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Abstract 
Background and aims: Survey-based studies often fail to take into account the predictive value of a test, 

in other words the probability of a person having (or not having) the disease when scoring positive (or 

negative) on the given screening test. Methods: We re-visited the theory and basic calculations of 

diagnostic accuracy. Results: In generally, the lower the prevalence the worse the predictive value is. 

When the disorder is relatively rare, a positive test finding is typically not useful in confirming its 

presence given the high proportion of false positive cases. For example, using the Compulsive Buying 

Scale (Faber & O'Guinn, 1992) three in four people classified as having compulsive buying disorder will 

in fact not have the disorder. Conclusions: Screening tests are limited to serve as an early detection “gate” 

and only clinical (interview-based) studies are suitable to claim that a certain behaviour is truly 

“pathological”.   
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Introduction 

 

We welcome the initiative of Billieux, Schimmentic, Khazaad, Mauragea, and Heerena (2015) in which 

they question the clinical validity of certain behaviours that are considered addictions. Hereby, we would 

like to contribute to this discussion by pointing out an important although often ignored statistical 

phenomenon closely related to the overpathologising of everyday behaviours: the predictive value of 

screening tests.  

Similar to the one carried out by Targhetta, Nalpas, and Perney (2013) many studies struggle with 

the issue of separating “asymptomatic” and “symptomatic” (addicted or disordered) individuals 
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performing a given behaviour. Although inventories are generally developed to provide a close estimate to 

a clinical test based on self-report, a screening instrument will never have diagnostic validity. But how 

precise can a screening instrument be compared to a clinical diagnosis?  

 

Specificity, sensitivity, positive and negative predictive value 

Diagnostic accuracy, originally developed for the evaluation of laboratory screening instruments, is an 

indicator of the utility of a test (Glaros & Kline, 1988). It is measured by its agreement with a reference or 

“gold” standard that is the best available indicator of the presence or absence of the condition (Bossuyt et 

al., 2003). Accuracy is based on four concepts (see Table 1). Sensitivity and specificity provide 

information about the ability of the test to detect diseased and non-diseased persons correctly. For 

example, if sensitivity equals 80, it means that out of 100 diseased cases, the test will identify 80 as 

diseased. A specificity of 80, on the other hand, would mean that out of 100 non-diseased cases the test 

will identify 80 as negative and 20 as positive (diseased). Sensitivity and specificity are “fixed values” of 

the test (Streiner, 2003) which means that as long as the test is used in similar samples, these attributes 

remain the same. Positive and negative predictive value, on the other hand, provide information about the 

probability of a person having (or not having) the disease when scoring positive (or negative) on the 

screening test. A positive predictive value (PPV) of 80 means that out of 100 individuals scoring positive 

on the test, 80 are truly diseased, and 20 are not. A negative predictive value (NPV) of 80 would mean that 

80 of 100 will be correctly classified as non-diseased, but 20 diseased individuals will score negative on 

the screening test. PPV and NPV are not “fixed values” but dependent on the prevalence of the disease in 

the sample where the screening test is administered (Streiner, 2003).  

Ideally, the number of true positive (truly diseased cases scoring positive on the screening test) 

and true negative cases (non-diseased cases scoring negative on the test) are both high and the number of 

false positive (cases that score positive although truly non-diseased) and false negative cases (who score 

negative although truly diseased) are both kept to minimum. This yields the best accuracy of the screening 

test. When the prevalence is kept constant, then sensitivity, specificity, PPV and NPV values are 

interdependent. In general, the lower the cut-off value on a given instrument, the higher the number of true 

positive cases, and the higher the number of false positive cases as well. This leads to higher sensitivity 

but lower specificity and PPV. Another general tendency is that when the prevalence is high then the 

proportion of false negatives may also be high, and when the prevalence of the disease is low then the 

proportion of false positives tends to be high (Streiner, 2003) which is generally the case with behavioural 

addictions. Thus, in order to calculate the probability of the disease given a positive test result one has to 

consider the a priori (antecedent) probability which is the prevalence rate (for the Bayesian approach of 

the calculations see: Meehl & Rosen, 1955).  



 

Table 1: Calculation of accuracy 

 Diseased Non-diseased  

Screened + True positive (TP) False positive (FN) All positive (AP) 

Screened - False negative (FN) True negative (TN) All negative (AN) 

 All diseased (AD) All non-diseased (AnD)  

Note: Sensitivity=TP/AD, Specificity=TN/AnD, Positive Predictive Value=TP/AP, Negative Predictive 

Value=TN/AN, Accuracy (or Efficiency)=(TP+TN)/total 

 

 

 

Examples 

The question arises: given a positive test, what is the probability that the individual truly has the given 

disorder? A few examples are shown on Figure 1. Note that as the prevalence drops, so does the PPV 

(whereas the proportion of false positives increases). 

 

 

Figure 1: Positive Predictive Value of actual and hypothetical instruments depending on prevalence 

 

 
 



Note: Sens=sensitivity, Spec=specificity. Positive predictive value = the probability of a person having 

the disease when scoring positive on the screening test. 

As it appears on Figure 1, even when specificity and sensitivity are both at 99%, given a prevalence of 

1%, the individual has a 50% chance of not having the disease when the screening is positive. But 

screening instruments usually have much lower sensitivity and specificity values than 99%.  

One of the most widely used tests to measure compulsive buying behaviour is the Compulsive 

Buying Scale (CBS) by Faber and O'Guinn (1992). Using a group of self-identified compulsive buyers as 

the criterion group, the authors reported a sensitivity of 89.8% and specificity of 85.3% for the CBS. 

According to a recent meta-analysis (Maraz, Griffiths, & Demetrovics, 2015) the pooled prevalence of 

compulsive buying is 4.9%. This means that out of those scoring negative, 99% are probably non-

diseased, but of those that score positive for compulsive buying, only 24% would probably be truly 

diseased. Although the test is unlikely to miss a pathological case, three in four people classified as having 

compulsive buying disorder will in fact not have the disorder.  

Other instruments have an even lower predictive value. For example, one of the few clinically 

validated Internet addiction measures is the Scale for the Assessment of Internet (and Computer Game) 

Addiction by Müller, Beutel, and Wölfling (2014). This instrument was validated on a sample of 221 

treatment seeking, clinically diagnosed problematic Internet users for which the authors reported a test 

sensitivity of 80.5% and a specificity of 82.4%. Using the same instrument, the authors conducted a 

population-based survey and reported a prevalence rate of 2.1% for Internet addiction (Müller, Glaesmer, 

Brähler, Woelfling, & Beutel, 2014). Based on this prevalence rate, NPV is nearly perfect (99%), 

however, PPV is only 8.9% (for the exact calculations see the Appendix). This means that out of those 

scoring positive on the test, only 8.9% has the correct classification. Thus out of a 100 individuals 

screened positive for Internet addiction, only 9 will truly have the disease, and 91 will be misclassified.  

 

Further challenges 

A critical point in the test accuracy is the criteria or “gold standard” that the inventory is assessed against. 

Technically, if the individual scores positive on the compulsive buying scale, then he or she has 24% 

chance of being a self-identified compulsive buyer, because this was the “gold standard” against which 

specificity and sensitivity were tested. Thus it is paramount to test inventories against clinical criteria to 

provide a sensible estimate of the extent of the given behavioural addiction.  

 Establishing an “external criteria” for addiction is another challenge. Unlike substance-related 

disorders, complete abstinence is often impossible and indicators of pathology are difficult to define. This 

is especially the case with the “innovative yet absurd addictive disorders” – as Billieux et al. (2015) state – 

such as tango addiction (Targhetta et al., 2013), tanning addiction (Kourosh, Harrington, & Adinoff, 

2010), study addiction (Atroszko, Andreassen, Griffiths, & Pallesen, 2015) or “research addiction” from 



Billieux et al. (2015). From a statistical point of view, an instrument that has not been tested against a 

clinically valid (diagnosed) group is unsuitable to assess the disorder.  

 

Conclusions and future recommendations 

The accuracy model was initially developed for medical purposes where (1) there is usually a clear criteria 

of what constitutes problematic and (2) the cost of misclassification is relatively low. Classifying 100 

individuals as “positive” and referring them to further tests is more reasonable than missing one person 

who might suffer from serious consequences if the early signs of the disease are missed. But is the same 

logic true for behavioural “addicts”? Even if the cost of missing a case is the same, the cost of 

misdiagnosing is certainly higher compared to medical conditions given the scaremongering of the media 

that often exaggerates the impact of high prevalence estimates by presenting certain behaviours – such as 

using the Internet – as inherently dangerous. As a consequence, the moral panic may create unnecessary 

conflicts in families. 

Low PPVs contribute to overpathologising everyday behaviours because the proportion of truly 

diseased people is much lower than the proportion of those scoring positive on a screening test. When the 

disorder is relatively rare, a positive test finding is typically not useful in confirming its presence given the 

high proportion of false positive cases. When the prevalence is low, a test is best used to rule out a 

condition but not to rule it in (Streiner, 2003).  

At the same time the low predictive value of a test does not imply that behavioural addictions are 

non-existing or that they are not pathological. It only means that the use of surveys and screening tests is 

limited to serve as an early detection “gate”. One must always keep in mind that only clinical (interview-

based) studies are suitable to claim that a certain behaviour for a given individual is truly “pathological”.   
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Appendix: The calculation of positive and negative predictive value on the example of the Scale for 

the Assessment of Internet and Computer game Addiction (Müller, Beutel, & Wölfling, 2014)  

 

 
 


