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The mosaic model of brain evolution postulates that different brain regions are

relatively free to evolve independently from each other. Such independent evol-

ution is possible only if genetic correlations among the different brain regions

are less than unity. We estimated heritabilities, evolvabilities and genetic corre-

lations of relative size of the brain, and its different regions in the three-spined

stickleback (Gasterosteus aculeatus). We found that heritabilities were low (aver-

age h2 ¼ 0.24), suggesting a large plastic component to brain architecture.

However, evolvabilities of different brain parts were moderate, suggesting the

presence of additive genetic variance to sustain a response to selection in the

long term. Genetic correlations among different brain regions were low (average

rG ¼ 0.40) and significantly less than unity. These results, along with those from

analyses of phenotypic and genetic integration, indicate a high degree of

independence between different brain regions, suggesting that responses to

selection are unlikely to be severely constrained by genetic and phenotypic

correlations. Hence, the results give strong support for the mosaic model of

brain evolution. However, the genetic correlation between brain and body

size was high (rG ¼ 0.89), suggesting a constraint for independent evolution

of brain and body size in sticklebacks.

1. Introduction
The expected magnitude of evolutionary response to unit of directional selec-

tion is directly proportional to the amount of additive genetic variance in the

trait under selection [1]. However, apart from additive genetic variance, genetic

covariances among traits are also important. Strong genetic covariances among

traits can constrain or even prevent responses to selection if the correlated

changes in other traits reduce fitness [2]. Accordingly, quantitative genetics

and the genetic variance–covariance matrix (G) occupy a central position in

predicting and understanding multivariate evolution in space and time [2–6].

While studies focused on the evolution of brain size and brain architecture

have a long history in evolutionary biology (e.g. [7–9]), quantitative genetic

studies of brain architecture are scarce. This is understandable considering

that much of the research in brain architecture has been based on comparative

approaches where inferences have been drawn from patterns of interspecific

variability (e.g. [9–11]). However, evolutionary studies focused on intraspecific

variability have been far less common until recently (reviewed by Gonda et al.
[12]). Accordingly, apart from studies of primates (e.g. [13–17]) and mice/rats

(e.g. [18–20]), little work has been conducted on quantitative genetics of brain

architecture (but see [21,22]). This is in spite of the fact such studies could aid in

disentangling the two competing hypotheses of brain evolution: the mosaic

model and the concerted model.

The mosaic brain evolution hypothesis postulates that different brain regions

are essentially free to evolve independently of one another [23]. Conversely, the
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concerted brain evolution hypothesis posits that developmental

and genetic constraints make independent changes in the size of

different brain regions difficult [24–26]. Neither of these hypoth-

eses is likely to be strictly right or wrong, but the degree of

non-independence among different brain regions is likely to

vary, and also from one organism to another. Strong yet indirect

support for the mosaic model of brain evolution has been pro-

vided by quantitative trait locus (QTL) mapping studies [27]

as well as experiments demonstrating differential plasticity in

different brain regions in response to environmental conditions

experienced during development (e.g. [28–31]). Nevertheless,

a more direct approach to address this hypothesis would require

genetic data on the magnitude and patterns of genetic covariation

among the size of different brain regions.

The main aim of this study was to investigate the genetic

architecture of brain size variability in three-spined sticklebacks

(Gasterosteus aculeatus), with particular emphasis on addressing

one of the key distinctions between the mosaic and concerted

models of brain evolution: is the evolution of different brain

regions severely constrained by strong phenotypic and genetic

correlations among them? To this end, we estimated the pheno-

typic and genetic correlations among different brain regions

using quantitative genetic methods. In addition, we assessed

the heritabilities and evolvabilities of the brain size and differ-

ent brain regions to further evaluate their freedom to evolve or

respond to environmental influences through genetic changes

or phenotypic plasticity, respectively. If unconstrained by

high genetic correlations, low heritabilities would enable differ-

ent brain regions to respond to environmental demands

through plasticity, whereas high heritabilities (and/or evolv-

abilities) would allow fast and independent evolution of

different brain regions.
2. Material and methods
(a) Sampling and breeding
Adult three-spined sticklebacks were collected at the onset of

their reproductive season (7–13 June 2011) with a seine net

from the Baltic Sea in Helsinki (6081105400 N; 2580802200 E), and

transported to the aquaculture facilities of the University of Hel-

sinki. To provide optimal conditions for reproduction, the water

temperature was set to 178C and photoperiod to 24 L : 0 D cycle.

The fish were fed twice a day with frozen bloodworms (Chirono-
midae sp.). Once a sufficient number of females had reached

reproductive state, all the in vitro crosses were made within a

3 day (14–15 June 2011) time interval.

The crosses were made by over-anaesthetizing males with

MS222 (tricaine methanesulfonate), dissecting their testicles and

mincing them in a drop of water to make a sperm solution.

The eggs from the females were gently squeezed out onto

Petri dishes and the sperm solution was poured over them.

The fertilized clutches were kept separately in Petri dishes

filled with filtered tap water which was changed daily until

hatching. The clutches were checked under a dissecting micro-

scope (daily until hatching) and all unfertilized or dead eggs

were removed. For quantitative genetic inference, we applied a

paternal half-sibling design [2] in which each male (n ¼ 15)

was crossed with two randomly chosen females (n ¼ 30 females

in total). In total, 30 half- and full-sibling families were produced.

The clutches hatched about 6 days after fertilization. Twenty

freshly hatched fry were used from every clutch. Four replicate

pools were created by mixing five randomly selected fry from

every family (n ¼ 150 fry per pool). The pools were housed in

2.8 l tanks (one pool per tank) in an Allentown Zebrafish Rack
System (hereafter rack; Aquaneering Inc., San Diego, CA, USA)

equipped with physical, chemical, biological and ultraviolet

filters. For unknown reasons, two of the four replicates experi-

enced mass mortality soon after they were established. On 22

July 2011, the two remaining pools were moved to large plastic

tanks (760 � 540 � 400 mm) equipped with a one-way flow

through water system supplying filtered tap water. To mimic

summer conditions and to facilitate growth, fish were kept at

158C water temperature and constant light during the rack-

rearing period. Feeding started with live brine shrimp nauplii

(Artemia sp.), and changed towards an Artemia and chopped

bloodworm mix, and finally, to bloodworms. Food was provided

twice a day, ad libitum. At the age of about five months

(8 November), fish from the two pools were further divided

into four 317 l aquaria (1400 � 780 � 290 mm). Two aquaria

were subjected to an environmental enrichment treatment

(electronic supplementary material, file S1), and two were kept

as controls. In both treatments, the fish were maintained under

a 20 L : 4 D daily regime. As these treatments had no effect on

estimates of quantitative genetic parameters (electronic sup-

plementary material, file S1), but influenced mean trait values,

their effects were statistically controlled for in all analyses

(see below) without further discussion.

(b) Measurements
Between 5 and 9 December (i.e. approx. one month after

exposure to the treatments), all fish were over-anaesthetized

with MS222. Fish were weighed with a digital balance to the

nearest 0.01 g and their standard length (from tip of the mouth

to end of the tail base) was measured using a digital calliper to

the nearest 0.01 mm. After the measurements were recorded,

brains were dissected and placed into a 4% formalin—0.1 M

phosphate-buffered saline solution for fixation. At the end of

the experiment, brains from 231 individuals were used for

further measurements and analyses.

Total brain and brain part volumes were estimated with ellip-

soid models based on three-dimensional linear measures (e.g.

[29–34]). Linear measurements for the ellipsoid model were esti-

mated from digital photographs of the dorsal, lateral and ventral

sides of the brain, taken with a Sigma 105 mm macro lens

mounted to a Nikon D80 digital camera. All brain photographs

were taken from a standard distance and angle, with a strip of

millimetre paper added for a size reference. Width, height and

length of the brain and main brain regions (bulbus olfactorius,

telencephalon, tectum opticum, cerebellum, hypothalamus)

were measured from the photographs using TPS.DIG v. 1.37 soft-

ware [35]. They were defined as the greatest distance enclosed

by the given brain region as depicted in the electronic sup-

plementary material, file S1. Total brain size was estimated in

two ways: using the ellipsoid model for total brain size, and by

summing the estimated sizes for all of the different brain regions.

To see whether our measurements were repeatable, we repeated

the full process (photographing and digital measurements) three

times on 20 randomly selected brains. Repeatabilities (R; [36]) for

the volume estimates were high (0.77 , R , 0.97; all p , 0.001;

electronic supplementary material, file S1). This, together with

the fact that the ellipsoid model estimates of brain volume were

strongly correlated with the wet mass of total brain (r ¼ 0.94,

t229 ¼ 41.58, p , 0.001) as well as with height, width and length

of brain (r � 0.84, t229 � 23.24, p , 0.001) suggest that our ellipsoid

model estimates of brain and brain region sizes were likely to be

very good.

(c) Offspring assignment to parents and sexing
Because fish from different half-sibling families were pooled in

experimental aquaria, individual offspring were assigned to

their parents with the aid of microsatellite markers. After DNA

http://rspb.royalsocietypublishing.org/
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extraction (details in the electronic supplementary material, file

S2), seven or more polymorphic microsatellite loci were ampli-

fied from all individuals used in the experiment and also from

their parents (electronic supplementary material, file S2). Results

were checked for typographical and genotyping errors as well as

for null alleles with MICRO-CHECKER software [37]. Offspring

assignment to parents (30 families) was conducted using a maxi-

mum-likelihood (ML) method implemented in CERVUS v. 3.0 [38].

All offspring could be assigned to their parents with high confi-

dence (electronic supplementary material, file S2). Offspring sex

was identified by amplifying a part of 30UTR of the NADP-

dependent isocitrate dehydrogenase (Idh) gene [39] as explained

in the electronic supplementary material, file S2.
 oc.R.Soc.B
282:20151008
(d) Statistical and quantitative genetic analyses
An animal model approach was used to estimate levels and pat-

terns of genetic and phenotypic variation and covariation in the

data, as implemented in the MCMCglmm package in R [40]. The

genetic basis (i.e. heritability, evolvability; see below) of the brain

size and its different regions was examined using univariate

animal models including sex, treatment (control or enriched),

block (one of the two aquaria within a given treatment, which

were nested within a treatment), and sex � treatment interaction

as fixed effects. Standard length was added as a covariate to con-

trol for allometric effects. Results of the fixed effects can be found

in the electronic supplementary material, file S3. Note that the

use of total brain size to control for allometric effects yielded

qualitatively similar results and conclusions. An ‘animal’ term

linked to the pedigree (estimating additive genetic variance),

and a ‘dam’ term accounting for possible maternal effects were

included into the models as random effects. An inverse Wishart

prior (V ¼ 1, n ¼ 0.002) was used for the variance component

estimation, and the models were run for 5 000 000 iterations dis-

carding the first 2 500 000 runs as burn-in, and sampling every

500th iteration. As a result, 5000 samples from the posterior dis-

tribution were obtained. The models were run both with and

without pedigree information, and comparisons of deviance

information criterion (DIC) revealed that models with the

pedigree information were always better than those without

(electronic supplementary material, table S1).

To examine the multivariate relationship (i.e. phenotypic and

genetic correlations) between different brain regions, a series of

bivariate models were run, first on the phenotypic level and

then at the genetic level. Fixed effect structure was as for univariate

models, and an inverse/Wishart prior (V ¼ phenotypic variance/

4, n ¼ 2) was also used. Bivariate phenotypic models were run for

1 000 000 iterations, the first half of which were discarded and

every 500th iteration was sampled, yielding 1000 posterior

samples. For the genetic models, the number of iterations

was increased to 15 000 000, discarding the first 5 000 000, yielding

20 000 posterior estimates. When estimating the genetic corre-

lation between total brain size and standard length, 10 000 000

iterations were used. Posterior distributions and autocorrelations

of all models were visually inspected to ensure good mixing of

the chains and low (,0.1) autocorrelation of estimates.

To further investigate patterns of genetic and phenotypic

integration in brain, principal component analysis (PCA) was

performed on genetic (G) and phenotypic (P) correlation

matrices using prcomp function implemented in the stats pack-

age in R [41]. Similarity of G- and P-matrices were compared

with a Mantel’s test with 10 000 permutations using the vegan
package in R [42]. Partial genetic and phenotypic correlations

were used to evaluate correlations remaining between two

brain regions with effects of all other brain regions partialled

out. They were calculated directly from genetic and phenotypic

correlation matrices using the corpcor package in R [43].
Brain–body size allometry was evaluated to get further

insights on possible constraints for brain size evolution (cf. [7]).

The allometric coefficient (b) of brain–body size relationship was

estimated from a linear mixed effect model, treating brain size as

a response variable, standard length as a covariate, and sex, treat-

ment and sex � treatment as fixed factors. Sire and dam (nested

within sire) effects were included as random effects. To probe

whether the observed level of allometry is probably owing to:

(i) brain size evolving as a response to selection acting on body

size, or (ii) allometry evolving as a response to selection acting

on brain size, we used the following two equations from Lande [7]:

a1 ¼ g

ffiffiffiffiffiffiffiffiffiffiffi
h2

brain

q
� CVPbrainffiffiffiffiffiffiffiffiffiffiffi

h2
body

q
� CVPbody

(2:1)

and

a 2 ¼
1

g

ffiffiffiffiffiffiffiffiffiffiffi
h2

brain

q
� CVPbrainffiffiffiffiffiffiffiffiffiffiffi

h2
body

q
� CVPbody

: (2:2)

Here, a1 and a2 refer to allometric slopes in situations where selec-

tion is acting only on body size (a1) or on brain size (a2), g is the

genetic correlation between brain and body size, h2 is heritability

and CVP is the coefficient of phenotypic variation, which is approxi-

mately equal to the standard deviation of ln transformed trait [7].

All estimated parameters (h2, CVs, r’s) are reported as

posterior modes with the 95% highest posterior density intervals

(95% HPDI) unless otherwise noted. In all analyses, all traits

were log10 transformed prior the analyses. However, coefficients

of additive genetic (CVA), phenotypic (CVP) variation and

evolvability (IA) were obtained from models without transform-

ations (cf. [44]). CVA’s were estimated by dividing
ffiffiffiffiffiffiffi
VA

p
with the

trait mean, whereas IA was estimated by dividing VA with

squared trait mean [45].

Finally, we note that all quantitative genetic parameters (i.e.

heritabilities, evolvabilities, allometries and genetic correlations)

were also estimated using alternative proxies of brain size (viz.

brain mass, height, width and depth) and brain regions (viz.
height, width and depth) to assess the robustness of our infer-

ence. Since the usage of these alternative proxies returned

results and conclusions similar to those obtained using ellipsoid

model estimates, only the latter are reported.
3. Results
(a) Heritabilities and evolvabilities
Heritability estimates of brain size and the size of different brain

regions were relatively low (mean h2 ¼ 0.24+0.08 (s.d.)) and

roughly similar across different traits (table 1). Maternal effect

influences on all brain traits were significant, and generally

lower than the additive genetic effects, with the exception of

brain size for which the maternal effects coefficient (VM/VP ¼

0.40) exceeded its heritability (table 1). Phenotypic coefficients

of variation (CVP) averaged at 12.17% (+5.98 (s.d.); electronic

supplementary material, table S1) and were higher than their

genetic counterparts (mean CVA ¼ 5.50+2.43% (s.d.); table

1). Evolvabilities for brain size and brain regions averaged

at 0.30% (+ 0.21 (s.d.); table 1). Heritability of body size (h2 ¼

0.34; HPDI: 0.15–0.55) was of similar magnitude to that of the

size of different brain regions (table 1).

(b) Phenotypic, genetic and environmental correlations
Both phenotypic (mean rP ¼ 0.33+ 0.16 (s.d.)) and genetic

correlations (mean rG ¼ 0.40+0.27 (s.d.)) among different
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brain regions were relatively low (table 2), but highly corre-

lated with each other (Mantel test; r ¼ 0.90, p , 0.01). The

largest genetic correlation (rG ¼ 0.78; HPDI: 0.06–0.92) was

observed between the telencephalon and optic tectum, but

as in the case of the other correlations, this correlation was

also significantly less than unity (table 2).

The relatively low degree of both phenotypic and genetic

integration in the stickleback brain was also obvious from the

PCA results: although the eigenvalues were low, the second

to fifth eigenvectors tended to load heavily on a single variable

in both P and G matrices, suggesting that they effectively

described variation in one brain region (electronic supplemen-

tary material, table S2). Likewise, partial correlations among

different matrix elements were mostly low both for P and G

(table 3), suggesting a high degree of independence among

different brain regions. Notably, the highest phenotypic and

genetic partial correlations occurred between the telencephalon

and optic tectum, and between the optic tectum and cerebel-

lum (table 3). These are also the brain regions showing the

highest genetic correlations among each other (table 2).

(c) Brain – body size allometry
In spite of the strong positive genetic correlation between

brain and body size (rG ¼ 0.89; HPDI ¼ 0.12–0.96), the

(hypo)allometric relationship between brain and body size

had a relatively low allometric coefficient (b ¼ 0.33+0.03

(s.e.)). Solving equation (2.1) yielded an estimate of allometric

slope a1 ¼ 0.27 (HPDI: 0.04–0.51), whereas the correspond-

ing estimate from equation (2.2) was a2 ¼ 1.04 (HPDI:

0.22–1.94). Hence, the allometric coefficient obtained assum-

ing selection acting only on body size (a1) is more similar to

the observed brain–body size allometry (b) than that

obtained assuming selection mainly on brain size (i.e. a2).
4. Discussion
The most salient finding of this study was the relatively weak

phenotypic and genetic integration of the three-spined stickle-

back brain. Estimated phenotypic and genetic correlations

among different brain regions were relatively low, and the gen-

etic correlations were significantly less than unity. These

findings give support for the mosaic model of brain evolution,

according to which natural selection can change one brain area

without being constrained by genetic correlations with other

areas [23–26,46]. The relatively low genetic correlations were

accompanied by low heritabilities of different brain regions.

This finding lends further support for the mosaic model of

brain evolution: as there is only a small genetic component

to the size of different brain regions, they have the freedom

to respond to environmental demands through plasticity.

The central tenet of the ‘strict’ concerted model of brain evol-

ution is that different brain regions are not free to evolve

independently from each other. Although not often expressed

in quantitative genetic terms (but see [12]), this translates to

the expectation of high genetic correlations among brain

regions. We found that the genetic correlations were on average

moderate at best, and all significantly less than unity. Hence,

although some of the individual correlations were high, inde-

pendent selection responses in different brain regions should

still be possible. These results are in agreement with the findings

of a QTL study showing that different major loci are involved

in determining the size of different brain regions in mice [27].

http://rspb.royalsocietypublishing.org/


Table 2. Genetic (rG; below diagonal) and phenotypic (rP; above diagonal) correlations between different brain regions. (Statistically significant correlations are
in italics and values inside the brackets indicate highest posterior density interval (HPDI).)

trait bulbus olfactorius cerebellum hypothalamus tectum opticum telencephalon

bulbus olfactorius 0.21

(0.08 – 0.32)

0.24

(0.14 – 0.38)

0.18

(0.03 – 0.28)

0.18

(0.05 – 0.30)

cerebellum 0.29

(20.59 to 0.75)

0.24

(0.10 – 0.36)

0.54

(0.44 – 0.63)

0.47

(0.34 – 0.55)

hypothalamus 0.06

(20.60 to 0.72)

0.37

(20.53 to 0.77)

0.28

(0.13 – 0.37)

0.32

(0.21 – 0.45)

tectum opticum 0.22

(20.56 to 0.74)

0.71

(20.06 to 0.89)

0.46

( – 0.45 to 0.78)

0.64

(0.56 – 0.72)

telencephalon 0.03

(20.67 to 0.69)

0.72

(20.11 to 0.91)

0.35

(20.44 to 0.81)

0.78

(0.06 – 0.92)

Table 3. Partial genetic (below diagonal) and phenotypic (above diagonal) correlations between brain regions.

trait bulbus olfactorius cerebellum hypothalamus tectum opticum telencephalon

bulbus olfactorius 0.11 0.18 0.03 0.03

cerebellum 0.32 0.06 0.34 0.17

hypothalamus 20.08 0.12 0.06 0.17

tectum opticum 0.22 0.19 0.29 0.50

telencephalon 20.34 0.45 20.08 0.58
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The low degree of integration in the stickleback brain was also

evident from the phenotypic data, which is the level at which

selection operates. After controlling for the influence of other

brain regions on variation in a given bivariate correlation,

little correlation remained, suggesting that the shared genetic

influence on brain traits is quite small. Likewise, spectral

decomposition of the phenotypic and genetic correlation

matrices among different brain regions using PCA revealed

that after extracting the first eigenvector, the variation captured

by the subsequent eigenvectors in both phenotypic and genetic

matrices were typically attributable to single brain regions. All

this suggests a low level of integration in the stickleback brain

and supports the mosaic model of brain evolution.

Brain size typically shows an (hypo)allometric relation-

ship with body size, and hence, selection on one trait is

expected to lead to correlated responses in the other trait.

For instance, it has been suggested that in closely related

mammalian taxa, brain size differentiation would have

occurred mainly as a correlated response to directional selec-

tion acting on body size [9]. By contrast, Gonzalez-Voyer et al.
[47] suggested that brain and body size have been free to

evolve relatively independently in African cichlid taxa. How-

ever, such comparative analyses are based on a number of

assumptions. One such assumption is that the observed phe-

notypic patterns in allometries reflect underlying genetic

allometries [7,20,48]. Our results show that there is indeed a

strong genetic correlation between brain and body size,

suggesting a constraint for independent evolution of brain

and body size in sticklebacks. Comparisons of observed

and expected allometric slopes under different evolutionary

scenarios supported this view: the observed allometry was

more compatible with the model assuming that brain size
has evolved as a correlated response to selection on body

size, rather than as a response to selection on brain size.

The observed low heritability of the total brain size and its

different parts is in stark contrast with the estimates from

human studies, which typically show very high (h2 � 0.66–

0.97) heritabilities of various anatomical brain features including

size and/or volume of the total brain and its different parts (e.g.

[17,49]). Relatively high heritability estimates of total brain size

have also been reported from other primate species [50,51],

rodents [18,19] and birds [21]. However, these are all taxa

with determinate growth, whereas fishes exhibit indeterminate

growth and neurogenesis that continues throughout life in all

parts of the brain [52,53]. Hence, the relative contribution of

environmental influences on fish brain architecture may

exceed that seen in vertebrate taxa with determinate growth.

However, the data on this effect are still scant, and to the best

of our knowledge, there is only one earlier study that has

focused on heritability of brain size in fishes [22]. Nevertheless,

the low heritability of the size of the brain and its different parts

in sticklebacks is compatible with a large body of research show-

ing a high degree of phenotypic plasticity in these traits in

various fish species [28–31,34,54,55], including the three-

spined stickleback [56]. Also noteworthy in this context are

the significant and sometimes relatively large (in comparison

to heritabilities) maternal effect influences on the size of differ-

ent brain regions found in our study. Although the study design

does not allow partitioning of maternal effect influences into

their genetic and environmental components, the fact that a

large fraction of the variability in brain traits is attributable to

environmental and maternal effect influences underlines the

importance of factors other than additive genetic effects as

determinants of phenotypic variance in fish brain.
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Although heritability can predict short-term evolutionary

responses to selection [1,2], low heritabilities, such as those

observed in this study, do not necessarily implicate low

evolvability: large environmental and non-additive genetic con-

tributions to phenotypic variance can hide substantial additive

genetic variance in a trait [45,57]. The observed coefficients of

additive genetic variance for different brain regions were

moderately high (average CVA ¼ 6.31%) and similar to those

typically observed for fitness-related life-history traits [56]. Simi-

larly, the evolvabilities (IA) of different brain regions—indicative

of the expected change (%) in the trait mean if the trait was sub-

ject to unit selection [45]—were moderate (average IA ¼ 0.35%)

and similar to those usually observed in life-history and physio-

logical traits [45]. However, the CVA and IA for total brain size

were low (CVA ¼ 1.47%; IA ¼ 0.02%). For instance, the average

CVA in human brain size as estimated across 28 different studies

is 7.8% [58], and evolvabilities as low as those estimated in this

study are typically encountered only in studies focused on the

genetics of developmental instability [45]. The low evolvability

estimates for brain size could be indicative of it having been sub-

ject to history of strong stabilizing selection (cf. [58]). However,

in the view that brain size is a high-dimensional composite

trait which should accumulate genetic variance through all

genes influencing its different parts, this explanation seems unli-

kely. Instead, we suspect that the low evolvability estimates (i.e.

CVA and IA) in this study are caused by the ellipsoid model

underestimating variability in the total brain size in this species.

This possibility is supported by the facts that: (i) if brain size is

estimated as a sum of the different brain regions, CVA and IA

estimates rebounded to the levels observed for different brain

regions, and (ii) the evolvability estimates for brain mass

(CVA ¼ 5.67%, IA ¼ 3.2%) are very similar to the sum-of-parts

estimates. Hence, we conclude that evolvabilities of the size of

the brain and its different regions appear to be similar to those

observed in human studies.

The ellipsoid model [33] we used to estimate the size of the

different brain regions is likely to have lower resolution than

more sophisticated methods such as magnetic resonance ima-

ging [58] and histology (e.g. [27]) that are increasingly used to

characterize variability in brain structures. However, the ellip-

soid model is widely used in evolutionary studies of brain size

variability and has been shown to yield reasonable estimates

of the size of different brain regions [33]. Furthermore, we

have no reason to believe that estimates from the ellipsoid

model would bias the estimates of quantitative genetic par-

ameters, especially since: (i) the repeatability estimates for all

of the brain regions were very high (electronic supplementary

material, file S1), and (ii) because ellipsoid model (sum-

of-parts) and mass estimates of brain size returned similar

variance (viz. h2, CVA, IA) and covariance (viz. rG, rP) estimates.
Furthermore, by inference, if the ellipsoid model estimates for

different brain regions had been poor, we would not have

expected the sum-of-parts estimates for total brain size corre-

late strongly (r ¼ 0.94) with the mass based estimate of total

brain size. Another limitation of our study is the relatively

low power to estimate higher order quantitative genetic par-

ameters such as genetic correlations. However, although the

credible intervals surrounding our posterior modes were

large, the estimates were still accurate enough to show that

they did not encompass unity. Likewise, they are not expected

to be biased [59]. Finally, we denote that our inference is based

on estimates obtained from a single population in particular

environmental conditions and hence the results might not

apply to other populations and environments [2,48]. However,

given that we used F1-offspring from wild collected parents

from an outbred population, the estimates should not at least

be biased by inbreeding effects.

In conclusion, the results give strong support for the

mosaic model of brain evolution, showing that genetic corre-

lations among different brain regions are relatively low and

significantly less than unity. The low heritabilities of the

size of the brain and its different parts suggest an important

role of phenotypic plasticity in shaping the size of different

brain regions—a suggestion also supported by data accumu-

lated from empirical studies of neural plasticity in fishes. In

spite of the relatively high degree of genetic and phenotypic

independence among the different brain regions, the high

genetic correlation between brain and body size suggests

that allometry may constrain independent evolution of

stickleback brain and body size.
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