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Abstract 

The genus Melitaea consists of about 80 species, divided into 10 species groups, which are all 

restricted to the Palaearctic region. The Melitaea phoebe group was defined by Higgins based 

on morphological characters such as wing pattern and genital structures. According to his 

interpretation, the M. phoebe group included seven species: M. phoebe, M. sibina, M. 

scotosia, M. aetherie, M. collina, M. consulis and M. turkmanica. The taxonomy of the 

phoebe species group has been poorly resolved and recent results on the species composition 

within the group suggest the need for a re-evaluation. In this study molecular sequences (5985 

bp) including one mitochondrial (COI) and up to six nuclear (CAD, EF-1α , GAPDH, MDH, 

RpS5 and wingless) gene regions from 38 specimens of the Melitaea phoebe species group 

sensu Higgins and some closely related taxa from the Palaearctic region were analysed. The 

possible evolution of the processus posterior of the male genitalia was also reconstructed 

based on a shape mapping technique. The analysis of the combined data shows a very clear 

pattern and almost all relationships are highly supported. Based on the combined Bayesian 

tree and the shape of the processus posterior of the male genitalia four main groups are 

recognised: (1) collina group, (2) arduinna group, (3) aetherie group and (4) phoebe group. 

The status of M. ornata, M. zagrosi and M. scotosia as species is confirmed, and the results 

also indicate that M. telona (s. str.) from Israel is a separate species. 

 

Introduction 

Recent phylogenetic work on Lepidoptera has deepened our understanding of their 

evolutionary history (Kristensen et al., 2007; Mutanen et al., 2010; Wahlberg et al., 2013). 

Several publications have investigated the position of Papilionoidea within the huge Ditrysian 

radiation and clarified the phylogenetic relationships of the constituent families (e.g. Regier et 

al., 2009; Heikkilä et al., 2012). A number of studies have given considerable attention to the 

phylogenetic relationships within the highly diverse family Nymphalidae (Wahlberg et al., 

mailto:acutiformis@yahoo.com


2003; Freitas & Brown, 2004; Wahlberg et al., 2009), including its subfamilies (e.g. Peña et 

al., 2006; Simonsen, 2006; Peña & Wahlberg, 2008). Among them, several papers were 

devoted to different aspects of phylogeny and population biology of butterflies in the tribe 

Melitaeini. These have long been model organisms in population biology (Ehrlich & Hanski, 

2004), giving insights into e.g. how populations survive in fragmented landscapes (Hanski, 

1999), how host plant specialization evolves (Singer et al., 1993; Wahlberg, 2001) and how 

host-parasitoid interactions affect insect populations (van Nouhuys & Hanski, 2002). Within 

the tribe, the genus Melitaea has been shown to be a large monophyletic unit (Wahlberg & 

Zimmermann, 2000; Leneveu et al., 2009), consisting of about 80 species. The genus is 

restricted to the Palaearctic region, and thus this rather diverse group of species is one of the 

typical butterfly genera of this biogeographic region.  

The first significant review of this relatively species-rich genus was published by Higgins 

(1941) with several comments on its taxonomy. He defined the Melitaea phoebe group based 

on morphological characters such as wing pattern as well as male and female genitalia. 

According to his interpretation, the M. phoebe group consists of seven species. The best-

known species is Melitaea phoebe ([Denis & Schiffermüller]) (TL: Vienna, Austria) with a 

wide trans-Palaearctic distribution from North Africa to the Far East with several described 

subspecies. Melitaea sibina Alphéraky (TL: Kuldja, China), from the high mountain regions 

of Central Asia, shows a very characteristic vivid reddish colouration and reduced dark 

pattern on the upper side of the wings. The largest species, Melitaea scotosia Butler (TL: 

Japan), is known from the Far East: Amur and Ussuri region, Manchuria, Korea, north-eastern 

China and Japan. The strongly sexually dimorphic Melitaea aetherie (Hübner) (TL: Spain) is 

a western Mediterranean species distributed only in North Africa, the southern part of the 

Iberian Peninsula and Sicily. Finally, three smaller species are confined to a relatively 

restricted area in the Middle East: M. turkmanica Higgins (TL: Ashkhabad, Turkmenia), M. 

consulis Wiltshire (TL: Shiraz, Iran) and M. collina Lederer (TL: Antioch, Syria). At the time 

of Higgins‟ (1941) review, two species, Melitaea sarvistana Wiltshire and M. tangigharuensis 

Eckweiler, also with restricted ranges, were unknown. 

Recently several new observations have brought into question the taxonomy of the phoebe 

group, especially concerning the close relatives of M. phoebe. Two research groups 

independently realized that there was an unrecognised species in Europe under the name of M. 

phoebe (Russell et al., 2005; Varga et al., 2005). The separation of this cryptic species was 

based on larval morphology from the fourth instar onwards. M. phoebe larvae have a black 

head capsule while the larvae of this recently recognised Ponto-Mediterranean species have a 

brick-red head capsule (Russell et al., 2007). Based on these observations, the name M. telona 

Fruhstorfer (TL: Jerusalem, Israel) was taken into use for this species. 

In a recent molecular study, Melitaea was shown to comprise two main clades that correspond 

to Melitaea s. str. and Didymaeformia, and that the M. phoebe group forms a monophyletic 

clade within the subgenus Didymaeformia (Leneveu et al., 2009). Although that study 

provided important results regarding the systematics of the genus, the members of the phoebe 

species group were poorly represented, and the need for a detailed examination of this group 

remained. One of the important results was the corroboration of the species rank of M. telona 

and the suggestion that the taxon punica (TL: Lambessa, Algeria) may represent a separate 

species from both M. telona and M. phoebe. In contrast to other studies, Leneveu et al. (2009) 

reported that M. sibina and M. scotosia did not differ genetically from M. phoebe. 

Another recent study on the morphometry of genitalia in males and females of the phoebe 

species group provided additional information (Tóth & Varga, 2011). An analysis of a large 

number of specimens (568) from the Palaearctic showed that Melitaea telona is not restricted 

to the Ponto-Mediterranean region since several new localities were found, including the 

Orenburg region (Russia), northern Iran and the easternmost border of Kazakhstan. Since the 



name ornata described by Christoph in 1893 (TL: South-Urals, Russia) is older than the name 

telona, the authors began to use M. ornata as the valid name for this species following the rule 

of priority. Most of the results of Tóth and Varga (2011) are in concordance with the results 

of Leneveu et al. (2009), except that Melitaea scotosia proved to be a distinct species based 

not only on the morphology of genitalia but also the wing pattern. Also, based on the 

significant difference in male and female genitalia and the distinct wing pattern, a new species 

was described from Iran as Melitaea zagrosi Tóth & Varga, 2011. 

Landmark based genitalia morphometry proved to be a useful tool for species delimitation in 

the case of Melitaea phoebe group, but the phylogenetic relationships among the species 

remained unclear. Therefore, we attempted to clarify the phylogenetic relationships of the M. 

phoebe group by using DNA sequence data from seven gene regions from multiple 

individuals of almost all species belonging to the group. Through synthesis of results from 

previous research and by combining molecular and morphometric methods, we provide the 

most comprehensive picture of the Melitaea phoebe group to date. 

 

Material and Methods 

 

Samples 

We sampled 38 specimens of the Melitaea phoebe species group sensu Higgins (except M. 

turkmanica, samples of which were unavailable) and some closely related taxa from the 

Palaearctic region (Table 1, Fig. 1). The identification was based on wing characters as well as 

on genitalia in certain cases (Tóth & Varga, 2011). 

 

DNA studies 

For samples processed in Debrecen, Hungary, DNA was extracted by homogenising the head 

in 800 μl extraction buffer (Gilbert et al. 2007). The samples were incubated for 24 h at 56˚C 

with gentle agitation and then centrifuged at 14,000 rpm for 1 min. The supernatant was 

washed twice with an equal volume of chloroform-isoamyl alcohol (24:1) to remove proteins. 

The DNA was precipitated by adding the mixture of 80 μl ammonium acetate (7.5 M) and an 

equal volume of ice-cold isopropanol and storing the samples at -20˚C for 3 h. The DNA was 

pelleted by centrifugation at 14,000 rpm for 10 minutes at 4˚C. After centrifugation, the 

supernatant was discarded and the DNA pellet was washed twice with 70% ice-cold ethanol. 

The pellet was air dried for 1 h at room temperature, and was re-dissolved in 50 μl elution 

buffer (10 mM Tris HCl, pH 8.0 and 0.5 mM EDTA, pH 9.0). For samples processed in 

Turku, Finland, DNA was extracted following protocols in e.g. Matos-Maraví et al. (2013). 

DNA aliquots were stored at 4˚C. 

The cytochrome c oxidase subunit I gene (COI), which is commonly used in barcoding animal 

life (Hebert et al. 2003; Wiemers and Fiedler 2007), offers an adequate tool to obtain insight 

into the phylogeny of taxa at species level. We therefore sequenced this section of the 

mitochondrial genome together with the nuclear elongation factor 1α (EF-1α), CAD, 

GAPDH, MDH, RpS5 and wingless. These genes were amplified by specific primers 

modified at their 5'-end to include the universal sequencing primer T7promoter (Wahlberg 

and Wheat 2008). Amplification from 1 μl of DNA extracts was carried out in 25 μl final 

reaction volumes containing 10x PCR buffer, 2 mM MgCl2, 0.2 mM dNTPs, 0.02 units/μl of 

Taq DNA polymerase (Dream Taq Green, Fermentas) and 0.2 μM of each primer. 

Amplification was carried out in an ABI Veriti thermal cycler programmed for: initial 

denaturation for 3 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at the locus specific annealing 

temperature, 1 min at 72°C; final elongation of 10 min at 72°C. The success of PCR 

amplification was checked by running 2 µl of product on 1% agarose gels stained with 

ethidium-bromide. PCR-products were sequenced by commercial service provider Macrogen 



Inc. (South-Korea, Seoul). Sequences were edited and revised manually by Chromas Lite v. 

2.01, aligned by MEGA v. 5.2 (Tamura et al., 2011). DNA sequences and voucher data were 

stored in and dataset for phylogenetic analyses, as well as FASTA files for submission to 

GenBank were produced by the software VoSeq (Peña & Malm, 2012) (see Table 1 for 

accession numbers). 

Bayesian analyses were conducted on single-gene, nuclear genes only and all-gene datasets by 

using MrBayes 3.2.1 (Ronquist et al., 2012). The all-genes dataset was partitioned by gene. 

Various possible models of molecular evolution were sampled for each gene (both single and 

combined data) during the analysis by taking advantage of the model-jumping feature of 

MrBayes v3.2 through the command “lset applyto = (all) nucmodel=4by4 nst=mixed 

rates=gamma covarion=no;”. Two independent MCMC runs each with four simultaneous 

chains (one cold and three heated) for each analysis were run for 10 million generations and 

the sampling of trees and parameters was set to every 1000 generations. Convergence of the 

two runs was determined by the stationary distribution plot of the log likelihood values 

against number of generations and confirmed by the average standard deviation of split 

frequencies, which were lower than 0.05 in all cases. We discarded the first 2,500,000 

generations as burn-in and trees were summarized under the 50 percent majority rule method. 

 

Morphometry 

To reconstruct the possible evolution of the processus posterior (male genitalia) we applied a 

shape mapping technique on the phylogenetic tree resulting from the all-gene analysis 

(Klingenberg & Gidaszewski, 2010). Fixed and sliding landmarks were used to define the 

shape of the processus posterior (Fig. 2) for all the surveyed species. Since the applied method 

uses only one shape per taxon, we chose the most typical if it was possible. Unfortunately, we 

had only female specimens from certain taxa (M. collina, M. consulis, M. avinovi, M. 

sarvistana). In these cases we used figures from previous publications (Higgins, 1941; 

Eckweiler, 2008) for obtaining landmark data. These figures were made by using camera 

lucida which allows great precision. For fitting landmark data we used a generalized 

Procrustes analysis. The degree of phylogenetic signal present in shape data was estimated 

based on a Brownian motion model of evolution using the „geomorph‟ (Adams & Otarola-

Castillo, 2013) package in the R computing environment (R Core Team, 2013) where we used 

the consensus topology from the all-genes Bayesian analysis. The phylogenetic signal is 

estimated as the sum of squared changes in shape along all branches of the phylogenetic tree 

(Klingenberg & Gidaszewski, 2010). A permutation test for phylogenetic signal was applied 

using 10,000 iterations where ancestral states were estimated in each iteration.  

 

Results 

The analysis of the all-genes dataset shows a very clear pattern, with almost all relationships 

highly supported (Fig. 4). The clade including Melitaea consulis and M. collina is sister to the 

rest of the M. phoebe species group, followed by M. arduinna and M. avinovi. Next up is a 

clade without statistical support (posterior probability: 0.74) comprising M. sarvistana+M. 

tangigharuensis and M. aetherie. It is not entirely clear whether these are sisters to each other, 

or whether one or the other is sister to the M. phoebe clade. Within the large M. phoebe clade, 

most species are genetically distinct from each other, and thus a priori species delimitation is 

corroborated. The only taxon that is not well differentiated is M. sibina, which is genetically 

identical to M. phoebe. Surprisingly, the Melitaea telona (s. str.) specimens from Israel are 

well separated from M. ornata. The recently described M. zagrosi also shows clear separation 

from M. ornata and a close relation to M. scotosia, which is well separated from M. phoebe.  

The single gene analyses are not in conflict with the combined analysis (supplementary: Fig. 

1). All six nuclear genes, however, show very little variation among the sampled individuals 



and thus there is very low resolution of the relationships of the species in the single gene 

analyses. Nevertheless, combining the nuclear genes does give a phylogenetic hypothesis 

which is very similar to the COI topology as well as the all-genes analysis (supplementary: 

Fig. 1). This suggests that all of the sequenced gene regions share a common evolutionary 

history and the revealed relationships are for the most part robust. 

The shape of processus posterior showed significant phylogenetic signal (0.62, p<0.001) 

based on the all-genes Bayesian tree. Thus the shape of the processus posterior of the male 

genitalia as well as the phylogenetic relationships of the sampled species (Fig. 5) suggest that 

the phoebe group has four well-defined groups within it, of which the first three consist of 

species with rather restricted ranges, while the much more diverse fourth one, the phoebe 

group s. str. is formed from both geographically restricted and widespread species. 

The main groups are:  

(1) collina group: M. collina and M. consulis, with the inner process missing on the processus 

posterior; 

(2) arduinna group: M. arduinna and M. avinovi, with the middle and inner process missing 

while the outer process is well developed; 

(3) aetherie group: M. aetherie, M. tangigharuensis and M. sarvistana with the middle 

process missing; 

and (4) phoebe group: M. phoebe, M. punica, M. telona, M. zagrosi, M. scotosia and M. 

ornata, with all the processi well developed. 

 

Discussion 

In this study the phylogenetic relationships among the members of M. phoebe species group 

have been determined based on seven gene regions. According to our results, the monophyly 

of Higgins‟ (1941) phoebe group is supported. Within the clade there are four well-defined 

species groups based on both molecular data and the morphology of the male genitalia 

(processi posteriores).  

The collina group (M. collina: Asia Minor, Syria; M. consulis: Iran, Shiraz region) was 

already recognised by Leneveu et al. (2009). Species in this group show very uniform 

morphology of the processus posterior (see: Fig 5). Although M. turkmanica (Armenia, Iran 

and Turkmenistan) was not included in this analysis, it is possible to place this species in the 

collina group based on the morphology of the male genitalia. The biology of these species is 

poorly known. They are found in a relatively small area in the Middle East (Tshikolovets, 

2011) in hot and dry climatic conditions. 

M. arduinna and M. avinovi belong to the arduinna group based on the very uniform wing 

pattern, the peculiar shape of the processus posterior and molecular data. M. arduinna is 

relatively widely distributed in the south-eastern part of western Palaearctic region (south-

eastern Europe, north-western Kazakhstan, Caucasus, Transcaucasia, Asia Minor, north-

eastern Iraq and Iran, mountains of Central Asia) under hot and dry climate conditions, while 

M. avinovi has a restricted distribution as it is only known from the Pamir Mountains 

(Gorbunov & Kosterin, 2007; Higgins, 1950).  

Although M. aetherie has a very different wing pattern from the other two members of the 

aetherie group, some similarities are present in the shape of the processus posterior, namely 

the reduction of the middle process. All the species of this group have a restricted distribution. 

M. sarvistana and M. tangigharuensis (Eckweiler, 2008) are only known from Iran, while M. 

aetherie is distributed in some parts of North Africa, southern part of the Iberian Peninsula 

and in Sicily under hot and dry climate conditions (Tolman & Lewington, 2008; Tshikolovets, 

2011). 

In this analysis, the largest clade is comprised by the closest relatives of M. phoebe that could 

be defined as the phoebe group s. str. The shape of the processus posterior is uniform in that 



all the processi are developed; however, the length, the symmetry and the directions of these 

processi show species level differences (Fig. 3) (Tóth & Varga, 2011).  

In the light of the phylogenetic analyses, we discuss three important taxonomic consequences. 

First, the species status of the recently described Melitaea zagrosi is corroborated. Hopefully 

our knowledge of this species will increase in the coming years. The species was known only 

from Iran, but recently it has also been found in Azerbaijan (G. Kuznetsov pers. com.). 

Second, contrary to the previous phylogenetic study of Melitaea (Leneveu et al., 2009), 

Melitaea scotosia represents a separate species. This finding is in agreement with the wing 

pattern, the structure of male and female genitalia (Tóth & Varga 2011) and is also supported 

by the very distinct morphology of caterpillars and pupae (Yasuhiro Nakamura pers. com.). 

The contrasting result in Leneveu et al. (2009) was actually caused by the misidentification of 

the sampled specimen (sample NW27-11), which on re-examination is in fact M. phoebe. The 

correct taxonomic status of M. scotosia is an important issue since this species has a high 

conservation importance, especially in Japan, where its rate of decline is extremely high 

(98%) (Nakamura, 2011). 

Finally, surprisingly, M. telona (s. str.) from Israel and M. ornata proved to be different taxa. 

Our previous surveys have already revealed differences in the genital structures of both sexes 

(Tóth et al., 2013; Tóth & Varga, 2011); however, M. telona seems to be morphometrically 

very close to Melitaea ornata. Moreover, previous studies did not find any differences 

between these two species in larval morphology and wing pattern. Molecular data suggest that 

the two taxa are genetically distinct from each other and that they are sisters although this 

clade has no statistical support at this point (posterior probability: 0.6), meaning that one or 

the other might be more closely related to the M. scotosia+M. zagrosi clade. Based on these 

results we can conclude that M. telona is not a subspecies of M. ornata but a species in its 

own right. Previous studies showed that M. sibina is not a distinct species from M. phoebe. 

The results of DNA analysis (Leneveu et al., 2009) and the genitalia morphometry (Tóth & 

Varga, 2011) agree that the two cannot be separated. The present analysis also supports the 

previous conclusions. Originally, the separation of M. sibina from M. phoebe was based on 

the characteristic wing pattern on the upper side of the wing, which is probably highly 

influenced by environmental factors as it has been shown in other butterflies (Kingsolver & 

Wiernasz, 1991; Cesaroni et al., 1994). It is noteworthy that the underside of the hind wing, 

which has proved to be a reliable character in most cases, is not different from M. phoebe.  

Most of the species in the phoebe group are adapted to hot and dry climate conditions like the 

members of the other three closely related species groups, with two exceptions. One is 

Melitaea scotosia with a restricted distribution in the most north-eastern part of China, south-

eastern part of Russia, the Korean Peninsula and Japan under humid climate conditions. 

However, M. phoebe can be found in many different kinds of habitats, but it appears to show a 

preference for a humid climate. This species is widely distributed at medium altitudes of West 

Palaearctic high mountains (e.g. Alps, Carpathians, Balkans, Caucasus) but is usually rare 

under hot and dry climate conditions where other members of this group (M. ornata, M. 

telona or M. zagrosi) are often more abundant than M. phoebe. However, we have to note, this 

pattern does not hold in the case of the Iberian Peninsula and Iran, where dry adapted, 

probably well-differentiated forms of M. phoebe occur. 

In this study, the DNA based phylogenetic hypothesis for species delimitation in the M. 

phoebe-group agrees generally quite well with the previous morphometric studies (Tóth & 

Varga, 2011), although some morphometrically close species seem to be more distant relatives 

of each other based on the phylogenetic reconstruction than was expected. It has also become 

clear that the head colouration of the larvae in the close relatives of M. phoebe cannot be 

considered as a species-specific character since M. ornata, M. telona and M. zagrosi (G. 

Kuznetsov pers. com.) all have red head capsules. On the other hand, the black head capsule 



does not necessarily indicate a conspecific relationship, since M. scotosia larvae also have 

black head capsule. A black head capsule is known in M. aetherie and M. arduinna, 

suggesting that this may be the ancestral state. However, species in other groups of the 

Didymaeformia clade have orange coloured head capsules, which may or may not be 

homologous to the brick red colour found in the M. phoebe-group. Therefore, the specific 

colouration of the head capsule cannot be considered as either a plesiomorphic or apomorphic 

trait, but as a possible parallelism, having evolved on multiple occasions from an originally 

polymorphic state with repeated loss of “black” or “red” alleles.  

We have shown here that a multigene approach can resolve the phylogenetic relationships of 

multiple previously cryptic species and in doing so lead to clarification of the taxonomic 

composition of such a species group. We made a large step forward in our understanding of 

the Melitea phoebe group, but a number of questions remains. In the future it would be 

interesting to add data from e.g. other populations of M. phoebe that appear well differentiated 

and asses them both using molecular data and morphometrics. 
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Figures 

 

 
Fig. 1. Sample locations 

 

 
Fig. 2. Landmarks on the processus posterior (Melitaea phoebe male genitalia) 

 

 
Fig. 3. Processus posterior of some Melitaea species. From left to the right: M. arduinna, M. 

aetherie, M. punica, M. phoebe, M. telona, M. ornata, M. scotosia, M. zagrosi. 

 



 
Fig. 4. Consensus phylogeny from the Bayesian inference analysis based on the combined 

dataset of seven region (COI, EF-1α, CAD, GAPDH, MDH, RpS5 and wingless). 

 

 
Fig. 5. The combined Bayesian tree and the shape of the processus posterior of the male 

genitalia. 


