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Revealing a double-inversion mechanism for the
F� þCH3Cl SN2 reaction
István Szabó1 & Gábor Czakó1

Stereo-specific reaction mechanisms play a fundamental role in chemistry. The back-side

attack inversion and front-side attack retention pathways of the bimolecular nucleophilic

substitution (SN2) reactions are the textbook examples for stereo-specific chemical

processes. Here, we report an accurate global analytic potential energy surface (PES) for the

F� þCH3Cl SN2 reaction, which describes both the back-side and front-side attack

substitution pathways as well as the proton-abstraction channel. Moreover, reaction

dynamics simulations on this surface reveal a novel double-inversion mechanism, in which an

abstraction-induced inversion via a FH � � �CH2Cl� transition state is followed by a second

inversion via the usual [F � � �CH3 � � �Cl]� saddle point, thereby opening a lower energy

reaction path for retention than the front-side attack. Quasi-classical trajectory computations

for the F� þCH3Cl(n1¼0, 1) reactions show that the front-side attack is a fast direct,

whereas the double inversion is a slow indirect process.
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B
imolecular nucleophilic substitution (SN2) reactions play a
fundamental role in chemistry; therefore, many experi-
mental and theoretical studies have focused on the atomic-

level dynamics and mechanism of this class of reactions1� 9. In a
typical SN2 reaction, X� þH3CY-XCH3þY� , the reactive
events usually begin with a back-side attack forming a pre-
reaction complex, which can be either a hydrogen-bonded
X� � � �HCH2Y or a traditional ion-dipole X� � � �H3CY
complex, then the system goes through a central transition state
(TS), where a new X�C bond forms and the C�Y bond breaks
while the umbrella motion of the CH3 unit inverts the
configuration around the tetrahedral carbon centre. This is the
famous Walden inversion mechanism of SN2 reactions, which is
described in every organic chemistry textbook. An important
feature of this mechanism is its stereo-specificity, which means
that an inversion always occurs resulting in a specific
configuration of the product molecule, which is the opposite of
the reactant’s configuration. Stereo-specificity has exceptional
importance in nature, for example, all the natural amino acids
exist in a specific configuration and their stereo-isomers
(enantiomers) cannot be found in natural proteins. So far, we
have thought that the stereo-chemistry of the SN2 reactions is
well-understood. Besides the well-known Walden inversion
mechanism, there is a front-side attack pathway, which goes
over a high energy barrier and results in retention of
configuration. This front-side attack mechanism is much less
studied than the Walden inversion10–13. Due to the high barrier
of the former, the SN2 reactions are known to proceed via Walden
inversion at low collision energies (Ecoll) and the front-side attack
pathway may open at higher Ecoll. Note that one may distinguish
between direct rebound and stripping, as well as indirect (ion-
dipole and/or hydrogen-bonded complex formation, roundabout
and barrier recrossing) mechanisms14, but in the present study we
consider these as variants of the back-side attack inversion
mechanism.

Here we perform high-level reaction dynamics simulations for
the F� þCH3Cl prototypical SN2 reaction using a new ab initio
global potential energy surface (PES). Since in a simulation one

can label the three H atoms, we can examine the configurations of
the CH3F products. As expected, we find that most of the CH3F
molecules have inverted configurations. However, some of the
trajectories result in retention of configuration, which is very
surprising, because this is found at low Ecoll well below the barrier
height of the front-side attack pathway. How can this happen? In
what follows, we describe the details of the reaction dynamics
computations and reveal a novel mechanism for SN2 reactions.

Results
Potential energy surface. Reaction dynamics simulations require
the knowledge of the PES, which governs the motion of the atoms
in a chemical reaction15–17. Full-dimensional analytical PESs that
describe both the back- and front-side attack mechanisms have
not been developed for SN2 reactions. Following our previous
work9, here we report a global PES for the F� þCH3Cl reaction
by fitting about 52,000 high-level ab initio energy points (see
Supplementary Methods). As Fig. 1 shows, the PES describes the
back and front-side attack substitution pathways, as well as the
abstraction channel leading to HFþCH2Cl� . Furthermore, we
have uncovered another pathway, which begins with an
abstraction-induced inversion via a TS of Cs symmetry followed
by a second inversion via the usual C3v TS. We call this as a
double-inversion mechanism, which results in the retention of
configuration. It is also possible that the first induced inversion is
not followed by a reactive substitution event; thus, the collision
results in an inverted reactant.

Characterization of the stationary points. We have character-
ized the stationary points of the PES by a sophisticated composite
focal-point analysis (FPA)18 approach considering extrapolation
to the complete basis set limits, electron correlation beyond the
‘gold-standard’ CCSD(T) method, correlation of all the electrons
(core and valence) and scalar relativistic effects. More details
about the FPA are given in Supplementary Methods. As Fig. 1
shows, the relative energies corresponding to the fitted analytical
PES agree well, usually within 1 kcal mol� 1, which is considered
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Figure 1 | Schematic of the global potential energy surface (PES) of the F� þCH3Cl reaction. Arrows show the different stereo-specific reaction

pathways leading to retention (yellow) and inversion (blue) of the initial configuration (yellow). The accurate benchmark energies and the PES values are

relative to F� þCH3Cl(eq).
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as ‘chemical accuracy’, with the benchmark FPA data.
The F� þCH3Cl SN2 reaction is highly exothermic,
DEe¼ � 31.9 kcal mol� 1, whereas the abstraction channel is
endothermic, DEe¼ 29.2 kcal mol� 1. The analytical PES
accurately describes many minima (complexes) and saddle
points (transitions states) that separate the reactants from the
products. The back-side attack substitution pathway goes through
H-bonded Cs and ion-dipole C3v F� � � �CH3Cl complexes, a C3v

[F � � �CH3 � � �Cl]� TS and a C3v FCH3 � � �Cl� complex,
which are all below the F� þCH3Cl(eq) asymptote by
16.9 kcal mol� 1, 15.6 kcal mol� 1, 12.2 kcal mol� 1 and

41.6 kcal mol� 1, respectively, whereas the front-side attack
substitution has a high classical barrier of 31.3 kcal mol� 1.
Furthermore, we have found a TS for the double-inversion
mechanism as shown in Fig. 1, which opens a substantially lower
energy configuration-retaining pathway with a classical barrier
height of 16.4 kcal mol� 1 than the front-side attack mechanism.
Structures and harmonic vibrational frequencies of all the
stationary points can be found in the Supplementary Tables 1–4.

Reaction dynamics simulations. With an accurate full-
dimensional analytical PES at hand, we can go much further than
predicting reaction mechanisms based on stationary points. We
have performed quasi-classical trajectory (QCT) computations on
the PES, thereby following the motion of the atoms along the
reaction path. We have run about four million trajectories for
the ground-state and symmetric-CH-stretching-excited F� þ
CH3Cl(n1¼ 0, 1) reactions (the initial conditions and analysis
techniques are described in Supplementary Methods).

Integral cross-sections. Integral cross-sections (ICSs) as a func-
tion of Ecoll are shown in Fig. 2. Since the exothermic back-side
attack substitution reaction does not have a barrier, the SN2 ICSs
are large and decrease steeply with Ecoll. The H-abstraction
reaction is highly endothermic, its zero-point energy (ZPE)
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Figure 2 | Cross-sections as a function of collision energy for the

ground-state and CH-stretching-excited F� þCH3Cl(n1¼0, 1) reactions.

(a) back-side attack substitution (Cl� þCH3F) and abstraction

(HFþCH2Cl� ) channels, (b) retention of configuration via front-side

attack (FSA) and double-inversion (DI) substitution mechanisms and

(c) induced inversion of the reactant CH3Cl.
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Figure 3 | Scattering angle distributions. Angular distributions of the

ground-state and CH-stretching-excited F� þCH3Cl(n1¼0, 1) reactions for

the back-side attack, double-inversion and front-side attack substitution

pathways (Cl� þCH3F) and for the abstraction channel (HFþCH2Cl� ) at

a collision energy of 50 kcal mol� 1. Each distribution is normalized to have

the same unit area.
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corrected reaction enthalpy is 24.5 kcal mol� 1 on the PES, and
the abstraction saddle point is well below the product asymptote.
The ICSs show that the HFþCH2Cl� channel opens as soon as
it becomes energetically available and the ICSs increase with Ecoll.
(The small reactivity at Ecoll o24.5 kcal mol� 1 is due to ZPE
violation of the products.) The n1¼ 1 excitation has only slight
effect on the SN2 reactivity, showing that the CH symmetric
stretching vibrational mode behaves as a spectator in the back-
side attack SN2 reaction. In the case of the H-abstraction, as
expected, CH stretching excitation substantially enhances the
reactivity and lowers the reaction threshold. It is interesting to
find that the n1¼ 1 abstraction ICSs increase up to a Ecoll of
B40 kcal mol� 1 and then a slight decay is seen, because the
faster reactants have less time to interact with each other. This
depression of reactivity with the increase of Ecoll was also found in
the HþCD4-HDþCD3 reaction19.

Figure 2 also shows the ICSs for the configuration-retaining
substitution. These ICSs are much smaller than those of the
inversion mechanism (1.1% and 2.3% at Ecoll¼ 60 kcal mol� 1 for
n¼ 0 and n1¼ 1, respectively), but the absolute ICSs are not
negligible since, for example, the HþCD4 reaction has similar
small ICSs19. For F� þCH3Cl(n¼ 0), the configuration-retaining
pathway opens at a Ecoll of B10 kcal mol� 1, the ICSs rise up to
Ecoll¼B30 kcal mol� 1, then decay and increase again around
Ecoll¼ 40� 50 kcal mol� 1. The adiabatic barrier height for the
front-side attack path is 29.3 kcal mol� 1 on the PES;
thus, this mechanism cannot produce CH3F with retention of
configuration in the 10� 30 kcal mol� 1 Ecoll range. Examination
of many configuration-retaining trajectories has revealed a
double-inversion mechanism, which has an adiabatic barrier
height of only 12.6 kcal mol� 1 on the PES, thereby allowing
retention of configuration at Ecoll where the front-side attack
pathway is closed. Based on the analysis of the integration time of

the reactive trajectories, we have found that none of the double-
inversion trajectories finished within 0.65 ps, whereas all the
front-side attack reactions occurred faster than 0.65 ps. Thus, on
the basis of the integration time we could distinguish between
double-inversion and front-side attack trajectories and we could
get the mechanism-specific retention ICSs as shown in Fig. 2. As
expected, at low Ecoll every configuration-retaining substitution
event goes via double inversion. The front-side attack pathway
opens at a Ecoll of B40 kcal mol� 1, well above the adiabatic
barrier. Now we can explain the Ecoll dependence of the ICSs: the
ICSs start to increase when the double-inversion pathway opens,
above Ecoll of 30 kcal mol� 1 the reactivity via double inversion
decreases, because the large Ecoll does not favour the indirect
mechanism and the abstraction channel opens, then at
Ecoll¼B40 kcal mol� 1 the front-side attack reactions raise the
ICSs again.

After the discovery of the double-inversion mechanism, we can
also expect to get inverted CH3Cl molecules if the first inversion
is not followed by substitution. Indeed, the analysis of the ‘non-
reactive’ trajectories revealed that some of the reactants became
inverted via an abstraction-induced inversion. As Fig. 2 shows,
the Ecoll dependence of the induced-inversion ICSs is consistent
with that of the double-inversion ICSs: the induced inversion
opens above Ecoll¼B10 kcal mol� 1 and the ICSs have a
maximum at Ecoll¼B30 kcal mol� 1. Since the first step of the
double- and induced-inversion mechanisms is pulling out a
proton, CH-stretching excitation substantially enhances the
double and induced inversions and diminishes their energy
thresholds.

Differential cross-sections. Angular distributions for the F� þ
CH3Cl(n1¼ 0, 1) reactions at Ecoll¼ 50 kcal mol� 1 are shown
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in Fig. 3. As seen, the scattering angle distributions are very
different for the various mechanisms. The back-side attack
pathway results in mainly backward scattered products, as
expected, since the [F � � �CH3 � � �Cl]� TS is collinear and the
direct rebound mechanism is dominant at a high Ecoll (refs 9,20).
The front-side attack substitutions are also direct; thus,
dominance of sideways scattering is seen as expected based on
the TS structure, because the F�C�Cl angle is about 80� at the
TS. The double-inversion substitutions result in more-or-less
isotropic angular distributions indicating an indirect mechanism,
where long-lived complexes are formed. For the H-abstraction
channel, a clear preference for backward scattering is
found, suggesting that stripping is not significant at
Ecoll¼ 50 kcal mol� 1. CH-stretching excitation virtually does
not affect the angular distributions, perhaps the most significant
effect is seen for the front-side attack, where n1¼ 1 excitation
broadens the angular distributions. In Supplementary Fig. 1,
angular distributions are also shown at a smaller Ecoll of
30 kcal mol� 1. The shapes of the distributions are very similar at
30 and 50 kcal mol� 1 Ecoll. Note that the front-side attack
pathway is not open at the lower Ecoll.

Retention pathways step by step. Representative trajectories
illustrating the key steps of the front-side attack and the double-
inversion mechanisms, and showing the potential energy as a
function of time are shown in Fig. 4. As seen, in the first 0.15 ps
while the reactants approach each other, the potential energy
oscillates around 12 kcal mol� 1, which corresponds to half of the
ZPE of CH3Cl, in agreement with the virial theorem. The front-
side attack substitution is very direct, the system goes through a
high barrier and vibrationally excited CH3F product is formed.
The double inversion occurs on a much longer time scale. First,
the F� abstracts a proton (Hþ ), but the system does not have
enough energy to fall apart, thus HF starts to move around
CH2Cl� and eventually a C�H bond forms again while the
configuration around the carbon centre gets inverted. Second, a
C� F bond forms and the C�Cl bond breaks resulting in a
second inversion via the usual C3v TS. Therefore, the double
inversion results in retention of configuration via a long indirect
mechanism. These unusual reaction pathways were verified by
direct ab initio computations along selected trajectories. As
shown in Fig. 4, the ab initio data reproduce remarkably well the
energies obtained from the analytically fitted PES, thereby con-
firming the new findings.

Discussion
The double-inversion mechanism revealed here for the F� þ
CH3Cl reaction may be a general pathway for substitution
reactions, where hydrogen/proton abstraction is a competing
channel. We plan to develop analytical global PESs for other
systems to see if this is the case. Furthermore, it is important to
note that the first step of the double inversion is reminiscent of
the famous roaming mechanism discovered for the photo-
dissociation of formaldehyde (H2CO)21. In roaming, the radical
fragments, H � � �HCO, do not have enough energy in the
dissociation coordinate to break apart; therefore, they follow a
non-traditional path to form the molecular products, H2þCO. In
double inversion, the FH � � �CH2Cl� complex cannot dissociate,
but the system has enough energy to invert the configuration
around the carbon atom, thereby opening a new way for retention
in SN2 reactions. The roundabout SN2 mechanism also has
features similar to roaming14; therefore, the present study may
inspire future research to focus on the possibility of retention
via the roundabout pathway and the abstraction-induced
mechanisms in SN2 reactions. It is possible that the new

double-inversion mechanism could be related with the already
known roundabout mechanism. Since the first step of the double
inversion is an abstraction-induced inversion, the reaction may
result in an inverted reactant molecule as shown in the present
study. Finding inverted reactants could be a signature for the
double-inversion mechanism. Finally, one should note that the
above atomistic mechanisms are defined based on classical
dynamics. This approach is usually a good approximation for
chemical reactions, but, of course, the nuclei do not exactly follow
a defined trajectory. A time-dependent quantum mechanical
treatment of the nuclear dynamics could show the regions of the
configuration space in which the wave functions have non-
negligible values. The comparison of the present findings with
future quantum dynamical results may add to our understanding
of chemical reaction mechanisms.

Methods
Potential energy surface. The global analytical full-dimensional PES for the
F� þCH3Cl reaction is obtained by fitting 52,393 ab initio energy points com-
puted by an efficient composite method. We have selected structures that cover the
configuration space and energy range of chemical importance. The composite ab
initio energies are computed as

CCSDðTÞ=aug-cc-pVDZþMP2=aug-cc-pVQZ�MP2=aug-cc-pVDZ

þðAE-MP2=aug-cc-pCVTZ� FC-MP2=aug-cc-pCVTZÞ;
ð1Þ

where in parenthesis the core correlation energy increment is given as a difference
between all-electron (AE) and frozen-core (FC) energies. This composite method
provides AE-CCSD(T)/aug-cc-pCVQZ quality results within a root-mean-square
error of only 0.35 kcal mol� 1.

The analytical representation of the PES is obtained by a fifth-order fit using the
permutationally invariant polynomial approach15,16 based on Morse-like variables,
exp(–rij/a), where rij are the inter-atomic distances and a¼ 3 bohr. The linear least-
squares fit, with weight of E0/(EþE0), where E0¼ 31 kcal mol� 1 and E is relative
to the global minimum, provides 3,313 coefficients. These coefficients are provided
in Supplementary Data 1. The root-mean-square fitting errors are 0.31 kcal mol� 1,
0.51 kcal mol� 1 and 1.38 kcal mol� 1 for the energy ranges 0–31 kcal mol� 1,
31–63 kcal mol� 1 and 63–157 kcal mol� 1, respectively.

Benchmark ab initio thermochemistry. The best technically feasible relative
energies for the stationary points of the F� þCH3Cl reaction are obtained by the
FPA18 approach. First, we compute the structures and harmonic frequencies at the
AE-CCSD(T)/aug-cc-pCVQZ and FC-CCSD(T)/aug-cc-pVTZ levels of theory,
respectively, for all the minima and saddle points shown in Fig. 1, except for TS3,
TS4, TS5 and MIN4, where the structures are obtained at the AE-CCSD(T)/aug-cc-
pCVTZ level. Second, the benchmark FPA relative energies are obtained by
considering (a) extrapolation to the complete basis set limit using AE-CCSD(T)/
aug-cc-pCVnZ (n¼Q(4) and 5) energies, (b) post-CCSD(T) correlation effects up
to CCSDT(Q) based on AE-CCSDT/aug-cc-pCVDZ and FC-CCSDT(Q)/aug-cc-
pVDZ energy computations and (c) scalar relativistic effects at the second-order
Douglas–Kroll AE-CCSD(T)/aug-cc-pCVQZ level of theory.

QCT calculations. QCT computations are performed for the F� þCH3Cl(n1¼ 0, 1)
reactions using the new analytical PES. The initial conditions for the trajectories
are as follows: (a) standard normal mode sampling is used, (b) trajectories are
run at Ecoll of 1, 10, 20, 30, 40, 50 and 60 kcal mol� 1, (c) the total number of
n¼ 0(n1¼ 1) trajectories are 145,000 (145,000), 125,000(125,000), 85,000(95,000),
645,000(725,000), 85,000(95,000), 645,000(725,000) and 85,000(95,000) at the
above Ecoll, respectively, and (d) the integration time step is 0.0726 fs and each
trajectory is propagated until the maximum of the actual inter-atomic distances is
1 bohr larger than the initial one. We have found that basically no SN2 trajectory
violates the product ZPE; thus, the QCT analysis considers all the trajectories. The
stereo-specific configurations of CH3Cl and CH3F are analyzed based on the
procedure described in ref. 22.
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17. Czakó, G. & Bowman, J. M. Dynamics of the reaction of methane with chlorine
atom on an accurate potential energy surface. Science 334, 343–346 (2011).

18. Császár, A. G., Allen, W. D. & Schaefer, H. F. In pursuit of the ab initio limit for
conformational energy prototypes. J. Chem. Phys. 108, 9751–9764 (1998).

19. Zhang, W. et al. Depression of reactivity by the collision energy in the single
barrier HþCD4-HDþCD3 reaction. Proc. Natl Acad. Sci. USA 107,
12782–12785 (2010).

20. Su, T., Wang, H. & Hase, W. L. Trajectory studies of SN2 nucleophilic
substitution. 7. F� þCH3Cl-FCH3þCl� . J. Phys. Chem. A 102, 9819–9828
(1998).

21. Townsend, D. et al. The roaming atom: straying from the reaction path in
formaldehyde decomposition. Science 306, 1158–1161 (2004).
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