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Abstract  

Small aromatic molecules are known to interact with poly(N-isopropylacrylamide) (PNIPA) 

based hydrogels, one of the most frequently employed polymers in temperature induced drug 

delivery systems. These interactions are poorly understood at the molecular level. In this 

article we investigate PNIPA both at the macroscopic and at the molecular level using 

measurements of swelling, differential scanning microcalorimetry (DSC), X-ray powder 

diffraction (XRD) and solid state 
1
H NMR methods. The nature and the strength of the 

interactions affect the efficiency and kinetics of drug delivery. Phenols exert a major 

influence on PNIPA by reducing its phase transition temperature. The effect depends linearly 

on the phenol concentration, and is influenced also by the number of phenolic OH groups, as 

well as their relative positions. The strong interaction between phenol and the polymer that is 

detected by NMR hinders the crystallisation of phenol when the water is gradually 

evaporated. The aminoethyl phenol derivative dopamine has a much more limited effect, but 

in the opposite direction - the transition temperature increases slightly. The strong interaction 

observed among the dopamine molecules disables the polymer – dopamine interaction and 

favours crystallization of the dopamine when water is removed. These results reveal that 

embedding the drugs into polymer matrices for controlled delivery can alter the crystallinity 

of the stored molecules. As morphology is one of the crucial factors in delivery, this may 

compromise the rate and the efficiency of release. 

 

Keywords responsive polymers, poly(N-isopropylacrylamide) gel, host-guest interactions, 

controlled drug delivery, phenols, dopamine 
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1. Introduction  

Responsive hydrogels are among the most frequently proposed vehicles for targeted and 

controlled drug delivery. These smart stimuli-sensitive hydrogels change their physical 

properties in response to external physical (temperature, mechanical effect, electromagnetic 

radiation, electric or magnetic field) or chemical stimuli (solvent conditions: composition, 

dissolved species, pH, ionic strength) [1]. Their ability to store and release drugs puts them at 

the focus of interest as possible drug eluting systems. Furthermore, hydrogels can protect drug 

molecules from unfavourable conditions, such as the presence of enzymes or low pH [1]. 

Since temperature is a highly important parameter in the mammalian body, temperature-

sensitive hydrogels have become the most investigated smart polymers [2-3]. The majority of 

thermosensitive hydrogels investigated in the past decades are synthetic polymers based on 

poly(N-isopropylacrylamide) (PNIPA) [2-4]. PNIPA hydrogels exhibit a non-linear volume 

phase transition (VPT) at a lower critical solution temperature (LCST) around 34 °C, which is 

close to the natural temperature of the human body [3,5]. On being triggered by stepwise 

temperature changes PNIPA can exhibit a pulsatile drug release profile [3,6-7]. 

In terms of kinetics and efficiency of controlled delivery, the nature and strength of the 

interaction between the drug molecule and the polymer chains are of vital importance. 

Chemical properties of the guest molecule and potential drug - polymer interactions are 

crucial in the swelling and release process, but these factors are poorly understood [8-9]. 

During the loading process free diffusion occurs into and out of the gel matrix, which is 

usually also related to the swelling of the gel [10-11]. The most common mechanism for 

discharge is diffusion. When a small molecule interacts with the polymer chains either 

reversibly or irreversibly, interactions in the gel matrix will determine the rate of release [10]. 

Interactions between the guest molecule and the gel network can inhibit release by binding of 

the drug to the polymer chains and/or by altering the swelling properties [8-9]. 

Molecules with phenolic OH can influence the swelling behaviour of the PNIPA in various 

ways [12-16]. While some molecules have only a slight effect or no effect at all, other guest 

molecules can change the transition temperature even at low additive concentrations [16, 17]. 

At a certain concentration (critical concentration) an abrupt collapse of PNIPA may occur 

already at or below room temperature. The temperature shift depends on the concentration 

and chemical structure of the additive. Several molecules and ions reduce the LCST [12-16]. 

Anionic (e.g., sodium dodecyl sulphate) and cationic surfactants (e.g., dodecyl trimethyl 

ammonium chloride) increase the LCST [18].  
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In our previous publications the influence of phenol, resorcinol and phloroglucinol, studied by 

scattering, calorimetric and later by NMR techniques were reported in detail (12-14, 19). It 

was found earlier that they exhibit an interaction with the polymer chains that depends on the 

number of the OH-groups [19]. Binding of phenol to PNIPA is mediated by hydrogen bonds 

between the amide group of the NIPA chain and the hydroxyl group of the phenol molecule 

[20]. The associative behaviour between phenol and PNIPA was also demonstrated by small-

angle neutron scattering (SANS) and solid state NMR techniques [12-14]. By contrast, 
1
H 

solid-state NMR results showed that dopamine does not associate with the polymer chains 

[15].  

Here we report novel results that not only encompass all OH-substituted benzene molecules, 

together with another derivative 4-(2-aminoethyl)benzene-1,2-diol (i.e., dopamine), but also 

yield an interpretation based on the interactions between PNIPA hydrogels and these 

biomedically relevant molecules. Phenols are used widely as model molecules for several 

small aromatic drugs, including tyrosine [20]. Dopamine acts as a hormone and 

neurotransmitter in the human brain and nervous system. Abnormal levels of this molecule 

may result in Parkinson’s disease and mental disorders [21]. The consequences of our 

findings on drug delivery vehicles will also be considered. 

 

2. Experimental  

2.1. Materials 

N-isopropylacrylamide (NIPA) (99%) and N,N,N’,N’-tetramethylethylenediamine (TEMED) 

(99%) were purchased from Fluka, N,N’-methylenebisacrylamide (BA) (99%), ammonium 

persulphate (APS) (99%) and dopamine hydrochloride (98 %) from Sigma-Aldrich, and 

phenol (99.5 %), resorcinol (99%), phloroglucinol (99%), catechol (99%), pyrogallol (99%) 

and hydroquinone (99%) from Merck. All chemicals were used without further purification. 

Some of the relevant physico-chemical properties of these aromatic probes, such as solubility 

in water and pKa, are listed in Table 1. 

 

2.2. Synthesis of the polymer gel 

PNIPA gel films with the molar ratio of [NIPA] / [BA] = 150 were synthesised by mixing  

1 M aqueous solution of NIPA (18.75 mL) and 0.1 M solution of BA (1.225 mL) with water 

(4.9 mL) and TEMED (0.25 L). After addition of APS (125 µL) to the mixture, 

polymerization took place at 20 °C within 24 hrs. The 2 mm thick gel films were dialyzed in 

double distilled water and cut into disks of 7 mm (for swelling experiments) and 17 mm (for 
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XRD and NMR techniques), then dried and stored above concentrated sulphuric acid. For 

calorimetric measurements dry gel disks were powdered (particle size 0.2-1 mm). 

 

2.3. Swelling measurements 

Swelling experiments were carried out by equilibrating dry disks in excess aqueous solutions 

with different initial concentrations (c0) of the following compounds: phenol, resorcinol (1,2-

dihydroxybenzene), phloroglucinol (1,3,5-trihydroxybenzene) and hydroquinone (1,4-

dihydroxybenzene) (c0 = 0-100 mM), catechol (1,2-dihydroxybenzene) (c0 = 0-175 mM), 

pyrogallol (1,2,3-trihydroxybenzene) (c0 = 0-175 mM) and dopamine hydrochloride (c0 = 0-

500 mM) for one week at 20.0 ± 0.2 °C. The dry gel/liquid ratio was 0.012. The equilibrium 

swelling ratio (1/φe) was determined from the mass balance as: 

drygel,dry  gel,

solutiondry gel,swollen gel,dry gel, dry gel,

e
/

 /)-( /
1/

ρm

ρmmρm
φ


 ,   (1) 

where mgel,dry and mgel,swollen are the mass of the dry and the equilibrated gel disks, 

respectively. The density of the free liquid phase (ρsolution) was taken as 1 g/mL, and that of the 

dry PNIPA gel (mdry gel) is 1.115 g/cm
3 

[13]. The reproducibility of the swelling degree of 

different batches was 1.5-3.5 %. The swelling degrees reported here are relative to that 

measured in pure water. 

The aromatic guest uptake na (mmol/gdry gel), was determined from the initial (c0) and 

equilibrium molar concentrations (ce): 

0

ee00

a
m

VcVc
n


 , (2) 

where V0 and Ve are  the initial and equilibrium volume of the free liquid phase, respectively.   

 

2.4. Differential scanning microcalorimetry (DSC) 

DSC measurements were performed on a MicroDSCIII apparatus (SETARAM). Powdered 

PNIPA was used to reduce the swelling time. Approximately 10 mg powdered gel was 

incubated in 500 µL of aqueous solution of the different aromatic molecules for 2 hours, then 

heated from 10 to 40 °C at the scanning rate dT/dt = 0.02 °C/min. The values of the enthalpy 

H were obtained in 25 mM solutions of the different guest molecules with a standard 

error of 5-10 %. At this concentration at 20 °C the gels are swollen in the aromatic 

solutions. 

 



 

6 

 

2.5. Solid state 
1
H NMR spectroscopy 

The dry gel samples were swollen in solutions of phenol (60 mM) and dopamine (1 M) in 

deuterated water for one week below LCST conditions. After reaching the equilibrium 

swelling ratio the gels were incubated above the LCST (25 °C for the phenol and 42 °C for 

the dopamine). The samples were regularly removed and placed into the NMR rotor to check 

the stability of tuning and matching conditions. In phenol solution the equilibrium state was 

reached after three weeks, while in dopamine solution it took only three days. NMR spectra 

were recorded on a Varian NMR system operating at 
1
H at 600 MHz with a Chemagnetics 3.2 

mm narrow bore triple-resonance T3 probe in double-resonance mode. The single pulse NMR 

measurements were carried out with 2.5 μs π/2 pulse and with 10 s repetition delay. For the 

combined rotation and multiple-pulse spectroscopy (CRAMPS) the wPMLG-5 sequences was 

used with the same pulse length and delay as for the single pulse spectra. The on-resonance 

position of the RF field lay outside the spectral response (-5 kHz from the centre of the proton 

spectra). The proton chemical shift resonances were referenced with a single pulse spectrum 

of a H2O sample (4.8 ppm). Spinning speed was 10 kHz for both techniques. 

 

2.6. X-ray powder diffraction (XRD) 

For XRD measurements dry gel disks were equilibrated in phenol and dopamine solutions 

with the initial concentration of c0 = 500 mM (1 week, 20.0 ± 0.2 °C). XRD spectra were 

obtained daily from the disks during the drying process at room temperature on a 

PANanalytical X’pert Pro MPD XRD powder diffractometer. [22] The XRD response of the 

loaded samples was corrected for the background signal of the glass sample holder and the 

signal of the gel equilibrated in pure water as well as in the identical state of drying. For 

comparison pure model drugs were freshly recrystallized from water and dried on the glass 

sample holder. 

 

3. Results and discussion 

3.1 Swelling measurements 

Dry PNIPA gel disks were equilibrated in excess aqueous solutions of the OH-substituted 

phenols with different initial concentrations. All phenols reduce the degree of swelling and 

induce rapid collapse at a “critical” concentration (ccrit) that is characteristic of the guest 

molecule (Fig.1, Table 1). The data in Table 1 also show that these critical concentrations are 

related neither to the pKa nor to the solubility of these compounds. Comparing the phenols 

having OH groups in meta positions (phenol, 1,2-dihydroxybenzene and 1,3,5-
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trihydroxybenzene) a systematic shift can be observed in ccrit with the increasing number of 

hydroxyl groups: more OH groups results in lower critical concentration (Fig.1a). In the case 

of ortho phenols (1,2-dihydroxybenzene and 1,2,3-trihydroxybenzene) the systematic shift 

exists but in a slightly different way: with increasing number of OH groups the critical 

concentration increases (Fig.1b). In other words, ortho positions increase, and meta positions 

decrease the critical concentration relative to phenol at 20 °C (Table 1), and the shift in the 

critical concentration is the greatest for trihydroxy-benzenes. On comparing phenols with two 

OH groups, the sequence is meta < para < ortho. The shape of the swelling curves is also 

affected by the dissolved small molecule. Multiple OH substituted phenols show a stronger 

influence already below the critical concentration and at the same time their transition range is 

wider. Generally speaking, if the effect of the concentration below VPT is more pronounced 

then the phase transition appears to be wider and less steep (Table 1). Introducing an 

aminoethyl group into 1,2-dihydroxybenzene, however, changes the interactions dramatically: 

contrary to phenols, no VPT occurs even in very concentrated (c0 = 1 M) solutions of 

dopamine (not plotted here).  

 

 

 

Fig.1 Swelling degree of PNIPA hydrogel in different phenolic molecule solutions at 20 °C as 

the function of equilibrium concentration in the free liquid phase. (a) Meta substituted phenol 

solutions: Δ phenol, ▲1,3-dihydroxybenzene (resorcinol), ▼ 1,3,5-trihydroxybenzene 

(phloroglucinol) (b) Ortho substituted phenol solutions: Δ phenol,  1,2-dihydroxybenzene 

(catechol), ● 1,2,3-trihydroxybenzene (pyrogallol) (c) Δ phenol,  1,2-dihydroxybenzene 

(catechol), ▲1,3-dihydroxybenzene (resorcinol), ■1,4-dihydroxybenzene (hydroquinone).  

 

Table 1. ccrit and ΔH values of the phase transition, and slopes
a
 of the swelling isotherms of 

PNIPA hydrogel in aqueous phenol solutions 
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Phenol 

Meta Ortho Para 

1,3-

dihydroxy-

benzene 

(resorcinol) 

1,3,5-

trihydroxy-

benzene 

(phloroglucinol) 

1,2-

dihydroxy

-benzene 

(catechol) 

1,2,3-

trihydroxy-

benzene 

(pyrogallol) 

1,4-dihydroxy-

benzene 

(hydroquinone) 

pKa (25 °C)
b
 9.99

c
 9.32; 11.1

c
 8.45

c
 

9.34; 

12.6
c
 

9.01
d
 9.85; 11.4

c
 

Solubility in 

water, 20 °C 

(M)
e
 

0.892
f
 9.082

g
 0.079

h
 4.096

i
 4.956

j
 0.636

k
 

ccrit (mM) 53 50 36 81 194 62 

ΔH (J/g)  

(c = 25 mM) 
71±6 68±6 64±6 67±6 67±6 59±5 

Initial 

slope 

(1/mM) 

-1.4·10
-3 

-4.7·10
-3 

-6.0·10
-3

 -2.7·10
-3 

-2.8·10
-3 

-5.5·10
-3 

Slope in 

transition 

range 

(1/mM) 

-

161*10
-3 -111*10

-3 
-87*10

-3 
-35*10

-3 
-7.3*10

-3 
-47*10

-3 

a
 the error of the slopes is 8-20 %; 

b
 pKa values for dopamine are 9.0, 10.6 and 12.1 [23]; 

c 
[24]; 

d
 

[25]. 
e 

Solubility of dopamine hydrochloride is up to 0.527 M [26]; 
f
 [27], 

g
[28], 

h
[29], 

i
[30], 

j
[31], 

k
[32]. 

 

 

3.2 Differential scanning microcalorimetry (DSC) 

The phase transition of PNIPA swollen in the aqueous aromatic solutions was also measured 

by high sensitivity differential scanning microcalorimetry. All the phenols lower the phase 

transition temperature TVPT proportionally to their concentration (Fig.2). The slope of the TVPT 

- concentration plot rises, while the enthalpy corresponding to the phase transition ΔH in  

25 mM solutions decreases slightly but systematically with increasing number in the group of 

meta-substituted phenols (Fig.2, Table 1). These observations, however, are not valid for 

ortho and para substitutions (Table 1). Dopamine increases the phase transition temperature, 

but the impact is much more limited. As neither the solubility nor the acid/base properties 

provide an explanation for the opposite effect of phenols and their aminoethyl derivative, an 

understanding of the intramolecular interactions is required. 
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Fig.2 TVPT of PNIPA in aqueous solutions from DSC measurements. For dopamine the upper 

concentration scale applies. Δ phenol,  1,2-dihydroxybenzene (catechol),  

▲1,3-dihydroxybenzene (resorcinol), ■ 1,4-dihydroxybenzene (hydroquinone),  

● 1,2,3-trihydroxybenzene (pyrogallol), ▼ 1,3,5-trihydroxybenzene (phloroglucinol),  

 4-(2-aminoethyl)benzene-1,2-diol (dopamine). 

 

For comparative investigations we selected one of the TVPT decreasing molecules, phenol, and 

the TVPT increasing dopamine. The effect of the aromatic concentration was studied by DSC 

on gel samples fully swollen at the initial temperature (20 °C) of the measurement. Raising 

the phenol concentration spectacularly lowers the temperature of the transition and broadens 

the response curve. The process becomes slightly but systematically more endothermic 

(Fig.3a, Table 2). With dopamine only a moderate upward shift in the position of the 

endothermic signal is observed. The broadening of the phase transition peak becomes obvious 

only from 500 mM dopamine concentration on (Fig. 3b). Although at 20 °C no macroscopic 

deswelling occurred, the enthalpy of the transition drops sharply in the 1 M dopamine solution 

in the scanning experiment (Fig. 3b). The broadening of the phase transition with both phenol 

and dopamine may indicate slower relaxation of the PNIPA chains during the VPT as the 

concentration increases and/or reduced heat conductivity as water is expelled. 
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Fig.3 DSC response of powdered PNIPA gel in (a) phenol and (b) dopamine solutions with 

different concentrations. Successive curves are shifted vertically for clarity.  

 

Table 2. ΔH values of the phase transition of PNIPA hydrogel swollen in aqueous phenol and 

dopamine solutions 

Phenol Dopamine 

c (mM) ΔH (J/g) c (mM) ΔH (J/g) 

0 57±5 0 57±5 

5 60±5 25 55±5 

25 71±6 100 60±6 

30 70±6 500 50±5 

60 72±6 1000 33±3 

 

Guest molecules and ions affect the macroscopic properties of PNIPA by specific interactions 

with the polymer chains, or by changing the quality of the solvent. When aromatic molecules 

associate with the polar groups of the gel, they replace matter in the hydration layer, and 

disrupt the cooperative water ordering around the chain. As a result, the chain becomes more 

hydrophobic and the LCST shifts to lower temperatures. Phenols can associate with PNIPA 

by hydrogen bonding between the hydroxyl group(s) and the amide group. Thus, the entropy 

of the system increases and the reduction in the number of the hydrogen bonds leads to a 

complex that segregates from water. The effect of phenols on the swelling and thermal 

behaviour of PNIPA is complex, because both the number and the steric position of the 

hydroxyl groups influence the hydrogen bridging affinity and thus the critical concentration as 

well as the temperature and enthalpy of the phase transition (Figs. 2, 3b, Table 2). Although 

phenol has a significant effect on the swelling and thermal properties of PNIPA in aqueous 

media, this  effect in the dry state is limited, indicating that the interaction between phenol 

and PNIPA can be mediated by the presence of water molecules [33]. Dopamine has virtually 

no influence on the swelling properties up to 1 M concentration and only a slight effect on the 

a

[

I

d

e

 

í

r

h

a

t

j

a

 

a

 

d

o

k

u

m

e

n

t

u

m

b

ó

l 

i

d

é

z

e

t

t 

s

z

ö

v

e

g

e

t 

v

a

g

y

b

[

I

d

e

 

í

r

h

a

t

j

a

 

a

 

d

o

k

u

m

e

n

t

u

m

b

ó

l 

i

d

é

z

e

t

t 

s

z

ö

v

e

g

e

t 

v

a

g

y



 

11 

 

thermal behavior of the gel, shifting TVPT to higher temperatures, which suggests a physically 

different effect from phenol and an improvement in solvent quality.  

 

3.3 
1
H proton solid-state NMR measurements 

To understand the effects of the two aromatic guest molecules, two kinds of 
1
H techniques 

providing different information were performed. The gels were studied above LCST 

conditions, where the otherwise freely moving organic chains form thick hydrophobic walls 

that still confine the swelling liquid [34]. The single pulse spectra (Fig.4) supply information 

about the more mobile species, the signals of the less mobile ones being broadened by dipolar 

interactions. The CRAMPS technique suppresses the broadening effect of the dipole-dipole 

interactions and the signals of the less mobile components are better resolved (Fig.5). In 

exchange for the improvement in resolution, the signals of the mobile components are 

distorted. Both single pulse spectra (Figs 4a and 4b) contain sharp signals. These signals (4.5 

– 5 ppm) in the spectrum of the phenol swollen gel belong to the cavities containing liquid 

water [15]. No sharp signal corresponding to phenol can be observed, which indicates that 

these voids are free from solute molecules. The spectrum of the gel swollen in dopamine 

solution contains only one water signal, but sharp resonances of dopamine are also present, 

implying that the cavities are filled with dopamine solution. This solution is extremely 

concentrated: the ratio of the integral values indicates that the concentration is 8 M. In the 

CRAMPS spectra (Fig.5) the sharp signals are distorted, but the signals of the less mobile 

components are clearly distinguishable. These signals correspond to the precipitated 

hydrophobic polymer and small molecules with low mobility. Previous two dimensional solid 

state NMR measurements [14-15] proved that the phenol molecules are connected by strong 

H-bonds to the acrylamide side groups. By contrast, interactions between dopamine and the 

gel molecules could not be detected [16]. The dopamine signals present in the CRAMPS 

spectra showed that a substantial part of the dopamine molecules have only very low mobility, 

indicating oligomerization or even the polymerization of dopamine. Lee et al. [35] have 

suggested that the presence of catechol and amine groups could be the driving force of such 

polymerization. The detailed mechanism, however, is not known. 
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Fig.4 Single pulse solid state 
1
H NMR spectra of PNIPA above the LCST at spinning speed of 

10 kHz; (a) dopamine containing gel (b) phenol containing gel. 

 

 

 

Fig.5 CRAMPS solid state 
1
H NMR spectra of PNIPA above the LCST with spinning speed 

of 10 kHz: (a) dopamine containing gel (b) phenol containing gel. 

 

3.4 X-ray powder diffraction (XRD)  

Direct interactions between the solute molecules and the polymer chains are expected to 

influence the drying process of the guest molecule - gel systems. The interactions revealed 

above can influence the crystallinity of the guest molecules inside the gel after drying. The 

drying of gel disks swollen in the two aqueous solutions of the two selected model drugs –

TVPT-decreasing phenol and TVPT-increasing dopamine – were measured by XRD. The XRD 

signals of phenol and dopamine recrystallized from their 500 mM aqueous solutions are 

compared in Fig. 5a and c. The signals obtained from PNIPA swollen in pure water showed 

that the gel remains amorphous. The lack of crystallinity in the XR diffractograms of the 

phenol-loaded gel (Fig.5b) is the sign that crystallization of phenol confined in the gel is 

inhibited. Phenol has a strong effect on the swelling behaviour of PNIPA in aqueous 

solutions, but its influence on the thermal decomposition of the gel in dry conditions is 

moderate and mediated by water [33]. This implies that the interaction between phenol and 

water plays a major role in the phenol - PNIPA system. This behaviour contrasts with that 
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observed during the drying of the dopamine-loaded gel, which is characterised by slow 

crystallisation of the dopamine (Fig.5d). A strong dopamine-dopamine interaction will inhibit 

the dopamine - PNIPA interaction, and thus foster crystallization.  

 

 

Fig.5 XRD responses of the guest molecules and the guest  PNIPA systems during the 

drying process: (a) phenol, (b) phenol loaded PNIPA gel, (c) dopamine hydrochloride 

oriented by the glass sample holder during drying, (d) dopamine loaded PNIPA gel: all the 

peaks can be identifyed in the reference patterns of polycrystalline dopamine hydrochloride 

(CSD [36], Mercury [37], DOPAMN01 [38], DOPAMN02 [39], PDF-ICDD [40], PDF-00-

27-1942 [41],PDF-00-35-1914 [42], PDF-45-1642 [43]). 

Successive curves are shifted vertically for clarity. 

 

Conclusions  

The influence of guest molecules and ions on the phase transition of PNIPA gels strongly 

depends on their chemistry. It was found that all the phenols have a major impact on the phase 

transition of PNIPA gels. In aqueous solution they reduce the temperature of the transition 

proportionally to their concentration and affect the rate of heat release. The extent depends 
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both on the number and on the position of the OH groups. When the OH groups are in meta 

position, increasing their number reduces the concentration required to initiate a phase 

transition already at 20 °C. Increasing the number of the OH groups in adjacent position, on 

the contrary, shifts this concentration to higher values. According to the NMR results, as the 

phase transition conditions are approached the phenol molecules interact practically 

exclusively with the porous polymer walls, leaving behind free water molecules in the 

confined voids. This interaction hinders the crystallisation during the drying of the gel, giving 

rise to amorphous phenol. Dopamine has only a limited influence on the phase transition 

temperature, even slightly increasing it at 1M. The results of various methods prove that a 

preferential strong dopamine – dopamine interaction prevents the interaction with the polymer 

even in confined conditions. The dopamine crystals that gradually develop during the drying 

process indicate that the lack of polymer – dopamine interaction and the strong dopamine – 

dopamine interaction fosters crystallization.  

From these observations two conclusions can be drawn. Firstly, embedding drugs in polymer 

matrices for use as controlled delivery vehicles can influence the crystallinity of the stored 

molecules. As morphology is one of the crucial factors during delivery, the rate of the release 

may be severely influenced. Secondly, by corollary, strong drug – polymer interactions also 

reduce the amount of drug released. 

 

Acknowledgement  

Support from the Hungarian grant OTKA K101861 (Hungarian Scientific Research Fund) and 

FP7-PEOPLE-2010-IRSES-269267 (Marie Curie International Research Staff Exchange 

Scheme) project is acknowledged. A. D. acknowlegdes the support of the Bolyai Fellowship. 

We express our gratitude to I. Vincze and T. Hartung for their contribution to the 

experimental work.  

 

References  

 

1. Yong Qiu, Kinam Park. Environment-sensitive hydrogels for drug delivery. Advanced 

Drug Delivery Reviews 2001, 64, 49–60. 

2. Julio César Cuggino, Cintia Belén Contreras, Alvaro Jimenez-Kairuz, Belkys Angélica 

Maletto, Cecilia Inés Alvarez Igarzabal. Novel Poly(NIPA-co-AAc) Functional Hydrogels 

with Potential Application in Drug Controlled Release. Pharmaceutics 2014, 11, 2239−2249. 



 

15 

 

3. Priya Bawa, Viness Pillay, Yahya E Choonara, Lisa C du Toit. Stimuli-responsive 

polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001-022016.  

4. Kimiko Makino, Jiro Hiyoshi, Hiroyuki Ohshima. Effects of thermosensitivity of poly (N-

isopropylacrylamide) hydrogel upon the duration of a lag phase at the beginning of drug 

release from the hydrogel. Colloids and Surfaces B: Biointerfaces 2001, 20, 341–346. 

5. Shenmin Zhu, Zhengyang Zhou, Di Zhang , Chan Jin, Zhiqiang Li. Design and synthesis of 

delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive 

PNIPA as controlled switch. Microporous and Mesoporous Materials 2007, 106, 56–61. 

6. Akihiko Kikuchi, Teruo Okano. Pulsatile drug release control using hydrogels. Advanced 

Drug Delivery Reviews 2002, 54, 53–77. 

7. Natalia V. Grinberg, Tatiana V. Burovab, Valerij Y. Grinberg. Temperature-sensitive 

chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading 

capacity and controlled release properties. Journal of Controlled Release 2005, 102, 629–641. 

8. David Coughlan, Owen Corrigan. Drug–polymer interactions and their effect on 

thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. International Journal 

of Pharmaceutics 2006, 313, 163–174. 

9. David Coughlan, Fran Quilty, Owen Corrigan. Effect of drug physicochemical properties 

on swelling/deswelling kinetics and pulsatile drug release from thermoresponsive poly(N-

isopropylacrylamide) hydrogels. J.Contr. Release 2004, 98, 97–114. 

10. Mehrdad Hamidi, Amir Azadi, Pedram Rafiei. Hydrogel nanoparticles in drug delivery. 

Advanced Drug Delivery Reviews 2008, 60, 1638–1649. 

11. Guoguang Fu , Wole Soboyejo. Investigation of swellable poly (N-isopropylacrylamide) 

based hydrogels for drug delivery. Materials Science and Engineering 2011, 31, 1084–1090. 

12. Katalin Kosik, Erzsébet Wilk, Erik Geissler, Krisztina László. Distribution of phenols in 

thermoresponsive hydrogels. Macromolecules 2007, 40(6), 2141-2147. 

13. Krisztina László, Katalin Kosik, Erzsébet Wilk, Erik Geissler. Interaction of phenolic 

pollutants with PNIPA. Surface Chemistry in Biomedical and Environmental Science, NATO 

ASI series, Springer 2006, 393-402. 

14. Attila Domján, Erik Geissler, Krisztina László. Phenol–polymer proximity in a 

thermoresponsive gel determined by solid-state 
1
H–

1
H CRAMPS NMR spectroscopy. Soft 

Matter 2010, 6, 247-249. 

15. Attila Domján, Enikő Manek, Erik Geissler, Krisztina László. Host-guest interactions in 

poly(N-isopropylacrylamide) hydrogel seen by one- and two-dimensional 
1
H CRAMPS solid-

state NMR spectroscopy. Macromolecules 2013, 46, 3118-3124.  



 

16 

 

16. Krisztina László, Enikő Manek, Szilvia Vavra, Erik Geissler, Attila Domján. Host-guest 

interactions in poly(N-isopropylacrylamide) hydrogels. Chemistry Letters 2012, 41(10), 1055-

1056. 

17. Christian Hofmann, Monika Schönhoff. Do additives shift the LCST of poly (N-

isopropylacrylamide) by solvent quality changes or by direct interactions? Colloid Polym Sci 

2009, 287, 1369-1376. 

18. Etsuo Kokufuta, Yong-Qing Zhang, Toyoichi Tanah, Akira Mamadat. Effects of 

surfactants on the phase transition of poly(N-isopropylacrylamide) gel. Macromolecules 1993, 

26, 1053-1059. 

19. Katalin Kosik, Erzsébet Wilk, Erik Geissler, Krisztina László. Interaction of phenols with 

thermo-responsive hydrogels. Colloids Surf A 2008, 319, 159-164. 

20. Tatsuya Kawashima, Shogo Koga, Masahiko Annaka, Shigeo Sasaki. Roles of 

hydrophobic interaction in a volume phase transition of alkylacrylamide gel induced by the 

hydrogen-bond-driving alkylphenol binding. J. Phys. Chem. B 2005, 109, 1055-1062. 

21. Yanying Wu, Zhiyu Dou, Ying Liu, Guojun Lv, Tao Pu, Xingquan He. Dopamine sensor 

development based on the modification of glassy carbon electrode with β-cyclodextrin- 

poly(N-isopropylacrylamide). RSC Adv. 2013, 3, 12726–12734. 

22. János Madarász, Edit Székely, Judit Halász, György Bánsághi, Dániel Varga, Béla 

Simándi, György Pokol. Ammonium carbamate type self-derivative salts of (R-)- and racemic 

-methylbenzylamine. J. Therm. Anal. Calorim. 2013, 111, 567–574. 

23. A.E. Sánchez-Rivera, S. Corona-Avendano, G. Alarcón-Angeles, A. Rojas-

Hernández, M.T. Ramírez-Silva, M.A. Romero-Romo. Spectrophotometric study on the 

stability of dopamine and the determination of its acidity constants. Spectrochimica Acta Part 

A 2003,59, 3193-3203. 

24. CRC Handbook of Chemistry and Physics, 95th Edition CRC Press, Boca. Raton 2014. 

25. http://www.scbt.com/datasheet-203368-pyrogallol.html (Last visited 24 October 2014) 

26. European Pharmacopoeia 5
th

 edition, p. 1476, 2004, Council of Europe, ISBN 

139789287152817 

27. Material Safety Data Sheets 15.15, Merck Millipore, 2014. 

28. Material Safety Data Sheets 13.2, Merck Millipore, 2014. 

29. Material Safety Data Sheets 8.2, Merck Millipore, 2013. 

30. R. H. Perry, C. H. Chilton, S. D. Kirkpatrick. Chemical Engineers' Handbook 4th ed., 

McGraw-Hill, New York, 1963. 

31. Material Safety Data Sheets No. 395, J.M. Loveridge Ltd., 2002. 

http://pubs.rsc.org/en/results?searchtext=Author%3AYanying%20Wu
http://pubs.rsc.org/en/results?searchtext=Author%3AZhiyu%20Dou
http://pubs.rsc.org/en/results?searchtext=Author%3AYing%20Liu
http://pubs.rsc.org/en/results?searchtext=Author%3AGuojun%20Lv
http://pubs.rsc.org/en/results?searchtext=Author%3ATao%20Pu
http://pubs.rsc.org/en/results?searchtext=Author%3AXingquan%20He
http://books.google.com/books?id=TdnhAwAAQBAJ&pg=SA5-PA94&lpg=SA5-PA94&dq=acid+base+organic+pKa+CRC&source=bl&ots=rRvRh1UFeY&sig=vgbdCowaW8ftXe_Ww5zZJXRWEMw&hl=en&sa=X&ei=_GRLVJ_FIoTTaIS3goAH&ved=0CCgQ6AEwAg
http://www.scbt.com/datasheet-203368-pyrogallol.html


 

17 

 

32. Material Safety Data Sheets No. 11230, Fisher Scientific, 2009. 

33. Enikő Manek, Attila Domján, Alfréd Kállay-Menyhárd, Krisztina László. Host-guest 

interactions in poly(N-isopropylacrylamide) gel. A thermoanalytical approach. J. Therm. 

Anal. Calor. DOI 10.1007/s10973-015-4388-4 

34. Krisztina László, Armel Guillermo, Andrei Fluerasu, Abdellatif Moussaïd, Erik Geissler. 

Microphase structure of poly(N-isopropyl acrylamide) hydrogels as seen by small and wide 

angle X-ray scattering and pulsed field gradient NMR. Langmuir 2010, 26(6), 4415-4420. 

35. Haeshin Lee, Shara M. Dellatore, William M. Miller, Phillip B. Messersmith. Mussel-

Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318 (5849), 426–430. 

36. Frank H. Allen. The Cambridge Structural Database: a quarter of a million crystal 

structures and rising. Acta Cryst. 2002, B58, 380-388. 

37. C.F.Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. 

Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood. Mercury CSD 2.0 - New Features 

for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst., 2008, 41, 466-

470.  

38. J. Giesecke: Refinement of the structure of dopamine hydrochloride. Acta Crystallogr. 

Sect. B.: Struct. Crystallogr. Cryst. Chem. 1980, 36, 178-181. 

39. Cheryl L. Klein. Experimental electron density distribution of dopamine hydrochloride. 

Struct. Chem. 1991, 2, 507-514. 

40. Powder Diffraction File (PDF4+, Release 2013), International Center for Diffraction Data 

(ICDD), Pennsylvania, USA]  

41. Sample obtained from Koch-Light Laboratories Ltd., Colnbrook, Bucks, England, 

Measured by UK Department of Physics, University College, Cardiff, Wales, ICDD Grant-in-

Aid, 1975. 

42. James E. Carter, John H. Johnson, David M. Baaske, Dopamine Hydrochloride, Anal. 

Profiles Drug Subst., 1982, 11, 257-272. 

43 Mayer, I., Cohen, H., Hebrew Univ., Jerusalem, Israel, ICDD Grant-in-Aid, (1993) 

 


