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Abstract 1 

 2 

Microbial fuel cells (MFCs) are recognized as promising applications to 3 

produce bioelectricity by utilizing various waste materials. In this study, dual-chamber 4 

microbial fuel cells were employed for energy valorization of an untested substrate, 5 

the liquid fraction of pressed municipal solid waste (LPW). This by-product is 6 

potentially applicable as a substrate in MFCs because of its high organic matter 7 

content. In the course of the experiments, the anodic biofilm response and energy 8 

production efficiency have been investigated by experimental design approach, taking 9 

substrate and fresh inoculum – mesophilic anaerobic sludge (MAS) – addition  into 10 

account as factors. It was observed that reinoculation could result in a negative effect 11 

on the energy production, especially at low substrate (LPW) dosing levels. However, 12 

when the LPW to fresh MAS ratio in the anode chamber exceeded a particular value, 13 

the biofilm-associated electrical utilization dominated against the degradation in the 14 

bulk phase. Furthermore, the results indicated that the highest energy yields (8-9 J g
-1

 15 

COD d
-1

) could be attained at the lowest input COD concentrations. The maximal 16 

and average COD removal efficiencies were 94% and 87 %, respectively, which 17 

indicate the excellent biodegradability of LPW. As for COD removal rate, 1.2-1.9 kg 18 

COD m
-3

 d
-1

 could be reached. 19 

 20 

Keywords: microbial fuel cell, organic waste, power generation, experimental design, 21 

bioelectricity, waste utilization 22 

 23 



3 

 

1. Introduction 1 

 2 

Nowadays, bioelectrochemical systems such as microbial electrohydrogenesis 3 

cells (Rivera et al., 2015) and microbial fuel cells (MFCs) (Rózsenberszki et al., 2015) 4 

are increasingly mentioned in the joint subject of waste treatment and energy 5 

generation . MFCs are able to convert waste-bound chemical energy into electricity 6 

directly via bioprocesses catalyzed by exoelectrogenic microorganisms (Logan, 2008; 7 

Logan et al., 2006; Lovley, 2006). A general, laboratory-scale MFC system consists of 8 

three main structural elements, (1) an anode and (2) a cathode chamber and (3) a 9 

proton selective membrane separating the two compartments and ensuring the proton 10 

transport between them (Huang et al., 2015). As a result of substrate decomposition by 11 

anode-living whole cell biocatalysts, electrons are released, captured by the anode and 12 

subsequently transferred to the cathode via an external wiring. In the cathode, 13 

electrons and protons are combined with oxidative agent e.g. oxygen and in turn, water 14 

is formed. 15 

A variety of substrates can be used for bioelectricity generation in MFCs such 16 

as saccharides (Chaudhuri and Lovley, 2003; Kim et al., 2000; Vajda et al., 2014), 17 

organic acids (Bond and Lovley, 2005; Liu et al., 2005; Min and Logan, 2004), 18 

alcohols (Kim et al., 2007; Vajda et al., 2011) as well as inorganic substances e. g. 19 

sulphate (Rabaey et al., 2006). In addition, there is a significant research interest 20 

towards complex materials i.e. industrial and municipal waste streams (Leaño and 21 

Babel, 2012), whichare potential starting materials of power generation in MFCs 22 

because of their high organic matter content (Angenent et al., 2004; Pant et al., 2010; 23 
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Liu et al., 2004). Therefore, due to the possibility of simultaneous waste management 1 

and energy production, MFCs are considered as prosperous applications facilitating 2 

sustainability. In the wide range of microbial fuel cells, the ones relying on mixed 3 

cultures have been demonstrated as feasible solutions to accomplish efficient “waste to 4 

energy” conversion (Jung and Ragen, 2007). 5 

MFCs are powered by electrochemically active bacteria which are the heart and 6 

soul of the technology. Among them, organisms such as Shewanella, Geobacter, etc. 7 

species have been identified as strains capable of converting chemically-bound energy 8 

into bioelectricity (Wrana et al., 2010). However, when their pure cultures are 9 

employed as seeding source to colonize MFC anodes, maintaining sterility is a strict 10 

requirement. The applications, which are started-up and operated under sterile 11 

circumstances, suffer from considerable economic and technological drawbacks 12 

especially if industrial waste streams or bioreactor effluents are utilized.  This is 13 

attributed to the risk of contamination by indigenous microorganisms carried in the 14 

influents which presumably reduce the overall MFC performance. Due to the 15 

abovementioned limits of pure cultures, mixed communities are suggested to start-up 16 

MFC systems, as performed in this study using MAS.  17 

When non-sterile MFCs are seeded with microbial consortia, e.g. anaerobic 18 

digester sludge, waste water sludge, etc., exoelectrogenic strains are enriched on the 19 

anode surface and form a bioactive layer. The profile of the anodic microbial 20 

population is a crucial issue, which can be changed by competing bacteria in the feed 21 

streams or in the seed inoculum itself, possibly leading to altered process performance 22 

(Bakonyi et al., 2014).  23 
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To assess the impact of process disturbances on MFC efficiency – related to the 1 

appearance of non-electricity generating, invader microorganisms – direct methods 2 

(electron microscopic investigation, identification of strains based on genetic 3 

information, cyclic voltammetry, etc.) can be employed, but they mostly require the 4 

deconstruction of the MFC. Nevertheless, indirect methods such as in-situ bioelectric 5 

measurements – when the whole MFC plays the role of a “biosensor” – can be chosen 6 

for more convenient and quick evaluation. Therefore, in this work, this latter technique 7 

was used to analyze the effect of MFC reinoculation (fresh sludge addition to the 8 

already developed anodic consortia) on bioenergy production. In the course of the 9 

reinoculation tests, an uncommon substrate, the liquid fraction of pressed solid 10 

municipal waste (LPW) was applied. Substrate concentration has a decisive role on 11 

any bioprocesses, e.g. MFC, since it affects the growth rate and the metabolic activity 12 

of microorganisms (in the biofilm) and hence determines the production intensity (in 13 

MFC, bioelectric potential). Moreover, the capability of the anode-living, 14 

exoelectrogenic bacteria to manage as high organic loadings as possible is a well-15 

known and desired process indicator. LPW, due to its origin (landfill), is a complex 16 

mixture and might contain inhibitory components. Thus, its feasibility for MFCs 17 

especially in higher concentrations – because of the lack of experiences – is uncertain. 18 

Therefore, assessing the behaviour of MFCs to various substrate (LPW) doses was one 19 

of our key-interest in order to reveal the robustness and feasibility of this application.  20 

Overall, the aim of this research was twofold. Besides the feasibility study of 21 

LPW, the response of the anodic biofilm – formed during preliminary adaptation 22 

process – to the reinoculation of MFC anode compartment by mesophilic anaerobic 23 
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sludge (MAS) was also investigated. Thereby, the appropriate substrate feeding rate 1 

could be estimated for scaled-up waste processing MFC systems. In addition, the 2 

reactions taking place at the anode surface and in the bulk phase could be addressed to 3 

obtain information about the degradation-capacity of the anodic biofilm. To our 4 

knowledge, no research has been conducted with LPW in microbial fuel cells, which 5 

brings the novelty of the work. 6 

 7 

2. Materials and Methods 8 

 9 

2.1. Inoculum and substrate 10 

 11 

MAS (the inoculum of fuel cells) was collected from a domestic biogas plant. 12 

The biogas fermenter processes kitchen wastes and cattle manure and its effluent is 13 

suitable as a seed source providing a good microbial community. The initial total COD 14 

and pH values of MAS were 30 g L
-1

 and 7.8, respectively.  15 

LPW is originated from a regional solid waste treatment plant (located in 16 

Királyszentistván, Hungary) and was obtained by pressing from the biofraction of 17 

municipal solid garbage. The main stages of waste processing at the plant are 18 

presented in Fig. 1. The facility handles 120 000 t waste on annual basis from villages 19 

and towns located in its neighbourhood. As a first step, the garbage is subjected to a 20 

mechanical treatment. After shredding, iron is separated and the rest of the mass 21 

stream is further sorted. Subsequently, a certain part of it is recycled, meanwhile others 22 
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are sent to additional techniques (Sarkady et al., 2014). The most essential 1 

characteristics of LPW material are demonstrated in Table 1. 2 

 3 

2.2. MFC design and start-up 4 

 5 

The laboratory-scale, dual-chamber MFCs were made of plexiglass. The cells 6 

were constructed with a volume of 60 mL for anode and cathode compartments. The 7 

electrode chambers were divided by Nafion N 115 proton-selective membrane (Sigma-8 

Aldrich). The surface area and thickness of the membrane were 7 cm
2
 and 127 m, 9 

respectively. Carbon cloth fixed on a graphite rod (1.5 mm diameter) was used as 10 

electrode material. The apparent surface area (A) was 25 cm
2
 for both electrodes (with 11 

5.0 cm ˟ 2.5 cm dimensions). The electrode surface specific values were calculated on 12 

the basis of apparent surface area, i.e. by leaving the electrode thickness and the area 13 

of the graphite rod out of account. Five MFCs were operated in parallel with 100 Ω 14 

fixed external resistors (R). The schematic diagram of the experimental MFC and 15 

occurring processes can be seen in Fig. 2. 16 

In the start-up phase, the anode chamber was filled with MAS (55 mL), purged 17 

by N2 to ensure anaerobic conditions and fed with Na-acetate (2 mL, 25 g L
-1

 stock 18 

solution) after the initial voltage had decreased. Na-acetate was injected in two steps to 19 

promote the colonization of the electrode surface by anode-respiring exoelectrogenic 20 

microorganisms. After a ~15 days long adaptation period, when the gradual voltage 21 

had decreased back to the initial value of inoculation, the experiments with LPW and 22 

MAS feeding were carried out. In the course of these measurements, LPW and fresh 23 
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MAS were loaded in various ratios (Table 2) and simultaneously, while equal volume 1 

of anolyte was removed. Besides LPW and MAS, no other materials (nutrients) were 2 

added to the MFCs.  3 

The cathode compartment contained water and was continuously sparged by air. 4 

The anode and cathode sides were connected by copper wire and the potential 5 

difference was on-line followed using a data logger device (National Instruments 6 

USB-6008) and LabView software. The MFCs were incubated at 37 °C. Neither the 7 

anodic nor the cathodic chamber was mechanically stirred. 8 

 9 

2.3. Experimental design 10 

 11 

Quality feature of the adaptation substrate supporting the biofilm formation 12 

have significant effect in the start-up phase as well as in further operation. The 13 

electrodes coated by sufficiently stable biofilm layers – and thus the complete MFC – 14 

might be used for long-term. Na-acetate is a simple, readily accessible substance with 15 

fair biodegradability and excellent electron donor capacity (Dulon et al., 2007). Hence, 16 

it is recognized as a potential substrate candidate for MFC start-up and was applied in 17 

this study to promote the development of biofilm on the anode surface. After MFCs 18 

start-up, an experimental design (Table 2) was carried out to study the biofilm 19 

response in terms of energy valorization of LPW.  20 

Table 2 presents a complete 2
2
 experimental design, having 2 low and 2 high 21 

values and one central point, as illustrated in Fig. 3. The two-level designs are 22 

particularly useful to obtain reliable information and make firm conclusions about the 23 
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effects of factors of primary importance (Bakonyi et al., 2011). In this study, as it can 1 

be seen in Table 2 and Fig. 3, the anodic concentrations of LPW substrate and that of 2 

fresh MAS were chosen as independent variables to get a feedback about their 3 

influence on waste utilization efficiency, which can be correlated with the biofilm 4 

response. 5 

 6 

2.4. Analysis and calculation 7 

 8 

COD (COD0 initial and CODt final) values were determined following APHA 9 

(APHA, 1995). The COD input (in grammes) of the mixture feeding was calculated 10 

based on the known COD values of the components (LPW and MAS) and their 11 

injected volume. In the experimental design, the reinoculation ratio was defined as the 12 

amount of the MAS injected divided by the working volume of the anode (Table2).  13 

According to Ohm’s law, current data (I) and thus electrical power (P) could be 14 

calculated based on the voltage measured. Cumulative energy data (E) were calculated 15 

from integrating the time-dependent power curve (Eq. 1). 16 

 17 

E = ∫ P(t)dt     (Eq. 1) 18 

 19 

Specific values, namely current density (jI), power density (jP) were derived by 20 

taking into consideration the electrode surface area (Eq. 2 and Eq. 3). 21 

 22 

jI = U(t) R
-1

 A
-1

 = I(t) A
-1

    (Eq. 2) 23 
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jP = U(t) I(t) A
-1

 = P(t) A
-1

    (Eq. 3) 1 

 2 

The energy yield (jE) was a product of the amount of substrate eliminated 3 

(COD = COD0 – CODt), the time of operation (designated by  in Fig. 4) and the 4 

cumulative energy generated (Eq. 4). 5 

 6 

jE = E COD
 -1 -1     (Eq. 4) 7 

 8 

The Coulombic efficiency (CE) of the MFCs can be calculated based on the 9 

ratio of the total Coulombs obtained from the substrate and the theoretical maximum 10 

of Coulombs when all of the electrons from the substrate generate electricity (Eq. 5). 11 

 12 

CE =M ∫ I(t)dt F
-1

 b
-1

 V
-1

 COD
 -1

 100 %    (Eq. 5) 13 

 14 

where M is the molar weight of oxygen, F is the Faraday’s constant, b is the number of 15 

exchanged electrons per 1 mole of O2 (equaling to 4) and V is the volume of the liquid 16 

in anodic chamber (Logan et al., 2006). The results presented throughout in this work 17 

are the mathematical averages of triplicates and the standard deviations were below 5 18 

%. 19 

 20 

 21 

22 
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3.  Results and Discussion 1 

 2 

3.1. The effect of LPW and MAS ratio on MFC performance 3 

 4 

In this work, the effect of MAS addition and LPW (substrate) loading on the 5 

performance and behaviour of two-chamber microbial fuel cell was assessed. As for 6 

MAS addition, it was preliminary assumed that the fresh microbial consortia fed into 7 

the anode chamber might disturb the biofilm and consequently, the electricity 8 

generation. Furthermore, it was hypothesized that the nutrients available in the feed 9 

can be consumed by microbes (supplemented with the fresh MAS) that are not 10 

localized on the electrode surface and hence does not contribute to useful bioelectricity 11 

production.  12 

A typical voltage output is demonstrated in Fig. 4, where it can be observed that 13 

the feeding strategy in the MFCs is comprised of 4 individual stages according to the 14 

recorded voltage pattern, as follows. In the first stage, the MFC unit was inoculated 15 

with raw MAS and initial voltage had increased, but shortly it turned into a strong 16 

decrease. At that point, in the second stage, sodium acetate was added to help the 17 

establishment of the bioactive layer on the anode which resulted in prompt and sharp 18 

jump of voltage followed by a gradual reduction in the cell potential. Subsequently, 19 

during the third step, the MFC was supplemented again with Na-acetate. As it can be 20 

noticed, it induced an observable increment of bioelectric potential, which 21 

continuously fell, presumably due to the depletion of adequate substrates. It would also 22 

appear that the second adaptation resulted in a more stable voltage signal as compared 23 
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to the first one. This was a positive feedback that may correlate with biofilm 1 

formation. In the fourth step, after two-times acclimatization with acetate, the MFCs 2 

were loaded with the mixture of LPW and fresh MAS in accordance with the 3 

experimental design matrix (Table 2).  4 

As it can be concluded from Fig. 4, there was a growing cell potential after the 5 

injection of LPW-MAS mixture, which had reached a definite peak range where quite 6 

steady voltage (roughly 40 mV) could be measured (approximately between the 650
th

 7 

and 950
th

 hour of MFC operation). Voltage fluctuations may be associated with the 8 

complexity of the feed since various fractions of the raw materials could become 9 

accessible and biodegradable at different periods of times. 10 

In case of microbial fuel cells (and generally fuel cells) measuring current 11 

density (or current) is suitable to determine the gross rate of the electrochemical 12 

reaction according to Faraday’s law. Thus, specific current- or power density values 13 

are useful to compare the efficiency of different MFC systems, as well. Based on the 14 

voltage data collected, the main characteristics were calculated which can be seen in 15 

Table 3. The outcomes are comparable with other literature studies. For instance, 16 

Cercado-Quezada et al. (2010) tested various food industry wastes as well as compost 17 

leachate to extract energy in microbial fuel cells. Using the latter substrate (that shows 18 

certain relation with landfill-derived LPW), 232 mA m
-2

 current density was reported 19 

applying MFC seeded by anaerobic sludge, meanwhile in this research 152-218 mA m
-

20 

2
 could be achieved. However, the obtained power densities were notably different, 21 

since the 54 mW m
-2

 value by Cercado-Quezada et al. (2010) exceeded our power 22 

densities ranging between 5.8 and 11.9 mW m
-2

. In another paper, Ganesh and 23 
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Jambeck (2013) operated MFCs fed by leachate and attained 114 mA m
-2

 current 1 

density which was slightly lower than the results in our experiments as indicated in 2 

Table 3.  Tugtas and co-workers (2013) employed MFC to biodegrade pre-digested 3 

landfill leachate. It turned out that the steady current densities of 418-548 mA m
-2

 4 

could be obtained, meaning a salient system performance. The compared data were 5 

collected in Table 4. The contradiction in MFC efficiencies can be attributed to a 6 

number of biological (e.g. the source of inoculum) and architectural (e.g. the external 7 

resistance used, the distance of electrodes, the conductivity of anolyte, etc.) reasons. 8 

Fig. 5 shows the response of MFC performance to various amounts of LPW and 9 

fresh MAS additions. According to the results, it can be pointed out that the MFCs 10 

were able to generate bioelectricity and microbes responded positively to the presence 11 

of LPW since higher substrate concentrations allowed to gain more (cumulative) 12 

energy. However, it would appear that there could be a joint effect of simultaneous 13 

LPW and MAS supplementation, as follows.  On one hand, the analysis of the 14 

response surface in Fig. 5 implies that at low LPW concentrations the addition of MAS 15 

in larger quantities should be avoided. It may be explained by the competition between 16 

bulk phase and anodic biofilm, when the degradation of organic matter in bulk phase is 17 

more notable and therefore only a significantly reduced amount of substrate is able to 18 

reach the bioactive layer on the anode surface. In other words, most of the chemical 19 

energy bound in the feed material is lost via an undesired bioprocess. Recently, Chae 20 

et al. (2008) demonstrated that competitive degradation processes may occur in the 21 

anodic side of two-chamber bioelectrochemical systems, which can cause lower 22 

performance. It has turned out from the results that the gas evolved in the anode 23 
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compartment contained a considerable amount of methane besides carbon dioxide, 1 

which implies that methanogenic strains were able to utilize the organic substrate 2 

present via electrochemically-inactive reactions, leading eventually to a depressed 3 

energy efficacy. On the other hand, when LPW concentration increases in the anode 4 

cell (higher substrate loading), the phenomena taking place due to fresh inoculum 5 

injection (MAS content) has less negative effect on the anode-surface reaction and 6 

hence bioelectricity generation is not limited so strongly. Overall, it can be concluded 7 

that outsider microbes entering the MFC anode chamber can influence the substrate 8 

utilization and related bioelectricity production, although it seems to be dependent on 9 

substrate to inoculum ratio. 10 

 11 

3.2. Effect of LPW and MAS concentrations on energy yield and COD removal 12 

 13 

In Fig. 6, the dependency of energy yield on LPW and MAS concentrations is 14 

depicted. The results show that significantly higher energy yields (up to 8-9 J g
-1

 15 

COD d
-1

) were achieved in case of low COD loadings that occur with low LPW and 16 

MAS concentrations. As elucidated above, the addition of MAS (“reinoculation”) 17 

could pose a threat on reliable MFC operation since microorganisms in the bulk phase 18 

compete for the nutrients and hence, reduce their amount being available for the 19 

electrochemically active anode-surface consortia, inherently causing depressed energy 20 

yields. Moreover, it can be observed that improved energy valorization of LPW 21 

favours its low concentrations. LPW is a complex organic matter and therefore, its 22 

bioelectrochemical decomposition has significant time-demand, which, in addition, is 23 
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likely influenced by the diffusion rate of substances into the biofilm, as well. Besides, 1 

the biofilm can be characterized by limited substrate processing capacity. Thus, the 2 

phenomenon of substrate saturation may occur, when the ability of microbes in the 3 

biofilm is fully exploited, they are unable to take up more compounds and thereby 4 

different bulky phase processes could take place in parallel that do not support 5 

electricity generation. From the point of view of energy-realization, it means an 6 

unbeneficial utilization of the substrate. Therefore, if the substrate level is maintained 7 

sufficiently low or in other word, if the influent is properly diluted (Cercado-Quezada 8 

et al., 2010) then the anode-living strains can have the possibility to convert bigger 9 

portions of LPW into desired electricity more efficiently.  10 

The COD removal capacity of an MFC is an important parameter to evaluate 11 

the attractiveness of MFC technology from environmental perspective. COD removal 12 

data are summarized in Table 5, where it can be seen that remarkable COD 13 

degradation was possible from a complex substrate such as LPW, which is a notable 14 

advantage of the MFCs. According to Table 5, the average COD removal was 87.3 % 15 

and in case of MFC 1 it exceeded even 94 %. These values can be considered high in 16 

the view of other literature data (Gálvez et al., 2009; Mohan et al., 2007; Rengasamy 17 

and Berchmans, 2012) as well as in comparison with our previous accomplishments on 18 

sugar industry wastewater (Bélafi-Bakó et al., 2014). The organic-removal efficiency 19 

of the cells can be described well by the average COD removal rates, which varied 20 

between 1.2 and 1.9 kg COD d
-1

 values, assuming 1 m
3
 anode chamber volume. 21 

 22 

23 
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 4.  Conclusions 1 

 2 

Based on the results, it was concluded that the wastewater (LPW)-based 3 

microbial fuel cell system operated successfully and it proved to be suitable for power 4 

generation with simultaneous COD removal. It was found that reinoculation of MFC 5 

by mesophilic sludge influenced the effectiveness of the preliminary adapted biofilm 6 

on the anode surface. In addition, it was observed that energy recovery was strongly 7 

dependent on LPW (substrate) concentration in the anode chamber and improved MFC 8 

performance favoured low organic material loadings.  9 

 10 
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Figure Captions 1 

 2 

Fig. 1: The simplified overview of WTP process and LPW generation 3 

Fig. 2: The scheme of the experimental dual-chamber MFC 4 

Fig. 3: Layout of the experimental design 5 

Fig. 4: Voltage output as a function of time (in case of 5 mL:9 mL LPW-MAS ratio). 6 

1:  inoculation with raw MAS; 2,3: first and second adaptation steps with Na-acetate 7 

addition, respectively; 4: addition of LPW-MAS mixture 8 

Fig. 5: Effect of MAS-LPW mixture feeding on energy production 9 

Fig. 6: Changes in energy yield to initial MAS and LPW concentrations 10 

 11 
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Fig.1  1 
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Fig.2 1 
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Fig.3 1 
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Fig. 4 1 
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Fig. 5 1 
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Fig.6 1 
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Table 1 – The main characteristics of LPW 1 

 2 

Parameter Value 

total COD 111.6 g L
-1 

BOD5 50.8 g L
-1 

pH 4.7 

Protein content 42.5 g L
-1

 

TS 7.3 % 

Reducing sugar content 1.6 g L
-1

 

TOC 35.9 g L
-1

 

 3 
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Table 2 – Parameters of the experimental design 1 

 2 

MFC ID 

Added LPW 

[mL] 

Added MAS 

[mL] 

LPW 

concentration 

[vol%] 

MAS
a
 

concentration 

[vol%] 

1. 5.0 9.0 8.33 15.00 

2. 1.0 5.0 1.67 8.33 

3. 1.0 13.0 1.67 21.67 

4. 3.0 7.0 5.00 11.67 

5. 5.0 1.0 8.33 1.67 

 
a
: the term MAS concentration is identical to “reinoculation ratio” 3 

4 
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Table 3 – Values of energy parameters obtained from the results of the experimental 1 

design 2 

 3 

MFC 

ID 

LPW:MAS 

[mL:mL] 

Umax 

[mV] 

jImax 

[mA m
-2

] 

jPmax 

[mW m
-2

]  

E 

 [J] 

CE 

[%] 

1. 5:9 43.8 175 7.7 13.4 1.95 

2. 1:5 54.6 218 11.9 10.6 1.86 

3. 1:13 47.8 191 9.2 8.8 1.25 

4. 3:7 49.9 200 10.0 11.6 1.57 

5. 5:1 38.0 152 5.8 12.0 1.41 

 4 

5 
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Table 4 – Comparison of current density values 1 

 2 

MFC type Feed 

Current density 

[mA m
-2

] 

Reference 

    

Dual-chamber 

MFC 

Food industry 

wastes, 

compost 

leachate 

232 

Cercado-

Quezada et al. 

(2010) 

    

Single-chamber 

MFC 

leachate 114 

Ganesh and 

Jambeck (2013) 

    

Dual-chamber 

MFC 

pre-digested 

landfill leachate 

418-548 

Tugtas et al. 

(2013) 

    

Dual-chamber 

MFC 

Liquid fraction 

of pressed solid 

waste 

152-218 This work 

 3 

4 
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Table 5 – COD parameters of each MFCs 1 

 2 

MFC 

ID 

COD input 

[g] 

Initial COD 

[g L
-1

] 

Final COD 

[g L
-1

] 

COD removal 

[%] 

1. 0.855 44.67 2.31 94.8 

2. 0.268 34.88 5.11 85.4 

3. 0.512 38.94 4.11 89.5 

4. 0.562 39.77 8.52 78.6 

5. 0.612 40.61 4.84 88.1 

 3 

4 
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List of abbreviations 1 

Abbreviation Full name 

BOD Biological oxygen demand 

CE Coulombic efficiency 

COD Chemical oxygen demand 

LPW Liquid fraction of pressed solid waste 

MAS Mesophilic anaerobic sludge 

MFC Microbial fuel cell 

TOC Total organic carbon 

TS Total solids 

  

 2 


