∣ Gk]+ P
[
Gck
]

< 3−k + 3−k ,

we have verified (6.3) and completed the proof.

7 Invasion percolation

The Invasion Tree in a finite graph is simply the MST itself, hence it cannot provide us with
a good finite approximation to InvPerc in the infinite plane. Instead, we will consider the
following finite versions:

• InvPercM,∂
η will be the tree built by the invasion process started from the origin, stopped

at the first time that it reaches ∂[−M,M ]2.

• For a fixed vertex x ∈ V (ηT) and M large enough so that x ∈ [−M,M ]2, we will
denote by InvPercM,x

η the invasion process in the torus T2
M , started from the origin,

stopped at the first time when it reaches x.
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When M → ∞, the weak limits of the above measures are InvPercη = InvPercη(0) and
InvPercη(0)∪ InvPercη(x), respectively. Of course, the latter coincides with InvPercη(0) with
positive probability, and InvPercη(0)4 InvPercη(x) is almost surely finite. These results are
classical [CCN85, AleM94, Ale95, LPS06].

Given the enhanced ε-networks ENλ̄,εη and ENλ̄,ε∞ defined in Proposition 3.8, the cut-off
versions of the above invasion trees, both in the discrete case and in the continuum, can be
defined quite similarly to MSFλ̄,ε (done in Definition 3.10) and MSTλ̄,ε (in Lemma 4.4):

Definition 7.1 (The cut-off invasion trees InvPercλ̄,ε,s in T2
M , with target set ∂ or x).

1. Consider the edge-labelled graph defined in steps 1-3 of Definition 3.10 on the set of
the primal routers of ENλ̄,ε as vertices.

2. Take its giant component, which exists with large probability by Lemma 4.4. On the bad
event that this giant cannot be defined, our cut-off invasion trees will be just degenerate
one-point trees.

3. Take the router closest to the origin 0; in case of a tie, decide in some arbitrary but
fixed manner. This will be called the origin router. Furthermore, consider all routers
that are at most distance s > 0 from the target set ∂[−M,M ]2 or x. By Lemma 4.4,
for any s > 0, if λ is very negative, λ′ is very positive, and ε is small, then with high
probability the set of these target routers is not empty. When it is empty, the invasion
tree will consist of just the origin router.

4. Take the invasion tree process in the above graph, started from the origin router,
stopped when reaching any of the target routers. There may be steps in the invasion
process when more than one edge with label λ lead out of the invaded set; in such a
case, all these edges get invaded simultaneously.

It was proved already in [AiBNW99] that the set of points with degree larger than 1
(i.e., points in the trunk or having a loop) in any subsequential scaling limit of MSTη is
of zero measure. Therefore, almost surely there is a unique path of MST∞ that goes to
the origin, and hence we did not lose any information in the above definition by taking the
router closest to the origin instead of considering all routers that are s-close to it.

Given this definition, we immediately have the following analogues of Corollary 4.5 and
Proposition 4.7. Note the double meaning of the parameter s: if we want to reach precision
s > 0 in dΩM , it is enough to get s-close to the target sets.

Lemma 7.2. For any M > 0, target set ∂ or x ∈ T2
M , and any s, α > 0, if λ < −1

is very negative, ε > 0 is small, and λ′ > 1 is large enough, then, in the coupling of
Proposition 3.8 (ii) between (ωλη ,PPP

ε
λ̄) and (ωλ∞,PPP

ε
λ̄), for all η > 0 small enough,

P
[
dΩM (InvPercλ̄,ε,sη , InvPercλ̄,ε,s∞ ) < s

]
> 1− α .
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Lemma 7.3. For any M > 0, target set ∂ or x ∈ T2
M , and s, α > 0, if λ < −1 is very

negative, ε > 0 is small, and λ′ > 1 is large enough, then, for all η > 0 small enough,

P
[
dΩM (InvPercη, InvPerc

λ̄,ε,s
η ) < s

]
> 1− α ,

where, of course, InvPercη is only a shorthand now for InvPercM,∂
η or InvPercM,x

η .

Using these lemmas, the proof of the following theorem follows exactly the proofs of
Theorem 5.1 and Theorem 1.1.

Theorem 7.4. For any M > 0, the invasion trees InvPercM,∂
η and InvPercM,x

η started at the
origin of ηT ∩ T2

M converge in distribution as η → 0, in the metric dΩM of Definition 2.2,
to the unique scaling limits InvPercM,∂

∞ and InvPercM,x
∞ , respectively.

The invasion tree InvPercη started at the origin of ηT converges in distribution to a
unique scaling limit InvPerc∞ that is invariant under scalings and rotations.

As M → ∞, the weak limit of InvPercM,∂
∞ is InvPerc∞ and the weak limit of InvPercM,x

∞
is InvPerc∞(0) ∪ InvPerc∞(x).

8 Questions and conjectures

We start with a very natural and interesting open problem:

Conjecture 8.1.

(i) Show that MST∞ is not conformally invariant. In particular, show that it is different
from the scaling limit of the Uniform Spanning Tree, described in [LSW04].

(ii) Show that InvPerc∞ is not conformally invariant.

This is of course supported by simulation results [Wil04]. Moreover, it was explained in
[GPS10b] why our description of these scaling limits using the near-critical ensemble gives
serious support to this conjecture, and why it is nevertheless not at all an easy issue. The
case of InvPerc∞ might be simpler, using the results of [DSV09].

Probably the simplest open problem in this section is the following one, left open by
Lemma 6.1:

Conjecture 8.2. Show that there is a unique dual tree MST†∞, measurable w.r.t. MST∞.

The following questions are left open by Theorem 6.2:

Question 8.3 (Topology of MST∞).

(i) Are there non-simple paths giving figures of 6, i.e., points with degree type (2, 1)?

(ii) Show that almost surely there are no points of degree 4.

Finally, sharpening the bound of Theorem 6.3 would probably require new techniques:

Question 8.4. Find the Hausdorff dimension of the paths of MST∞.
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