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1 Research Institute for Particle and Nuclear Physics,

Wigner RCP H-1525 Budapest 114, P.O. Box 49, Hungary and
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I. INTRODUCTION

Compact binaries (i.e. black holes, neutron stars and white dwarfs) with non-vanishing eccentricity are promising
gravitational wave (GW) sources. Stellar mass compact binaries that are driven by GW emission may be detected
within the sensitivity band of the forthcoming gravitational wave observatories [1] advanced LIGO [2] and Virgo [3].
The source signals will be visible by these detectors for a longer time period because of their increased sensitivity,
hence the need of an accurate description of both the orbital evolution and of the emitted GWs of these systems. In
the adiabatic inspiral regime of binary systems when the inspiral timescale is much larger than the timescale of the
orbital evolution the perturbative post-Newtonian (PN) description can be applied to high accuracy [4]. For isolated
binaries radiation reaction drives the system toward the circularization of the orbit leading to the disappearance of
any initial eccentricity [5]. The evolution of circular sources is extensively described in the literature, and by now the
theoretical predictions of compact binaries with negligible eccentricity have even reached the level of 4th order in the
PN approximation, see e.g. [6].
In spite of the general circularization of binary orbits due to GW emission, when the interaction of binaries with

their environment is relevant they can remain on orbits with non-negligible eccentricity even towards the end of their
evolution. For example, there are indications that binaries in dense galactic nuclei [7, 8], embedded in a gaseous
disk [9, 10] can remain eccentric until the end of their inspiral. Moreover, the interaction of supermassive black hole
binaries with star populations [11, 12] and the Kozai mechanism and relativistic orbital resonances in hierarchial
triples [13–16] can also increase orbital eccentricity.
A standard reference to the description of the 1PN corrected Kepler motion is the work of Damour and Deruelle in

Ref. [17], where three eccentricities, (radial, time and angular eccentricity) have been introduced. With the help of
the Damour-Deruelle parametrization the evolution of the semi-major axis and the radial eccentricity due to radiation
reaction has been computed by Junker and Schäfer in Ref. [18]. Recently, the explicit time evolution of the semi-major
axis and the radial eccentricity has been given in Ref. [19], while the explicit phase of eccentric binaries can be found
in Ref. [20]. These results have been generalized for the time and phase functions in Ref. [21].
In matched filtering the measured signal output of the detectors is cross correlated with theoretical waveform

templates. The presence of orbital eccentricity influences significantly the properties of the gravitational waveforms,
resulting in the decrease of their detectability when using circular templates. Leading order PN gravitational wave-
forms for binaries with eccentricity were presented in Ref. [22]. A rather complete, explicit description of the
time-dependent waveform to leading PN order was given in Ref. [23], making use of the Fourier-Bessel expansion for
the unperturbed motion. Frequency domain waveforms for arbitrary eccentricities with the inclusion of the relativistic
pericenter precession effect were first presented in [21]. In Ref. [21] the parameter estimation accuracy for leading
PN order waveforms with different initial eccentricities using the Fisher matrix method has been analyzed, taking
into account the evolution of the orbital frequency and eccentricity due to the radiation reaction. It has been shown
in [21] that the precision of source localization improves significantly for supermassive black hole binaries when the
eccentricity is properly taken into account. Recent works have shown that even if Fisher matrix analysis remains
quite robust for high SNR signals, sources that may be detected by ground based detectors may require a different
approach, e.g., Bayesian analysis, [24–26].
The first post-Newtonian eccentric waveforms with a Newtonian type parametrization for bound orbits has been

computed quite some time ago by Wagoner and Will [27]. In the parametrization used in Ref. [27] secular terms have
appeared, however, in the gravitational waveforms, which had to be eliminated in the 1PN order terms. Using the
Damour-Deruelle parametrization, secular terms can be eliminated with the help of the eccentric anomaly parameter
as implemented in the work of Ref. [18]. Gravitational waveforms with eccentricity in the Fourier domain have
been given up to 1PN order using the Damour-Deruelle parametrization [28] and more recently to 2PN order in Ref.
[29]. 3PN instantaneous contributions to the spherical harmonic modes of gravitational waveforms for binary systems
in general orbits were given in [30]. Moreover, for sources entering the sensitivity band of the advanced detectors
with small eccentricities (e < 0.4) the post-circular or small-eccentricity approximation can also provide ready-to-use
Fourier-domain waveforms for data analysis of eccentric inspirals [31, 32].
In data analysis small residual eccentricities e ≤ 0.05 have negligible effects and a circular search is satisfactory for

the detection of such binaries [33, 34]. In the case of higher eccentricities searches that specifically target eccentric
sources will be necessary. For low-mass (≤ 10M⊙) spinning and eccentric (e < 0.6) compact binary coalescences,
however, seedless clustering provides a robust and computationally efficient method for their detection [35, 36].
Another important sources of GWs are highly eccentric binaries formed e.g. through various n-body interactions.
Such binary systems emit a sequence of largely isolated gravitational-wave bursts prior to merger. As existing GW
searches are not well suited to detect these signals, searches for excess power over an ensemble of time-frequency
tiles has been developed [37, 38]. This method achieves substantially better sensitivity to eccentric binary signals
than existing localized burst searches and allows for model-independent tests of Einsteins theory in the high-velocity,
strong-field regime.
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The present work builds on our previous results in [21], in this paper we compute ready-to-use eccentric 1PN
waveforms in time and frequency domain using the stationary phase approximation (thereafter SPA). We use the
generalized true anomaly parametrization, which has the advantage that the solution of the equations of motion can
be expressed with two eccentricities, instead of three. Secular terms appearing in the waveforms are eliminated by the
use of the Poincaré-Lindstedt method in [39] and the introduction of the drift true anomaly parameter similarly as
in Ref. [40]. This new type of parametrization can also be useful in higher orders of the PN expansion. The resulting
waveforms have a remarkably simple, compact analytic structure making them quite suitable for the application in
gravitational wave parameter estimation studies. It is clearly important to extend the leading order Fisher type
parameter estimation of the binary system to the full 1PN order, where it is essential to maximally simplify the
gravitational waveforms. Our results can be used as a starting point for such a full 1PN order Fisher type analysis.
We present fully analytical expressions for the evolution of the orbital frequency and of the radial eccentricity up

to 1PN accuracy. More specifically, we derive explicit 1PN formulae for arbitrary orbital eccentricities, including the
radiation reaction terms. The solution up to 1PN order is given in terms of Appell functions, generalizing slightly some
results in Ref. [21]. The time and phase functions appear explicitly in the 1PN order frequency domain gravitational
waveforms.
In order to express the gravitational waveforms with arbitrary eccentricity as simply as possible, we have made

extensive use of the Hansen expansion applied in celestial mechanics. In the present work we have also given a (slight)
generalization of the venerable Hansen coefficients up to 1PN order. The use of a Hansen-type expansion was natural
because of the appearance of different eccentricities in the radial parametrization and the time-evolution equation
(i.e. the Kepler equation). In the course of the present work we also had to extend the standard Hansen expansion to
allow for cases, when the phase is not an integer multiple of the drift true anomaly. Our work focuses on the explicit,
non-secular, ready-to-use, 1PN-accuracy eccentric waveforms, which can be applied in Fisher method for gravitational
waves data analysis.
The paper is organized as follows. We introduce the generalized true anomaly parameterization and the original 1PN

waveform in Sec. II. Sec. III. contains the extension of the Hansen coefficients to 1PN order and the Fourier domain
SPA waveforms. The radiation reaction problem and the evolution of the time and phase functions to 1PN order are
given in Sec V. Some of the technical details are presented in Appendices (A-E), i.e. tensor spherical harmonics (A),
Damour-Deruelle parameterization (B), Hansen coefficients (C) and parametrization of the waveforms (D-E).

II. PARAMETERIZATION OF THE 1PN DYNAMICS

In this Section we describe the 1PN orbital dynamics of compact binaries. Moreover, we compute the full eccentric
1PN waveform with the use of the generalized true anomaly parameterization φ without the appearance of secular
terms in the expressions. The time-domain waveforms are given with the application of the generalized Hansen
expansion. Our aim is to express the full analytic eccentric frequency-domain waveform up to 1PN order.
The equations of motion of the Newtonian and 1PN dynamics is given by [17]. The radial and angular motion can

be separated in the leading order, so the Euler-Lagrange equations are

(

dr

dt

)2

= D1 +
2D2

r
+

D3

r2
+

D4

r3
, (1)

dθ

dt
=

D5

r2
+

D6

r3
, (2)

where r is the relative distance, θ is the azimuthal polar angle in the orbital plane and the constants D1−6 depend
on the conserved quantities of the perturbed motion such as the energy and the magnitude of the orbital angular
momentum, see Appendix B. The constants D1−3, D5 contain Newtonian and 1PN terms while D4 and D6 are purely
1PN corrections.
In the following we consider the Euler-Lagrange equations and give their solution with the generalized true anomaly

similarly to the Damour-Deruelle parameterization. We introduce the generalized true anomaly parameterization φ
(denoted by χ in [41]) as

r =
ar(1− e2r)

1 + er cosφ
, (3)

where ar is the semi-major axis and er is the radial eccentricity. This parameterization has the same form as the
standard, Keplerian one, with the orbital parameters ar, er, containing only the leading order (Newtonian) terms.
The radial motion can be computed using the true anomaly parameterization, so we obtain a Keplerian equation for
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the 1PN dynamics [17]:

n(t− t0) = u− et sinu ≡ M , (4)

where u resp. M are the eccentric resp. mean anomaly parameter. We introduce yet another parameterization, where
only two eccentricities appear, and the evolution of the azimuthal angle θ is still governed by a simple equation. The
relations between u and φ is given by

tan
φ

2
=

√

1 + er
1− er

tan
u

2
. (5)

The angular evolution of this Keplerian motion can also be expressed with the help of the generalized true anomaly
parameter. From Eqs. (3) and (4) the time evolution of the true anomaly up to 1PN order is found to be given as

φ̇ =
na2r(1 − e2r)

3/2

r2(1 − eter + (er − et) cosφ)
. (6)

The integration of Eq. (6) with the help of (3) leads to the relation

θ − θ0 = (1 + κ1)φ+ κ2 sinφ , (7)

where we have introduced the 1PN order quantities

κ1 =
3GM

c2ar(1− e2r)
, κ2 =

Gµer
2c2ar(1 − e2r)

. (8)

In our formulae G resp. c denote the gravitational constant, resp. the speed of light, m1,m2 are masses of the compact
binary, M = m1+m2 is the total mass and µ = m1m2/M is the reduced one. In this parameterization only radial and
time eccentricities (er, et) appear while angle eccentricity does not. In equations (4) and (7) t0 and θ0 are integration
constants and in our calculations we set t0 = θ0 = 0.
Based on Ref. [42] the gravitational radiation field up to 1PN order can be written as

hTT
ij =

G

c4DL

[

2
∑

m=−2

(2)

I 2mTE2,2m
ij +

1

c

(

2
∑

m=−2

(2)

S 2m TB2,2m
ij +

3
∑

m=−3

(3)

I 3mTE2,3m
ij

)

+
1

c2

(

3
∑

m=−3

(3)

S 3m TB2,3m
ij +

4
∑

m=−4

(4)

I 4mTE2,4m
ij

)]

. (9)

In Eq. (9) DL denotes the luminosity distance, TE2,km
ij and TB2,km

ij are the tensorial electric and magnetic scalar

harmonics which are given by Eq. (2.30d) in [42], see Appendix A. The quantities
(k)

I km,
(k)

S km are the kth time
derivatives of the mass and current multipole moments. The explicit form of these multipoles was given by Junker
and Schäfer in 1PN order with eccentric anomaly u in refs. [18] and [28]. Later, in [29] the authors have computed

the explicit time-dependent multipoles
(k)

I km and
(k)

S km up to 2PN.
The polarization states up to 1PN order are expressed as

h+,×(φ) = hN
+,×(φ) + hH

+,×(φ) + hPN
+,×(φ) , (10)

with the Newtonian hN
+,×(φ), the half PN order hH

+,×(φ) and 1PN hPN
+,×(φ) contributions (see Appendix D and E).

Thereafter in this Section we omit the +/× notation of the polarization states. We parametrize the 1PN gravitational
waveforms using the generalized true anomaly, φ, and the drift anomaly, φ′, as

hPN (φ) =
4
∑

m=0

∑

l=0,2,4

[

(

cclm cosmφ+ sclm sinmφ
)

cos lφ′ +
(

cslm cosmφ+ sslm sinmφ
)

sin lφ′

]

, (11)

where the coefficients cclm, sclm, cslm, sslm, cm ≡ cs0m and sm ≡ ss0m depend on the radial eccentricity er, the mass parameters
M , µ, η and the two polar angles Θ and Φ of the line of sight (see Appendix E). The drift anomaly parameter [40],
φ′ is defined as

φ′ = (1 + κ1)φ . (12)
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The reason to introduce the drift anomaly parameter is to avoid the known secular terms appearing in the eccentric
waveforms [27], when simply expanding up to 1PN order the functions of the angle θ in terms of φ, and instead we
use the following expansion:

cos θ ≈ cosφ′ − κ2 sinφ sinφ′ , (13)

sin θ ≈ sinφ′ + κ2 sinφ cosφ′ . (14)

The above relations will be used to eliminate secular terms in the waveforms. The dependence on the drift anomaly,
φ′, of the waveforms hPN (φ) can be easily eliminated by Eq. (12), however this leads to the appearance of non integer
harmonics in the arguments.
To obtain the time dependent waveform we express the trigonometric functions of the generalized true anomaly as

cosλφ =

∞
∑

k=0

Cλ
k cos kM, sinλφ =

∞
∑

k=0

Sλ
k sin kM , (15)

where λ ∈ R and Cλ
k , S

λ
k stand for the (generalized) Fourier-Bessel coefficients. We note that in the unperturbed

Keplerian case, e = er = et = eθ, cosλφ and sinλφ can be expressed in terms of cosφ and sinφ. Let us recall the
classical result for Keplerian motion, see e.g. [43]:

cosφ = −e+
2(1− e2)

e

∞
∑

k=1

Jk(ke) cos kM, (16)

sinφ = 2
√

1− e2
∞
∑

k=1

J ′
k(ke)

k
sinkM, (17)

where the prime denotes the derivative with respect to the eccentricity e. This classical expansion gets more and
complicated for increasing values of λ.
In the following, we introduce Hansen coefficients and their extension to 1PN order in the next chapter.

III. GENERALIZATION OF HANSEN COEFFICIENTS

In celestial mechanics Hansen expansion is well-known already since the 19th century (see Appendix C). In our
description of time-dependent waveforms there appear Hansen coefficients and it is important to extend the Hansen
expansion up to 1PN order. Hansen coefficients Xn,m

k are introduced in the expansion

( r

a

)n

exp(imφ) =

∞
∑

k=−∞

Xn,m
k exp(ikM). (18)

In this section n and k denote indices, not to be confused with the mean motion and pericenter drift in Section II
and Appendix B. The definition of Hansen coefficients are

Xn,m
k =

1

2π

π
∫

−π

( r

a

)n

exp(imφ− ikM)dM. (19)

In the waveforms there appear trigonometric functions of mφ, where m is not an integer parameter. So we have to
generalize the formula of the Keplerian Hansen coefficients [44],

Xn,m
k = (1 + β2)−n−1

∞
∑

s=0

∞
∑

t=0

(

n−m+ 1

s

)(

n+m+ 1

t

)

(−β)
s+t

Ip(ke), (20)

where p = k −m− s+ t, β = (1 −
√
1− e2)/e, and the function Ip(z) is given by the contour integral

Ip(z) =
1

2πi

∮

u−1−p exp
z
(

u− u−1
)

2
du. (21)
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For an integer p (i.e. m is integer) Ip(z) = Jp(z), where Jp(z) is the Bessel function (e.g. for the Newtonian waveform
see [21]). When p is non-integer, Ip(z) = Jp(z) + gp(z), where gp(z) is the correction integral [46]

gp(z) = − sin pπ

π

∞
∫

0

exp(−pu− z sinhu)du , (22)

for R(z) > 0.
Due to the appearance of different eccentricities we have to generalize Hansen coefficients in a different way for the

1PN order. The expressions for r/a and the evolution of the mean anomaly, Eq. (C3), contain PN corrections,

r

a
=
(

1 + β2
r

)−1
(1− βry)(1− βry

−1), (23)

dM
du

= 1− et
2

(

y + y−1
)

, (24)

where we have introduced the complex quantity y = exp iu and βr = β(er), see Appendix C. Then the integrand is

(Xn,m
k )PN =

(

1 + β2
r

)−n

2π

π
∫

−π

ym−k(1− βry
−1)n+m(1− βry)

n−m

(

1− et
(

y + y−1
)

2

)

exp
ket
(

y − y−1
)

2
du, (25)

which can be extended in the form of an infinite sum. The generalized Hansen coefficients up to 1PN order are

(Xn,m
k )PN = (1 + β2

r )
−n

∞
∑

s=0

∞
∑

t=0

(

n−m

s

)(

n+m

t

)

(−βr)
s+t

Ĩp(ket), (26)

with the notation

Ĩp(ket) = Ip(ket)−
et
2
[Ip−1(ket) + Ip+1(ket)] . (27)

We note that when m is an integer Ĩp(ket) can be written as

Ĩp(ket) =
(

1− p

k

)

Jp(ket) +
sin(pπ)

kπ
. (28)

In the waveform expressions we introduce the coefficients (omitting the +/× notations for the polarizations)

C±4
m =

cc4m ∓ ss4m
2

, S±4
m =

sc4m ± cs4m
2

, (29)

C±2
m =

cc2m ∓ ss2m
2

, S±2
m =

cc2m ± ss2m
2

. (30)

The explicit time-dependent waveforms, Eq. (11), become

hPN (t) =

4
∑

m=0

∞
∑

k=0

(Cm
k cos kM+ Sm

k sin kM) , (31)

where

Cm
k = C−4

m C
m4−

k + C+4
m C

m4+

k + C−2
m C

m2−

k + C+2
m C

m2+

k + cmCm
k , (32)

Sm
k = S−4

m, S
m4−

k + S+4
m S

m4+

k + S−2
m S

m2−

k + S+2
m S

m2+

k + smSm
k . (33)

Moreover, Cλ
0 = X0,λ

0 , Cλ
k = X0,λ

k +X0,λ
−k and Sλ

k = X0,λ
k −X0,λ

−k where Xn,λ
k are the generalized Hansen coefficients.

These waveforms have a simple compact structure compared to the corresponding expressions in [28].
The waveform in Fourier space can be described in the stationary phase approximation of the time-dependent

waveform (see Eqs. (B2) and (B3) in the Appendix B of [21]). Taking an arbitrary harmonic function A(t) cosΦ(t),
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where the conditions Ȧ/A ≪ Φ̇ and Φ̈ ≪ Φ̇2 hold for the amplitude A(t) and phase Φ(t) the Fourier transform of the
function is written as

F [A(t) sin Φ(t)] = A [f(T )]

√

π

2
∣

∣

∣
Ψ̈ [f(T )]

∣

∣

∣

exp [i (Ψ [f(T )] + π/4)] , (34)

F [A(t) cosΦ(t)] = A [f(T )]

√

π

2
∣

∣

∣
Ψ̈ [f(T )]

∣

∣

∣

exp [i (Ψ [f(T )]− π/4)] . (35)

Here Ψ [f(T )] = 2πf(T )t [ν(T )]−Φ [ν(T )] is the phase function, ν = n/(2π) is the orbital frequency, T is the saddle
point and the functions t [ν(T )] and Φ [ν(T )] appearing in the above expressions can be derived from the leading order
equations for gravitational radiation by Appell functions (see the Appendix in [21]). It is necessary to add that here
the phase and frequency do not split into a triplet due to pericenter precession, as it happened when the precession
has been separately treated as in Ref. [21]), because it is taken into account in the full 1PN equations of motion.
Therefore, the 1PN waveform depends on the single frequency f and phase Ψk = 2πf(Tk)t[Tk] − Φ[Tk]. The saddle

points Tk are computed by the SPA condition
∣

∣

∣
Ψ̇ [f(Tk)]

∣

∣

∣
= 0. The eccentric waveform is a trigonometric function

of kM, see Eq. (15), and the condition f = kν holds. Accordingly, the waveform, Eq. (31), in the Fourier space
becomes

hPN
+ (f) = (4kν̇)

−1/2
4
∑

m=0

∞
∑

k=0

[

C+,m
k exp(iΨ−) + S+,m

k exp(iΨ+)
]

, (36)

hPN
× (f) = (4kν̇)

−1/2
4
∑

m=0

∞
∑

k=0

[

C×,m
k exp(iΨ−) + S×,m

k exp(iΨ+)
]

, (37)

where the phase functions are Ψ± = Ψk ± π/4. As a next step we shall compute the phase Φ(T ) and time t(T )
functions appearing in the 1PN waveform.

IV. RADIATION REACTION TO 1PN ORDER

To leading order the averaged radiative change of the Newtonian semi-major axis a and eccentricity e is governed
by the quadrupole formula, see Peters [47]. Using Kepler’s third law the semi-major axis a can be replaced by the
orbital frequency ν to have the following relations

ν̇N =
48(GMc)

5/3(2πν)11/3

5c5π(1 − e2)7/2

(

1 +
73

24
e2 +

37

96
e4
)

, (38)

ėN = −304(GMc)
5/3(2πν)8/3

15c5(1− e2)5/2
e

(

1 +
121

304
e2
)

. (39)

Here Mc = Mη3/5 is the chirp mass of the binary system and η = µ/M , is the symmetric mass ratio. Peters’
equations, (38),(39) can be integrated and the solution for the phase and time functions can be expressed in terms of
Appell functions [21].

The averaged losses of the radial orbital parameters due to gravitational radiation reaction up to 1PN order is given
by Junker and Schäfer [18]. The relation between the orbital frequency, ν, and the semi-major axis, ar, to 1PN order
can be written as:

ar =
(GM)

1/3

(2πν)2/3

[

1 + (η − 9)
(2πGMν)

2/3

3c2

]

. (40)

The contributions to ar can be found from D1, D2 defined by equations (B7) in Appendix B. The time evolution of
ν and er up to 1PN order can be written as:

ν̇ = ν̇N + ν̇PN , (41)

ė = ėN + ėPN , (42)
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with

ν̇PN =
(GMc)

7/3(2πν)13/3

560c7πη2/5(1− e2)9/2
[

16(1273− 924η)− 24(2561+ 2254η)e2 − 42(3885 + 158η)e4 − (13147− 1036η)e6
]

,(43)

ėPN = − (GMc)
7/3(2πν)10/3

2520c7η2/5(1− e2)7/2
e
[

8(26493− 22540η)− 60(11598+ 1001η)e2 − (168303− 16940η)e4
]

, (44)

where Eqs. (35) and (36) of Ref. [18] and Eq. (40) have been used. From now on the subscript r of from er and ar
will be omitted. Thereafter, we determine the perturbative solution to the above equations up to 1PN order.
The relation between ν and e from Eqs. (41) and (42) up to 1PN order is

dν

de
=

ν̇N
ėN

+
ν̇PN

ėN
− ν̇N ėPN

ė2N
. (45)

The general solution in the Newtonian order, (i.e. without the two last terms in the right hand side of Eq. (45)), is
given as

νN =
Ce−18/19

(

1− e2
)3/2

(1 + 121
304e

2)1305/2299
, (46)

where C is an integration constant. For later use we rewrite νN as

νN = ν0σ(e)/σ(e0) , where σ(e) = e−18/19
(

1− e2
)3/2

(

1 +
121

304
e2
)−1305/2299

(47)

where ν0 and e0 are the initial values for νN (e0) = ν0. The general solution of Eq. (45) can be written as

ν = (bN + bPN )
−3/2

, (48)

where bN and bPN are given as:

bN =
Ce12/19(1 + 121

304e
2)870/2299

1− e2
, (49)

bPN =
(2πGMc)

2/3

c2η2/5(1− e2)

(

1 +
121

304
e2
)870/2299

[

B1 + B2e
2 +B3e

4

(1 + 121
304e

2)3169/2299
+ 2F1

(

870

2299
,
13

19
,
32

19
;−121

304
e2
)

B4e
2

]

, (50)

together with the coefficients

B1 =
1153

3192
− 89

114
η,

B2 = −2293125927

558758080
+

60619

6984476
η,

B3 = −86928802699

93871357440
+

129501097

670509696
η,

B4 =
703 785 517

4014 235 680
− 49 913

735 208
η. (51)

Here 2F1 (α, β, γ; z) is the hypergeometric function [45]. These general solutions for ν(e) and a(e) are consistent with
the 1PN Kepler equation (40). The evolution equations due to radiation reaction for ȧ and ė up to 1PN order imply
that the solution for the semi-major axis, a(e), is proportional to bN + bPN .

Let us identify the Newtonian expression b
−3/2
N ≡ νN = C0σ(e), where C0 = ν0/σ(e0). The integration constant C

has leading order corrections at 1PN order, therefore we have to require the equation ν(e0) = ν0 to hold, in order to
get the correct perturbative solution to 1PN accuracy for the orbital frequency ν, Eq. (48), which can be written as:

ν = ν0
σ(e)

σ(e0)

[

1 +
3

2
ν
2/3
0

(

bPN (e0)−
(

σ(e)

σ(e0)

)2/3

bPN (e)

)]

. (52)
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Then our aim is to compute the time and phase functions

t− tc =

∫ e

0

de′

ė(e′)
, (53)

Φ− Φc = 2π

∫ e

0

ν(e′)

ė(e′)
de′, (54)

up to 1PN order. The integrals in the Newtonian case are given in Appendix A of [21]. Such type of integrals can be
given by extended hypergeometric functions, i.e. Appell functions [45] and similar integrands appear in 1PN order.
Then we can compute the integrand of time function to 1PN order as

(t− tc)PN = − 5c3Λ2
0

76GMcη2/5

∫ e

0

e′17/19(1− e′2)−3/2

(

1 + 121
304e

′2
)−1181/2299

[

B̃1 + B̃2e
′2 + B̃3e

′2

(

1 + 121
304e

′2
)3169/2299

+ 2F1

(

870

2299
,
13

19
,
32

19
;−121

304
e′2
)

B̃4e
′2

]

de′ − 4ν
2/3
0 bPN (e0) (t− tc)N , (55)

where we have introduced the notation Λ0 = σ(e0)/(2πν0) which depends on the initial eccentricity and orbital

frequency and (t− tc)N is the integrated Newtonian order time function, and the parameters B̃i are given as:

B̃1 = −2467

1216
+

93

304
η ,

B̃2 = −4092 801 021

1955 653 280
+

202 947 069

223 503 232
η ,

B̃3 = −2398 183 171

7822 613 120
+

1154 703

3492 238
η ,

B̃4 =
703 785 517

1338 078 560
− 149 739

735 208
η . (56)

The numerical values of the parameters, B̃i, for equal-mass binaries (η = 1/4) are: B̃1 = −1. 95, B̃2 = −1.87, B̃3 =

−0.22 and B̃4 = 0.48. Note that in Eq. (55) the last term is originating from the solution of the orbital frequency
in Eq. (52). As one can easily see (e.g. from a suitable integral representation [45]) the hypergeometric function,

2F1(a, b, c;−z), is monotonously decreasing for a ∈ R, {b, c− b, z} > 0. Therefore 2F1

(

870
2299 ,

13
19 ,

32
19 ;− 121

304e
2
)

decreases

monotonously from 1 to ∼ 0.9474 as e varies between [0, 1], and the trivial approximation 2F1

(

870
2299 ,

13
19 ,

32
19 ;− 121

304e
2
)

≃ 1
to evaluate the integral in Eq. (55) is sufficient for our purposes. For example, the contribution coming from the integral
proportional to 2F1 is approximated to better than 2% accuracy for e ∈ [0, 0.6]. For η = 1/4 and e = 0.6 the integral
of the first three terms in the square bracket of Eq. (55) is −0.6014, while the integral of the last term containing 2F1

is much smaller, 0.02653. Then the time function will be approximated by:

(t− tc)PN ≃ − 5c3Λ2
0

76GMcη2/5

[

∫ e

0

e′17/19(1 − e′2)−3/2(B̃1 + B̃2e
′2 + B̃3e

′4)
(

1 + 121
304e

′2
)1988/2299

de′

+B̃4

∫ e

0

e′55/19(1− e′2)−3/2

(

1 + 121
304e

′2
)−1181/2299

de′

]

− 4ν
2/3
0 bPN(e0) (t− tc)N . (57)

The phase function Φ−Φc can be computed similarly. The integrand of the phase function Φ−Φc up to linear order
is

(Φ− Φc)PN = − 5c3Λ0

76GMcη2/5

∫ e

0

e′−1/19

(1 + 121
304e

′2)124/2299

[

B̂1 + B̂2e
′2 + B̂3e

′4

(1 + 121
304e

′2)3169/2299

+ 2F1

(

870

2299
,
13

19
,
32

19
;−121

304
e′2
)

B̂4e
′2

]

de′ − 15

2
Γ0 (Φ− Φc)N , (58)

where (Φ− Φc)N is the integrated Newtonian order time function and we have introduced the quantities B̂i =

B̃i − 9Bi/8.
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In summary, the integrated time and phase functions up to 1PN are expressed as t− tc = tN + tPN and Φ− Φc =
ΦN +ΦPN where

tN = − 15c5Λ
8/3
0

304(GMc)5/3
F (e, α, β̂, γ, δ),

tPN = − 5c3Λ2
0

76GMcη2/5

[

3
∑

i=1

F (e, αi, β, γ, δ)B̃i + F (e, α2, β̂, γ, δ)B̃4

]

− 4Γ0tN ,

ΦN = − 15c5Λ
5/3
0

304(GMc)5/3
F (e, α̃, β̆, 0, δ),

ΦPN = − 5c3Λ0

76GMcη2/5

[

3
∑

i=1

F (e, α̃i, β̂, 0, δ)B̂i + F (e, α̃2, β̃, 0, δ)B̂4

]

− 15

2
Γ0ΦN , (59)

where Γ0 = ν
2/3
0 bPN (e0), F (e, α, β, γ, δ)

.
= F1

(

α
2 , β, γ,

2+α
2 ; δe2, e2

)

eα/α with F1 (α, β, β
′, γ;x, y) denoting an Appell

function see e.g. [45]. The numerical values of the constants appearing in Eq. (59) are summarized in Table I. We
note that F (e, α, β, 0, δ) = 2F1(e, α, β, δ).

The qualitative behavior of the orbital evolution is depicted on Figures 1-5. On Figs.1-3 the initial conditions have
been chosen so that the inspiral time takes one year to reach the last stable orbit (LSO), as defined in Ref. [54] for
the eccentric case. From this the frequency νLSO = [

(

1− e2LSO

)

/(6 + 2eLSO)]
3/2(2πM)−1 where the eLSO is the

final eccentricity at LSO. We note that the frequency, νLSO is used in the present case for illustrative purposes only.
The orbital evolutions are plotted in Figs.2-5 until the circular limit is reached. Near the LSO, the PN expansion is
not expected to be convergent, therefore the part of the curves on Figs. 1-5 near the LSO can be taken at best as
illustrative.

TABLE I. Constants of the time and phase functions.

δ = −

121

304
N PN

t− tc γ = 3

2
γ = 3

2

β̂ = −

1181

2299
β = 1988

2299

α = −

10

19
α0 = 17

19
, α1 = 55

19
, α2 = 93

19

Φ− Φc γ = 0 γ = 0

β̆ = 124

2299
β̃ = 3293

2299

α̃ = 8

19
α̃0 = 1

19
, α̃1 = 37

19
, α̃2 = 75

19

0. 0.5 1. 1.5 2. 2.5 3. 3.5
t-tc H´107sL0.0

0.1

0.2

0.3

0.4

0.5

0.6

e0

FIG. 1. (color online). Comparison of the analytic and numerical results for the evolution of the eccentricity. The initial
eccentricity is e0 = 0.6 and the masses of binary are mi = 106(1 + z)M⊙ with redshift z = 1. The initial frequency is
ν0 = 8.09µHz. The dotted black line denotes the analytic, while the gray line the numerical solution in the Newtonian case.
The analytic resp. numerical solutions for the 1PN orbital evolution are depicted by the dotdashed resp. solid (red) lines. It
can be seen that the analytic solution is in perfect agreement with the numerical one.
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0.2 0.4 0.6 0.8 1.0
e0

1

2

3

4

t-tc H´107sL

FIG. 2. (color online). The time function for supermassive black hole binaries with various initial eccentricities. The Newtonian
and 1PN expressions are denoted by solid (black) and dashed (red) lines, respectively. The masses of the components are
mi = 106(1 + z)M⊙ with redshift z = 1.

0.2 0.4 0.6 0.8 1.0
e0

1

2

3

4

F-Fc H´1000radL

FIG. 3. (color online). The phase function for supermassive black hole binaries with various initial eccentricities. The Newtonian
and 1PN expressions are denoted by solid (black) and dashed (red) lines, respectively. The masses of the components are
mi = 106(1 + z)M⊙ with redshift z = 1.

V. SUMMARY

In our work we have investigated the orbital evolution and the emitted radiation of eccentric binary systems up
to 1PN order. Extending our previous results in [21] we have presented fully analytical expressions for the orbital
evolution of eccentric binaries and the resulting ready-to-use 1PN waveforms.

For the description of the orbital dynamics the generalized true anomaly parameterization was introduced resulting
in the appearance of only two eccentricities in the solution of the equations of motion. It is usual to expand the
azimuthal angle of the separation vector in terms of the generalized true anomaly parameter, however, secular terms
appear during this process. These secular terms were eliminated by the introduction of the drift true anomaly
parameter, which may also be useful in higher order PN expansion. The evolution of the orbital frequency and the
radial eccentricity is derived up to 1PN order including radiation reaction contributions. The solution is expressed
in terms of Appell functions. One important result is the explicit 1PN expressions for the time and phase functions
appearing explicitly in the 1PN order frequency domain waveforms.

We have presented both time and frequency domain waveforms in a simple analytic form. The simplicity of the
waveforms relies on the application of the Hansen expansion. This important method of celestial mechanics proved
to be useful in expressing time-domain gravitational waveforms. According to the required accuracy the Hansen
coefficients were generalized to 1PN order. With the introduction of the drift true anomaly parameter the orbital
phase becomes a non-integer multiple of the drift true anomaly parameter after expansion. To cover these cases
the Hansen coefficients were extended to non-integer values in their parameters. As a result, we have presented
explicit ready-to-use 1PN eccentric waveforms with no secular dependence in their expressions. The compact analytic
structure makes these waveforms a good candidate for parameter estimation studies up to 1PN order based on the
Fisher analysis.
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FIG. 4. (color online). The time function for neutron star binaries with various initial eccentricities. The Newtonian and
1PN expressions are denoted by solid (black) and dashed (blue) lines, respectively. The masses of the neutron stars are
mi = 1.4(1 + z)M⊙ with redshift z = 1. The initial conditions are such that the starting time is set to 15s before reaching the
LSO. The initial orbital frequencies for e0 = 0.1, e0 = 0.5 and e0 = 0.8 are ν0 = 15.46Hz, 10.67Hz and 4.15Hz.

FIG. 5. (color online). The phase function for neutron star binaries with various initial eccentricities. The Newtonian and
1PN expressions are denoted by solid (black) and dashed (blue) lines, respectively. The masses of the neutron stars are
mi = 1.4(1 + z)M⊙ with redshift z = 1. The initial conditions are such that the starting time is set to 15s before reaching the
LSO.
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Appendix A: Tensor spherical harmonics

Following the notation of [48] the traceless, symmetric and unit basis tensors can be written as

t±2 =
1

2
(ex ⊗ ex − ey ⊗ ey)±

i

2
(ex ⊗ ey + ey ⊗ ex) ,

t±1 = ∓1

2
(ex ⊗ ez + ez ⊗ ex)−

i

2
(ey ⊗ ez + ez ⊗ ey) ,

t0 =
1√
6
(−ex ⊗ ex − ey ⊗ ey + 2ez ⊗ ez) . (A1)
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The scalar harmonic tensors on this basis are given by

T 2l′,lm =

l′
∑

m′=−l′

2
∑

m′′=−2

(l′2m′m′′, lm)Y l′m′

tm
′′

, (A2)

where (l′2m′m′′, lm) denotes the Clebsch-Gordan coefficients and Y lm is the conventional spherical harmonic. Then
the electric and magnetic tensor harmonics can be expressed as

TE2,lm =

√

l(l + 1)

2(2l+ 1)(2l + 3)
T 2 l+2,lm +

√

3(l− 1)(l + 2)

(2l + 1)(2l+ 3)
T 2 l,lm

+

√

(l + 1)(l + 2)

2(2l− 1)(2l+ 1)
T 2 l−2,lm, (A3)

TB2,lm = −i

√

l − 1

2l + 1
T 2 l+1,lm − i

√

l + 2

2l + 1
T 2 l−1,lm. (A4)

As an example we consider the tensor harmonics TE2,22 and TB2,22 appearing in the Newtonian waveform. Using the
relationship between the Descartes and spherical polar coordinates,

ex = er sin θ cosϕ+ eθ cos θ cosϕ− eϕ sinϕ,

ey = er sin θ sinϕ+ eθ cos θ sinϕ+ eϕ cosϕ,

ez = er cos θ − eθ sin θ, (A5)

the tensor harmonics have the form

TE2,22 =
1

8

√

5

2π
[
(

1 + cos2 θ
)

h+ + 2i cosθh×]e
2iϕ, (A6)

TB2,22 = − 1

16

√

5

2π
[(3 + cos 2θ)h× − 4i cos θh+]e

2iϕ, (A7)

where h+ = eθ ⊗ eθ − eϕ⊗ eϕ and h× = eθ ⊗ eϕ+ eϕ⊗ eθ are the two independent polarizations. The tensor spherical
harmonics up to 2PN are given in [29].

Appendix B: Damour-Deruelle parameterization

In the following, we summarize the first post-Newtonian parameterization of the orbital motion introduced by
Damour and Deruelle [17] for the description of compact binaries. The equations of motion, Eqs. (1,2) can be solved
by the eccentric anomaly quasi-parameterization u, that is

r = ar(1− er cosu) , (B1)

where the orbital parameters are the semi-major axis ar and the radial eccentricity er. These orbital parameters are
characterized by the turning points (rmax and rmin in [49]) of the radial motion. The Kepler equation and angular
evolution can be given as

n(t− t0) = u− et sinu , (B2)

θ − θ0 = (1 + k)vθ , (B3)

vθ = 2 arctan

√

1 + eθ
1− eθ

tan
u

2
, (B4)

in terms of the orbital elements of the 1PN orbital dynamics such as the mean motion n, the time eccentricity et, the
angle eccentricity eθ, and the pericenter drift k (which is in relationship with the pericenter precession 〈γ̇〉 averaged
over one radial period, see [21]).
The relationship between φ and vθ is given by Eqs. (B3) and (7) up to 1PN order as

φ = vθ −
Gµer

2ar(1 − e2r)c
2
sin vθ. (B5)
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The orbital parameters up to 1PN order are given by [17]

n =
(−D1)

3/2

D2
,

ar = −D2

D1
+

D4

2D3
,

et =

[

1− D1

D2
2

(

D3 −
D2D4

D3

)]1/2

,

er =

(

1− D1D3

2D2D3

)

et,

eθ =

(

1 +
D1D4

D2D3
− D1D6

D2D5

)

et,

k =
3GM

ar(1− e2r)
, (B6)

with the quantities D1−6

D1 =
2E

µ

(

1 +
3

2
(3η − 1)

E

µc2

)

,

D2 = GM

(

1 + (7η − 6)
E

µc2

)

,

D3 = −L2

µ2

(

1 + 2 (3η − 1)
E

µc2

)

+ (5η − 10)
G2M2

c2
,

D4 = (−3η + 8)
GML2

µ2c2
,

D5 =
L

µ

(

1 + (3η − 1)
E

µc2

)

,

D6 = (2η − 4)
GML

µc2
. (B7)

Here E and L are the conserved energy and the magnitude of the orbital angular momentum of the perturbed binary
system, respectively.

Appendix C: Hansen coefficients

The Hansen coefficients are important functions of celestial mechanics which are known for more than 100 years.
Using the standard notation the Hansen expansion is written as [50]

( r

a

)n

exp(imφ) =
∞
∑

k=−∞

Xn,m
k exp(ikM), (C1)

where r is the relative distance, a is the semi-major axis, φ is the true anomaly and M is the mean anomaly. The
coefficients Xn,m

k are called the Hansen-coefficients. Here the constants n and m are integers. The Fourier series
representation of the Hansen coefficients is

Xn,m
k =

1

2π

π
∫

−π

( r

a

)n

exp(imφ− ikM)dM. (C2)

The integration variable can be changed to the eccentric or true anomalies with the use of the leading order Kepler-
equation,

dM
du

= 1− e cosu, (C3)

dM
dφ

=

(

1− e2
)3/2

(1 + e cosφ)2
. (C4)
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Introducing the complex variables x = exp iφ and y = exp iu (z = exp iM for the contour integral) the relationship
between the eccentric and true anomalies [51] with x and y is expressed as

x− 1

x+ 1
=

1 + β

1− β

y − 1

y + 1
, (C5)

and one gets the relations for the variable x

exp iφ = y(1− βy−1)(1− βy)−1, (C6)

and the mean anomaly M

dM
du

=
r

a
=
(

1 + β2
)−1

(1− βy)(1 − βy−1), (C7)

exp iM = y exp
[

−e

2

(

y − y−1
)

]

. (C8)

The integrand with eccentric anomaly u is given as

Xn,m
k =

(

1 + β2
)−n−1

2π

π
∫

−π

ym−k(1− βy−1)n+m+1

×(1− βy)n−m+1 exp

[

ke

2

(

y − y−1
)

]

du. (C9)

The integral can be extended to infinity as a series of the Bessel functions

Xn,m
k = (1 + β2)−n−1

∞
∑

p=−∞

En,m
k−pJp(ke). (C10)

The coefficients En,m
l for l ≧ m and En,−m

−l for l < m can be expressed by the hypergeometric function F (a, b; c; d) as

En,m
l = (−β)

l−m

(

n−m+ 1

l −m

)

×F (l − n− 1,−m− n− 1; l−m+ 1;β2). (C11)

The first description of this formula was given by Hill [52]. An other representation of the Hansen coefficients can be
found in the work of Tisserand on celestial mechanics from 1889 [53],

Xn,m
k =

(−β)
|k−m|

(1 + β2)n+1

∞
∑

s=0

PsQsβ
2s, (C12)

where

Ps =

{

Ps+k−m k ≧ m

Ps k < m

}

, (C13)

Qs =

{

Qs k ≧ m

Qs+m−k k < m

}

, (C14)

and

Ps =

s
∑

r=0

(

n−m+ 1

s− r

)

1

r!

(

kr

2β

)r

, (C15)

Qs =

s
∑

r=0

(

n+m+ 1

s− r

)

1

r!

(

− kr

2β

)r

. (C16)
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Appendix D: Leading and half order waveforms

The leading order waveform in terms of the true anomaly φ is given by the quadrupole formula (the notation of
Ref. [21] for the azimuthal angle Φ = γ)

hN
+ (φ) =

G2µ2

4c4ηa(1− e2)DL

3
∑

m=0

(

cN+
m cosmφ+ sN+

m sinmφ
)

, (D1)

hN
× (φ) =

G2µ2

c4ηa(1 − e2)DL

3
∑

m=0

(

cN×
m cosmφ+ sN×

m sinmφ
)

, (D2)

where

cN+
0 = −2e2 [1− cos 2Θ +NΘ cos 2Φ] , cN×

0 = 2e2 cosΘ sin 2Φ,

cN+
1 = −e(2− 2 cos 2Θ + 5NΘ cos 2Φ), cN×

1 = 5e cosΘ sin 2Φ,

cN+
2 = −4NΘ cos 2Φ, cN×

2 = 4 cosΘ sin 2Φ,

cN+
3 = −eNΘ cos 2Φ, cN×

3 = e cosΘ sin 2Φ,

sN+
1 = −5eNΘ sin 2Φ, sN×

1 = −5 cosΘ cos 2Φ, (D3)

and sN+
2−3 = cN+

2−3 and sN×
2−3 = −cN×

2−3 after the interchange of cos 2Φ and sin 2Φ. Here NΘ = 3 + cos 2Θ and we have
introduced the shorthand notations a ≡ ar and e ≡ er. We note that the first step in the derivation of the frequency
domain waveforms is the replacement of the semi-major axis a with the orbital frequency ν, see Eq. (40).
The half order waveforms (denoted by the superscript H) are

hH
+ (φ) =

δmG1/2µ3/2

64c5 [ηa (1− e2)]
3/2

DL

5
∑

m=0

(

c+m cosmφ+ s+m sinmφ
)

, (D4)

hH
× (φ) =

δmG1/2µ3/2

32c5 [ηa (1− e2)]
3/2

DL

5
∑

m=0

(

c×m cosmφ+ s×m sinmφ
)

, (D5)

where

cH+
0 = 8e

{[

11− 2e2 +
(

1− 6e2
)

cos 2Θ
]

sinΘ sinΦ + e2ρΘ sin 3Φ
}

,

cH+
1 =

[

(84 + 77e2) sinΘ + (4− 39e2) sin 3Θ
]

sinΦ + 35e2ρΘ sin 3Φ,

cH+
2 = 4e (̺Θ sinΦ + 15ρΘ sin 3Φ) ,

cH+
3 = e2̺Θ sinΦ + 2

(

18 + 7e2
)

ρΘ sin 3Φ,

cH+
4 = 20eρΘ sin 3Φ,

cH+
5 = 3e2ρΘ sin 3Φ,

sH+
1 = −

[

(84 + 31e2) sinΘ + (4 − 29e2) sin 3Θ
]

cosΦ− 35e2ρΘ cos 3Φ,

and sH+
2−5 = −cH+

2−5 after the interchange of sinmΦ and cosmΦ. Here δm = m1 − m2, ρΘ = 5 sinΘ + sin 3Θ and
̺Θ = 23 sinΘ− 5 sin 3Θ. The coefficients for the cross polarization are

cH×
0 = 8e sin 2Θ

[(

3− e2
)

cosΦ + 2e2 cos 3Φ
]

,

cH×
1 = 2 sin 2Θ

[(

12− 5e2
)

cosΦ + 35e2 cos 3Φ
]

,

cH×
2 = 8e sin 2Θ(cosΦ + 15 cos3Φ),

cH×
3 = 2 sin 2Θ

[

e2 cosΦ + 2(18 + 7e2) cos 3Φ
]

,

cH×
4 = 40e sin 2Θ cos 3Φ,

cH×
5 = 6e2 sin 2Θ cos 3Φ,

sH×
1 = 2 sin 2Θ

[(

12− 7e2
)

sinΦ + 35e2 sin 3Φ
]

, (D6)

and sH×
2−5 = cH×

2−5 after the interchange of cosmΦ and sinmΦ.
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Appendix E: 1PN waveform

The 1PN waveforms are given by Eq. (11) which can be written in the following form

hPN
+ (φ) =

G3µ3

768c7 [ηa (1− e2)]
2
DL

4
∑

m=0

[

h4φ′

m+(φ) + h2φ′

m+(φ) + hm+(φ)
]

, (E1)

hPN
× (φ) =

G3µ3

384c7 [ηa (1− e2)]
2
DL

4
∑

m=0

[

h4φ′

m×(φ) + h2φ′

m×(φ) + hm×(φ)
]

, (E2)

with

h4φ′

m+,×(φ) =
(

cc4+,×
m cosmφ+ sc4+,×

m sinmφ
)

cos 4φ′ +
(

cs4+,×
m cosmφ+ ss4+,×

m sinmφ
)

sin 4φ′, (E3)

h2φ′

m+,×(φ) = 4
[(

cc2+,×
m cosmφ+ sc2+,×

m sinmφ
)

cos 2φ′ +
(

cs2+,×
m cosmφ+ ss2+,×

m sinmφ
)

sin 2φ′
]

, (E4)

hm+,×(φ) = 3
(

c+,×
m cosmφ+ s+,×

m sinmφ
)

. (E5)

Here φ′ = (1 + κ1)φ is the drift true anomaly, κ1 = 3GM/[a(1 − e2)c2] and the coefficients cc4+,×
m , sc4+,×

m , cc2+,×
m ,

sc2+,×
m c+,×

m and s+,×
m are explicitly given in the next subsections.

1. The coefficients proportional to cos 4φ′ and sin 4φ′

There are coefficients proportional to cos 4φ′ and sin 4φ′ in the 1PN waveform, Eq. (E3). The coefficients propor-
tional to cosmφ are

cc4+4 = 24c4ΦGΘληe
4,

cc4+3 = 165c4ΦGΘληe
3,

cc4+2 = 500c4ΦGΘληe
2,

cc4+1 = c4ΦGΘλη(764 + 135e2)e,

cc4+0 = 4c4ΦGΘλη(64 + 71e2), (E6)

where we have introduced the shorthand notations cmΦ = cosmΦ, smΦ = sinmΦ, cmΘ = cosmΘ, smΘ = sinmΘ,
GΘ = −5 + 4c2Θ + c4Θ and λη = 3η − 1. The equality cs4+0−4 = cc4+0−4 holds after the replacement of c4Φ with s4Φ. The
coefficients proportional to sinmφ are

sc4+4 = −24s4ΦGΘληe
4,

sc4+3 = −100s4ΦGΘληe
3,

sc4+2 = −360s4ΦGΘληe
2,

sc4+1 = −6GΘs4Φλη(52 + 9e2)e, (E7)

and ss4+1−4 = −sc4+1−4 after the replacement of s4Φ with c4Φ. The coefficients for cross polarization are

cc4×4 = 48s4ΦHΘληe
4,

cc4×3 = 336s4ΦHΘληe
3,

cc4×2 = 1000s4ΦHΘληe
2,

cc4×1 = 2s4ΦHΘλη(764 + 135e2)e,

cc4×0 = 6s4ΦHΘλη(64 + 71e2), (E8)

and cs4×0−4 = −cc4×0−4 after the replacement of s4Φ with c4Φ and we have introduced the notation HΘ = cΘ − c3Θ.

sc4×4 = 48c4ΦHΘληe
4,

sc4×3 = 300c4ΦHΘληe
3,

sc4×2 = 720c4ΦHΘληe
2,

sc4×1 = 12c4ΦHΘλη(52 + 9e2)e, (E9)

and ss4×1−4 = sc4×1−4 after the replacement of c4Φ with s4Φ.
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2. The coefficients proportional to cos 2φ′ and sin 2φ′

The coefficients proportional to cosmφ are

cc2+3 = 3c2Φ [291− 81η + 4(19 + 9η)c2Θ − ληc4Θ] e
3,

cc2+2 = 4c2Φ
{

983− 375η − 6 (19 + 3η) e2 + 2
[

116 + 81η − 6e2(3 + η)
]

c2Θ − (1 + 6e2)ληc4Θ
}

e2,

cc2+1 = c2Φ
{

5948− 3012η+ (99− 1089η) e2 + 4
[

4(76 + 81η)− 33e2(1− η)
]

c2Θ − (4 + 81e2)ληc4Θ
}

e,

cc2+0 = 4c2Φ
{

508− 228η + (353− 465η)e2 + 2
[

52 + 60η + e2(14 + 57η)
]

c2Θ + (4− 19e2)ληc4Θ
}

, (E10)

and cs2+0−3 = sc2+0−3 after the replacement of c2Φ with s2Φ. The coefficients proportional to sinmφ are

sc2+3 = 3s2Φ [87η − 293− 4 (23− 3η) c2Θ − ληc4Θ] e
3,

sc2+2 = 12s2Φ
{

81η − 259 + 2(19 + 3η)e2 − 4
[

2(10− η)− (3 + η)e2
]

c2Θ − (3 − 2e2)ληc4Θ
}

e2,

sc2+1 = 3s2Φ
{

204η − 900 + 11e2(1 + 21η)− 4
[

4(17 + η)− (1 + 19η)e2
]

c2Θ − 5(4− 3e2)ληc4Θ
}

e, (E11)

and ss2+1−3 = −sc2+1−3 after the replacement of s2Φ with c2Φ. The coefficients for the cross polarization are

cc2×3 = 3s2Φ [−11(17− 3η)cΘ − 3ληc3Θ] e
3,

cc2×2 = 4s2Φ
{[

159η − 625 + 6e2(13 + η)
]

cΘ − (17− 6e2)ληc3Θ
}

e2,

cc2×1 = s2Φ
{[

3(7 + 155η)e2 − 4(931− 321η)
]

cΘ + 5(−28 + 9e2)ληc3Θ
}

e,

cc2×0 = 4s2Φ
{[

(201η − 199)e2 − 32 (10− 3η)
]

cΘ − (16− e2)ληc3Θ
}

(E12)

and cs2×0−3 = −cc2×0−3 after the replacement of s2Φ with c2Φ. The coefficients proportional to cos 2φ′ and sin 2φ′ are

sc2×3 = 6c2Φ [(27η − 97)cΘ − ληc3Θ] e
3,

sc2×2 = 24c2Φ
{[

(26η − 86 + (13 + η)e2)
]

cΘ − (2− e2)ληc3Θ
}

e2,

sc2×1 = 6c2Φ
{[

68η − 300 + (7 + 67η)e2
]

cΘ − (12− 7e2)ληc3Θ
}

e, (E13)

and ss2×1−3 = sc2×1−3 after the replacement of c2Φ with s2Φ.

3. The coefficients without φ′ dependence

The coefficients without φ′ dependence are

c+3 = [11(11− η)− 4(29 + η)c2Θ + 5ληc4Θ] e
3,

c+2 = 20 [37− 7η − 4(9− η)c2Θ + ληc4Θ] e
2,

c+1 =
{

4 (299− 49η) + 5 (135− 53η) e2 − 4
[

300− 52η + (159− 37η)e2
]

c2Θ − (4− 39e2)ληc4Θ
}

e,

c+0 = 4
{

363− 73η − 10 (5 + η) e2 − 4
[

91− 19η − 2e2(7− η)
]

c2Θ − (1− 6e2)ληc4Θ
}

. (E14)

and the coefficients s+1−3 are zero. For the cross polarization

s×3 = 4HΘληe
3,

s×2 = 16HΘληe
2,

s×1 = 4HΘλη(4 + e2)e, (E15)

and the coefficients c×0−3 are zero.
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