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Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information
processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete
the theory of the basic HF mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by
providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the
nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum
dot. We show that the resulting nuclear-spin–electron-valley interaction (i) is approximately of Ising type; (ii) is
essentially local, in the sense that a radius- and dot-length-independent atomic interaction strength can be defined;
and (iii) has an atomic interaction strength that is comparable to the combined strength of the Fermi contact
and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron
valley qubits and spin-valley qubits in a range of multivalley materials. We explicitly evaluate the corresponding
inhomogeneous dephasing time T ∗

2 for a nanotube-based valley qubit.
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I. INTRODUCTION

Carbon nanotubes (CNTs) provide a promising platform
[1,2] for quantum information processing [3–6]: In nonmetal-
lic CNTs, one or a few electrons can be captured in an
electrically defined quantum dot (QD), potentially allowing
for coherent control of the electrons’ internal (spin and valley)
degrees of freedom.

Hyperfine interaction (HF) between the nuclear spins of
the lattice and the electrons in the QD can be either a
nuisance or an asset in this context. On the one hand, a ran-
domized nuclear-spin ensemble induces decoherence of a
spin-based electronic qubit [7–9]. On the other hand, HF is
the mechanism that allows for information transfer between
the electronic state and the nuclear spins, a critical step
for utilizing nuclear spins as long-lived quantum memories
[10–14]. Remarkably, the abundance of nuclear spins in
the CNT lattice can be increased (decreased) by isotopic
enrichment (purification) [15–17] of the spin-half 13C nuclei,
which have a natural abundance of ∼1%. The fundamental
importance of HF in these nanostructures is also highlighted
by the possibility of HF-mediated nuclear magnetism in
one-dimensional solids [18–20] including 13C-enriched CNTs.

Partly motivated by these attractive features, a series of
experiments was carried out with clean CNTs, aiming to
control and measure the spin and valley degrees of freedom of
electrons confined in QDs [16,17,21,22]. Surprisingly, two
of these experiments using 13C-enriched samples revealed
effects compatible with an atomic HF strength that is two
orders of magnitude larger than theoretically calculated [9,23]
and measured via nuclear magnetic resonance [24,25]. The
resolution of this discrepancy is an open problem [2], bearing
strong relevance for HF-related phenomena in CNTs.

The interesting prospects in quantum information process-
ing and nuclear magnetism, as well as the theory-experiment
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mismatch of the coupling strength, stimulated efforts [25–30]
toward a more complete understanding of HF in carbon-based
nanostructures. These works explore the consequences of two
of the three basic mechanisms of HF [31], Fermi contact
(a.k.a. isotropic) and dipolar, and exclude the third one, orbital
HF (OHF) [32]. It should be noted that the consequences
of OHF in nuclear magnetic resonance of CNTs [33,34] and
graphene [35] have been analyzed.

In this work, we complete the theoretical description of
hyperfine effects in CNT QDs by elucidating the role of the
OHF. We show that this mechanism provides an effective
interaction between a nuclear spin and the valley degree of
freedom of the electron: the simple argument (see Fig. 1)
is that the binary valley quantum number K and K ′ labels
electronic states circulating along the CNT circumference
in the clockwise and counter-clockwise directions [36,37],
respectively, and therefore the electron has a valley-dependent
orbital magnetic moment that feels the dipole magnetic field
created by the nuclear spin. Using the envelope-function model
(Dirac equation) for the electrons, and focusing on the case
where the longitudinal electronic wavelength λ exceeds the
nanotube radius R, we show that the resulting nuclear-spin–
electron-valley interaction (i) is approximately of Ising type,
(ii) is essentially local, in the sense that a radius- and dot-
length-independent atomic interaction strength can be defined,
and (iii) has an atomic interaction strength that is comparable
to the combined strength of the Fermi contact and dipolar
interactions. We argue that the inhomogeneous dephasing time
T ∗

2 of single-electron valley qubits and spin-valley qubits is
affected by the OHF and explicitly evaluate T ∗

2 for a valley
qubit.

II. ORBITAL HYPERFINE INTERACTION WITH THE
ELECTRONIC VALLEY DEGREE OF FREEDOM

Here, we provide an analytical description of the OHF-
mediated coupling between the nuclear spin of a single
13C atom residing in a CNT QD and the valley degree of
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FIG. 1. (Color online) Carbon nanotube quantum dot (QD) with
a single spin-carrying 13C nucleus. Arrows labeled K (τ = +1) and
K ′ (τ = −1) represent the two electronic valley states, moving to
opposite directions around the nanotube circumference. The solid
black line and ψ(z) represent the longitudinal envelope function
characterizing the ground state of an electron confined in the QD.
The thin (blue) lines touching the 13C nucleus represent the dipole
magnetic field created by the spin of the 13C nucleus.

freedom of a single electron confined to the same QD. To
this end, the electron will be described by the canonical
envelope-function model [2] of CNTs (Dirac equation). In the
terminology introduced by Yafet [32], our approach describes
the “long-range” part of the OHF; the “short-range” part of
the OHF is shown to be absent in CNTs in the tight-binding
framework of Ref. [9]. Our description remains qualitatively
valid for any type of spin-carrying nucleus.

The setup and the reference frame are shown in Fig. 1.
The spin-carrying 13C nucleus is located at r0 = (R,0,z0).
The nuclear spin has a dipole moment gNµN , and therefore it
creates a vector potential,

A(r) = µ0

4π
gNµN

I × (r − r0)
|r − r0|3

≡ I × v(r − r0). (1)

Here, gN ≈ 1.41 is the g factor of the 13C nucleus [9], and
µN ≈ 5.05 × 10−27 J/T is the nuclear magneton. The nuclear
spin vector operator I is represented by 1/2 times the vector
of Pauli matrices.

Technically, OHF between the nuclear spin and the electron
arises because the vector potential A created by the nuclear
spin enters the kinetic term of the envelope-function Hamilto-
nian via p (→ p + eA. The kinetic term, describing an electron
in the conduction or valence band, reads [2] H0 + HOHF, with

H0 = vF (τ3σ1pc + σ2pt ) , (2a)

HOHF = evF [τ3σ1Ac(r) + σ2At (r)] . (2b)

Here, c (t) is the circumferential (longitudinal) coordinate
on the surface of the CNT, and σ1,2 are sublattice Pauli
matrices. Note that our choice of the reference frame (Fig. 1)
allows us to use t and z interchangeably. In Eq. (2a), pc is

the circumferential momentum quantum number set by the
periodic boundary condition along the CNT circumference,
whereas pt is the longitudinal momentum operator. In Eq. (2b),
we introduced the circumferential and longitudinal projections
of the vector potential, Ac(r) = ĉ(c) · A(r) and At (r) =
t̂ · A(r), respectively, where ĉ(c) = (− sin c

R
, cos c

R
,0), t̂ =

(0,0,1), and r ≡ r(c,t) = (R cos c
R
,R sin c

R
,t). Form (2) of the

Hamiltonian is valid for any chirality; here we focus on CNTs
with a finite gap (i.e., pc ̸= 0) allowing for electrostatic QD
confinement.

Using Eqs. (1) and (2), the OHF Hamiltonian can be
written as

HOHF = evFτ3σ1εαβγ Iαvβ(r − r0)ĉγ , (3)

where εαβγ is the Levi-Civita symbol, the Einstein summation
convention is used, and the valley-independent term have been
omitted, as it is irrelevant for valley dynamics.

For simplicity, we assume pc > 0 and anticipate that a
sign change in pc implies a sign change of the coupling
constants Cα (defined below). Then an electronic low-energy
energy eigenstate in the valley τ ∈ (K,K ′) ≡ (+1, − 1) of
the conduction band of the electrostatically defined QD
is approximately described by the four-component spinor
envelope function

*τ (c,t) = |τ ⟩ ⊗ |χ⟩ ⊗ eiτ (pc/!)c

√
2πR

ψ(t), (4)

where |τ = +1⟩ = (1,0)T or |τ = −1⟩ = (0,1)T represents
the valley state, |χ⟩ = (1,1)T /

√
2 characterizes the sublat-

tice amplitudes at the bottom of the conduction band, and
ψ(t) is the longitudinal envelope function of the electron.
The normalization condition

∫ ∞
−∞ dt

∫ 2πR

0 dc*†(c,t)*(c,t) =
1 demands that

∫ ∞
−∞ dt |ψ(t)|2 = 1. Note that by writing the

envelope function *τ (c,t) as a product of a circumferential and
longitudinal component in Eq. (4), we have implicitly assumed
that the confinement potential is longitudinal (i.e., independent
of c).

Note that the spin of the electron is disregarded in this
analysis. One reason for this is that the effect of HF on the
electron spin in CNT QDs has already been described in
Refs. [9] and [26]. On the other hand, incorporating spin-orbit
interaction and a homogeneous external magnetic field in
the envelope-function Hamiltonian, (2), would modify the
longitudinal envelope function ψ(t) of Eq. (4) and render it
spin and valley dependent (see, e.g., Appendix B.5 in Ref. [2]).
We neglect these modifications, as they are expected to be
small as long as the spin-orbit and Zeeman energy scales are
small compared to the orbital level spacing of the QD.

The effective Hamiltonian describing the nuclear-spin–
electron-valley interaction is obtained via first-order degen-
erate perturbation theory, i.e., by projecting HOHF to the
two-dimensional subspace spanned by *K and *K ′ :

H
(eff)
OHF ≡ PHOHFP = 1

2
τ3

∑

α=x,y,z

CαIα, (5)

where Eqs. (3) and (4) and P ≡ |*K⟩⟨*K | + |*K ′ ⟩⟨*K ′ | were
used, τ3 has been redefined as τ3 ≡ |*K⟩⟨*K | − |*K ′ ⟩⟨*K ′ |,
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and

Cα(z0) = evF

πR

∫ ∞

−∞
dt |ψ(t)|2

∫ 2πR

0
dc ϵαβγ vβ(r − r0)ĉγ .

(6)

Note that the last integral (
∫

dc . . . ) is proportional to the
magnetic flux that pierces the circular cross section of the
CNT at height t in the presence of a (classical) nuclear spin
that is aligned with axis α.

Now we evaluate the coupling strengths in Eq. (6), in the
case where the length scale λ of the spatial variation of the
longitudinal envelope function ψ(z) exceeds the radius R of
the CNT. This is the relevant case for experiments that are
done with few electrons confined in an ∼100-nm-long QD in
a CNT with radius R ∼ 1 nm. For this case, we show that

Cx(z0) ≈ −2evF
µ0gNµN

4π
[ψ∗(z0)ψ ′(z0) + c.c.], (7a)

Cy(z0) = 0, (7b)

Cz(z0) ≈ 2evF
µ0gNµN

4π

1
R

|ψ(z0)|2, (7c)

where ψ ′ is the derivative of ψ with respect to the longitudinal
coordinate. Equation (5) together with Eq. (7) forms the central
result of this work. The dependence of the three coupling
strengths Cx,y,z on the longitudinal position z0 of the nuclear
spin is shown in Fig. 2, for the case of a CNT with radius
R = 1 nm and a Gaussian longitudinal envelope function

ψ(t) = 1

π1/4
√

L
e− t2

2L2 (8)

with confinement length L = 20 nm. In Fig. 2, lines show
the analytical results of Eq. (7), whereas black circles [(red)
squares] were obtained by performing the integral of Eq. (6)
numerically for α = x [α = z].

An interpretation of Eq. (7) is as follows. If the nuclear spin
is aligned with the CNT axis, then it induces an energy splitting
Cz between the two valley states (i.e., a valley splitting) of the
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FIG. 2. (Color online) Orbital hyperfine coupling strengths as
functions of the nuclear-spin position in a carbon nanotube quantum
dot. The plot corresponds to a Gaussian longitudinal envelope
function [Eq. (8)]. Lines show the analytical results in Eq. (7), whereas
black circles [(red) squares] are obtained via numerical integration of
Eq. (6) for α = x [α = z]. Note that Cx was multiplied by 5. Axes x,
y, and z are defined in Fig. 1.

electron. If the nuclear spin is aligned radially, then it induces a
valley splitting Cx , which is typically much smaller than in the
former case, because (∂zψ)(z0) ∼ ψ(z0)/λ is much smaller
than ψ(z0)/R due to the assumed length-scale mismatch
R ≪ λ. Finally, if the nuclear spin is aligned orthoradially (i.e.,
perpendicular to the axial and radial directions), then it does not
induce valley splitting. Alternatively, Eqs. (5) and (7) can be in-
terpreted in terms of an effective magnetic field that acts on the
nuclear spin and determined by the valley state of the electron.
This effective magnetic field has an axial as well as a much
smaller radial component, and it has no orthoradial component.

The three coupling strengths Cx,y,z expressed in Eq. (7)
have qualitatively different dependencies on the longitudinal
envelope function ψ . A simple understanding of these dif-
ferences is gained using the relation between the coupling
strengths Cα and the magnetic fluxes piercing the CNT cross
sections, discussed after Eq. (6). Figure 3 displays character-
istic magnetic field lines piercing circular cross sections of
the CNT that are positioned symmetrically with respect to
the nuclear spin position, for three alignments of the nuclear
spin. For a radially aligned nuclear spin [Fig. 3(a)], the fluxes
piercing the two cross sections of the tube (orange) are identical
in magnitude but differ in sign. Therefore, a homogeneous
longitudinal envelope function ψ(t) would imply a zero
coupling strength Cx , since the flux contributions of the two
cross sections would cancel each other in the

∫
dt integral

of Eq. (6). The inhomogeneity of ψ(t), i.e., the finiteness of
ψ ′, prevents this cancellation and allows for a finite coupling
strength Cx ; this is reflected by the dependence Cx ∝ ψ ′

of Eq. (7a). For an axially aligned nuclear spin [Fig. 3(c)],
the fluxes piercing the two circular cross sections (orange)
of the CNT are identical in sign (and also in magnitude), hence
the cancellation affecting Cx is not relevant for Cz. Finally, for
an orthoradially aligned nuclear spin [Fig. 3(b)], the magnetic
flux piercing each of the two circular cross sections (orange)
of the tube is 0, explaining Eq. (7b).

Results (5) and (7) have the following implications.
(i) In the considered range λ ≫ R, the OHF-induced

nuclear-spin–electron-valley interaction is essentially of Ising
type, ∝ τ3Iz. The correction of the form ∝ τ3Ix is small
since Cx ≪ Cz. Note that the coupling strength Cx might
gain importance in the case λ ∼ R, e.g., in ultrashort CNT
QDs [38–40] or in QDs where the electron occupies a highly
excited, short-wavelength longitudinal mode.

(ii) Even though OHF is long-range in principle, our
leading-order result, (7c), suggests that it is essentially local
under our assumptions, since the strength of the resulting
nuclear-spin–electron-valley interaction is determined by the
value of the electronic envelope function at the position of
the nucleus. In other words, the result, (7c), affirms that, for
practical purposes, the envelope-function Hamiltonian HOHF
can be replaced with

H̃OHF = evFµ0gNµNδ(c − c0)δ(t − t0)
τ3

2
Iz, (9)

since PHOHFP = PH̃OHFP . Therefore, an atomic coupling
strength A of the OHF can be defined via

H̃OHF = /cell

2
Aδ(c − c0)δ(t − t0)

τ3

2
Iz, (10)
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FIG. 3. (Color online) Nuclear-spin-induced magnetic field lines
and magnetic fluxes. The black circle [with (red) arrow] represents
the position [alignment] of the nuclear spin. The thin (blue) lines
touching the nuclear spin are schematic magnetic field lines, and
(blue) arrowheads on them indicate their directionality. The (orange)
circles represent two symmetrically positioned circular cross sections
of the tube. (a) For a radially aligned nuclear spin, the fluxes piercing
the two cross sections (orange) are identical in magnitude but differ in
sign. (b) For an orthoradially aligned nuclear spin, the fluxes piercing
both cross sections (orange) are 0. (c) For an axially aligned nuclear
spin, the fluxes piercing the cross sections (orange) are identical in
magnitude and sign.

in analogy with, e.g., the atomic coupling strength of Fermi
contact HF in GaAs (see Eq. (2) of Ref. [8]). Here /cell ≈
5.24 Å2 is the area of the graphene unit cell. The atomic
coupling strength A can be deduced from Eqs. (9) and (10):

A ≈ 2evFµ0gNµN

/cell
≈ 0.34 µeV, (11)

where vF = 106 m/s was assumed [2].
(iii) The estimated atomic coupling strength, (11), of

the OHF-induced nuclear-spin–electron-valley interaction is
comparable to the atomic coupling strength of the combined
Fermi contact and dipolar spin HF [9,23]. This result has the

following consequences. (1) In order to provide an accurate
assessment of any property or functionality of a CNT-based
electronic spin-valley qubit [21,22,41–43], the Fermi contact,
dipolar, and orbital contributions should be treated on an
equal footing. (2) Nuclear spins in a CNT QD will induce
inhomogeneous dephasing of an electronic valley qubit on a
time scale similar to the inhomogeneous dephasing time of a
spin qubit or spin-valley qubit. We present a detailed analysis
of the latter point in Sec. III.

For completeness we also provide the OHF Hamiltonian
describing the nuclear-spin–electron-valley interaction in the
presence of more than one nuclear spins Ik . Here, k ∈ 1 . . . N
where N is the number of atoms interacting with the electron
in the QD, and Ik is the spin-1/2 nuclear spin operator if site k
has a 13C atom and 0 otherwise. The kth atom is assumed to be
located at the position specified by the circumferential ck and
longitudinal tk coordinates, corresponding to the real-space po-
sition rk ≡ (xk,yk,zk) = (R cos(ck/R),R sin(ck/R),tk). The
effective OHF Hamiltonian, (5), then couples τ3 with the
axial Ikz and radial cos(ck/R)Ikx + sin(ck/R)Iky components
of each nuclear spin Ik , i.e.,

H
(eff)
OHF = 1

2
τ3

N∑

k=1

{Cz(tk)Ikz

+Cx(tk)[cos(ck/R)Ikx + Cx(tk) sin(ck/R)Iky]},
(12)

with Cx and Cz given in Eq. (7). By defining the local orbital
hyperfine tensor Mk as

Mk =

⎛

⎝
0 0 0
0 0 0

Cx(tk) cos(ck/R) Cx(tk) sin(ck/R) Cz(tk)

⎞

⎠ ,

(13)

the effective OHF Hamiltonian can be compactly written as

H
(eff)
OHF = 1

2
τ

N∑

k=1

Mk Ik. (14)

This section is concluded by proving Eq. (7). First, we prove
Eq. (7a) by evaluating Cx using Eq. (6), the definition of v
via Eq. (1), and the definition of ĉ given following Eq. (2).
After introducing the dimensionless quantities ϕ = c/R and
ζ = t−z0

R
, we find

Cx(z0) = − evF

πR

µ0gNµN

4π

∫ ∞

−∞
dζ |ψ(z0 + Rζ )|2

×
∫ 2π

0
dϕ

ζ cos(ϕ)
(2 − 2 cos(ϕ) + ζ 2)3/2

. (15)

Note that although the integrand is singular at the position of
the nuclear spin, i.e., for (c,t) = (0,z0), that is, for (ϕ,ζ ) =
(0,0), the integral does converge, similarly to the case of OHF
in graphene [35]. Importantly, the integrand in the second
line of Eq. (15) decays for ζ ≫ 1 as ∼1/ζ 2, suggesting that
the integral is dominated by the range |ζ | ! 1, that is, by
the spatial range |z − z0| ! R. Since this spatial range is
narrow in comparison with the length scale λ characterizing
the spatial variation of the longitudinal envelope function ψ ,
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we can estimate the value of the integral by expanding the
term |ψ |2 up to first order in ζ : |ψ(z0 + Rζ )|2 ≈ |ψ(z0)|2 +
Rζ [ψ∗(z0)ψ ′(z0) + c.c.]. The integral containing the zeroth-
order term vanishes as its integrand is an odd function of ζ .
The integral containing the first-order term is finite, though,
providing the estimate, Eq. (7a). Technically, the Cy = 0 result
in Eq. (7b) follows from the fact that the α = y integrand
in Eq. (6) is an antisymmetric function of c ∈ [0,2πR] with
respect to c = πR. Finally, the derivation of Eq. (7c) is similar
to that of Eq. (7a). The difference here is that the integral will
be dominated by the zeroth-order term in the ζ expansion of
|ψ(z0 + Rζ )|2, hence higher order terms can be neglected.

III. INHOMOGENEOUS DEPHASING
OF A VALLEY QUBIT

HF leads to information loss via decoherence for spin
qubits in conventional semiconductors [8,44] as well as in
carbon nanostructures [9,29,30]. One form of decoherence is
inhomogeneous dephasing, which arises due to a nuclear-spin-
induced random component in the qubit’s Larmor frequency
and is characterized by the time scale T ∗

2 , usually called the
inhomogeneous dephasing time. To our knowledge, the T ∗

2 of
valley qubits [45–49] due to HF has not yet been investigated.
Based on the result in the previous section, here we evaluate
T ∗

2 for a valley qubit formed in the conduction-band ground
state of a CNT QD, as a function of the CNT radius R, the QD
length L, and the abundance ν ∈ [0,1] of 13C atoms.

We assume that the valley states of the single electron form-
ing the valley qubit are energy-split (!ωL) by a longitudinal
magnetic field and/or spin-orbit interaction, and the qubit is
tuned far away from the K-K ′ anticrossing [50,51] caused by
valley mixing. The valley qubit is prepared in a superposition
state, *(t = 0) = 1√

2
(|*K⟩ + |*K ′ ⟩). It interacts with the

nuclear spin bath, which is completely disordered to a good
approximation. The Hamiltonian reads

H = 1
2 !ωLτ3 + H

(eff)
OHF, (16)

where H
(eff)
OHF is given in Eq. (14), and we neglect Cx .

Following Merkulov et al. [8], we disregard the slow
dynamics of the nuclear spin bath and describe the nuclear
spins as being frozen during the time evolution of the electronic
valley state. The influence of the nuclear spin ensemble
is expressed via the HF-induced random correction δω =
1
!

∑
k,α Mk;3,αIk,α ≈ 1

!
∑

k Cz(zk)Ik,z of the valley Larmor
frequency ωL. In the presence of many nuclear spins, the
correction δω can be regarded as a Gaussian random variable
with the following mean and variance:

δω ≡ 1
!
∑

k

Cz(zk)Ik,z = 0, (17)

σ 2 ≡ (δω)2 = ν

4
1
!

∑

k

C2
k (zk). (18)

Here the overline refers to both ensemble averaging for the
nuclear spin states and disorder averaging for the possible
spatial configurations of the spin-carrying nuclei. Correspond-
ingly, we used Ik,α = 0 and Ik,αIk′,α′ = ν

4 δkk′δαα′ , and ν is the
abundance of spin-carrying nuclei.

The polarization vector of the valley qubit in the initial state
*(0) is p(t = 0) ≡ ⟨*(0)|τ |*(0)⟩ = (1,0,0)T . A straightfor-
ward calculation [8] shows that the time evolution of the
valley polarization p(t), averaged for the random nuclear-spin
configurations, reads

p(t) ≡ ⟨*(t)|τ |*(t)⟩ =

⎛

⎝
cos(ωLt)
sin(ωLt)

0

⎞

⎠ e−(t/T ∗
2 )2

, (19)

where

T ∗
2 =

√
2/σ = 1√

ν

2
√

2!
√∑

k C2
z (zk)

. (20)

For a box-type longitudinal envelope function, i.e., if ψ(z) =
1/

√
L within a QD of length L, we find

T ∗
2 ≈ 1√

ν
23/2√π

√
/cell!

evFµ0gNµN

√
LR, (21)

where Eqs. (7c) and (20) were used. For a natural (non-
isotope-enriched) CNT QD containing N = 6 × 105 atoms,
we estimate T ∗

2 ≈ 266 µs, comparable to the theoretically
estimated spin dephasing time [9]. This is not surprising,
considering that the orbital HF atomic coupling strength
estimated in the previous section was also comparable to the
spin HF (combined Fermi contact and dipolar) atomic coupling
strength.

For the Gaussian longitudinal envelope function defined
in Eq. (8), which provides a more realistic description of
the ground-state orbital of a QD with parabolic electrostatic
confinement, we find the same parameter dependence as for the
box-model wave function, with slightly different prefactors:

T ∗
2 ≈ 1√

ν
27/4π3/4

√
/cell!

evFµ0gNµN

√
LR. (22)

Note that if the relatively low coupling strength Cx correspond-
ing to a radially aligned nuclear spin is taken into account,
then the inhomogeneous dephasing time is (1 − R2

2L2 ) times the
right-hand side of Eq. (22), i.e., the correction due to Cx is
second order in the small quantity R/L. The coupling strength
Cx might gain importance and significantly contribute to the
T ∗

2 in ultrashort CNT QDs [38–40], where L ∼ R, or for
electrons that occupy a highly excited longitudinal mode of
a QD.

The interpretation of the results, (21) and (22), is straight-
forward. An increasing 13C abundance ν leads to a shorter T ∗

2 ,
and the inverse-square-root dependence on ν originates from
the completely randomized character of the nuclear spin bath.
The inverse linear dependence of T ∗

2 on the parameters setting
the interaction strength (e, vF , µ0, gN , µN ) and the square-root
dependence on the geometrical parameters R and L are natural
consequences of the parametric dependencies of the orbital HF
coupling strengths in Eq. (7).

IV. DISCUSSION

(i) A natural consequence of our results is that the nuclear-
spin–electron-valley interaction arising from OHF contributes
to the dephasing of spin-valley qubits in CNTs [22,41]. To our
knowledge, this contribution has not been analyzed to date. As
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GÁBOR CSISZÁR AND ANDRÁS PÁLYI PHYSICAL REVIEW B 90, 245413 (2014)

the strength of this interaction is comparable to those of the
nuclear-spin–electron-spin [9,23] and nuclear-spin–electron-
valley [26] interactions arising from the Fermi contact and
dipolar mechanisms, it is expected that the hyperfine-limited
inhomogeneous dephasing time of a spin-valley qubit has a
scale similar to that of the spin qubit (see Ref. [9]) and the
valley qubit (see Sec. III). A detailed calculation of T ∗

2 of the
spin-valley qubit, which could quantify, e.g., the dependence
of T ∗

2 on the direction of the homogeneous magnetic field, has
yet to be done.

(ii) We emphasize that valley-qubit coherence might be
affected by mechanisms other than OHF. For example,
spin-independent potential disorder, similarly to the case of
silicon-based heterostructure QDs [52–54], makes the valley
qubit susceptible to electric fields [46], including electrical
fluctuations caused by phonons or nearby electrodes. In
addition, if a CNT valley qubit is tuned by an axial magnetic
field to the K-K ′ anticrossing (e.g., to 0.11 T in Fig. 2(e)
of Ref. [51]), then valley mixing due to Fermi contact and
dipolar HF [26] can also induce qubit dephasing. Exploring the
competition and interplay of various valley-qubit decoherence
mechanisms is an interesting future direction.

(iii) Importantly, our present effort, which completes the
theoretical description of the basic hyperfine mechanisms
for CNT QDs, does not explain the comparatively strong
hyperfine coupling strength deduced from the experiments in
Refs. [16] and [17]. Further discussion of the relation of these
experiments and the theory of HF can be found in Secs. IV
and V of Ref. [2].

(iv) HF between electronic spin qubits and nuclear spins can
be harmful, as described above, from the quantum information
perspective. It can also be an asset though: in principle, nuclear
spins can be used as long-lived quantum memories [11–14],
and information transfer between the electronic and the nuclear
degrees of freedom can be mediated by HF. Furthermore,

enrichment (purification) of the 13C abundance is a feasible
way [15–17] to enhance (suppress) hyperfine effects.

(v) In certain inversion-symmetry-broken two-dimensional
multivalley materials, such as monolayer transition-metal
dichalcogenides [55] or gapped graphene [56], the electronic
states acquire a finite valley-dependent magnetic moment.
This magnetic moment is inherently coupled with the nuclear
spins of the crystal lattice via OHF; therefore, if an electron
is confined in a QD in these materials [57,58], then its
operation as a valley qubit or as a spin-valley qubit will be
influenced by the OHF-induced nuclear-spin–electron-valley
interaction in a similar fashion as in a CNT. The OHF and its
consequences in such two-dimensional materials have yet to be
explored.

In conclusion, we have shown that OHF couples the nuclear
spins residing in a CNT QD and the valley degree of freedom of
the electron confined in the QD. We have provided a quantita-
tive analysis of this interaction and found that it is essentially a
local Ising-type interaction, which is as strong as the nuclear-
spin–electron-spin HFs (Fermi contact and dipolar). As an
application, we evaluated the hyperfine-limited inhomoge-
neous dephasing time of a single-electron valley qubit, which
was found to be in the ∼100-µs range, similar to theoretical
estimates for CNT-based spin qubits but much longer than the
measured T ∗

2 of single-electron spin-valley qubits.
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V. Zólyomi, J. Koltai, J. Kürti, B. Dóra et al., Phys. Rev. Lett.
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[35] B. Dóra and F. Simon, Phys. Rev. Lett. 102, 197602 (2009).
[36] H. Ajiki and T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993).
[37] E. D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen, Nature

428, 536 (2004).
[38] X. Sun, S. Zaric, D. Daranciang, K. Welsher, Y. Lu, X. Li, and

H. Dai, J. Am. Chem. Soc. 130, 6551 (2008).

[39] J. O. Island, V. Tayari, S. Yigen, A. C. McRae, and A. R.
Champagne, Appl. Phys. Lett. 99, 243106 (2011).

[40] P. Petit, C. Feuillet-Palma, M. L. Della Rocca, and P. Lafarge,
Phys. Rev. B 89, 115432 (2014).

[41] K. Flensberg and C. M. Marcus, Phys. Rev. B 81, 195418 (2010).
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[46] A. Pályi and G. Burkard, Phys. Rev. Lett. 106, 086801 (2011).
[47] G. Y. Wu, N.-Y. Lue, and L. Chang, Phys. Rev. B 84, 195463

(2011).
[48] D. Culcer, A. L. Saraiva, B. Koiller, X. Hu, and S. D. Sarma,

Phys. Rev. Lett. 108, 126804 (2012).
[49] N. Rohling and G. Burkard, New J. Phys. 14, 083008 (2012).
[50] D. V. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B 77,

235301 (2008).
[51] F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen, Nature

452, 448 (2008).
[52] M. Friesen and S. N. Coppersmith, Phys. Rev. B 81, 115324

(2010).
[53] D. Culcer, X. Hu, and S. Das Sarma, Phys. Rev. B 82, 205315

(2010).
[54] J. K. Gamble, M. A. Eriksson, S. N. Coppersmith, and M.

Friesen, Phys. Rev. B 88, 035310 (2013).
[55] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev.

Lett. 108, 196802 (2012).
[56] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
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