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Abstract. The dispersive interaction of a Bose-Einstein condensate with a single mode of a high-finesse
optical cavity realizes the radiation pressure coupling Hamiltonian. In this system the role of the mechanical
oscillator is played by a single condensate excitation mode that is selected by the cavity mode function. We
study the effect of atomic s-wave collisions and show that it merely renormalizes parameters of the usual
optomechanical interaction. Moreover, we show that even in the case of strong harmonic confinement—
which invalidates the use of Bloch states—a single excitation mode of the Bose-Einstein condensate couples
significantly to the light field, that is the simplified picture of a single “mechanical” oscillator mode remains
valid.

PACS. 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid
flow – 37.10.Vz Mechanical effects of light on atoms, molecules, and ions – 37.30.+i Atoms, molecules,
and ions in cavities

1 Introduction

Cavity optomechanics has seen a rapid expansion over
recent years attracting great theoretical and experimen-
tal interest. The basic paradigm of coupling a vibrational
mode of a mesoscopic object to an electromagnetic field
mode via radiation pressure force has been realized in
various systems (for a comprehensive review consult [1]).
With nanomechanical oscillators, it still remains a chal-
lenge in the optical domain to reach simultaneously the
quantum mechanical ground state and the quantum co-
herent regime, where the coupling exceeds both the op-
tical and mechanical decoherence rates [2]. In contrast,
these goals are relatively easily achieved with ultracold
atoms [3,4,5]. Most remarkably, radiation pressure cou-
pling can be simulated with a Bose-Einstein condensate
(BEC) dispersively coupled to the field of a high-finesse
optical cavity, that can be either a ring cavity [6,7,8,9] or
a linear microcavity [10,11]. In the latter case, the cav-
ity mode function selects a single excitation mode of the
BEC, which plays the role of the mechanical oscillator.
For a pure condensate the occupation of the selected ex-
citation is already zero, thus one can readily study the
quantum coherent regime of optomechanics. As compared
to the single atom cavity QED, the coupling of the collec-
tive excitation mode to the field is enhanced by the square
root of the atom number. In this strong coupling regime
optical nonlinearity emerges on a single photon level [12,
13], which may give rise to photon blockade effect [14] and
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non-Gaussian steady states [15]. This regime also opens
up the way to possible future applications of BEC–cavity
systems as optical transistors [16] and switches [17].

Nonetheless, using a BEC excitation mode as a “me-
chanical” oscillator sets important limitations. The fre-
quency of this matter-wave oscillator, defined by the re-
coil frequency ωR, is by orders of magnitudes lower than
the coupling strength and usually than the cavity pho-
ton loss rate κ. As a result, the quantum noise associated
with the photon leakage gives rise to significant incoherent
excitations of the BEC. The rate of diffusion out of the
ground state is comparable to the interaction strength,
which leads to the dephasing of coherent oscillations [18].
On a longer time scale, the condensate depletes into the
“mechanical” oscillator mode which approaches a steady
state with average occupation number being in the order
of κ/ωR [19,20].

In this article, we shall study two further effects which
are inherent to the BEC experimental approach to op-
tomechanics and which might lead to significant depar-
ture from the realization of the radiation pressure cou-
pling models. The first one is the effect of internal in-
teractions on the collective excitation mode. Indeed, the
effect of s-wave atom-atom collisions cannot be generally
neglected, as it plays, e.g., a crucial role in the process
of Bose-Einstein condensation, too. In a recent paper the
collisional effects have been considered quite generally for
the BEC-cavity system [21]. Here we find for the special
case of the simulated radiation pressure model that the
internal interaction renormalizes the model parameters,
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however, the generic form remains good approximation.
The second effect is due to the external trapping. Since
the condensate is inhomogeneous and has a finite extent
of a few wavelengths, the selection of a single “mechan-
ical” mode is not perfectly warranted. We find that the
single-mode approximation to optomechanics can be ap-
plied already for a trap size as small as 10 times the optical
wavelength.

The paper is organized as follows: In Sec. 2 we in-
troduce the dispersively coupled cavity and atom fields.
Sec. 3 describes the cavity optomechanics with a homo-
geneous BEC. We develop a band model for the periodic
system, and show that the cavity mode singles one excita-
tion mode out of the continuum. We describe the effects of
collisions on the dispersive bistability of the system both
by a full mean-field model and by an effective radiation
pressure coupling Hamiltonian. Sec. 4 investigates the lim-
itations of optomechanics for a trapped BEC. Finally, we
conclude in Sec. 5.

2 The BEC-cavity system

We consider a zero-temperature Bose-Einstein condensate
trapped inside a high-finesse optical resonator. The atoms
interact with a single cavity mode having frequency ωC
and mode function cos kx, where k = 2π/λ is the wave
number. The system is driven through one of the cav-
ity mirrors by a coherent laser field of frequency ω which
is far detuned from the atomic transition ωA, i.e., the
atomic detuning ∆A = ω − ωA far exceeds the atomic
linewidth γ, hence spontaneous emission is suppressed.
Meanwhile, the laser field is nearly resonant to the cav-
ity mode, |∆C | = ω − ωC ≈ κ, with 2κ being the cavity
mode linewidth. We assume a strong dipole coupling be-
tween the atoms and the mode characterized by the single-
photon Rabi frequency Ω which is in the order of the dis-
sipation rates κ, γ. In this limit the strength of the disper-
sive atom-field interaction is defined by the one-atom light

shift U0 = Ω2

∆A
[22]. In the frame rotating with the laser

frequency ω, the many-particle Hamiltonian reads [20]

H/~ = −∆C a
†a+ η(a+ a†)

+

∫
Ψ †(x)

[
− ~

2m

d2

dx2
+ Vext(x)

+
g

2
Ψ †(x)Ψ(x) + U0 a

†a cos2(kx)

]
Ψ(x)dx , (1)

where Ψ(x) is the atom field operator and a is the cavity
mode operator. We consider the dynamics in one dimen-
sion x along the cavity axis. The first two terms describe
the radiation field and the pumping of the cavity mode.
The energy scale of the atomic motion is given by the
recoil frequency ωR = ~k2/(2m). The external trapping
potential Vext(x) is assumed to vary slowly on the wave-
length scale. We include s-wave atom-atom collisions with
the 1D interaction parameter g, which is proportional to
the s-wave scattering length. The last term accounts for

the dispersive light-matter interaction between the atoms
and the mode.

In cavity optomechanics one has to consider a dissi-
pative dynamics for the photon field due to the photon
leakage through the cavity mirrors. We take this into ac-
count in the Heisenberg-Langevin equations of motion of
the field operator [19,20]

d

dt
â = − i

~
[â, H]− κâ+ ξ̂ , (2)

where 2κ is the photon loss rate and the operator ξ de-
scribes the measurement back-action noise with the only

non-zero correlation function 〈ξ̂(t)ξ̂†(t′)〉 = κδ(t− t′).

3 Optomechanical coupling in a band model

The system can be considerably simplified when the con-
densate is homogeneous. In this case, the cavity field cou-
ples exclusively to a single excitation mode of the BEC,
thus an effective radiation pressure Hamiltonian can be
constructed for these two modes. The effect of atom-atom
collisions is that they renormalize the optomechanical cou-
pling strength and the frequency of the “mechanical” mode.

In the absence of an external potential, Vext(x) ≡ 0,
the problem is periodic along the cavity axis. The inter-
action term in Hamiltonian (1) has the periodicity of λ/2,
where λ is the optical wavelength. It follows that one can
introduce a band model [20,23] by expanding the atomic
field operators in terms of Bloch functions,

Ψ(x) =
1√
L

∑
q

eiqx{
bq +

√
2
∑
n

[cn,q cos 2nkx+ sn,q sin 2nkx]

}
, (3)

where n is the band index and q ∈ [−k, k] denotes the
quasimomentum in the first Brillouin zone, and L is the
linear size of the system. bq, cn,q and sn,q are annihila-
tion operators of the corresponding states. We use the
standing wave basis eiqx cos 2nkx, and eiqx sin 2nkx in-
stead of plane waves because the atom-field interaction
directly populates the cosine wave functions with q = 0.

The energy of the bands depend quadratically on the
band index, En,q=0 = (2n)2ωR, hence there is a hierarchy
in their population as shown in Ref. [24]. We truncate
the expansion Eq. (3) at n = 1, meaning that we make
a three-band approximation and restrict the dynamics in
the three lowest lying bands bq, c1,q → cq and s1,q → sq.
Accordingly,∫ L

0

Ψ †(x)Ψ(x)dx =
∑
q

[
b†qbq + c†qcq + s†qsq

]
= N . (4)

This is valid when the optical potential depth U0〈a†a〉 is
below the recoil frequency.
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By inserting Eq. (3) into Hamiltonian (1) (but keeping
only n = 1 from the sum), we obtain the following second-
quantized form,

H = −δC a†a+ η(a+ a†) +
U0

2
√

2
a†a

∑
q

(
b†qcq + c†qbq

)
+Hkin +Hcoll , (5)

where we introduced the shifted cavity detuning δC =
∆C − NU0

2 . The atom-cavity interaction (third term) cou-
ples the bq modes to the cq modes preserving the quasi
momentum q. The kinetic energy reads

Hkin = ωR
∑
q

[
q2b†qbq + (q2 + 4)(c†qcq + s†qsq)

+ 4iq(c†qsq − s†qcq)
]
. (6)

Note that the sine modes sq, not present in the atom-
cavity coupling (third term in Eq. (5)), mix with the cosine
modes bq here. They are thus needed to recover the correct
excitation spectrum. Finally, the collisions are represented
by

Hcoll =
g

2

λ

L

∑
q1,q2,q3,q4

δq1+q2−q3−q4

[
b†q1b

†
q2bq3bq4 +

3

2
c†q1c

†
q2cq3cq4 +

3

2
s†q1s

†
q2sq3sq4

+ b†q1b
†
q2cq3cq4 + b†q1b

†
q2sq3sq4 +

1

2
c†q1c

†
q2sq3sq4 + h.a.

+ 4b†q1c
†
q2bq3cq4 + 4b†q1s

†
q2bq3sq4 + 2c†q1s

†
q2cq3sq4 + h.a.

]
.

(7)

The s-wave atom-atom scattering mixes operators with
different n and q preserving the total momentum. In the
above Hamiltonian, we neglected Umklapp scattering pro-
cesses, where the band momentum is transformed into
quasi momentum, and considered only normal scattering
where the quasi momentum is preserved, i.e. q1 +q2−q3−
q4 = 0.

3.1 Mean-field description

In order to describe the coupled dynamics of the BEC
and the photon field we employ the same technique [20]
that leads to the Gross-Pitaevskii equation for a Bose gas.
Hence, the operators are split into their mean values and
fluctuations,

a(t) = α+ δa , (8a)

bq(t) = e−iµt
[√

Nβq + δbq

]
, (8b)

cq(t) = e−iµt
[√

Nγq + δcq

]
, (8c)

sq(t) = e−iµt
[√

Nσq + δsq

]
. (8d)

For the atoms the mean field can be interpreted as the
wave function of the condensate with components βq, γq
and σq in the corresponding states, and chemical potential
µ. Note that the wave function can be chosen real. Mo-
mentum is conserved simultaneously for the mean field
and for the fluctuations. If initially a homogeneous con-
densate is prepared in the zero momentum state with only
β0 6= 0, then due to momentum conservation the conden-
sate wave function stays in the q = 0 subspace even after
adiabatically turning on the cavity field. Furthermore the
parity is conserved, therefore the atom-cavity interaction
populates only γ0, and leaves σ0 = 0.

One obtains the following three coupled equations in
the steady state for the mean fields by taking the average
of the Heisenberg-Langevin equation of motion [Eq. (2)
and similarly for the atomic fields from the Hamiltonian
(5)]:

α =
η

iκ+ (δC − 2Nuβ0γ0)
, (9a)

µβ0 = u|α|2γ0 + G
(
β3
0 + 3β0γ

2
0

)
, (9b)

µγ0 = 4ωRγ0 + u|α|2β0 + G
(

3

2
γ30 + 3β2

0γ0

)
, (9c)

together with the normalization β2
0 + γ20 = 1. For brevity,

we introduced the notations u = U0

2
√
2

and the collisional

parameter G = gNλ/L.
The equation of motion of the fluctuations are lin-

earized around the mean field solution. As a result of mo-
mentum conservation the equations decouple for distinct
quasimomenta. S-wave scattering mixes the ±q quasimo-
mentum states, hence, for each q 6= 0, one has to solve
six coupled equations. This is precisely the Bogoliubov
problem for a BEC in a periodic potential (restricted to
the lowest three bands). By arranging the variables into

Rq = [δbq, δb
†
−q, δcq, δc

†
−q, δsq, δs

†
−q]

T , the following com-
pact notation is obtained for q 6= 0 :

i
d

dt
Rq = LqRq , (10)

where Lq is a six by six matrix whose elements depend
on the mean-field solution and the quasi momentum q
(for the complete form of Lq see the Appendix). The
q = 0 fluctuations have to be treated differently. Within
the mean-field model, the cavity field fluctuations (δa)
couple only to the even parity states with q = 0 (δb0 and
δc0). These operators can be arranged accordingly into

the vector R = [δa, δa†, δb0, δb
†
0, δc0, δc

†
0]T , and the cou-

pled BEC-cavity excitations are described by

i
d

dt
R = MR+ ξ , (11)

with M being a six by six complex matrix that depends on
the mean field solution (for its complete form see the Ap-
pendix). The cavity field fluctuations are driven by the
dissipation noise that is arranged into the vector ξ =

[ξ, ξ†, 0, 0, 0, 0]T .



4 D. Nagy et al.: Cavity optomechanics with a trapped, interacting Bose-Einstein condensate

0

2

4

6

8

10

-1 -0.5 0 0.5 1

sp
ec
tr
u
m

q [in units of k]

Fig. 1. Band structure of the BEC excitation spectrum. The
energy eigenstates for q 6= 0 depends on the cavity field only
through the mean photon number. The optical potential opens
gaps between adjacent bands. A single q = 0 state (filled cir-
cle) is pulled out from the third band (dashed blue) by the
interaction with cavity field fluctuations. The parameters are
N = 6 · 104, U0 = 0.96, η = 549.5, κ = 363.9, δC = −5120 and
G = 1 ωR.

The excitation spectrum of the BEC interacting with
the cavity field is depicted in Fig. 1. The periodic optical
potential leads to a band structure, as it opens gaps at
the center and at the edges of the Brillouin zone. In the
first band, the spectrum starts linearly in q, that is typ-
ical to the Bogoliubov spectrum of a homogeneous BEC.
Interaction with the photon field fluctuations picks out a
single mode with q = 0 from the upper band, which con-
stitutes the optomechanical mode. In the following we will
concentrate on this relevant mode, and derive an effective
radiation pressure Hamiltonian that includes s-wave colli-
sions.

3.2 Radiation pressure Hamiltonian

Radiation pressure coupling between the cavity mode a
and the single BEC excitation mode c0 can be obtained
from Hamiltonian (5) by restricting the dynamics in the
subspace of the modes b0 and c0.

The Hamiltonian in the restricted subspace (up to sec-

ond order in c0 and c†0) reads

H = −δCa†a+ 4ωRc
†
0c0 + ua†a

(
b†0c0 + c†0b0

)
+
g

2

λ

L

(
b†0b
†
0c0c0 + c†0c

†
0b0b0 + 4b†0c

†
0b0c0 + b†0b

†
0b0b0

)
.

(12)

First let us exploit the relation b†0b0 = N − c†0c0 (Eq. (4))
in the last term of Eq. (12), and then apply the next level

of approximation: b0 ≡
√
N . By this we assume that the

condensate is mainly homogeneous, and the relevant dy-
namics takes place in the c0 mode. This approximation is
valid in the limit u|α|2 � 4ωR. Keeping only the quadratic
terms from the s-wave collisions, one ends up with the op-

tomechanical Hamiltonian up to second order in the op-
erators,

H = −δCa†a+
ωM
2

(X2 + Y 2) +Ga†aX + GX2 , (13)

where we introduced the quadratures X = (c†0 + c0)/
√

2,

Y = (c†0 + c0)/
√

2. The “mechanical” frequency is ωM =

4ωR and the coupling constant is G =
√

2Nu. The s-wave
interaction acts on the X quadrature in the last term,
that can be eliminated by the Bogoliubov transformation

X̃ = χX and Ỹ = Y/χ. With the new operators, we
obtain the usual optomechanical Hamiltonian

H = −δCa†a+
ω̃M
2

(X̃2 + Ỹ 2) + G̃a†aX̃ , (14)

where the transformation parameter χ depends on the
strength of the s-wave interaction as χ = 4

√
(ωM + 2G)/ωM ,

and it rescales both the mechanical frequency

ω̃M =
√
ωM (ωM + 2G) , (15a)

and the coupling constant

G̃ = G/χ . (15b)

This is one of the main results of the present paper: the
presence of atom-atom collisions besides shifting the oscil-
lator frequency also renormalizes the optomechanical cou-
pling. In the regime of weak collisions, where G � ω,
one obtains from the Taylor series a linear frequency shift

ω̃ = ω + G and a coupling constant G̃ = (1− G/(2ω))G.
The s-wave collision between the atoms increases thus the
mechanical frequency and decreases the coupling strength.

3.3 Effects of collisions on the dispersive bistability

The nonlinear coupling between the BEC and the cavity
mode results in a bistable behavior of the system, that
is one has two stable mean-field solutions corresponding
to different photon numbers and oscillator displacements.
This is a key feature of radiation pressure coupling. In the
following we compare the mean-field model, Eqs. (9a-c)
to the mean-field solution of the effective optomechanical
model. This latter one is obtained from the steady-state
solution of Eq. (14) and Eq. (2) for the mean fields. By
expressing 〈X〉, one obtains the following cubic equation
for the mean cavity photon number I = |α|2,

G̃4

ω̃2
I3 + 2δC

G̃2

ω̃
I2 + (δ2C + κ2)I − η2 = 0 , (16)

Generally, this equation has one real and two complex so-

lutions. However above a bistability threshold η2 ≥ 8
3
√
3
ω̃κ3

G̃2
,

there is a finite interval in δC for which it has three real
solutions. One of them is unstable and the other two are
stable, which amounts to optical bistability. In the top
panel of Fig. 2 we plot the solutions of Eq. (16) (with
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Fig. 2. Effects of collisions on bistability. Intracavity photon
number I0 (top panel) and the population of the optomechan-
ical mode |γ0|2 (bottom panel) vs the detuning parameter δC .
From the collisionless case (solid red line), the s-wave collision
parameter is increased to G = 1 (dashed green line) and G = 2
(dashed dotted blue line). On the top panel the thick lines rep-
resent the solutions of Eqs. (9a-c) while the thin lines show all
of the three solutions of Eq. (16). The parameters reflects the
experimental situation of Ref. [11], N = 6 · 104, U0 = 0.96,
η = 549.5, κ = 363.9ωR.

thin lines) and compare them to the solutions of the full
mean-field model Eqs. (9a-c) (thick lines) for three differ-
ent collision parameters G = 0 (solid red), G = 1 (dashed
green) and G = 2 (dashed dotted blue). As G increases,
the width of the bistable region decreases, while its bound-
aries move upward in δC . It is clearly seen that for photon
numbers higher than 1, the optomechanical model gets
less exact quantitatively. The underlying reason is that
this model discards the depletion of the mode b0. The
bottom panel of Fig. 2 shows the mean-field occupation
of the optomechanical mode |γ0|2. One can observe that
the s-wave interaction reduces the population |γ0|2, thus
smearing out the density modulation above the homoge-
neous atom cloud. The decreasing |γ0|2 pulls the cavity
closer to resonance (cf. Fig.2). Correspondingly, the pho-
ton number increases with G at a given δC on the upper
branch.

In this section we focus on the behavior of the op-
tomechanical mode (represented by the filled circle in Fig-
ure 1) across the bistable regime. Its frequency is signifi-
cantly modulated by the interaction with the cavity field
as shown in Fig. 3 (top panel). Far from the resonance,

0
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6

8
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16

-8000 -6000 -4000 -2000 0 2000

R
e
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δC [in units of ωR]

10−6
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10−1

100

-8000 -6000 -4000 -2000 0 2000

|Im
ω
|
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Fig. 3. Real part (top) and the absolute value of the imagi-
nary part (bottom) of the optomechanical mode frequency as
a function of the cavity detuning for G = 0 (solid red and blue
lines), 1 (dashed green line) and 2 (dashed dotted brown line).
Other parameters are the same as in Fig. 2.

the frequency tends to 4ωR for G = 0 (solid red line),
and to higher values given by Eq. (15a) for G 6= 0. In the
bistability regime obtained at the vicinity of the cavity res-
onance, the optomechanical mode frequency is decreased
by the BEC-cavity interaction on the lower branch, while
it is increased on the upper branch. At the boundaries of
the bistable regime, the frequency that corresponds to the
vanishing branch sharply drops down to zero. The dis-
sipative nature of the cavity mode gives rise to cooling
(Imω < 0, lower branch) or heating (Imω > 0, upper
branch) of the optomechanical mode [20]. On the bottom
panel of Fig. 3 we plot the absolute value of the imaginary
part of the complex frequency in logarithmic scale. (For
G = 0 (solid line) we indicate cavity cooling with blue,
and cavity heating with red colors.)

4 Trapped condensate

So far we have seen that a single excitation mode is suf-
ficient to seize most of the physics of a BEC-cavity op-
tomechanical system. Now we turn to the central issue of
this article, that is, under what conditions the single-mode
effective optomechanical model can be valid for a trapped
atom gas. In the experiments [10,11], the condensate is
kept inside the cavity mode volume with an extra dipole
trap that breaks the discrete translational symmetry of
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Fig. 4. The BEC wave function for N = 6 · 104, U0 = 0.96,
η = 549.5, δC = 0, gN = 2, Vtr = 0.01 ωR. The corresponding
Thomas-Fermi radius is 5.31 λ.

the condensate. The quasi momentum q is no longer a
good quantum number. The dimension of the BEC along
the cavity axis is typically around 10µm, which is around
10-15 wavelengths. As a result, the selection of the op-
tomechanical mode by the cavity mode is not perfect, and
there can be more BEC excitation modes that couple to
the cavity field. Moreover, atom-atom collision becomes
significant too in shaping the condensate. Therefore the
Bloch state expansion of the BEC excitations is not suit-
able any more. In the following, we investigate what are
the relevant optomechanical modes and how they are com-
posed of the discrete condensate excitation modes of a
trapped BEC.

We consider Eqs. (1) and (2) in real space using a
mean-field model similar to the one described in Sec. 3.1.
We assume an external harmonic trap potential for the
atoms, Vext(x) = Vtrx

2. Similarly to the procedure of
Sec. 3.1, we split the atomic field to a condensate mean-
field wave function ψ(x) and fluctuations δΨ(x, t),

Ψ(x, t) =
√
Ne−iµt [ψ(x) + δΨ(x, t)] . (17)

We solve the mean field equations (Eqs. (4a-b) of Ref. [20])
for a condensate size of 6 to 10 λ by discretizing the co-
ordinate on 800 to 1400 grid points. A typical wave func-
tion is shown in Fig. 4. For the selected parameters, the
condensate takes the shape of the parabolic trap, i.e.,
it is deeply in the Thomas-Fermi regime. However, it is
slightly modulated by the cavity field potential. This mod-
ulated component of the wave function corresponds to
the cos 2kx mode in the homogeneous case in Eq. (3).
Here, the wave function can be approximated by ψ(x) =

e(x) +
√

2 cos(2kx)f(x), where e(x) and f(x) are slowly
varying functions on the scale of λ.

Obviously, the system exhibits similar bistable behav-
ior as in the untrapped case. In Fig. 5 we plot the cavity
photon number as a function of the cavity detuning δC
for fixed gN = 2 but for two different trap frequencies
Vtr. Note that for a trapped BEC, the s-wave interaction
energy depends on the size of the condensate. In contrary
to the homogeneous case, the parabolic trapping potential
introduces a length scale and controls the condensate den-
sity and ultimately the s-wave scattering. When Vtr → 0

0

0.5

1

1.5

2

2.5

-8000 -6000 -4000 -2000 0

I 0

δC [in units of ωR]

Fig. 5. The intracavity photon number I0 vs the detuning
parameter δC for a trapped BEC with Thomas-Fermi radii 3.11
λ (Vtr = 0.05) (blue dashed dotted line) and 5.31 λ (Vtr = 0.01)
(green dashed line). The parameters are:N = 6·104, U0 = 0.96,
η = 549.5, κ = 363.9ωR and gN = 2. The noninteracting limit
(gN = 0) of the homogeneous condensate (Vtr = 0) is plotted
for reference (solid red line).

with a fixed N one reaches the noninteracting limit of a
homogeneous BEC (depicted with solid red lines in Fig. 5).
We need to keep in mind that the atom-photon interac-
tion is proportional to the atom number and not to the
density.

In Fig. 6, we show the excitation spectrum above the
mean-field along the upper branch solution. Far off the
cavity resonance domain, i.e., for δC < −8000ωR or δC >
2000ωR, the spectrum exhibits the excitation levels of
a trapped condensate being approximately in the colli-
sion dominated Thomas-Fermi regime [25,26]. One feature
of the plot is that these levels represent an inert back-
ground of almost horizontal lines throughout the detun-
ing range considered. There is a jump in these lines at
δC = −6800ωR which corresponds to the stability thresh-
old of the upper branch. Below this detuning the mean
field solution must be on the lower branch of Fig. 5 with
less cavity intensity and thus less perturbation of the ex-
ternal trapping potential Vext. The main feature of this
plot is that the optomechanical mode appears clearly and
its spectral line resembles very much to that of the ho-
mogeneous system shown in Fig. 3. This relevant optome-
chanical mode grows out from the one which has about
4.47ωR frequency without cavity-BEC interaction, e.g.,
in the far detuned regime given by the left and right ex-
tremes of the plot. Its wave function overlaps the most
with the cavity mode function, hence it dominantly cou-
ples to the cavity field fluctuations. In the resonant regime
−6800 < δC/ωR < 2000 the excitation frequency of this
mode crosses the discrete energy levels of the trapped con-
densate. More precisely, the coupling of the other modes
to the cavity field, though negligibly small, is not exactly
zero. Therefore what one can see is a series of avoided
crossings (at these points the lines associated with modes
swap color). Most of the avoided crossings cannot be nu-
merically resolved. At the sides of the plot, some well re-
solved avoided crossings show that more than one conden-
sate excitation couples considerably to the cavity. Such
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Fig. 6. Frequency (top) and decay rate (bottom) of the rel-
evant optomechanical excitation modes as a function of the
cavity detuning δC on the upper branch of the bistable regime
(cf. with Fig. 3). The insets magnify the avoided crossings
for the low lying excitation modes. The plots comprise solely
the modes with even parity symmetry. The parameters are:
N = 6 · 104, U0 = 0.96, η = 549.5, κ = 363.9, Vtr = 0.01 and
gN = 2 ωR.

an example is shown in the inset of the Figure at around
δC ≈ 1500ωR.

The condensate size defines the overlap between the
BEC excitation modes and the cavity mode. In Fig. 6 a
trapped BEC of Thomas-Fermi radius 5.31λ, i.e., about 10
times the optical wavelength leads to a good enough single
mode selection and to a behavior similar to that of a homo-
geneous gas. If the size was reduced, the modes neighbor-
ing the optomechanical mode would have larger overlap
with the cavity mode. However, their separation in en-
ergy would also increase, reducing their effective coupling
to the optomechanical dynamics. Reversely, for larger con-
densate the detuning of the adjacent modes is smaller but
the geometrical single mode selection becomes more pre-
cise. Finally, note that modes with odd parity do not cou-
ple to the cavity field and are not plotted in Fig. 6 at
all.

There is an efficient way to identify the condensate ex-
citation modes which couple to the cavity field. These ones
have non-vanishing imaginary part in the spectrum (bot-
tom panel of Fig. 6) which is a measure of the coupling.
The inset, corresponding to the detuning range selected
in the upper panel, clearly demonstrates that two modes
are relevant in the narrow vicinity of crossings. Compared
to the imaginary part of the spectrum shown in Fig. 3 for
homogeneous gas, the envelope indicating the decay rate
of the optomechanical mode has a different shape here. In
particular, there is a dip at δC = −4800ωR that can be
attributed to the contribution of higher excitation modes.
In the homogeneous case, we restricted the Hamiltonian to
the lowest two bands, however in the real-space solution all
bands are present up to a cutting frequency determined by
the discretization. For a homogeneous BEC, the next rel-
evant contribution comes from the n = 2 band in Eq. (3),
since the cavity mode couples the cos(2kx) mode to the
cos(4kx) one. This effect can be clearly recognized here in
Fig. 6 in the form of a small modulation of the excitation
frequencies at δC ≈ −5200ωR and around the kinetic en-
ergy of the cos(4kx) mode (16ωR). The mostly affected
excitation mode gains a significant decay rate from the
cavity interaction (solid red peak at the same detuning).

5 Conclusion

A Bose-Einstein condensate, dispersively coupled to the
field of a laser-driven high-Q cavity constitutes an alter-
native system to study cavity optomechanics. Instead of a
nanomechanical oscillator, here, a single matter-wave ex-
citation mode couples to the light field, that is selected by
the cavity mode function. With this system, a new regime
of cavity optomechanics can be studied experimentally.

In this paper, we included s-wave atom-atom collision
in the optomechanical model and showed its effects on
the optical bistability of the system. For a homogeneous
BEC, we derived a radiation pressure Hamiltonian, from
which we concluded that collisions increased the frequency
of the mechanical oscillator mode and decreased the op-
tomechanical coupling strength. As a result, the bistable
regime shrinks.

Due to collisions, a spatially confined gas of degenerate
ultracold atoms takes the parabolic profile of the harmonic
trap potential. In this case, more than one BEC excitation
modes can have finite overlap with the cavity mode func-
tion. There is no ’a priori’ known excitation mode that
would represent a single mechanical oscillator. The calcu-
lated excitation spectrum reflects, however, that the single
mode picture applies in most of the cases, except for nar-
row ranges of weak avoided crossings. The contribution of
modes around the second harmonics of the cavity mode
function was also revealed from the real-space solution.
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the Hungarian National Office for Research and Tech-
nology (ERC HU 09 OPTOMECH). G. Szirmai acknowl-
edges support from the Hungarian National Research Fund
(OTKA T077629) and from the János Bolyai Scholarship.
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Appendix

In the Appendix, we give the explicit form of the matri-
ces appearing in Eqs.(10) and (11). Let us start with the
fluctuations of atomic operators with q 6= 0. The equa-
tions of motion are derived from the Heisenberg equations,
i~∂tbq = [bq, H] (and similarly for b†q), with the Hamilto-
nian (5), by including the mean-field expansion Eq. (8),
and linearizing in the operators. The photon field do not
couple to these fluctuations since it carries zero quasimo-
mentum. For the Lq matrix, appearing in the equation of
motion (10), with a straightforward algebra one obtains:

ωbq G B C 0 0
−G −ωbq −C −B 0 0

B C ωcq G(1 +
γ2
0

2 ) 4iq 0

−C −B −G(1 +
γ2
0

2 ) −ωcq 0 −4iq

0 0 −4iq 0 ωqs
G
2 (1 + β2

0)
0 0 0 4iq −G2 (1 + β2

0) −ωqs


,

(18a)
with

ωbq = ωRq
2 + 2G − µ , (18b)

ωcq = ωR(4 + q2) + 2G − µ , (18c)

C = 2Gβ0γ0 , (18d)

B = u|α|2 + 2C . (18e)

The equations of motion for the fluctuations of atomic op-
erators with q = 0 are also obtained directly from their
Heisenberg equations and the mean-field substitution (8),
but now Eq. (2) is also needed since the photon field cou-
ples to these polariton like modes. Finally, the matrix M
of Eq. (11) reads,

A 0 uαγ0 uαγ0 uαβ0 uαβ0
0 −A∗ −uα∗γ0 −uα∗γ0 −uα∗β0 −uα∗β0

uα∗γ0 uαγ0 ωb G B C
−uα∗γ0 −uαγ0 −G −ωb −C −B
uα∗β0 uαβ0 B C ωc G(1 +

γ2
0

2 )

−uα∗β0 −uαβ0 −C −B −G(1 +
γ2
0

2 ) −ωc


(19a)

with

A = −δC + 2β0γ0Nu− iκ , (19b)

ωb = 2G − µ , (19c)

ωc = 4ωR + G(2 + γ20)− µ . (19d)
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