
Acta Polytechnica Hungarica

Towards the Coevolution of Incentives in
BitTorrent

Tamás Vinkó and David Hales

University of Szeged, Department of Computational Optimization
Árpád tér 2, H-6720 Szeged, Hungary
tvinko@inf.u-szeged.hu, daphal@inf.u-szeged.hu

Abstract: BitTorrent is a peer-to-peer file sharing system that is open to variant
behavior at the peer level through modification of the client software. A number of
different variants have been released and proposed. Some are successful and
become widely used whereas others remain in a small minority or are not used at
all. In previous work we explored the performance of a large set of client variants
over a number of dimensions by applying Axelrod’s round-robin pairwise
tournament approach. However, this approach does not capture the dynamics of
client change over time within pairwise tournaments. In this work we extend the
tournament approach to include a limited evolutionary step, within the pairwise
tournaments, in which peers copy their opponents strategy (client variant) if it
outperforms their own and also spontaneously change to the opponents strategy
with a low mutation probability. We apply a number of different evolutionary
algorithms and compare them with the previous non-evolutionary tournament
results. We find that in most cases cooperative (sharing) strategies outperformed
free riding strategies. These results are comparable to those previously obtained
using the round-robin approach without evolution. We selected this limited form of
evolution as a step towards understanding the full coevolutionary dynamics that
would result from evolution between a large space of client variants in a shared
population rather than just pairs of variants. We conclude with a discussion on
how such future work might proceed.

Keywords: peer-to-peer; BitTorrent; selection rules; design space analysis

1 Introduction
Many popular content sharing systems are based on peer-to-peer (P2P)
technology. In P2P systems the participating users, also called peers, are the
content providers and demanders at the same time. Among these systems,
BitTorrent [1] is the best representative example, used by millions of Internet
users every day. In a BitTorrent system, peers can use different clients, i.e. a

– 1 –

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42938696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tvinko@inf.u-szeged.hu
mailto:daphal@inf.u-szeged.hu

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

computer program which runs the BitTorrent protocol, or a modified version of it.
Modification usually means some extension upon the original protocol in order to
provide the user with better quality of service. Apart from the protocol
modifications actually deployed as clients –for example uTorrent, VuZe, Tribler,
etc–, many interesting variants were proposed in the scientific literature of
BitTorrent systems, see e.g. [2, 3, 4, 5]. Most noticeably, the paper of Rahman et
al [6] gives a list of more than 3000 protocol variants. However, the aim of the
paper was to lay down the methodology of Design Space Analysis (DSA) of
distributed protocols for measuring their performance, robustness and
aggressiveness.

In this paper we give an extension of the DSA concept by studying the effects of
applying evolutionary approaches to the peers.

1.1 Motivation

BitTorrent and open peer-to-peer protocols in general require the cooperative
interaction of individual peers if they are to function optimally. This is because
performance is collectively produced yet actions are individually selected. Since
each individual peer may run a different client variant (so long as it implements
the conventions of the specified protocol) there is the possibility for strategic
interaction and consequent collective action problems. In the context of BitTorrent
this involves free riding (downloading data but not uploading data) rather than
sharing data.

However, this problem is quite general in any open distributed system where the
client software that runs on each peer is not under the control of a central authority
or designer.

Consequently, designers of open peer-to-peer protocols (such as BitTorrent)
include incentive mechanisms to encourage cooperation. In its simplest form this
involves client software which punishes other peers who do not operate in a
cooperative way. If a sufficient number of peers execute such a client then free
riding can be controlled since it is not then in the individual interests of a single
peer to change to free riding behavior.

This general problem of cooperative collective action has been addressed through
game theory and computer simulations. Axelrod [7] used the pairwise Iterated
Prisoner’s Dilemma game and computer programs implementing game strategies
to perform a “round-robin tournament” (RRT) to examine which individual
strategies did well on average against all other strategies.

For a given P2P application it is possible to view client variants as strategies in a
complex multiplayer game. In general such games are too complex to be tractable
within analytical game theoretic frameworks without gross simplifications and

– 2 –

Acta Polytechnica Hungarica

assumptions that do not hold in the real world. Hence computer simulation is often
used.

In previous work we applied a form of Axelrod’s RRT (which we called DSA) to
the BitTorrent protocol identifying a number of interesting, counterintuitive and
high performance variants. This approach involved taking every pair of possible
client variants (or strategies) and performing simulation runs in which the
population was partitioned into two fixed size subpopulations running the two
different variants. Both variants then mixed freely during interactions which
involved downloading and uploading file pieces following the BitTorrent wire
protocol. Results for each strategy were calculated based on average performance
of that strategy against all other strategies by aggregating all of the relevant
simulation runs and calculating several statistics.

We modify the RRT such that rather than only examining the performance of one
strategy (or client variant) against another in fixed subpopulations we allow clients
to apply evolution such that they can copy and mutate variants from others who
outperform them. Hence this approach allows for relative sizes of the two
subpopulations to change during interaction over time within a tournament.

This extension is motivated by several issues: firstly, are the original DSA results
reproduced when peers are given the ability to evolve directly? Secondly, do those
strategies previously identified as robust against other strategies evidence
evolutionary robustness; and thirdly, how do different evolutionary algorithms
effect the outcomes?

Hence, in this work we are extending the previous DSA approach by applying
evolution within each tournament between only pairs of strategies. We are not
applying general evolution to the entire space of strategies in one large population.

This allows us to test if the original DSA results are consistent with evolution
applied to pairs of strategies and to examine in more detail the robustness and
performance of client variants. We consider this limited evolutionary approach as
a step towards a full coevolutionary analysis over a large strategy space while
maintaining the ability to produce meaningful insights.

This approach applies a limited form of evolution between only pairs of solutions
(client variants) because it extends the round-robin tournament approach. Hence it
is not possible to apply operators such as crossover since these would introduce
more than two variants into the tournament. Also for the same reason mutation is
implemented as swapping to the other client variant rather than producing a new
client variant. It would be of interest to compare the results from a full co-
evolutionary analysis in which all variants compete and evolve within a single
population. However, based on previous results, as discussed in section 1.2, we
expect such an approach to produce highly variable and difficult to analyse results.
This is because coevolutionary dynamics over complex strategies tend to lead to
cyclical and highly contingent dynamics such that, in the worst case, outcomes

– 3 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

may appear indistinguishable from noise. However, we discuss ways forward in
this regard in the conclusion.

1.2 Related Work

Several previous works have studied the application of incentive mechanisms to
regulate open distributed systems. This area of research has been termed
distributed computational mechanism design [8]. Approaches essentially fall into
two broad categories. Firstly, those that apply analytic game theoretic formulations
[9, 10, 11] and secondly, those that utilize simulation approaches [12, 13, 14, 15].
In general analytic approaches require high levels of abstraction that limit their
applicability to the design of realistic deployable protocols. Alternatively,
simulation can be applied to highly realistic scenarios but often lacks detailed
sensitively analysis due to the large parameter spaces of real protocols. Previous
work attempted to balance these two aspects via the use of simulation over a large
yet tractable space of parameters related to realistic protocol designs [6]. We build
on this latter work in the present article. Jin et al [16] presented an evolutionary
analysis of BitTorrent P2P protocol variants by simulating the coevolution of six
existing deployed variants within a single population. Our work differs in that we
investigate on the coevolution between two variants at a time in the population.
However, by limiting evolution in this way, to within tournament pairs, we are
able to examine all coevolutionary pairings between over 500 individual
protocols. Hence through this abstraction we aim to move towards an
understanding of the coevolutionary dynamics of more extensive forms of
evolution. It is notable in the work of Jin et al that the coevolutionary dynamics of
populations composed of six protocol variants are difficult to analyze due to what
appear to be highly contingent outcomes.

2 Background terminology

2.1 Design Space Analysis

Inspired by the seminal work of Axelrod [7], a method called Design Space
Analysis (DSA) was proposed by Rahman et al [6] to comprehensively model
incentives in distributed protocols. This method models interactions between
participating users playing repeated games. It combines the specification of a large
design space of protocol variants together with their analysis done by simulations.
The specification has two steps: (1) parametrization, which is the determination of
the design space's dimensions, and (2) actualization, in which the actual values of
the individual dimensions get specified. After these two steps, a solution concept
can be used, where every element of the design space gets characterized by

– 4 –

Acta Polytechnica Hungarica

different measures. DSA proposed three measures: Performance, Robustness and
Aggressiveness – also called PRA quantification. Given a utility function, the
Performance of a protocol is the average performance of the whole system under
the assumption that all peers use the same protocol variant. The utility function is
always domain specific. In a content distribution system the utility function is
usually the average download speed of the users, but other measures could be
used. The Robustness and Aggressiveness measures are defined in a system
composed by different protocol variants and they indicate the ability of
outperforming other protocol variants. By these three measures, the properties of
all the protocols can be characterized as a three dimensional point.

Robustness indicates the ability of a given protocol variant to outperform its
opponent variants (averaged over all tournaments). Hence it measures how
“robust” a given variant is to being dominated (i.e., outperformed) by other
variants in a head-to-head tournament. In this sense it is a measure of relative
performance a detailed description of how Robustness is calculated can be found
in Section 4.3. We do not use the Aggressiveness measure in the present paper but
its definition can be found in [6].

2.2 BitTorrent

Maybe the most important idea behind the BitTorrent P2P protocol is that the files
to be shared are divided into pieces. During the download of a particular file the
peers (or nodes) obtain the pieces from a (usually dynamically changing) set of
different nodes, which can consist of two types of users, leechers and seeders.
Leechers are peers who are currently obtaining the file, i.e. those who do not have
a copy of the entire file. Seeders are uploading exclusively, they do have all the
pieces of the file. What makes the BitTorrent protocol highly scalable and very
efficient is that the leechers can be uploaders as well. By default leechers follow a
rarest-first rule to obtain pieces. Due to this, leechers have good chance to have
pieces which can be traded for other pieces with other leechers, also called its
neighbors. Each peer has upload capacity which is divided into slots of two types:
regular unchoke and optimistic unchoke slots. Regular unchoke slots are assigned
to the subset R of neighbors which recently provided data with the highest speed.
The assignments get re-evaluated in every unchoke interval, which is usually fixed
to 10 seconds. On the other hand, optimistic unchoke slots are assigned to
strangers (i.e., randomly selected neighbors), which also get re-evaluated in fixed
period of time. In case an optimistically unchoked peer p is found to be faster than
any of the regularly unchoked peers, then peer p is moved to the set R, replacing
the slowest peer in R.

The set of leechers and seeders who exchange pieces of a particular file is called a
swarm. A collection of swarms are called a community. Communities usually
emerge around a central web server, called a tracker, which is an important part of
the network. A peer upon joining a swarm it requests the IP addresses of other

– 5 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

peers participating in this swarm. The tracker can have other features like
providing a searchable database of available content.

2.3 Parametrization

The protocol design space of BitTorrent can be spanned over the following
dimensions:

Peer discovery: in order to participate and possibly interact with each other in the
same swarm, peers need to find each other.

Stranger policy: this policy is applied when a peer is interacting with a previously
unknown peer.

Selection function: this function decides which of the known peers should be
selected for interaction.

Resource allocation: defines the way a peer divides its (upload) resources among
the selected peers (which are given by the Selection function).

Using this design space a user of the BitTorrent network can enter with a client
using either default protocol parameters or modified ones. Modification of the
protocol can be motivated by aiming at improving the individual performance or
even to trick the system by freeriding (i.e. being only a leecher and not uploading
to any other leechers). We term a specific actualization of the parameters listed
above a strategy.

3 Evolutionary approaches
In this section we give details of the evolutionary algorithm which can be used to
find out the evolutionary behavior of a pair of unique protocols. The algorithm
starts with N peers, and two strategies, A and B. Initially, half of the peers use
strategy A and the other half use strategy B. The fitness of peer i is defined as
f i=1−w+wU i , where U i is the utility of peer i and w∈ [0,1] measures the

intensity of selection (strong selection means w=1 and weak selection means
w≪1). By default, we measure the utility U i as the average download speed in

the current time interval, i.e., in the last R rounds.

The steps of the algorithm are the following:

Step 1 Let f i=0 for all i=1,. .. ,N .

Step 2 For R rounds let the peers play the 'BitTorrent game'. Within a
round, peers connect to each other (using a prescribed rule) and exchange
pieces of the file they want to download.

– 6 –

Acta Polytechnica Hungarica

Step 3 In each Rth round apply a selection rule on K pairs of peers in
order to update the composition of these peers' strategies.

Step 4 If the total number of steps equals to RT then stop, otherwise go

back to Step 1.

Note that K represents the selective pressure meaning how much selection is
preformed per round. A collection of possible selection rules, which can be
applied in Step 3, will be discussed in Section 3.1. It is worth to note that with the
choice R=RT , K=N and w=1we get back the original robustness test used in [6].

3.1 Selection rules

Now we give a list of selection rules that will be used later in the experimental
part (Section 4). All of them use the parameters K and m, which must be set up at
the beginning of the experiment. Note that in all rules we apply a mutation
operator which is as follows. With probability m, peer j switches its strategy to the
opposite one. Technically, this means that we generate a random number r
between 0 and 1 and if r≤m holds then we switch.

Tournament selection

This involves repeated tournaments between pairs of randomly selected peers as
applied in [17].

Repeat K times:

Select two peers, peer i and j uniformly at random, with replacement

If f i≥f j holds then

Set the strategy of peer j to be the same as the strategy of peer i

Apply mutation on peer j

Reset f j=0.

end if

Death-birth updating

This involves selecting a peer randomly and setting its strategy based on the
proportion of the strategies used in the entire population [18].

Repeat K times:

Select a peer j uniformly at random.

– 7 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

Change its strategy according to: F A∨B /(FA+F B) , where

F A=∑q uses A
f q , FB=∑r uses B

f r , and F A∨B equals to F A if peer j

uses strategy B, and equals to FB if peer j uses strategy A.

Apply mutation on peer j.

Reset f j=0.

Birth-death updating

This involves selection of an individual proportional to its fitness value and then
its offspring is replacing another randomly chosen peer.

Repeat K times:

1. Select a peer i proportional to its fitness. This is done in the following
way: generate a uniformly random number r from [0,1]; sort the peers
according to their fitness values; start summing up the fitness values of
the (sorted) peers, and denote this (partial) sum by s; normalize s; select
the peer i at which s is greater than r.

2. Select another peer j uniformly at random and change its strategy to the
strategy of peer i

3. Apply mutation on peer j

4. Reset f j=0.

Satisficing updating

In this decentralized selection rule we assume that all the peers keep record on
their own fitness value from the previous R rounds. This value is f̂ i , where

i=1,...,n. The general idea of satisficing was proposed in [19]. It captures the idea
that individuals may be satisfied with an internally calculated threshold rather than
comparing themselves to others.

Repeat K times:

Select peer j uniformly at random

If f j≥ f̂ j holds, then peer j keeps its current strategy, otherwise it

switches to the opposite one.

Apply mutation on peer j.

– 8 –

Acta Polytechnica Hungarica

4 Experiments
We compare the strategies tested in the simulations using the DSA approach
previously discussed. Firstly every strategy (protocol variant) is evaluated for
Performance (based on average download time) when it is in a population
composed entirely of the same strategy. This involves a realistic BitTorrent
simulation (BitTorrent game) in which each peer attempts to download a file.

Then every possible pair of strategies are pitted against each other in a tournament
by creating a population composed of half of each and executing the BitTorrent
simulation. At the end of the simulation run the best performing strategy in terms
of average performance is deemed to have "won" the tournament. A robustness
measure is calculated for each protocol by averaging wins over all tournaments
against all other protocols. Hence a robustness value of 1 indicates a protocol wins
against all others whereas a value of 0 indicates it loses against all others.

Finally we apply the evolutionary extension by modifying the above tournament
process in the following way. During a tournament, periodically, peers may
change their strategy to their opponents strategy using one of the evolutionary
algorithms described above. At the end of a simulation run the best performing
strategy in terms of evolutionary success is deemed to have "won" the tournament.
Wins are classified as "weak" or "strong" (see below for definitions). A strong and
weak evolutionary robustness measure is calculated for each protocol by
averaging over all tournaments.

In all cases simulations involved 10 independent runs starting with different
pseudo-random number seeds and averages were calculated. This is necessary
because the BitTorrent game simulator involves several stochastic elements.

4.1 Actualization of BitTorrent strategies

We selected a subset of the BitTorrent strategies tested in [6] covering the main
interesting behavioral variants. The dimensions and possible values for each
dimension are described below.

Stranger policy: Three kinds of policies are used here:

 Periodic: Give resources to strangers periodically.

 When needed: Only give resources to strangers when do not have enough
regular partners.

 Defect: Never give resources to strangers.

Number of strangers can be either 0, 1 or 2.

– 9 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

Selection function: This depends on the Candidate list, Ranking function and the
number of peers selected:

 For the Candidate list we use the BitTorrent's default TFT, in which a
peer only places those peers in the candidate list who reciprocated to it in
the last round.

 For the Ranking function we use all six actualizations: Sort Fastest, Sort
Slowest, Sort Based on upload bandwidth proximity (called 'Birds'), Sort
Adaptive (ranks peers in order of proximity to an aspiration level, which
is adaptive and changes based on a peer’s evaluation of its performance),
Sort Loyal (ranks peers in order of those who have cooperated with the
peer for the longest durations), and Random.

 the number of top k peers selected after applying the raking function can
be from the range [0,4]. Note that the case k=4 is in line with the default
BitTorrent parameter for the number of partners in a peer's unchoking
slots.

Resource allocation: Two allocation methods are tested:

 Equal split gives all selected peers equal resources (upload bandwidth),

 Freeride gives nothing to partners.

Altogether, the above dimensions specify a space of 540 different protocol
variants.

4.2 Strong and weak evolutionary robustness

Assuming that R=RT , K=N and w=1 in our algorithm, the robustness value of a

protocol P is calculated in the following way. For each run, we compare the
average fitness value of P with the average fitness of the other protocol. If the
average fitness of P is greater than the average fitness of the other protocol, we
mark it as a 'Win' for P, otherwise we mark it as a 'Loss' for P. The robustness
value for P is calculated by number of games that it wins against all opponents in
all runs divided by the total number of games that it plays, which is constant for
all protocols.

This single robustness measure is sufficient when no evolutionary algorithm is
applied. However, when applying an evolutionary algorithm this approach does
not capture the possible dynamics of strategy change over time. We therefore
introduce two new robustness measures for evaluating a protocol variant within an
evolutionary algorithm: weak evolutionary robustness and strong evolutionary
robustness.

– 10 –

Acta Polytechnica Hungarica

Having evaluated the selection rule in Step 3 in the Algorithm explained in
Section 3, we denote the number of peers associated with strategy A and B as N A

and NB , respectively.

 Based on this fact, we define two kinds of 'win':

 If N A>NB holds in each and every Rth round of the algorithm, then we

mark this as a 'strong win' for protocol A.

 If N A≥NB holds at some Rth round of the algorithm, and

∑ N A≥∑ N B , then we mark this as a 'weak win' for protocol A.

The strong evolutionary robustness (and the weak evolutionary robustness) value
of protocol P is calculated by the number of games that it strongly wins
(respectively weakly wins) against all opponents in all runs divided by the total
number of games that it plays. For illustration of the definitions strong and weak
evolutionary robustness see Figure 1. A protocol is strongly robust against another
one if it never becomes a minority in the population during the simulation run. If
the protocol was in the majority for most of the time, but not in all rounds, then it
is weakly robust against the competing protocol variant1.

Figure 1

Illustration of strong evolutionary robustness (left) and weak evolutionary robustness (right) of a

protocol denoted with red line

Weak and strong evolutionary robustness measures differ from the standard non-
evolutionary robustness measure because they do not measure relative
performance between protocol variants directly but rather measure their
replication success based on the outcome of an evolutionary algorithm.

5 Results
We have extended the cycle-based simulator used in [6] with the selection rules
(listed in Section 3.1) and with the ability to measure the strong and weak
evolutionary robustness of protocols (which were introduced in Section 4.2). In
the following we use the terminologies introduced in Section 4.1.

1 The situation where both protocols stayed evenly matched throughout all rounds was
not found to occur in practice.

– 11 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

The simulation models a single swarm where peers share the same file. Time in
this model consists of discrete rounds. For peer discovery we assume that all peers
can connect to each other. In every round each peer is fired in random order and
engages in connection and data transfer activities. It is assumed that all peers
always have data that others are interested in. In each round, a peer:

• decides to upload to (maximum) 4 peers which are selected by the
Selection function;

• uses its Resource allocation policy to decide how much to give to each of
the selected partners;

• decides whether to cooperate or not with strangers, which is based on its
Stranger policy.

Each peer maintains a short history of actions by others. This is implemented as a
list, which has typically a length of 10-15 elements. At the same time a peer also
has some rate of requesting services from other peers that depends on specific
actualizations. This means that different protocols will request services at different
rates. This is how optimistic unchoking is mapped in our scenario. For example, a
freeriding protocol will request a service with a partner every round and offer no
bandwidth. If the chosen partner is a sucker (i.e., it accepts those protocols which
provide zero bandwidth), then this partnership will be maintained further on.

Each simulation experiment was run with 50 peers and for 500 rounds in total.
The peers' upload bandwidths are initialized using the bandwidth distribution
provided by [2]. This was done by deriving uniformly at random samples from
this dataset to assign to the peers in the simulations, hence preserving the
distribution. The distribution represents real download rates that were empirically
collected. Download is assumed to be infinite2.

In the evolutionary approaches tested below we used the parameters: number of
rounds RT=500, number of peers R=50, selective pressure K=5, mutation rate

m=0.01, and intensity of selection w=1 as defaults. Note that we also used other
parameter setups and found no significant differences from the results obtained
using the defaults.

Given the abstraction level of the simulator only the above parameters are
required. There is no explicit representation of pieces or seeding/leeching
behavior. Hence the focus is on the effect of strategy interactions on data sharing3.

2 Since upload bandwidth is the main constraint in file sharing systems this assumption
does not significantly effect results.

3 A previous version of the simulator was validated against an actual BitTorrent client
implementation and experiments [6], which gives us some confidence in the validity
of the results.

– 12 –

Acta Polytechnica Hungarica

5.1 Without Evolution

Firstly we calculated performance and robustness values for all our 540 protocol
variants without applying evolution - see Figure 2. Note that Performance is
normalized over the entire protocol design space. These results serve as a baseline
for comparison with the evolutionary approaches. Also we were interested to see
the effect of selecting only a subset of potential protocol variants from [6]. We
categorize those protocols which never share as freeriders.

We found that the ranking of the protocols is comparable to those previously
obtained. This result is non-trivial and reassuring. This is because it is the nature
of the DSA approach that the performance and robustness of any given strategy is
only calculated relative to the other strategies in the design space. This means that
results obtained for one space of strategies can not be generalized to either a
subset or superset of strategies without testing. Hence our reproduction of results
for our chosen subset allows us to be more confident that the previous results
obtain were not merely the result of an artifact of large the design space chosen
there.

Figure 2

Robustness against Performance using 540 protocol variants without apply evolution

5.2 Tournament selection4

We performed evolutionary simulations for all protocol variants using the
tournament selection approach. We then analyzed these results by comparing them
to the Performance and Robustness obtained from the previous non-evolutionary

4 Note that the term "tournament selection" should not be conflated with the
"tournament" nature of the DSA approach. These refer to two different kinds of
tournament occurring at two different levels.

– 13 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

simulations. As previously stated (in Section 4.2), each protocol is measured along
two new measures - strong evolutionary robustness and weak evolutionary
robustness.

Figure 3 shows the results we got for the Robustness test. We can immediately see
that strategies cannot be quantified using weak evolutionary robustness, all the
protocol variants have roughly the same value. On the other hand, strong
evolutionary robustness correlates with the previously obtained non-evolutionary
robustness. The Pearson's correlation coefficient of robustness and strong
evolutionary robustness is 0.939.

This result indicates that evolution based on tournament selection effectively
reproduces the non-evolutionary DSA approach so long as strong evolutionary
robustness is used as a measure for winning. Or to put this another way, the non-
evolutionary DSA approach is a good predictor of strong evolutionary robustness
in this evolutionary setting. This is a non-trivial result because strong evolutionary
robustness measures the outcome of an evolutionary processes over time whereas
non-evolutionary robustness is based on relative performance in one-shot
interactions.

Figure 3

Tournament selection – weak evolutionary robustness and strong evolutionary robustness compared to

non-evolutionary robustness

Figure 4 shows weak and strong evolutionary robustness against performance.
Note that performance is calculated identically for both non-evolutionary and
evolutionary approaches. Hence performance values are identical to those given in
Figure 2. As we would expect, from the results given in Figure 3, we see that weak
evolutionary robustness does not distinguish between performance whereas strong
evolutionary robustness reproduces the non-evolutionary results and is directly
comparable with Figure 2. The Pearson's correlation coefficient of performance
and strong evolutionary robustness is 0.761.

– 14 –

Acta Polytechnica Hungarica

Figure 4

Tournament selection – performance

5.3 Death-birth selection, Birth-death selection

For both Death-birth and Birth-death selection we obtain almost identical results
to those for Tournament selection. Figure 5 shows the correlation between the
weak and strong evolutionary robustness measures of the different protocol
variants we found using Tournament and Birth-death selection. As we can see the
weak evolutionary robustness values are very strongly correlated. In the case of
strong robustness we notice that some strategies can have significantly higher
value under Birth-death selection. Closer inspection of these particular variants
indicated they used the Periodic or When-needed stranger policy, Sort fastest
ranking function, 1 or 2 regular and optimistic unchoke slots and Equal split as
resource allocation.

Figure 5

Comparison of Tournament and Birth-death selection.

Interestingly, the Death-birth selection mechanism produced very much the same
ranking as Birth-death selection. Namely, we got 0.987 and 0.998 Pearson's
correlation coefficients for weak and strong evolutionary robustness, respectively.

– 15 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

We can conclude that these evolutionary algorithms also reproduce the non-
evolutionary results when the strong evolutionary robustness measure is used.
This indicates that different evolutionary algorithms based on fitness comparisons
are predicted by the non-evolutionary DSA approach.

5.4 Satisficing selection

This selection mechanism differs from the above tested ones as it is using only
local information. This means that no fitness comparisons are made between peers
but rather individual peers assess their own performance against an internal
threshold or target.

As can be seen in Figure 6 and 7, neither weak nor strong evolutionary robustness
make any significant distinction between the different protocol variants. In this
case we cannot even distinguish between freeriders and normal strategies.

Figure 6

Satisficing selection – robustness

Figure 7

Satisficing selection – performance

In general outcomes appear to be little more than random noise. Since there are
four possible outcomes from a tournament we would expect uniformly random
outcomes to produce weak and strong evolutionary robustness values around 0.25.

– 16 –

Acta Polytechnica Hungarica

Note, however, a small cluster of freeriders can be seen to have noticeably lower
weak evolutionary robustness values around 0.4 on the x-axis (Figure 6, left hand
side). These appear to be a special case of very poorly performing protocols, as
can be seen in Figure 7 (left hand side) where this cluster is bunched at 0.0 on the
x-axis.

More interestingly, a small cluster of 72 non-freerider variants can be seen in
Figure 6 (right hand side) with near-zero robustness but relatively high levels of
strong evolutionary robustness (around 0.3). This means that these variants which
have almost zero non-evolutionary robustness do much better in an evolutionary
setting. These protocols do not communicate with strangers (thus they are unable
to bootstrap in an homogeneous environment, i.e., producing zero performance),
use Equal split as resource allocation and have k>0 regular partners. Closer
inspection of the simulation results revealed that these particular variants always
dominate in scenarios where they are paired with freeriders. This does not imply,
though, that these protocols do better than freeriders. Due to the local nature of the
calculation of the satisfaction threshold this only means that variants using these
kind of protocols do gradually better than in the previous round, whereas the
competing freerider protocol variant' performance varies up and down.

Overall we can see that the non-evolutionary DSA approach does not predict the
outcome of the satisficing approach. However, there are many ways to implement
a satisficing approach and it would be interesting to explore other implementations
to identify conditions under which (if any) results would converge to the previous
DSA results. For example, some satisficing approaches utilize an adaptive
satisfaction threshold that may increase above over all previous performances
obtained through the application of noise (a "trembling hand effect") [20].
Alternatively a minimum as well as maximum threshold could be employed.

Conclusions

We developed a limited evolutionary extension to the Design Space Analysis
approach [6]. We applied this extended approach to an exploration of BitTorrent
protocol variants capturing the possibility of dynamic changes in protocol variants
over time within pairwise tournaments between protocols. We found that the
results obtained were broadly consistent, in most cases, with those previously
obtained thus increasing our confidence in previous results as a predictor for this
form of limited evolution.

The subset of protocol variants that we selected ranked similarly to the larger
design space results. This is a non-trivial observation since results form a given
design space do not necessarily generalize to a subspace. This is due to the co-
evolutionary nature of open peer-to-peer systems - where the utility of each peer is
dependent on the dynamic composition of protocol variants in the population as a
whole rather than being related to a fixed and equal partition.

– 17 –

T Vinkó and D Hales Towards the Coevolution of Incentives in BitTorrent

We found that applying a satisficing approach did not reproduce the previous
results and in fact, as implemented here, produced almost random outcomes.
However some of the results point towards the kinds of alternative satisficing
approaches that might produce comparable outcomes. It is of interest how
different satisficing approaches behave because it could be argued that such a
procedure may capture the kinds of user behavior that leads to a change of
protocol variants over time - since users tend to have access only to local
information on protocol performance.

The work here limits coevolution to all pairs of variants. To fully understand co-
evolutionary dynamics it would be necessary to allow for many protocol variants
from the design space to exist in the population simultaneously. However,
previous work has demonstrated the difficulty in analyzing the results of evolution
applied to populations with design spaces as low as six variants [16]. Our aim in
limiting evolution in this way is as a step towards modeling and understanding co-
evolutionary processes in large design spaces while linking back to previous
results. This requires careful experimental design and analysis to avoid a
combinatorial explosion and to filter for noise which plays a large role in protocol
pairings and can be magnified by coevolution.

Future work may develop coevolutionary algorithms that can be applied to a large
design space within a single population by grounding the algorithms in a theory of
user and developer behavior. Developers modify and release new protocol variants
and users decide if to download and use them. It is not beyond current approaches
to model this process in a coevolutionary simulation, but more detailed user and
developer models would need to be formulated.

Acknowledgement

This work was partially supported by the European Union and the European
Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0013). T. Vinkó was supported by the Bolyai Scholarship of the
Hungarian Academy of Sciences.

References

[1] B. Cohen, Incentives build robustness in BitTorrent, In Proceedings of
Workshop on Economics of Peer-to-Peer Systems, 68-72, 2003

[2] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani.
Do incentives build robustness in BitTorrent. In Proceedings of NSDI, vol.
7., 2007

[3] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in
BitTorrent is cheap. In Proc. Workshop on Hot Topics in Networks
(HotNets), 85-90. 2006

[4] U.W. Khan, and U. Saif, BitTorrent for the less privileged. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks (HotNets-X), 2011

– 18 –

Acta Polytechnica Hungarica

[5] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, Exploiting BitTorrent For
Fun (But Not Profit), In Proc. of IPTPS, 2006

[6] R. Rahman, T. Vinkó, D. Hales, J. Pouwelse, and H. Sips, Design Space
Analysis for Modeling Incentives in Distributed Systems. In Proceedings of
the ACM SIGCOMM 2011 Conference (SIGCOMM'11) 182-193, 2011

[7] R. Axelrod, The Evolution of Cooperation. Basic Books, 1984

[8] R. Dash, N. Jennings, and D. Parkes. Computational-mechanism design: A
call to arms. IEEE Intelligent Systems, 18:40–47, 2003

[9] J. Feigenbaum and S. Shenker. Distributed Algorithmic Mechanism Design:
Recent Results and Future Directions. In ACM DIALM, 2002

[10] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, Experiences
applying game theory to system design. In Proceedings of the ACM
SIGCOMM workshop on Practice and theory of incentives in networked
systems (PINS '04). ACM, New York, NY, USA, 183-190, 2004

[11] C. Buragohain, D. Agrawal, and S. Suri. A game theoretic framework for
incentives in P2P systems. In Proceedings of IEEE P2P, 2003

[12] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques
for peer-to-peer networks. In Proceedings of ACM EC, 102–111, 2004

[13] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing and improving a
BitTorrent network’s performance mechanisms. In Proceedings of
INFOCOM, 1-12, 2006

[14] M. Meulpolder, J. Pouwelse, D. Epema, and H. Sips. BarterCast: A
practical approach to prevent lazy freeriding in P2P networks. In
Proceedings of IEEE IPDPS, 2009

[15] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips. Give-to-get:
Free-riding-resilient video-on-demand in p2p systems. In Proceedings of
SPIE/ACM MMCN, 2008

[16] X. Jin, Y.-K. Kwok, J. Deng, Variegated competing peer-to-peer systems
with selfish peers, Computer Networks, (24)313-330, 2014

[17] R.L. Riolo, M.D. Cohen, and R. Axelrod, Evolution of cooperation without
reciprocity. Nature, 414(6862), 441-443, 2001

[18] H. Ohtsuki, C. Hauert, E. Lieberman, and M.A. Nowak, A simple rule for
the evolution of cooperation on graphs and social networks. Nature,
441(7092), 502-505, 2006

[19] H. A. Simon, Models of Bounded Rationality, Vol. 1, MIT Press, Boston,
1984

[20] C.P. Roca and D. Helbing, Emergence of social cohesion in a model society
of greedy, mobile individuals, PNAS 108 (28) 11370-11374, 2011

– 19 –

	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Background terminology
	2.1 Design Space Analysis
	2.2 BitTorrent
	2.3 Parametrization

	3 Evolutionary approaches
	3.1 Selection rules

	4 Experiments
	4.1 Actualization of BitTorrent strategies
	4.2 Strong and weak evolutionary robustness

	5 Results
	5.1 Without Evolution
	5.2 Tournament selection
	5.3 Death-birth selection, Birth-death selection
	5.4 Satisficing selection

